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A DUAL–SCALE MODELLING APPROACH

FOR DRYING HYGROSCOPIC POROUS MEDIA∗

E. J. CARR† , I. W. TURNER† , AND P. PERRÉ‡

Abstract. A new dual–scale modelling approach is presented for simulating the drying of a
wet hygroscopic porous material that couples the porous medium (macroscale) with the underlying
pore structure (microscale). The proposed model is applied to the convective drying of wood at
low temperatures and is valid in the so–called hygroscopic range, where hygroscopically held liquid
water is present in the solid phase and water exits only as vapour in the pores. Coupling between
scales is achieved by imposing the macroscopic gradients of moisture content and temperature on the
microscopic field using suitably–defined periodic boundary conditions, which allows the macroscopic
mass and thermal fluxes to be defined as averages of the microscopic fluxes over the unit cell. This
novel formulation accounts for the intricate coupling of heat and mass transfer at the microscopic scale
but reduces to a classical homogenisation approach if a linear relationship is assumed between the
microscopic gradient and flux. Simulation results for a sample of spruce wood highlight the potential
and flexibility of the new dual–scale approach. In particular, for a given unit cell configuration it is
not necessary to propose the form of the macroscopic fluxes prior to the simulations because these
are determined as a direct result of the dual–scale formulation.

Key words. drying, porous media, multiscale, dual–scale, homogenisation, exponential integra-
tors, Krylov subspace methods, wood

AMS subject classifications. 65F60, 65F20, 65M08, 65M20

1. Introduction. The macroscopic approach for modelling heat and mass trans-
port in a porous medium is well developed (see, e.g, [25, 26]). At this length scale,
the method of volume averaging [19] can be used to overcome the difficulties asso-
ciated with the complex geometry of the underlying pore structure. This technique
performs a smoothing of highly oscillatory physical quantities (e.g., phase density) via
an averaging volume containing (typically) hundreds or thousands of pores. This av-
eraging method produces balance equations (derived from the standard conservation
laws) that resemble those of a continuum with the exception that volume–averaged
quantities and effective parameters appear in their definitions. The macroscopic ap-
proach is schematised in Figure 1.1 via the exchange of macroscopic fluxes (arrows 1)
between the accumulation terms (denoted by 2) in the balance equations. The most
comprehensive macroscopic formulation for drying of porous media (see, e.g., [15]),
which originates from the work of Whitaker [25], forms the basis for our dual–scale
approach (see Section 2.1).

One of the main drawbacks of the macroscopic approach is that the effective co-
efficients must be supplied to the model, most of which are nonlinear functions of
moisture content and temperature. Homogenisation theory allows these effective co-
efficients to be predicted from the microscopic structure of the porous medium (see,
e.g., the book chapter [8]). This theory assumes that the underlying pore structure
consists of a periodic arrangement of cells, and produces steady–state, uncoupled
problems on the unit cell, which must be solved once, prior to the simulation. The
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Fig. 1.1: Possible interactions within and between the macroscopic and microscopic
scales for the balance equations.

resulting homogenised coefficient supplied to the macroscopic formulation thereafter
consists of two contributions: the average of the microscopic properties, which ac-
counts for the proportion and microscopic coefficients for each phase in the unit cell;
and a corrective term, which accounts for the unit cell morphology [10]. Homogeni-
sation is an example of a scaling (dual–scale) method: information is supplied in the
“microscale to macroscale” direction only (represented by arrows 3 in Figure 1.1).
Drying configurations whereby the scaling approach fails are well documented in the
literature (see, e.g., [11, 12]) and provide motivation for moving towards two–way
dual–scale approaches, such as the approach featured in this work.

Dual–scale approaches for transport in porous media are presented in the book
chapter [18] and the references therein. The main idea behind these models is that at
each point in the macroscopic domain, there is specified a microcell that represents
the pore structure present at that point. A set of (time–dependent) partial differential
equations is proposed to describe the global (macroscopic) flow, and a separate set of
(time–dependent) equations is used to describe the local (microscopic) flow. In this
case, interaction between scales is a true two–way process (represented by arrows 3
and 4 in Figure 1.1) with coupling between scales usually occurring on the boundary
of the microcell using various kinds of boundary conditions. The simplest coupling
strategy is to impose the macroscopic values via a Dirichlet boundary condition and
the average fluxes across the boundary as source terms at the macroscopic level. This
works nicely when the microscopic scale acts as a storage phase and the macroscopic
scale as a conductive phase (see [11] for a full set equations addressing this situation
for the drying of a bed of particles). However, in the majority of porous media, the
roles of storage and conduction is shared between scales. In the absence of local
thermodynamic equilibrium, one possible way to deal with such a situation is to
propose a microscale formulation capable of accounting for the macroscopic fluxes
and the microscopic fields simultaneously (represented by arrows 5 in Figure 1.1). For
this case, the coupling between scales is more challenging, because the macroscopic
variables and their gradients have to be accounted for at the microscale.

The ultimate goal of the dual–scale approach would be to transfer everything at
the microscale: the schematic diagram of Figure 1.1 would be reduced to arrows 5
denoting the fluxes, with the accumulative terms (denoted by 2) transferred as a net
rate of change of the microscopic field within the unit cell. This approach, while ideal,
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Fig. 1.2: Microscopic pore structure of softwood.

is very computationally demanding when the time constants of both scales differ by
several orders of magnitude.

The focus of the present article is the formulation of a dual–scale approach (in
two–dimensions) for simulating the convective drying of a porous medium at low
temperatures. Such a configuration involves a huge contrast between the macroscopic
and microscopic time constants. The proposed model applies in the hygroscopic range
only, where liquid water is absent from the pores. This assumption avoids tracking
the gas–liquid interface in the pore, which is non–trivial. The approach taken in
this paper lies somewhere between the scaling and two–way dual–scale approaches
mentioned above: interaction between the macroscopic and microscopic scales occurs
in both directions but steady–state conditions are assumed on the microscale (see
Section 2.2). Referring to Figure 1.1, arrows 1 now disappear as the heat and mass
fluxes are computed via an average at the microscopic level (arrows 5). These averaged
fluxes are supplied to the macroscopic balance equations (arrows 3), which allows the
macroscopic fields to be updated. The coupling is closed because the updated values
and gradients of the macroscopic variables are returned to the microscopic level as
boundary conditions (arrows 4).

The proposed dual–scale model is applied to a cross–section of spruce wood, a
softwood species, in Section 4.2. Softwood is a heterogeneous, anisotropic porous
material that is comprised of long tubular cells called tracheids, 90–95% of which are
oriented in the direction of the length of the log. These longitudinal tracheids, which
are comprised of the cell wall (solid phase) and cell lumen (pore) and pore–connecting
pits, are long and narrow — ranging from 3–4mm in length and 25–50µm in diameter
[17]. Abrupt changes in the tracheid diameter and cell–wall thickness from earlywood
(rapid growth period, thin cell walls) and latewood (slow growth period, thick cell
walls) produce the annual growth rings visible at the macroscopic scale (see Figure
1.2). Tracheids found in both earlywood and latewood are investigated in Section 4.1.

2. Model formulation. Consider a bounded macroscopic domain B ⊂ R
2, with

boundary ∂B, that represents a two–dimensional sample of porous material. We
assume that the underlying microstructure present at each point x = (x1, x2)

T ∈ B
takes the form of a periodic arrangement of cells defined by a single unit cell Cx =

(0, a)× (0, b) ⊂ R
2 with boundary ∂Cx. Furthermore, the partition Cx = C

(s)
x ∪C

(g)
x of

Cx is defined, where C
(s)
x and C

(g)
x denote the solid and gaseous phase (pore) regions of
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the unit cell, respectively (see Figure 2.1). The coordinate variable y = (y1, y2)
T ∈ R

2

denotes the position on the unit cell. We assume that the positive y1 and y2 directions
align with the positive x1 and x2 directions. In the following sections, separate sets
of partial differential equations are used to describe the global flow in B and the local
flow within Cx, where the subscripts B and Cx are used to denote the macroscopic and
microscopic variable fields, respectively.

C
(g)
x

C
(s)
x

∂Cx

∂B

y2

y1
0

b

x2

x1

x ∈ B

Fig. 2.1: Macroscopic domain and unit cell.

2.1. Macroscopic transport equations. To describe the macroscopic flow,
the comprehensive formulation presented in [15] is utilised. Under low temperature
drying conditions, the assumption of a fixed gaseous pressure is valid. This assumption
produces a two–equation model (a balance equation is not included for the air phase)
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of the form (see, e.g., [23])

∂ψℓ

∂t
(u(x, t)) +∇x · qℓ(u(x, t)) = 0 , x ∈ B , ℓ = w, e , (2.1)

representing the conservation of water (ℓ = w) and energy (ℓ = e), where the conserved
quantities and flux vectors are given by

ψw = ρ0X + εgρv , ψe = ρ0(Xhb + hs) + εg(ρvhv + ρaha) , (2.2)

qw =
1

A(Cx)

∫

Cx

Qw dA , qe =
1

A(Cx)

∫

Cx

Qe dA , (2.3)

The subscript x on the gradient in Equation (2.1) indicates that the operator is taken
with respect to the macroscopic coordinate variable x. Equation (2.3) expresses the
macroscopic flux vector as the (area) average of the microscopic flux vector Qℓ over
the unit cell Cx. Recall that in the hygroscopic range, liquid water is absent from
the pores and present only as bound water in the solid phase. This explains the two
contributions, bound water (ρ0X) and water vapour (εgρv), to the mass variable.
The following notation is adopted in this paper: ε (volume fraction), ρ (density),
h (enthalpy), g (gas phase), v (vapour phase), a (air phase), s (solid phase) and b
(bound water phase). An overline is used to signify a superficially–averaged variable
(as opposed to an intrinsically–averaged variable without an overline) and A(·) denotes
area. The density of the porous medium ρ0 denotes the superficial average of the
solid phase. The primary variables are chosen as the moisture content X (kg kg−1)
and temperature T (◦C), with u(x, t) = (XB(x, t), TB(x, t))

T in Equation (2.1). All
remaining variables are functions of the primary variables (see Section 2.3).

Initially, the porous medium has some prescribed distribution of moisture content
and temperature. The boundary conditions applied on the drying surfaces have been
discussed in detail previously (see, e.g., [23]). These conditions prescribe the liquid
and energy fluxes on ∂B (i.e., they prescribe (qℓ · n∂B) for ℓ = w, e, where n∂B is
the unit vector normal to ∂B outward to B) and depend on the wet– and dry–bulb
temperatures, and velocity of the circulating air in the drier.

2.2. Microscopic cell problem. The following steady–state problem is pro-
posed on the unit cell

∇y ·Qℓ(U(y)) = 0 , y ∈ Cx , ℓ = w, e , (2.4)

where the microscopic variable field U(y) = (XCx
(y), TCx

(y))T . In the absence of
liquid water, the pore region of the unit cell is comprised of air and water vapour
only. Thus, in the hygroscopic range, liquid migration is governed by two different
mechanisms: bound water diffusion in the solid phase and water vapour diffusion in
the gaseous phase [17]. We assume that these two processes can be represented by
the following mass fluxes

Q(s)
w = −ρsDb∇yXCx

, y ∈ C(s)
x , (2.5)

Q(g)
w = −ρg

Dv

1− ωv
∇yωv , y ∈ C(g)

x , (2.6)

which together with Fourier’s law give the following form for the heat fluxes

Q(s)
e = −ks∇yTCx

+ hbQ
(s)
w , y ∈ C(s)

x , (2.7)

Q(g)
e = −kg∇yTCx

+ hvQ
(g)
w , y ∈ C(g)

x . (2.8)
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In the mass fluxes, Db and Dv denote the microscopic diffusion coefficients of bound
water and water vapour in air, respectively. We note that the form of the vapour
flux (2.6) is derived by assuming the air phase is stagnant [1, §17.2]. Introducing the
indicator variable

χ =

{

0 y ∈ C
(s)
x

1 y ∈ C
(g)
x

, (2.9)

allows one to define

Qw = (1− χ)Q(s)
w + χQ(g)

w , (2.10)

Qe = (1− χ)Q(s)
e + χQ(g)

e , (2.11)

for all y ∈ Cx, together with the conserved quantities

Ψw = (1− χ)ρsXCx
+ χρv , (2.12)

Ψe = (1− χ)ρs (XCx
hw + hs) + χ (ρvhs + ρaha) . (2.13)

Coupling between the macroscopic and microscopic variable fields occurs on the
boundary of the unit cell

XCx
(a, y2) = XCx

(0, y2) + a
∂XB

∂x1
(x, t) , 0 < y2 < b , (2.14a)

XCx
(y1, b) = XCx

(y1, 0) + b
∂XB

∂x2
(x, t) , 0 < y1 < a , (2.14b)

TCx
(a, y2) = TCx

(0, y2) + a
∂TB
∂x1

(x, t) , 0 < y2 < b , (2.14c)

TCx
(y1, b) = TCx

(y1, 0) + b
∂TB
∂x2

(x, t) , 0 < y1 < a , (2.14d)

Qℓ(0, y2) · n∂Cx
= Qℓ(a, y2) · n∂Cx

, 0 < y2 < b , ℓ = w, e , (2.14e)

Qℓ(y1, 0) · n∂Cx
= Qℓ(y2, b) · n∂Cx

, 0 < y1 < a , ℓ = w, e , (2.14f)

where n∂Cx
is the unit vector normal to ∂Cx outward to Cx, and via the relationship

1

A(Cx)

∫

Cx

Ψℓ(U(y)) dA = ψℓ(u(x, t)) , ℓ = w, e . (2.15)

This formulation respects the gradient of the macroscopic variable field at the unit cell
level, ensures calibration of the microscopic conserved quantities with the macroscopic
conserved quantities and is consistent with the assumption of a periodic arrangement
of cells.

Remark. The approach of applying the macroscopic gradient over the unit cell
Cx is equivalent to homogenisation if a linear relationship is assumed between the
microscopic gradient and microscopic flux. For example, consider the following simple
one–dimensional problem

dQ

dy
= 0 , Q(y) = −k(y)

dU

dy
, 0 < y < a (2.16a)

subject to

U(a) = U(0) + a
du

dx
, Q(0) = Q(a) ,

1

a

∫ a

0

U(y) dy = u (2.16b)
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where u is the macroscopic variable. For this problem, it is simple to show that the
microscopic flux is constant and given by

Q(y) = −κ
du

dx
, κ =

a
∫ a

0
dỹ
k(ỹ)

, (2.17)

where κ is the classical homogenised coefficient. Following from the definition in
Equation (2.3), the macroscopic flux vector takes the form of the homogenised flux

q =
1

a

∫ a

0

Q(y) dy = −κ
du

dx
. (2.18)

2.3. Closure conditions for softwood. The following relationships close the
model:

(i) The volume fraction of the gaseous phase (i.e., the porosity) in Equation
(2.2) is given by εg = 1−εs, where the solid fraction is assumed to vary with moisture
content, temperature and density [13]

εs =
ρ0(ρw + ρ0X)

ρs(ρw + ρ0(X −Xfsp(T )))
, (2.19)

and the fibre saturation value of moisture content decreases linearly with increasing
temperature according to the relation Xfsp = 0.325−0.001T (see, e.g., [21]). We note
that X < Xfsp denotes the hygroscopic range for wood. This form of εs accounts for
the swelling and shrinkage of the cell–wall (solid phase) depending on the volume of
bound water.

(ii) The gaseous pressure is constant and equal to the atmospheric value Patm

and the gaseous phase is assumed to be a binary mixture of two ideal gases (i.e., water
vapour and dry air) giving the following relationships:

Pa + Pv = Patm , ρv =
PvMv

R(T + 273.15)
, ρa =

PaMa

R(T + 273.15)
, (2.20)

where

Pv = P (sat)
v ψ , P (sat)

v = exp

(

25.5058−
5204.9

T + 273.15

)

, (2.21)

ψ = 1− exp

(

−0.764269

(

X

Xfsp

)

− 3.67872

(

X

Xfsp

)2
)

. (2.22)

The gaseous phase density and mass fraction of vapour in the air phase appearing
in the definition of the vapour flux (2.6) are given by ρg = ρa + ρv and ωv = ρv/ρg,
respectively.

(iii) Water and air at 0◦C are the reference states for enthalpy, and the spe-
cific heat values (J kg ◦C−1) are constant. In addition, the integral and differential
heats of sorption are assumed negligible giving the following enthalpy–temperature
relationships

hs = Cps
T , hb = Cpw

T , hs = Cps
T , hv = h0vap + Cpv

T , (2.23)

where h0vap is the latent heat of water vaporisation at 0◦C.
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(iv) In the heat flux definitions (2.7) and (2.8), the solid and gaseous conductivi-
ties are assumed constant and given by ks = 0.5Wm−1 K−1 and kg = 0.023Wm−1 K−1

[14], respectively. In the mass fluxes, the microscopic diffusion coefficients of bound
water and water vapour in air, are given by [20, 5]:

Db = exp

(

−12.8183993 + 10.8951601X −
4300

T + 273.15

)

, (2.24)

Dv = 0.0000226

(

T + 273.15

273.15

)1.81

. (2.25)

3. Computational considerations. One has to keep in mind that the dual–
scale approach proposed in this paper is significantly more demanding in computa-
tional resources than a classical macroscopic approach. The microscopic variable field
needs to be updated each time the macroscopic field is updated. Thus, sophisticated
numerical techniques are imperative for an efficient simulation.

3.1. Mesh terminology. Both the porous medium (macroscopic domain B)
and unit cell (microscopic domain Cx) are meshed using triangular–shaped elements.
It must be noted that for the unit cell configurations presented in this work (see
Section 4.1) one could use structured (rectangular) elements, however, it is our aim
to develop a general tool able to deal with any configuration for the unit cell (e.g.,
irregular geometries coming from actual wood images).

We denote by TD and ND the set of triangles and nodes that together describe
a triangulation over a given domain D. For each node i ∈ ND, we define a control
volume Ωi with boundary ∂Ωi. We denote by E = ∪i∈ND

∂Ωi, the set of edges that
define the control volume boundaries and introduce the partition E = Eint ∪ Eext of
E into the set of interior edges Eint (the edges located in D) and the set of boundary
edges Eext (the edges located on ∂D). The interior edges are constructed by connecting
the centroid of each triangle to the midpoint of its edges. Furthermore, for each node
i ∈ ND, we denote the set of its control volume edges by Ei = {σ ∈ E |σ ⊂ ∂Ωi} and
the set of its interior control volume edges by Ei,int = {σ ∈ Eint |σ ⊂ ∂Ωi} = Ei ∩ Eint.
The unit vector, normal to the control volume edge σ and outward to the control
volume Ωi, is denoted by ni,σ. The notations A(·) and L(·) are used to represent area
and length, respectively.

3.2. Macroscale solution approach. A discrete representation of the balance
law (2.1) over Ωi is given by

d

dt
ψ
(i)
ℓ +

1

A(Ωi)

∑

σ∈Ei

∫

σ

(qℓ · ni,σ) ds = 0 , i ∈ NB , ℓ = w, e , (3.1)

where ψ
(i)
ℓ denotes evaluation of the conserved quantity at node i. We approximate

the line integral along the edge σ using a midpoint quadrature rule via the numerical
flux

qℓ,i,σ =
(

qℓ,σ · ni,σ

)

L(σ) , (3.2)

where qℓ,σ represents evaluation of the flux vector at the midpoint of σ. This produces
the following control volume equation

d

dt
ψ
(i)
ℓ +

1

A(Ωi)

∑

σ∈Ei

qℓ,i,σ = 0 , i ∈ NB . (3.3)
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For a boundary edge (σ ∈ Ei,ext), one simply uses the boundary flux expressions in
the definition of the numerical flux qℓ,i,σ.

For an internal edge (σ ∈ Ei,int), the flux vector qℓ,σ is assumed constant within
a given macroscopic element and computed via a discretised version of the integrals
(2.3). To do this, a unique unit cell problem, with unit cell domain Cǫ, is associated
with each macroscopic element ǫ ∈ TB and the corresponding macroscopic flux vector
computed as an element area–weighted average of the numerical microscopic flux
vectors (see Section 3.3).

Applying a chain rule to the left–hand side of (3.3) gives

d

dt

[

X
(i)
B

T
(i)
B

]

=
−1

A(Ωi)

[

(ψw)XB
(ψw)TB

(ψe)XB
(ψe)TB

]−1
∑

σ∈Ei

[

qw,i,σ

qe,i,σ

]

≡

[

g
(i)
w

g
(i)
e

]

, i ∈ NB , (3.4)

where, for example, (ψw)XB
denotes the partial derivative of ψw with respect to

XB. This allows the full macroscopic discretisation to be expressed as a system of
differential equations in the form

du

dt
= g(u) , u(0) = u0 (3.5)

where u = (X
(i)
B , T

(i)
B )i∈NB

and g(u) = (g
(i)
w (u), g

(i)
e (u))i∈NB

. We approximate the
solution of the initial value problem (3.5) via a linearisation around t = tn of the form

du

dt
= g(un) + Jg(un)(u− un) , u(tn) = un , (3.6)

where J denotes the Jacobian matrix with function–identifying subscript. The solu-
tion of (3.6) is given by

u(tn + τ) = un + τϕ(τJg(un))g(un) , (3.7)

where ϕ(z) = (ez − 1)/z and τ = t − tn. The linearisation strategy presented above
and the resulting time–stepping formula (3.7) with stepsize τ is an example of an
exponential integrator (see, e.g., [3, 7, 22]). The attraction of using this method over
implicit methods (e.g., the backward differentiation formulae (BDF)) is that Krylov
subspace methods for approximating the ϕ–function matrix–vector product perform
well without the overhead associated with preconditioning. In our algorithm, the
stepsize is controlled via local error estimation (i.e., estimation of the error incurred
during a single time step) using the estimate proposed in [3] for (3.7), which has
performed well at controlling the stepsize in recent case studies involving transport
in porous media (see, e.g., [3, 4]).

3.3. Microscopic solution approach. Linear interpolation is used to supply
the macroscopic information required for the unit cell problem on Cǫ. For example, if
Iǫϕ(x) denotes the standard linear interpolant of a variable ϕ over a triangle ǫ ∈ TB
(i.e., Iǫϕ(x) is linear in x1 and x2 and Iǫϕ(x) = ϕ at the vertices of ǫ), then evaluation
of IǫXB(x) and IǫTB(x) at the centroid of ǫ provides the macroscopic values used to
evaluate ψℓ in Equation 2.15. The macroscopic gradients appearing in the boundary
conditions (2.14a)–(2.14d) are given by ∇xIǫXB and ∇xIǫTB, which are constant
across the element.

A discrete representation of the balance law (2.4) over Ωi is given by
∑

σ∈Ei

Qℓ,i,σ = 0 , i ∈ NCǫ
, ǫ ∈ TB , ℓ = w, e , (3.8)
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where the numerical flux is again defined using the midpoint approximation

Qℓ,i,σ = (Qℓ,σ · ni,σ)L(σ) . (3.9)

The vector Qℓ,σ = (1 − χ)Q
(s)
ℓ,σ + χQ

(g)
ℓ,σ featured in the approximation (3.9)

represents evaluation of the flux vector at the midpoint of the edge σ. It is important
that the mesh is constructed so that the element edges (and hence nodes) are aligned
with the interface between the solid phase and pore. This ensures that each edge is
located in homogeneous material (solid phase or pore), that is, the phase indicator

variable χ = 0 (σ ⊂ C
(s)
ǫ ) or χ = 1 (σ ⊂ C

(g)
ǫ ).

For the set of nodes NCǫ
we distinguish between those located on the north (y2 =

b), east (y1 = a), south (y2 = 0) and west (y1 = 0) boundaries of Cǫ, denoted by
the subsets NN, NE, NS and NW respectively, and the set of internal nodes Nint.
The mesh is also constructed to ensure alignment of nodes on opposing boundaries
of Cǫ, i.e., nodes located on the east boundary are horizontally aligned (having equal
y2 coordinates) with the west boundary nodes and nodes located on the north and
south boundaries are aligned vertically (having equal y1 coordinates). This alignment
is used to enable the implementation of the periodic boundary conditions described in
Equation 2.14. With alignment, the solution along the east and north boundaries can
be computed from the solution along the west and south boundaries, respectively, (or
vice versa) via the boundary conditions (2.14a)–(2.14d). This means we can restrict
our attention to the subset of nodes not located on the north or east boundaries,
which we will denote by NV = NCǫ

\(NE ∪ NN). In this case, the full microscopic
discretisation leads to an overdetermined system of nonlinear equations (the number
of equations outnumber the number of unknowns by two) that can be expressed as

G(U) =

[

f(U)
r(U)

]

= 0 , (3.10)

where U = (X
(i)
Cǫ
, T

(i)
Cǫ

)i∈NV
∈ R

2n, f(U) = (f
(i)
w (U), f

(i)
e (U))i∈NV

∈ R
2n, r(U) =

(rw(U), re(U))T ∈ R
2 and G(U) ∈ R

2n+2, and n denotes the number of nodes not
situated on the north or east boundaries of Cǫ (i.e., the cardinality of NV). The two
coordinate functions of r(U) are given by

rℓ(U) = ψℓ(IǫXB(x), IǫTB(x))−
1

A(Cǫ)

∑

i∈NCǫ

Ψ
(i)
ℓ , ℓ = w, e .

The form of the function f
(i)
ℓ (U) for a node i ∈ NV, which is given by the discrete

representation of the balance law (2.4), is distinguished between the following four
cases:

Case 1 (Internal nodes). For an internal node i ∈ Nint, the control volume
boundary is entirely described by the set of internal edges Ei,int, giving

f
(i)
ℓ (U) =

∑

σ∈Ei,int

Qℓ,i,σ , ℓ = w, e . (3.11)

Case 2 (East and west boundary nodes). Excluding corner nodes, the solution
at an east boundary node k ∈ NE\(NN ∪ NS) is computed from the solution at its
opposite west boundary node i ∈ NW\(NN ∪ NS) (both nodes have equal y2 coordi-
nate) using the boundary conditions (2.14a) and (2.14c). This allows computation of
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the numerical fluxes for the internal edges associated with the east boundary node k
(edges contained in Ek). In this case, a control volume equation is written down for
the west boundary node only. Under the periodic flux condition (2.14e), one incor-
porates the numerical fluxes entering the control volume of the east boundary node,
giving

f
(i)
ℓ (U) =

∑

σ∈Ei,int

Qℓ,i,σ +
∑

σ∈Ek,int

Qℓ,k,σ , ℓ = w, e . (3.12)

Case 3 (North and south boundary nodes) This case is identical to the previous
one, in that the resulting control volume equation for the south boundary node in-
corporates the numerical fluxes entering the control volume of the north boundary
node, i.e., one obtains Equation 3.12 with i ∈ NS\(NW∪NE) and k ∈ NN\(NW∪NE)
where both nodes having equal y1 coordinate.

Case 4 (Corner nodes). The solution at the north–west, north–east and south–
east corner nodes can all be computed from the solution at the south–west corner
node via the boundary conditions (2.14a)–(2.14d). In this case, a control volume
equation is written down for the south–west boundary node only i ∈ NS ∩NW, which
incorporates the numerical fluxes entering the control volumes of all four corner nodes:

f
(i)
ℓ (U) =

∑

j∈Nc

∑

σ∈Ej,int

Qℓ,j,σ = 0 , ℓ = w, e . (3.13)

where Nc = (NN ∩ NE) ∪ (NN ∩ NW) ∪ (NS ∩ NW) ∪ (NS ∩ NE) denotes the set of
corner nodes.

In summary, to evaluate the function g(u) in the macroscopic discretisation (3.5)
one must solve the microscopic discretisation (3.10) for each macroscopic element. The
fast solution of the overdetermined system of nonlinear equations (3.10) is therefore
crucial to a fast dual–scale simulation.

We employ a Newton strategy to solve the overdetermined nonlinear system
(3.10), with initial solution approximation U0 ∈ R

2n, by defining the following se-
quence of iterates

Uk+1 = Uk + δUk , k = 1, 2, . . . , (3.14)

where the correction vector δUk satisfies the overdetermined linear system
[

Jf
Jr

]

δUk = −

[

f
r

]

⇔ JGδUk = −G (3.15)

where Uk ∈ R
2n, Jf ≡ Jf (Uk) ∈ R

(2n)×(2n), Jr ≡ Jr(Uk) ∈ R
2×(2n), JG ≡ JG(Uk) ∈

R
(2n+2)×(2n), f ≡ f(Uk) ∈ R

2n, r ≡ r(Uk) ∈ R
2, G ≡ G(Uk) ∈ R

2n+2.
The overdetermined linear system (3.15) possesses the following properties:
(i) The odd– and even–numbered entries of f sum to zero. This is a direct result

of an important property of the control volume method, namely, the local balance of
fluxes: if the control volumes surrounding nodes i and j share a common edge σ then
Qℓ,i,σ = −Qℓ,j,σ since ni,σ = −nj,σ. This gives a physical balance of numerical fluxes
across all internal edges, i.e.,

∑

i∈NCǫ

∑

σ∈Ei,int

Qℓ,i,σ = 0 . (3.16)



12 E. J. CARR, I. W. TURNER AND P. PERRÉ

It follows then that
∑

i∈NV

f
(i)
ℓ =

∑

i∈NCǫ

∑

σ∈Ei,int

Qℓ,i,σ = 0 , ℓ = w, e . (3.17)

(ii) Both vw = (1, 0, 1, 0, . . . , 1, 0)T ∈ N (JT
f ) and ve = (0, 1, 0, 1, . . . , 0, 1)T ∈

N (JT
f ). Verification follows directly from (i):

vTℓ Jf =
∑

i∈NV

∇Uf
(i)
ℓ = ∇U

∑

i∈NV

f
(i)
ℓ = 0T , ℓ = w, e . (3.18)

To motivate an approach for solving (3.15) the following example is included
that applies a control volume discretisation to the simple one–dimensional problem
presented in the remark of Section 2.2.

Example. Consider a spatial discretisation of Equation (2.16) using a control
volume method with n + 1 nodes, where yi ∈ [0, a] denotes the position of node i
(with y1 = 0 and yn+1 = a) and Ui = U(yi) denotes the unknown at node i. Assume
that the control volume edges are located midway between two neighbouring nodes.
For simplicity, we assume that the nodes are equally spaced (i.e., yi+1 − yi = h for all
i = 1, .., n) and further that k(y) = k1 for all y ∈ [0, a], which gives the exact solution

U(y) =
du

dx

(

y −
a

2

)

+ u , 0 < y < a . (3.19)

Using a central–difference approximation for the spatial–derivative of U and a control–
volume weighted approximation to the integral constraint in Equation (2.16b), the
spatial discretisation of Equation (2.16) is given by

k1(U2 − U1)

h
−
k1(Un+1 − Un)

h
= 0 , (3.20a)

k1(Ui+1 − Ui)

h
−
k1(Ui − Ui−1)

h
= 0 , i = 2, .., n− 1 , (3.20b)

k1(Un+1 − Un)

h
−
k1(Un − Un−1)

h
= 0 , (3.20c)

1

a

(

h

2
U1 + h

n
∑

i=2

Ui +
h

2
Un+1

)

= u , (3.20d)

Note that a control volume equation is not written down for node n+1 (east bound-
ary node) since Un+1 = U1 + adu

dx
via the boundary condition in Equation (2.16b).

Note further that the numerical flux entering the control volume for node n + 1 is
incorporated into the control volume equation for node 1 (west boundary node).

Using appropriate scaling, the system (3.20) can be expressed as an overdeter-
mined system of linear equations in the form

[

A
rT

]

U =

[

b
β

]

⇔ ÃU = b̃ , (3.21)

with U = (U1, U2, . . . , Un)
T ∈ R

n where

A =















2 −1 0 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 0 −1 2















∈ R
n×n ,
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b = adu
dx
(−1, 0, . . . , 0, 1)T ∈ R

n, rT = (1, 1, . . . , 1) ∈ R
1×n and β = (n− 1)u− a

2
du
dx
.

In what follows, we show that the overdetermined linear system (3.21) is consistent
and has a unique solution. Observe that e = (1, 1, . . . , 1)T satisfies eTA = 0T and
therefore e ∈ N (AT ). A direct result of this observation is that (eT , 0)Ã = eTA +
0rT = 0T and therefore v = (eT , 0)T ∈ N (ÃT ). Now, applying Gaussian elimination
one can show that

A ∼



















−1 2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
n −n

0 . . . 0 0 0 0



















= PA , P =



















1
1

. . .

1
0 1 2 . . . n− 2 1
1 1 1 . . . 1 1



















,

which leads to the conclusion that dim(R(AT )) = n − 1 and hence dim(N (AT )) =
n− dim(R(AT )) = n− (n− 1) = 1. The latter result, together with the observation
that e ∈ N (AT ), implies that N (AT ) = span{e}. Given rT e 6= 0 ⇒ r /∈ N (AT )⊥

⇒ r /∈ R(AT ) ⇒ R(AT ) ∩ span{r} = ∅. Using the dimension theorem one can
then show that dim(R(ÃT )) = dim(R(AT )) + dim(span{r}) = (n − 1) + 1 = n and
hence dim(N (ÃT )) = (n + 1) − dim(R(ÃT )) = (n + 1) − n = 1. Again, the latter
result, together with the observation that v ∈ N (ÃT ), implies that N (ÃT ) = span{v}.
Finally, since vT b̃ = 0 ⇒ b̃ ⊥ N (ÃT ) ⇒ b ∈ R(Ã) and dim(N (Ã)) = n−dim(R(Ã)) =
0, the overdetermined system (3.21) is consistent and has a unique solution.

For this simple example A = AT and therefore N (A) = N (AT ) = span{e}, that is
the solution of of AU = b is unique only up to an additive constant (i.e., U = Up+ce,
where c is arbitrary and Up is a particular solution). Since rT e 6= 0, substitution of
U = Up + ce into the equation rTU = β, allows c (and hence U) to be uniquely
identified.

The results presented above suggest that solving the overdetermined linear sys-
tem (3.21) reduces to solving a square system, which consists of those equations
corresponding to the n linearly independent rows of Ã.

Proposition 1. Any set consisting of the vector rT together with (n− 1) unique
row vectors of A is linearly independent.

Proof. Assume the set S = {rT } ∪ ({A1,∗, . . . , An,∗}\{Ak,∗}), where Ai,∗ ∈ R
1×n

denotes the ith row vector of A and k ∈ {1, 2, . . . , n}, is linearly dependent. Under
this assumption, there exists ci ∈ R and γ ∈ R, not all equal to zero, such that

n
∑

i 6=k

ciAi,∗ + γrT = 0T ⇒ (c1, . . . , ck−1, 0, ck+1, . . . , cn, γ)
T Ã = 0T (3.22)

It follows that (c1, . . . , ck−1, 0, ck+1, . . . , cn, γ)
T ∈ N (ÃT ), which is a contradiction

since N (ÃT ) = span{v} = span{(1, 1, . . . , 1, 0)T }. Hence, it must be that the original
hypothesis is false and S forms a linearly independent set of vectors.

In conclusion, one can replace any equation of AU = b with the equation rTU =
β, that is, solving the overdetermined linear system (3.21) is equivalent to solving the
following square linear system

[

(I − eke
T
k )A+ ekr

T
]

U = (I − eke
T
k )b+ ekβ , (3.23)

for any k = 1, . . . , n, where ek is the kth column of the n×n identity matrix I. ♦
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Following this example and given that vw and ve defined above are linearly in-
dependent left–hand nullspace vectors of Jf , we conjecture similar properties for the
system (3.15), namely:

Conjecture 2. dim(N (JT
f )) = dim(N (JT

G)) = 2.
Using identical arguments to those presented in the example above, under Con-

jecture 2 one can show that the overdetermined linear system (3.15) is consistent and
has a unique solution that can be obtained by solving

[(

I − PPT
)

Jf + PJr
]

δUk =
(

PPT − I
)

f − Pr , (3.24)

with P = [ei, ej ] ∈ R
(2n)×2, where ei denotes the ith column of the 2n × 2n identity

matrix I, and i and j index any odd and even row of Jf , respectively. This result
is useful because iterative methods designed for square coefficient matrices can be
employed to system (3.24).

In our code, we use a right–preconditioned GMRES method to solve (3.24) with
an incomplete LU factorisation selected as the preconditioner. In this case, the choices
i = 2n−1 and j = 2n within the permutation matrix P ensure the dense rows of r are
located at the bottom of the matrix during factorisation, which produces a minimal
fill–in of zero entries.

Remark. An alternative to solving the square linear system (3.24) is to apply
a Gauss–Newton strategy to the overdetermined nonlinear system (3.10), where the
correction vector is the solution of the (linear) least squares problem

δUk = arg min
x∈R2n

‖G+ JGx‖2 . (3.25)

The application of GMRES to such problems has received notable attention in the
literature (see e.g. [2, 6, 9, 16, 24, 27]). Since GMRES cannot be applied directly for
a rectangular coefficient matrix, these papers have studied strategies that circumvent
this problem. These include appending zero columns to obtain a square singular
coefficient matrix [16] or introducing a mapping matrix that converts the coefficient
matrix from rectangular to square when multiplied on the left or right [6]. However,
our numerical experiments indicated that the unique minimiser of (3.25) is indeed the
solution of (3.15) and (not surprisingly) applying GMRES to solve the square linear
system (3.24) was more efficient.

4. Results for softwood and discussion.

4.1. Unit cell configurations. Two different configurations for the unit cell
are investigated in this section, namely a radial/tangential cross–section of a soft-
wood tracheid cell with and without pore–connecting pits. We use the rectangular
tracheid model given in [13] with fixed cell–wall thickness tv (see Figure 4.1). The
tangential and radial directions are assumed to extend in the y1 and y2 axis directions,
respectively.

The radial length aR and tangential length aT of the tracheid, which describe the
dimensions of the unit cell (0, aT )× (0, aR), are assumed to vary with the density ρ0:

aT = 50 (µm) , (4.1)

aR = 57.5− 0.0375ρ0 (µm) , (4.2)

for ρ0 ∈ [200, 1000] (kgm−3) [13]. These relations, which agree well with observa-
tion [13], define a fixed radial length and a linearly decreasing tangential length for
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increasing density ρ0. With these definitions, it follows that a relation for the cell–
wall thickness tv can be derived by ensuring the solid fraction of Cx matches the
macroscopic value (2.19):

1−
(aR − 2tv)(aT − 2tv)

aRaT
= εs

(

=
A(C

(s)
x )

A(Cx)

)

. (4.3)

Taking the root of (4.3) that produces the correct physical behaviour (i.e., tv increasing
for increasing ρ0) gives the following formula

tv =
1

4
(aR + aT )−

1

4

√

(aR + aT )2 − 4aRaT εs (µm) . (4.4)

For the tracheid (pits) configuration, a fixed width equal to γ = 4µm is assumed
for the pore–connecting pits (see Figure 4.1b). In summary, for a given value of the
density ρ0, and given macroscopic values of moisture content and temperature (which
appear in the definition of εs given in Equation 2.19), the dimensions of the unit cell
for both configurations are fully defined.

Firstly, we assess the effect of the macroscopic moisture content gradient (i.e.,
∇xX) on the macroscopic mass flux (i.e., qw defined in Equation 2.3) in the absence
of a temperature gradient. The microscopic fields of moisture content and temperature
for ∇xX = (0, 100) and ∇xX = (100, 0) are exhibited in Figures 4.2 and 4.3. In this
case, only the moisture content in the y1 or y2 directions (respectively tangential or
radial direction) differs in value on opposing boundaries of the unit cell. The non–
uniform temperature fields in the absence of a macroscopic temperature gradient are
due to the different enthalpy values of bound water and water vapour (see Equation
2.23). A source term is generated due to the condensation of water vapour on the cell
wall to continue its migration as bound water. On the contrary, a sink term appears
when bound water has to evaporate to continue its diffusion in the porous phase. In
the case of a tracheid with pits, both heat and mass fluxes have to pass though the
pits either along the cell wall (radial flux) or perpendicular to the cell wall (tangential
flux). As the gaseous phase is conductive regarding mass flux, but resistive regarding
the thermal flux, a clear anisotropic macroscopic behaviour emerges from the presence
of pits. In the tangential direction, the gaseous phase is connected (as it crosses the
unit cell boundaries), which eases the total moisture flux, with a factor 6 to 7 evident
in Figure 4.4. With a radial gradient, the presence of pits is hardly visible.

The effect of density on the mass flux is evident in Figure 4.5. In this figure,
two values of the density are tested, namely ρ0 = 400 kgm−3 and ρ0 = 800 kgm−3,
which are typical of the wood found in the earlywood and latewood components of
a growth ring of softwood, respectively. These values produce an earlywood cell of
height 42.5µm with 3.6790µm cell walls and a flatter latewood cell of height 27.5µm
with thicker 6.9618µm cell walls. Due to the conductive behaviour of the gaseous
phase, the magnitude of the mass flux is greater for the smaller value of ρ0.

4.2. Dual–scale simulations. Simulation results for the dual–scale approach
are reported for the drying of a small sample of softwood. The wood sample is taken
as a rectangle of width 5 cm and height 2.5 cm (i.e., B = [0, 5] × [0, 2.5] cm) and is
assumed to be homogeneous with ρ0 = 441 kgm−3 for all x ∈ B. It follows from the
homogeneity and geometry of B, that the solution has two lines of symmetry (i.e.,
x1 = 2.5 cm and x2 = 1.25 cm). Taking all fluxes of mass and heat equal to zero at
these symmetry lines, allows the computational domain to be reduced to one quarter of
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Fig. 4.1: Microcell configurations.

0

20

40

0

10

20

0.198

0.199

0.2

0.201

0.202

0.203

y
1

y
2

M
o
is

tu
re

 C
o
n
te

n
t

0

20

40

0

10

20

49.9996

49.9998

50

50.0002

50.0004

y
1

y
2

T
e
m

p
e
ra

tu
re

(a) Tracheid (closed)

0

20

40

0

10

20

0.198

0.199

0.2

0.201

0.202

0.203

y
1

y
2

M
o
is

tu
re

 C
o
n
te

n
t

0

20

40

0

10

20

49.9996

49.9998

50

50.0002

50.0004

y
1

y
2

T
e
m

p
e
ra

tu
re

(b) Tracheid (pits)

Fig. 4.2: Moisture content and temperature fields corresponding to ρ0 = 800 kgm−3,
X = 0.2 kg kg−1, T = 50 ◦ C, ∇xX = (0, 100) and ∇xT = (0, 0).



A DUAL–SCALE APPROACH FOR DRYING POROUS MEDIA 17

0

20

40

0

10

20

0.196

0.198

0.2

0.202

0.204

0.206

y
1

y
2

M
o
is

tu
re

 C
o
n
te

n
t

0

20

40

0

10

20

49.999

49.9995

50

50.0005

50.001

50.0015

y
1

y
2

T
e
m

p
e
ra

tu
re

(a) Tracheid (closed)

0

20

40

0

10

20

0.196

0.198

0.2

0.202

0.204

0.206

y
1

y
2

M
o
is

tu
re

 C
o
n
te

n
t

0

20

40

0

10

20

49.9996

49.9998

50

50.0002

50.0004

y
1

y
2

T
e
m

p
e
ra

tu
re

(b) Tracheid (pits)

Fig. 4.3: Moisture content and temperature fields corresponding to ρ0 = 800 kgm−3,
X = 0.2 kg kg−1, T = 50 ◦ C, ∇xX = (100, 0) and ∇xT = (0, 0).
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Fig. 4.4: Macroscopic mass flux computed over the unit cell in the absence of a
temperature gradient. The macroscopic moisture content gradient is applied in the
(a) tangential or y1 direction only and (b) radial or y2 direction only and the mass
flux plotted in that direction.
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Fig. 4.5: Macroscopic mass flux computed over the unit cell in the absence of a
temperature gradient. The macroscopic moisture content gradient is applied in the
tangential or y1 direction only and the mass flux plotted in that direction.

the size of the full macroscopic domain (i.e., the rectangle [0, 2.5]× [0, 1.25]). Initially,
the moisture content field is flat and equal to the fibre saturation value (computed
using the initial temperature of 50 ◦C). All parameters used in the simulations are
listed in Table 4.1.

Initial Moisture Content 0.275 kg kg−1

Initial Temperature 50 ◦C
Density 441 kgm−3

Wet–bulb temperature 45 ◦C
Dry–bulb temperature 60 ◦C
Velocity of circulating air in kiln 2ms−1

Drying time 100 hrs
Macroscale domain 5× 2.5 cm
Microscale domain 50× 42.5µm

Table 4.1: Drying and initial conditions used in all dual–scale simulations.

Recall that the dimensions of the unit cell configurations (Figure 4.1) depend, not
only on the density ρ0, but also the macroscopic moisture content and temperature via
the definition of the solid fraction stated in Equation 2.19. This latter dependence is
impractical in a dual–scale setting because meshing of the unit cell would be required
each time the macroscopic solution changes (i.e., a re–meshing of the unit cell would
need to be performed for each macroscopic element every time the macroscopic values
are changed). For this reason, in [13] it is suggested to fix X = 0.15 kg kg−1 and
T = 25 ◦C when computing the solid fraction throughout the length of the drying
simulation. This approach is followed for all dual–scale simulations reported in this
section. Using this strategy with ρ0 = 441 kgm−3 one obtains a solid fraction equal
to 0.3291. Since ρ0 is fixed for all x ∈ B, a single unit cell with radial length aT =
40.963µm, tangential length aT = 50µm, and cell–wall thickness tv = 6.9619µm is
defined. Essentially, the geometry of the unit cell does not vary spatially or temporally
during the drying simulation: mesh generation on the microscale is performed once
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(c) Tracheid (closed), 5 hours
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(d) Tracheid (pits), 5 hours
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(e) Tracheid (closed), 12 hours
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(f) Tracheid (pits), 12 hours

Fig. 4.6: Macroscopic moisture content fields after 0.5, 5 and 12 hours of drying for
the two different unit cell configurations.
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(a) Surface moisture content (at x = (0, 1.25) cm)

0 20 40 60 80 100
0.05

0.1

0.15

0.2

0.25

0.3

M
o
is

tu
re

 C
o
n
te

n
t

Drying Time (hrs)

 

 

 Tracheid (closed)
 Tracheid (pits)

(b) Core moisture content (at x = (2.5, 1.25) cm)
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(c) Surface temperature (at x = (0, 1.25) cm)
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(d) Core temperature (at x = (2.5, 1.25) cm)

Fig. 4.7: Surface and core and surface evolution of moisture content and temperature.

prior to the commencement of the simulation and stored thereafter.

All simulations were performed with a macroscopic mesh containing 928 elements
and 552 nodes in total (however using symmetry only one quarter of these are com-
puted on). Each microscopic mesh consists of 1062 elements and 576 nodes. Both
functions g(u) and G(U), defined in Equations (3.5) and (3.10), were written in the
C programming language and called as if they were MATLAB functions using the
MEX–files feature. The computation time is around 5 hours compared with less than
1 minute for the classical macroscopic formulation on the same macroscopic mesh.

Macroscopic moisture content fields produced using the dual–scale approach are
given in Figure 4.6. These figures demonstrate the substantial effect of the unit cell
configuration on the macroscopic solution behaviour. As previously explained, the
inclusion of pits at the microscale eases the moisture migration along the tangential
direction. This effect is clearly depicted by the evolution of the moisture content over
time (Figure 4.7a and b). In particular, one can observe that the tangential diffusion
is able to propagate the boundary conditions up to the core of the section after 5 hours
of drying in spite of the longer distance (width = 2 × height). This effect is obvious
when comparing Figures 4.6c and 4.6d. This efficient diffusion results in a quasi flat
moisture content field after 12 hours of drying (Figure 4.6f). Consistently, this leads
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to significantly faster drying, with the equilibrium moisture content (approximately
equal to 0.08 kg kg−1) attained after 25 hours, compared with more than 100 hours for
the closed tracheid configuration (see Figure 4.7b). Interestingly, the trend is opposite
at the surface (Figure 4.7a). This is simply explained by the balance between internal
and external transfer. In this case, the presence of pits accelerates the internal transfer
using the same external heat and mass transfer coefficients: in order to drive the
moisture arriving to the surface, the external driving force is forced to be higher in
the presence of pits, which can only be obtained by a larger surface moisture content.

At first glance, the evolution of the temperature field is consistent: a faster drying
rate means more heat to be supplied for evaporation, hence a lower temperature for
the fastest drying (Figure 4.7c and d). Once the fastest drying is finished (around 20
hours), the curves consistently cross each other, as the temperature field of the dried
sample tends rapidly towards the dry bulb temperature.

However, a detailed insight in the temperature evolution is more informative. In
the case of the Tracheid (closed) configuration and even during the first stages of
drying, when the drying rate is large, no significant temperature difference can be
observed between the surface and core (4.7c and d). This is just because evapora-
tion takes place at the exchange surface. However, in the case of the Tracheid (pits)
configuration, it is obvious that the core temperature remains lower than the surface
temperature during most of the drying process (up to about 10 hours). This is a con-
sequence of a connected porous (gaseous) phase. This feature allows bound water to
evaporate inside the sample without further evaporation/condensation at the micro-
scopic scale, as is the case for the closed unit cell. The energy required for evaporation
has therefore to be supplied inside the product by thermal conduction, which needs
a temperature gradient and explains the lower core temperature.

These simulations demonstrate the potential of the present dual–scale approach,
where the macroscopic partition between the bound water and water vapour flux does
not need to be set prior to the computation, but is simply an objective result of the
unit cell configuration.

5. Conclusions. A new dual–scale approach for simulating the drying of porous
media in the hygroscopic range was presented. The proposed dual–scale model couples
the macroscopic scale of the porous medium with the microscopic scale of an individual
cell.

This model allows the macroscopic mass and thermal fluxes to be computed from
the microscopic structure of the porous medium via an average of the microscopic
fluxes. More importantly, the model explicitly considers the coupling between heat
and mass transfer at the microscopic level.

The drying example proposed in the last section demonstrates the potential of
the formulation. In particular, the form of the macroscopic bound water and water
vapour fluxes do not need to be set prior to the simulation – they are simply the
objective result of the intricate coupling arising at the microscopic scale.

A future application of this dual–scale model would be to consider the case of a
unit cell varying in space (heterogenous wood sample) or varying in time, depending
on the local history at the corresponding macroscopic position. This would find
application in, for example, biofilm development, and modelling shrinkage and cell
collapse.
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