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The dual-stage two-phase (DSTP) model is introduced as a formal and general model of selective 

attention that includes both an early and a late stage of stimulus selection. Whereas at the early stage 

information is selected by perceptual filters whose selectivity is relatively limited, at the late stage stimuli 

are selectcd more efficiently on a categorical basis. Consequently, selectivity is first low but then abruptly 

increases during the course of stimulus processing. Although intended as a general model of selective 

attention, in the present study the DSTP model was applied to account for the distributional data of 3 

flanker task experiments. The fit of the model to the data was not only rather good but also superior to 

those of alternative single-stage models with a continuously increasing selectivity. All together, the 

model provides a comprehensive account of how early and late stages of attention interact in the control 

of performance. 
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A characteristic of human behavior is that it is controlled by 

internal as well as external factors and that these factors interact in 

complex ways. For instance, it is well known that stimuli in the 

environment can automatically control behavior by activating as

sociated responses (cf. Desimone & Duncan, 1995; Kinchla, 1992; 

Pashler, Johnston, & Ruthruff, 2001). Although such an external 

control can be highly efficient, it might be inappropriate in situa

tions where externally activated responses are not in accord with 

the current goal. Therefore, in addition to external control mech

anisms, internal control mechanisms are also needed to ensure that 

goal-relevant stimuli determine the behavior, particularly in situ

ations with ambiguous stimuli (cf. Logan, 1980; Norman & Shal

lice, 1986; W. Schneider, Dumais, & Shiffrin, 1984). 

One important internal control mechanism for this objective is 

selective attention. Accordingly, numerous theories have been 

proposed to account for the ability to process stimuli selectively. 

Originally, there was a dispute about whether selection takes place 

early or late in the course of stimulus processing (cf. Kahneman & 

Treisman, 1984). Early selection accounts assumed that stimulus 

selection occurs early and is based on elementary stimulus features 

that are available at preidentification stages (cf. Broadbent, 1958; 

Johnston & Dark, 1982; Neisser, 1976). According to this view, 

only one object at a time is selected for identification and further 

processing. In contrast, late selection accounts assumed that sev

eral stimuli can be identified in parallel, and a target stimulus is 
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then selected for further processing at a later stage based on 

identity or other semantic features (cf. Deutsch & Deutsch, 1963; 

Duncan, 1980; Moray, 1959; Shiffrin & Schneider, 1977). 

However, there are also theories assuming that early and late 

selection represent two modes of attention, which are applied 

depending on their costs and benefits (e.g., Johnston & Heinz, 

1978). Recent evidence supports these theories by showing that 

modes of selective attention can be chosen strategically (Lehle & 

HUbner, 2008) or are induced by current task demands (de Fockert, 

Rees, Frith, & Lavie, 2001; Lavie, Hirst, De Fockert, & Viding, 

2004). Despite these ideas, though, many questions remain open. 

For instance, it is still unclear whether early and late selection 

mechanisms operate simultaneously or serially and how exactly 

these mechanisms interact to enable flexible and coherent behav

ior. 

One source of information that has been used to investigate 

these questions is patterns of interference effects in distributional 

data from conflict paradigms such as the flanker task (B. A. 

Eriksen & Eriksen, 1974) or the Stroop task (Stroop, 1935). These 

patterns clearly indicate an increase in selectivity during the course 

of processing. Whereas some researchers interpreted these patterns 

as evidence for a less selective early stage of processing followed 

by a more selective late stage (e.g., Gratton, Coles, & Donchin, 

1992), current formal models account for these results by assuming 

a continuously increasing selectivity of a single selection process 

(e.g., Cohen, Servan-Schreiber, & McClelland, 1992; Heitz & 

Engle, 2007; Liu, Yu, & Holmes, 2009; Spieler, Balota, & Faust, 

2000; Yu, Dayan, & Cohen, 2009). 

In the present article we present a formal model that sticks to the 

idea of an early and a late selection stage by assuming a discrete 

transition from a less selective to a more selective stage. The core 

assumption of our dual-stage two-phase (DSTP) model is that 

competition between early and late selection processes results in 

two consecuti ve phases of response selection and that these phases 

differ with respect to their susceptibility to interference. Although 

early and late selection operate simultaneously, they contribute 
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differentially to performance, depending on the relative efficiency 

of each process. 

Although our model is sufficiently abstract to potentially serve 

as a framework for interpreting distributional effects in a large 

range of conflict paradigms, in this article we use the DSTP model 

to account for the performance in the flanker task, a spatial 

selection task that has become a standard paradigm for investigat

ing selective attention. A great advantage of the flanker task is that 

the difficulty of stimulus selection can systematically and easily be 

manipulated. We show that the DSTP model can not only account 

for the observed pattern of interference in distributional data but 

also that it is superior to models assuming a continuously increas

ing selectivity. However, before we report our experiments and 

model fits, we first consider results and concepts in the area of 

spatial visual attention that provide further motivation for the 

DSTP model and then introduce our model in more detail. 

Spatial Visual Attention 

An essential mechanism for early selection in the visual domain 

is spatial filtering. Several metaphors have been used to describe 

the way it operates. The attentional spotlight metaphor assumes 

that visual attention can be allocated to a certain location in the 

visual field and that items at that location are processed more 

intensively than items at other locations (Posner, 1980; Posner, 

Snyder, & Davidson, 1980). The attentional zoom-lens metaphor 

generalizes this idea of a spotlight by assuming that not only is the 

position of the attentional filter variable but also, at least within 

certain limits, that its size and form are (B. A. Eriksen & Eriksen, 

1974; C. W. Eriksen & Hoffman, 1973; C. W. Eriksen & Schultz, 

1979; C. W. Eriksen & St. James, 1986). Furthermore, it has been 

assumed that changes of the distribution of spatial attention can 

occur abruptly rather than continuously (Reeves & Sperling, 1986; 

Shih & Sperling, 2002; Sperling & Weichselgartner, 1995). 

Important properties of spatial attention have been revealed by 

the flanker task (B. A. Eriksen & Eriksen, 1974). In this task 

participants have to identify a target stimulus as fast and as 

accurately as possible, while ignoring irrelevant flanker stimuli. 

The flankers are usually congruent, that is, associated with the 

same response as the target, or incongruent, that is, associated with 

the opposite response. The extent to which the flankers can be 

ignored is assessed by the difference between the performance for 

congruent and incongruent stimuli, which is called the flanker 

congruency effect. Usually, responses to congruent stimuli are 

faster and more reliable than responses to incongruent flankers, 

and the size of differences in response time (RT) and error rate are 

considered measures of the efficiency of selective attention. 

The flanker task and its variants have been used to examine the 

possible forms of the spatial filter (e.g., LaBerge & Brown, 1986; 

M. M. MUller & HUbner, 2002; N. G. MUller, Mollenhauer, Rosier, 

& Kleinschmidt, 2005) and whether its area is contiguous (e.g., 

Franconeri, Alvarez, & Enns, 2007; Kramer & Hahn, 1995; 

McMains & Somers, 2004; M. M. MUller, Malinowski, Gruber, & 

Hillyard, 2003). LaBerge and Brown (1989), for instance, pro

posed attentional gradients to account for gradual changes of 

attentional resources across the visual field (see also LaBerge, 

Brown, Carter, & Bash, 1991; Logan, 1996). These results suggest 

that the distribution of spatial attention in the visual field is rather 

flexible. Indeed, Fazl, Grossberg, and Mingolla (2009) recently 

introduced the concept of attentional shrouds (see also Tyler & 

Kontsevich, 1995) that can even fit to an object's form in order to 

guide object recognition. 

Spatial selection is also part of some formal models of visual 

attention. The theory of visual attention (TVA; Bundesen, 1990), 

for instance, has been applied to numerous empirical phenomena 

(for an overview see Logan, 2004). It consists of a perceptual 

filtering mechanism that differentially weights spatial locations to 

allow spatial selection in multi-item displays. Additionally, TVA 

has a categorical biasing mechanism, which is called pigeonholing, 

and which is thought to bias the selected items with respect to the 

semantic categories that are relevant for the task. Filtering and 

pigeonholing loosely correspond to early and late selection mech

anisms, respectively. However, the crucial difference to traditional 

views is that they are considered two aspects of the same process 

rather than two different stages of processing (see also the discus

sion of this issue in Logan, 2002). Because perceptual biasing and 

categorical biasing affect processing at the same time, TV A can be 

considered a single-stage model. 

Although TV A can account for various phenomena such as 

spatial cuing effects (Posner et aI., 1980), it cannot explain atten

tional selection in conflict paradigms. With respect to the flanker 

task, for instance, it correctly predicts a congruency effect in the 

error rates but fails to predict such an effect in RT. Therefore, 

Logan (1996) extended TV A and added a contour detection system 

(Compton & Logan, 1993) for representing space and objects more 

explicitly. With these extensions the model could not only account 

for the general congruency effects in the flanker task but also for 

effects of the distance between target and flankers (see also Logan, 

2002; Logan & Gordon, 2001). 

Phenomena like the congruency effect show that although per

ceptual filtering is an important early selection mechanism, it is not 

perfect. This raises the question of what happens if early selection 

fails or cannot be applied. Evidence suggests that late selection 

mechanisms come into play in this case. This is in accord with 

variable-stage models, which assume that relevant stimuli can be 

selected at a variable stage of processing, depending on the task 

demands (e.g., Pashler & Badgio, 1985; Yantis & Johnston, 1990). 

Although assuming more than one stage of selection seems plau

sible, variable-stage models are difficult to validate, especially if 

one takes only mean RTs and mean error rates into account. 

One way to obtain more detailed information about the dynam

ics and flexibility of stimulus selection is to consider distributional 

data. For instance, if one compares the RT distributions for correct 

responses between congruent and incongruent flanker stimuli, then 

one does not only find that the distribution for incongruent stimuli 

is shifted toward slower responses but also that the congruency 

effect increases with RT (e.g., Ridderinkhof, 2002), that is, that it 

gets larger for slower responses (but see B. A. Eriksen, Eriksen, & 

Hoffman, 1986; Spieler et aI., 2000). In our experiments reported 

below, we see further examples of this phenomenon. If one ana

lyzes accuracy, though, then one usually finds that the congruency 

effect decreases with RT. A method that has been used to dem

onstrate the latter effect is to show so-called conditional accuracy 

functions. Empirically, these functions are constructed by calcu

lating the accuracy for different RT bins or quantiles. 

Gratton, Coles, Sirevaag, Eriksen, and Donchin (1988) exam

ined conditional accuracy functions for the performance in the 

flanker task and observed for congruent stimuli (except for very 



fast responses which were presumably due to fast guesses) that 

accuracy was already high for fast responses. In contrast, the 

accuracy for incongruent stimuli was rather low for fast responses 

but then improved quickly with RT up to the accuracy level of the 

congruent stimuli. Because conditional accuracy functions are 

completely determined by the RT distributions of correct and 

incorrect responses and the corresponding response probabilities 

(cf. Luce, 1986), their characteristics can also be interpreted in 

terms of distributional properties. Flat conditional accuracy func

tions, for instance, are the result of similar RT distributions for 

correct and incorrect responses. In contrast, increasing conditional 

accuracy functions indicate that error responses tend to be faster 

than correct responses. Indeed, the typical observation from the 

flanker task that incongruent stimuli but not congruent ones pro

duce an increasing conditional accuracy function results from the 

fact that, whereas correct responses are slower for incongruent 

stimuli than for congruent stimuli, error responses are similarly 

fast for both stimulus types or even faster for incongruent stimuli. 

The observation that the congruency effect differs in size be

tween different parts of RT distributions led to the idea that fast 

responses are produced by different processes than slow responses. 

Gratton and his colleagues (Gratton et aI., 1992; Gratton et aI., 

1988), for instance, proposed that an early and unselective phase of 

analysis is followed by a selective phase (see also Coles, Gratton, 

Bashore, Eriksen, & Donchin, 1985). Responses that occur during 

the first phase show a strong congruency effect because all stimuli 

in the display activate their associated response during this phase. 

In contrast, nearly no congruency effect is obtained for responses 

that occur during the second phase because spatial attention is 

focused on the target during this phase. Obviously, the proposed 

two phases are similar to the parallel phase and serial phase in 

visual-search models (e.g., Hoffman, 1978; Logan, Withey, & 

Cowan, 1977; Treisman, 1988; Treisman & Gelade, 1980; Wolfe, 

1994). 

Whereas Gratton and colleagues suggested that the early phase 

is entirely un selective, subsequent attempts to model distributional 

flanker task data (e.g., Cohen et aI., 1992) revealed that it is 

necessary to assume that already initial stimulus processing must 

be selective to some extent. As we see later in this article, our 

investigation supports this conjecture. Moreover, all subsequent 

formal models abandoned the idea of discrete phases and assumed 

that selectivity increases continuously within a single stage (Cohen 

et aI., 1992; Liu, Holmes, & Cohen, 2008; Liu et a!., 2009; Yu et 

aI., 2009). In contrast, our DSTP model is the first formal model 

that accounts for the distributional data by assuming discrete 

phases. As we show, discrete phases can better account for the data 

than a single stage with an increasing selectivity. 

Another class of models that can potentially account for the 

flanker task data are dual-route models (e.g., De Jong, Liang, & 

Lauber, 1994; Hommel, 1998; Kornblum, Hasbroucq, & Osman, 

1990; Ridderinkhof, 1997), which were originally developed to 

describe automatic versus controlled processing (cf. Logan, 1988; 

W. Schneider & Shiffrin, 1977; Shiffrin & Schneider, 1977). 

These models assume that stimulus information can affect re

sponse selection via a fast automatic route and via a slow con

trolled route. Through the automatic route both task-relevant and 

task-irrelevant stimulus information directly activate the involved 

response units according to learned stimulus-response associa

tions. By the controlled route, in contrast, stimulus information is 
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deliberately transformed into response activation according to the 

stimulus-response mapping defined for the current task. Dual

route models can explain the low accuracy for fast responses to 

incongruent flanker stimuli by assuming that flankers activate their 

associated response units via the fast automatic route. If one 

further assumes that the slower responses are produced mainly by 

the controlled route, which allows only the target to activate its 

response unit, then this accounts for the low error rate for slow 

responses. 

Obviously, the considered results in the area of spatial visual 

attention suggest that even performing simple tasks involves at 

least two stages, routes, or phases of stimulus processing, whose 

output is differentially reflected by fast and slow responses. Cur

rent formal models, though, which assume only a single stage, or 

additionally a continuously increasing selectivity, cannot appro

priately account for these results, as is shown in some detail below. 

Therefore, to provide a better alternative, we developed our DSTP 

model, which is introduced in the next section. It extends and 

integrates valuable ideas from previous variable-stage, dual-phase, 

and dual-route models. 

The DSTP Model 

The main characteristics of the DSTP model are two discrete 

stages of stimulus selection, an early stage and a late stage. The 

early stage selects stimuli by perceptual filtering and is not strictly 

selective in the sense that information from irrelevant stimuli (e.g., 

flankers) might also be selected to a certain degree. This stage 

provides information for response selection during a first phase. At 

the late stage information is selected from only one stimulus (e.g., 

the target) based on its identity, which is highly selective. The 

selected stimulus then drives response selection during a second 

phase of response selection (see Figure I). We further assume that 

selective attention serves in the first place for the selection of 

task-related responses. Therefore, a central part of our model is a 

response selection mechanism. 

As we are concerned with both the selection of stimuli and the 

selection of responses, it is important not to confuse the different 

terms. Thus, for clarity, we use the terms early and late exclusively in 

connection with stimulus selection. For the phases of response 

selection we use the attributes first and second or the terms 

Phase 1 and Phase 2. We now describe these mechanisms and 

concepts in more detail and how we formalized our model. 

In the DSTP model, response selection proceeds by a diffusion 

process (cf. Ratcliff, 1978; Ratcliff & Rouder, 1998; Smith, 2000), 

which accumulates evidence in favor of the one or the other 

response. The evidence results from a sequence of noisy samples 

extracted from the presented stimuli. These samples are accumu

lated over time and the corresponding evidence is represented by 

the state X(t), t 2:: 0 of a stochastic process. It is assumed that the 

samples are normally distributed with mean fL, which is called the 

rate or drift of the process, and variance 0'2, which is called 

the diffusion coefficient of the process. In our case, the drift 

depends on the stimulus conditions and on the characteristics of 

the observer (e.g., on its attentional capacity). 

In order to obtain a response, decision boundaries A and -Bare 

defined, which represent the two possible Responses A and B, 

respectively. If the diffusion process, after starting from state X(O), 

hits one of the boundaries, the corresponding response is selected 
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a) First phase of response selection 

Non

targets 

Early stage of 

stimulus selection 

b) Second phase of response selection 

Target ~ 

Non- -+-
targets '------' 

Late stage of 

Stimulus selection 

Figure 1. Flow diagrams for the two phases of the dual-stage two-phase 

(DSTP) model. Panel a: During the first phase, stimulus information 

passing the perceptual filter not only serves for stimulus identification but 

also affects the response selection process. Because perceptual filtering is 

imperfect, nontargets (gray arrows) also have some effect. Panel b: In the 

second phase, that is, after stimulus identification and selection, response 

selection is driven exclusively by the selected stimulus (ideally the target). 

(and also executed). Because we are concerned only with symmet

ric boundaries, we also use the term criterion, which simply 

represents the distance from zero to each boundary and in this case 

can be represented by A alone. The time from the start of the 

process until it hits a boundary is a random variable T and called 

first passage time. It usually reflects the time used for response 

selection or the decision time, which is an important component of 

the overall RT. 

In the DSTP model, we distinguish two phases of response 

selection, whose processes are denoted by RSI and RS2. In the first 

phase RSI is driven by the output of an early stage of stimulus 

selection, where basic stimulus information is selected by percep

tual filters (see Figure la). As we are concerned with multiple-item 

displays, we assume that the information provided by each item in 

the display is summed up (cf. Diederich & Colonius, 1991; Logan, 

1980, 1996; Logan & Gordon, 2001; D. W. Schneider & Logan, 

2005; W. Schwarz, 1989). Perceptual filtering (see the boxes on 

the far left in Figures la and Ib) is taken into account by assuming 

that the individual components of the overall rate are already the 

product of the evidence provided by the corresponding item and an 

attentional weight (cf. Bundesen, 1990; Logan, 1996). For the 

flanker task, for instance, we assume component rates fLra and fLj7 

for target and flankers, respectively. Because each item provides 

the same perceptual evidence for its category membership (or 

response), irrespective of whether it functions as target or as 

flanker, it can be represented mathematically by a constant with 

the same value for each possible item on each position. With this 

assumption, the component rates are products of attentional 

weights and the same constant. Consequently, observed variations 

in fL can be interpreted directly as variation in attentional weight. 

If a response is already selected by RSI, it is executed and the 

trial is finished. However, because the efficiency of the perceptual 

filter is limited, some information from irrelevant items (e.g., 

flankers) usually also contributes to the overall rate (as indicated in 

Figure Ib by the long thin gray line), which increases the proba

bility of an error. Thus, to obtain a higher accuracy, a late stimulus 

selection process SS, which is also implemented as a diffusion pro

cess, runs in parallel with RSI (cf. Usher, Olami, & McClelland, 

2002). In the flowchart of our model (see Figure I) the late stimulus 

selection process for both the first and second phases is represented by 

the box in the middle. The late stimulus selection process selects the 

Target C or the Nontarget D when it hits the boundaries C and -D, 

respectively. If this occurs before a response is selected, then, from 

that point onward, response selection enters Phase 2 (see Fig

ure I b), where response selection proceeds by RS2, which is driven 

exclusively by the selected item. Thus, although SS starts with 

stimulus onset, because its output is discrete and occurs at a 

relatively late point in time, it is justified to characterize the 

corresponding selection stage as being late. 

In Figure I the input into the late stimulus selection stage also 

passed through the perceptual filter. Although this is plausible, in 

the formal version of our model we do not assume such a depen

dency. Rather, the input into SS is represented by the specific value 

of the rate parameter fLss. 

Together, our model's processing of the flanker task can be cate

gorized into six possible situations, which are shown in Figure 2. The 

processes are arranged vertically, which illustrates more clearly 

the way that stimulus selection affects response selection. There 

are the two cases where a response is already selected before a 

stimulus is selected. In one case, RSI selects Response A (see 

Panel a), and in the other case, it selects Response B (see Panel b). 

In the other four cases stimulus selection is finished before a 

response is selected, that is, SS wins the race and either selects the 

Target C (see Panels c and d) or a Nontarget D (see Panels e and 

f). When SS wins the race against RSI by selecting a stimulus at 

time t" then RSI will be in a certain state X(t) somewhere between 

its boundaries of A and -B. RS2 continues from this state. Because 

the selected item determines the rate of RS2, the rate can be 

different in Phase 2, compared to Phase 1. In Figure 2 this is 

indicated by changes in the gray level for the corresponding 

pathways of RS2. Here, we simply assume that the rate of RS2 is 

fLRS2' when the target or a congruent nontarget has been selected, 

and - fLRS2' when an incongruent nontarget has been selected. 

Finally, RS2 selects either Response A or B. As can also be seen 

in Figure 2, each response is possible irrespective of the chosen 

item. However, they occur with different probabilities. By com

bining the characteristics of the different events, the overall per

formance of the model can be computed (for the mathematical 

details of our model see Appendix A). 

One strength of the DSTP model is its late selection mechanism 

that should account for the relatively reliable performance even in 

situations where early selection is poor. To see whether this is 

indeed the case, we conducted three flanker task experiments 

(reported in the next three sections) in which we manipulated the 

efficiency of early selection. In the first experiment we did this by 

varying the spacing between target and flankers, in the second 

experiment we manipulated the spatial uncertainty and eccentricity 

of the stimuli, and in the third experiment we varied the proportion 

of congruent and incongruent stimuli. For each experiment, we 
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Figure 2. The possible situations that can occur during processing in our 

dual-stage two-phase (DSTP) model are shown. The upper curve in each 

panel shows an example path of the response selection process. Response 

A or B is selected when the state of the process hits boundary A or - B, 

respectively. The lower curve in each panel shows a sample path of the 

stimulus selection process. Target C or Nontarget D is selected when the 

state of the process hits boundary Cor -D, respectively. Panels a and b 

represent examples where a response is already selected before stimulus 

selection ends. The other four panels show situations when there are two 

phases of response selection. Panel c, for instance, represents the situation 

where a target is selected, which changes the rate of the corresponding 

response selection process. The two phases of response selection are 

indicated by two different gray levels. 

analyzed parameters of the DSTP model after fitting the model to 

the distributional data of each condition. We expected that late 

selection should be involved more strongly under difficult selec

tion conditions and that this should be reflected by the correspond

ing parameter values of our model. After describing data and 

model fits for the three experiments, we compare the performance 

of the DSTP model with several alternative models. 

Experiment 1: Spacing Between Target and Flankers 

In our first experiment we tried to manipulate the relative 

contributions of early and late stimulus selection to performance 

by varying the spacing between target and flankers. It has been 

shown that the narrower the spacing, the larger the flanker con

gruency effect (e.g., B. A. Eriksen & Eriksen, 1974; Miller, 1991). 

Besides the hypothesis that the minimal diameter of the attentional 

zoom lens is limited (c. W. Eriksen & St. James, 1986; LaBerge 

et aI., 1991), one possible reason for this phenomenon is that the 

spatial selection of single items from the display competes with the 

tendency of the visual system to construct larger perceptual units 

according to Gestalt principles (Wertheimer, 1922). Thus, if the 

flankers are close to the target, all items are strongly grouped by 

proximity (Kramer & Jacobson, 1991; Logan, 1996), which makes 

target selection difficult. Over the years it has been shown that 

other Gestalt principles, such as grouping by similarity (Baylis & 
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Driver, 1992; Harms & Bundesen, 1983; HUbner & Backer, 1999; 

Kramer & Jacobson, 1991) or grouping by common fate (Driver & 

Baylis, 1989), produce a similar limitation on target selection. 

These results demonstrate that spatial filtering is not very effi

cient if flankers are located close to the target. Therefore, it can be 

assumed that, compared to a wider spacing, late selection is 

involved more strongly in this case. For instance, target selection 

could rely more on categorical information than on metric spatial 

information (see also P. Brown & Fera, 1994; LaBerge & Brown, 

1989). To see how early and late selection vary with spacing, we 

conducted a flanker task experiment where the participants had to 

categorize numerals as odd or even. Each target numeral was 

flanked by two copies of a numeral that had either the same parity 

as the target (congruent condition) or the opposite parity (incon

gruent condition). In a narrow spacing condition the flankers were 

presented close to the target, whereas in a wide spacing condition 

the flankers occurred farther apart (details of the method are given 

in Appendix B). The mean results (see Appendix B) show that, as 

expected, the flanker congruency effect in RT and in the error rates 

was significantly larger in the narrow condition than in the wide 

condition. 

To analyze and model the details of the data, we also considered 

the RT distributions. Following Ratcliff and his colleagues (e.g., 

Ratcliff & Smith, 2004), we represented the distributions for each 

participant by five quantiles (.I, .3, .5, .7, and .9). This was done 

for correct responses and error responses to congruent and incon

gruent stimuli, respectively. These quantiles were then averaged 

across participants to obtain group distributions. 

Because response probabilities (Le., accuracy) are also highly 

informative for the present objective, we depict our data by using 

so-called defective cumulative distributions (S. D. Brown & 

Heathcote, 2008; Feller, 1968), which refer to cumulative distri

butions weighted by the relative proportion of correct and incorrect 

responses. Accordingly, the distributions sum up to the rate of 

correct and incorrect responses rather than to I. Figure 3 shows the 

graphs for the present experiment. If we consider the distributions 

for congruent stimuli in the wide condition, for instance, then we 

see that the 90% quantile for correct responses is graphed at a 

probability of .83, whereas that for incorrect responses is graphed 

at a probability of .07. This means that 90% of the 92% (i.e., 83%) 

correct responses were faster than 576 ms, whereas 90% of the 8% 

(Le., 7%) incorrect responses were faster than 526 ms. 

As can be seen in Figure 3, the narrow condition showed a 

generally increased flanker congruency effect in RTs as well as in 

accuracy. However, more important for our further considerations 

is the question of how these effects develop as a function of RT. 

On the one hand, the flanker congruency effect in RTs for correct 

responses is increasing with RT. This can be seen by considering 

the horizontal distance between corresponding data points for the 

congruent and incongruent conditions. This distance increases with 

the height of the quantile. On the other hand, the flanker congru

ency effect in accuracy is largest for lower and intermediate 

quantiles. This can be seen by considering the slopes of the 

distributions for incorrect responses. For lower and intermedi

ate quantiles, the slope is greater for the incongruent than for the 

congruent condition, indicating that more fast errors occurred for 

incongruent stimuli. For this reason, the distribution of incorrect 

responses to incongruent stimuli is compressed so that higher 

quantiles have faster RTs for incongruent stimuli than for congru-
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Figure 3. The two panels show defective cumulative response time (RT) distributions (quantile averaged) 

separately for congruent and incongruent trials of the two spacing conditions (wide vs. narrow) in our first 

experiment. The two upper distributions in each panel refer to correct responses, whereas the two lower 

distributions in each panel refer to error responses. Symbols represent experimental data and lines represent fit 

values of the dual-stage two-phase (DSTP) model. 

ent stimuli. This is also reflected by the observation that the mean 

error RT was shorter for incongruent than for congruent stimuli 

(416 ms vs. 438 ms). 

All together, these effects amount to the known phenomenon 

that the flanker congruency effect in RT is larger for slow than for 

fast responses, whereas the effect in the error rates is mainly 

present for fast responses. As mentioned, this difference, which is 

particularly large under high flanker interference, can be inter

preted as an indication that two stimulus selection processes are 

involved. The fast but unreliable early selection process is respon

sible for the congruency effect in the error rates, whereas the slow 

but reliable late selection process produces the effect in RT. To see 

whether this interpretation is also reflected by the corresponding 

parameter values of the DSTP model, we fit the model to the 

distributional data. 

Model Fit 

As mentioned, we assumed that the overall rate fL of the re

sponse selection process (RSI) in the first phase is the sum of the 

contribution fL,,, of the target and the contribution fLj1 of all flank

ers. The different congruency conditions in the flanker task were 

realized by assuming that I-Lf7 is positive for congruent flankers but 

negative for incongruent flankers. Under ideal conditions more 

attentional weight is presumably given to the target position than 

to the flanker positions. However, the exact distribution of the 

attentional weights depends on various factors (cf. B. A. Eriksen & 

Eriksen, 1974). In any case, in contrast to Gratton et al. (1992), but 

in accord with Cohen et al. (1992), we assume that some spatial 

filtering is already possible at stimulus onset. 

Thus, in the present form, the DSTP model has seven free 

parameters: four rate parameters, two criteria, and a nondecisional 

parameter. The four rates are the component rates fLra and fLj1 for 

the target and flanker, respectively, the rate fLss for the late 

stimulus selection process (SS), and the rate fLRS2 for the response 

selection process (RS2) in Phase 2. Because we assumed symmet

ric boundaries, criterion A represents the boundaries for the re

sponse selection process, whereas criterion C represents the 

boundaries for the late stimulus selection process. We also needed 

a nondecisional parameter fer that represents the time used for 

stimulus encoding, response execution, and so forth. Finally, the 

diffusion coefficients for the processes also had to be specified. 

Because they are scaling parameters which are not identifiable, 

they were set to 0.0 I. 

To evaluate the perfonnance of our model, we wanted to fit not 

only the DSTP model to our data but also several alternative 

models. For the DSTP model an analytic version was available 

(see Appendix A), but this was not the case for most of the other 

models. Therefore, the perfonnance of these models had to be 

simulated. Because the perfonnance of models that have been fit to 

data by different procedures is difficult to compare, we decided to 

simulate all models. l They were programmed in C+ + and fit with 

the PRAXIS algorithm (Brent, 1973; Gegenfurtner, 1992) to the 

quantiles of the cumulative distributions of correct responses and 

error responses. The alternative models and their performances are 

considered in a later section. In this and the next two main sections 

we merely consider the fits of the DSTP model to the data. 

Following Ratcliff and Smith (2004), we estimated parameter 

values by minimizing the Wilks likelihood ratio chi-square, G2
, 

which approximates the chi-square statistics as sample sizes be

come large. With this goodness-of-fit measure both the distribution 

shapes and the response probabilities are taken into account simul

taneously. Because for each spacing condition the distributions for 

congruent and incongruent stimuli were fit with one parameter set, 

we had seven free parameters for the DSTP model to fit 20 data 

I A running program of the simulation version of the DSTP model can 

be found at http://www.psychologie.uni-konstanz.de/abteilungen/ 

kognitive-psychologie/research/projects/dstp-modell 



points. This resulted in a total of 15 degrees of freedom (two 

distribution pairs, each with I I degrees of freedom, minus seven 

free parameters of the model). However, like Ratcliff and Smith, 

we have used the G2 statistic as a relative rather than an absolute 

measure of fit. 

We simulated 8 X 105 trials per condition for each iteration. To 

prevent the obtained parameter estimates from representing a local 

minimum, we repeated the fit procedure several times with differ

ent sets of initial parameter values. In addition, we also fit the 

analytic version of our model to the data with the same fit algo

rithm as for the model simulations. This allowed us to assess the 

precision of our simulations. The goodness-of-fit measures for the 

two versions of the DSTP model are provided later in Table 7 (that 

for the analytic version is shown in parentheses). As can be seen, 

both measures are rather similar. Because this also holds for the 

estimated parameters, we report only the performance and the 

parameters obtained by the simulations. 

For the standard diffusion model Ratcliff and colleagues have 

shown that the parameter estimates obtained by fitting the model to 

quantile-averaged data are similar to the averages of parameter 

estimates obtained by fitting the model to individual participant 

data (e.g., Ratcliff, Thapar, & McKoon, 2003; Thapar, Ratcliff, & 

McKoon, 2003). Because we did not know whether this result 

could be generalized to the DSTP model, we also compared the 

two estimation procedures. As can be seen in Table I, the two sets 

of parameter values are rather similar. The values obtained for the 

averaged data are within half a standard deviation of the parame

ters obtained by averaging the values estimated for the individual 

participants. Therefore, in the following, we consider only the fit 

to the quantile-averaged data. 

The performance of the DSTP model is represented by the lines 

in Figure 3. As can be seen, the fit is rather good. If we consider 

the parameter values, then we see that, as expected, the partial rate 

ILJl for the flankers is substantially increased for the narrow con

dition, whereas the partial rate ILia for the target is similar between 

the spacing conditions (see Table I). As a consequence, the overall 

rate for RSI is even negative for incongruent stimuli in the narrow 

condition. The criterion is only slightly increased in the narrow 

condition. Concerning the late stimulus selection process, the rates 

are similar for the two spacing conditions. However, the criterion 

is increased under the narrow spacing. Moreover, the rate of the 

response selection process in Phase 2 was considerably higher for 

the narrow condition. This indicates a strong effect of late stimulus 

Table 1 

765 

selection on response selection, especially for the narrow spacing. 

Thus, overall, the parameter differences between the two spacing 

conditions are as expected. 

In Table 2 the empirical and theoretical mean RTs and response 

probabilities are provided. As can be seen, the mean values are 

rather similar. Because our model allows one to calculate the 

relative contributions of RSI and RS2 to performance, Table 2 also 

shows the probabilities PRs,(A) and PRs,(B) that a correct or 

incorrect response is already selected by RSI, respectively. As can 

be seen, for congruent stimuli RSI selects more correct responses 

in the narrow condition than in the wide condition, whereas the 

opposite holds for incongruent stimuli. This results from the in

creased contribution of the flankers in the narrow condition. If we 

consider the error responses, then we see that almost all are 

produced by RSl. In the narrow condition, for instance, incongru

ent stimuli produced about 15.5% errors, of which 15.4% can be 

attributed to RSI. 

All together, our model fit and analyses revealed that the DSTP 

model accounts rather well for the various aspects of the present 

data. The next experiment provides another example, where the 

efficiency of early spatial filtering was manipulated by varying 

spatial uncertainty and eccentricity. 

Experiment 2: Spatial Uncertainty and Eccentricity 

of the Stimulus 

In our second experiment we tried to manipulate the relative 

contributions of early and late stimulus selection in the flanker task 

by varying spatial uncertainty and eccentricity. For an effective 

spatial filtering it is important that the filter can be positioned 

optimally at the target location. Accordingly, spatial uncertainty 

about the exact location of target and flankers usually leads to an 

impaired performance (e.g., P. Brown & Fera, 1994; Goolkasian & 

Bojko, 2001; Miller, 1991; Paquet & Lortie, 1990). Thus, it is 

reasonable to assume that under spatial uncertainty a reliable 

performance can be achieved only if response selection is strongly 

supported by a late stimulus selection stage, where selection is 

based, for instance, on categorical spatial information such as "the 

middle letter." 

To investigate whether late selection is indeed strongly involved 

under spatial uncertainty, we conducted an experiment in which the 

entire pattern of the target and the two flankers could occur at different 

positions on the screen. In one blocked condition (I-position-central) 

Parameter Values of the DSTP Model for the Stimulus Spacing Conditions in Experiment 1 

Parameter 

Early selection Late selection 

Condition J,L'a ftjl A ftss C ftRS2 ft;'r 

Wide .0404 (.0394) :':.0162 (:':.0224) .0681 (.0694) .3657 (.3635) .0706 (.0726) :': 1.149 (:': 1.261) .2155 (.2176) 

Narrow .0449 (.0372) :':.0651 (:':.0663) .0699 (.0717) .3680 (.3717) .0863 (.0874) :': 1.575 (:': 1.524) .2248 (.2255) 

Note. The values in parentheses are the averages of the parameter estimates obtained by fitting the model to the individual data sets of the participants. 

DSTP = dual-stage two-phase; ft = rate or drift of a given diffusion process and condition; ta = target; j1 = flanker; A = criterion for response selection; 

SS = stimulus selection process; C = criterion for stimulus selection; RS2 = response selection process in Phase 2; fa = nondecisional parameter that 

represents time used for stimulus encoding, response execution, and so forth. 
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Table 2 

Empirical Mean Data in Experiment 1 and Corresponding Values Produced by the DSTP Model 

Congruent Incongruent 

Condition p(A) RT PRs,(A) PRs,(B) p(A) RT PRs,(A) PRs,(B) 

Wide 

Data .918 427 .899 435 

Model .927 432 .161 .070 .902 436 .133 .096 
Narrow 

Data .932 444 .841 472 

Model .945 449 .249 .054 .845 479 .113 .154 

Note. The columns labeled with PRs,(A) contain the probabilities that a correct response is already selected in Phase I of response selection. The columns 

labeled with PRs,(B) provide the probabilities that an incorrect response is selected in Phase I of response selection. RT = response time, in milliseconds; 

DSTP = dual-stage two-phase. 

there was no spatial uncertainty, because the stimuli always appeared 

at the center of the display. In another blocked condition (2-positions

lateral) the stimulus pattern could occur at either a left or at a right 

position. Although there was some spatial uncertainty, the two posi

tions were chosen in such a way that the innermost flanker always 

appeared at the center of the display. Consequently, the five positions 

that could be occupied by items were uniquely linked to the target or 

to the flankers. Finally, there was a blocked condition (three positions) 

where the stimulus pattern either appeared at the center (3-positions

central) or at one of the two lateral positions (3-positions-lateral). This 

not only increased spatial uncertainty, but the middle three item 

positions were also no longer uniquely linked to the target or to 

flankers. With these features, the 3-positions condition had the largest 

spatial uncertainty. Thus, to assess the effect of uncertainty, we 

compared performance in the l-position-central and 2-positions

lateral conditions with that in the 3-positions-central and 3-positions

lateral conditions, respectively. The details of the method and mean 

results can be found in Appendix B. 

Obviously, the different conditions differed not only with re

spect to spatial uncertainty but also with respect to eccentricity, 

which should also affect stimulus selection. For a laterally pre

sented stimulus pattern it can be expected that target selection is 

more difficult than for a pattern that appears at the center. Accord

ingly, the effects of eccentricity were assessed by comparing the 

performance between the central and lateral conditions. 

The analysis of the mean performance supported our hypotheses 

that spatial uncertainty as well as eccentricity increased the diffi

culty of target selection (see Appendix B). As expected, the 

congruency effect in RT was significantly larger in the 3-positions 

conditions compared to the l-position-central and 2-positions

lateral conditions. Moreover, the congruency effect was also larger 

for lateral than for central stimuli. 

If we consider the distributions of the different conditions (see 

Figure 4), then it is obvious that the overall pattern of each condition 

is similar to that of the narrow condition in our first experiment. 

Additionally, the effects of eccentricity and uncertainty can be seen. 

With respect to eccentricity, the distributions of the correct RTs are 

generally shallower for the lateral positions than for the central posi

tion. Moreover, the functions for congruent and incongruent stimuli 

are further separated, which reflects the larger congruency effects. In 

the distributions of incorrect RTs the increased congruency effect for 

the lateral positions is reflected by an increased proportion of errors 

for incongruent stimuli. The increased congruency effects caused by 

spatial uncertainty can be seen by the larger separation between the 

corresponding distributions in the 3-positions-central condition, com

pared to the l-position-central condition. In the lateral conditions, this 

effect is relatively small. All together, though, our manipulations of 

selection difficulty had the intended effects. To see whether they are 

also reflected by the model parameters, the model was fit to our data. 

Model Fit 

The DSTP model was fit to the quantile-averaged distributions with 

the same procedure as before. The question was to what extent spatial 

uncertainty and eccentricity reduced the efficiency of early selection 

and whether this deficit was compensated for by an increased involve

ment of late selection. As can be seen in Figure 4, the model fit the 

data quite well. If we consider the obtained parameters for the 

l-position-central condition (see Table 3), then we see that the partial 

rate for the flankers is smaller than that for the target. This is different 

from the comparable narrow condition in the previous experiment and 

indicates that in the present experimental context the participants 

allocated a larger portion of their attention to the target position than 

to the flanker positions. Accordingly, the rate for Phase 2 could also 

be smaller, compared to our first experiment. 

This is also rather different from the situation where the stim

ulus pattern appeared at one of the lateral positions. As expected, 

in this case the attentional weight was relatively low for the target 

but high for the flankers. As a result, the overall rate for RSI is 

negative for incongruent stimuli. This led to an increase of the 

response criterion and to a high rate for RS2. The same relation 

holds between the 3-positions-central and the 3-positions-lateral 

conditions. If we compare the l-position-central condition with the 

same stimulus condition under spatial uncertainty (3-positions

central), then it is obvious that the distribution of attention was 

slightly changed in favor of the flankers, which caused the larger 

congruency effect. Obviously, for the lateral condition, spatial 

uncertainty had only a small effect (2-positions-lateral vs. 

3-positions-lateral). Although the parameters indicate a stronger 

involvement of late selection in the 3-positions-lateral condition, 

the parameters for early selection are rather similar. 

Thus, concerning the relative contributions of RSI and RS2 to 

the overall performance, we have a similar picture as before (see 

Table 4). Under difficult selection conditions the overall rate for 

RSI is rather small or even negative. Accordingly, only a few 

correct responses to incongruent stimuli are triggered by this 
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Figure 4. The panels show defective cumulative response time (RT) distributions (quantile averaged) sepa

rately for congruent and incongruent trials of the four conditions in our second experiment. The two upper 

distributions in each panel refer to correct responses, whereas the two lower distributions in each panel refer to 

error responses. Symbols represent experimental data and lines represent fit values of the dual-stage two-phase 

(DSTP) model. 

process. In the 2-positions-Iateral condition, for instance, only 9% 

of the correct responses were selected by RSI. In contrast, almost 

all incorrect responses are due to RSI. If we again consider the 

2-positions-Iateral condition, then of the 21 % errors, 20.2% were 

caused by RSI. Thus, the small rate of RSI reduces the probability 

that a correct response is already selected in Phase I, but, at the 

same time, it also increases the probability that RS2 comes into 

play. Because response selection in Phase 2 is slow but reliable, 

this explains why the accuracy improves considerably with RT in 

this difficult condition, even though at some costs in RT. 

All together, the results of the present experiment show that spatial 

uncertainty and eccentricity can have a substantial negative effect on 

performance. By fitting our DSTP model to the distributional data 

(see Figure 4) we were able to decipher how the attentional selection 

mechanisms adapt to the different stimulus conditions. It seems that, 

if a target always uniquely appears at a central location, then spatial 

attention can be effectively restricted to that location. This largely 

prevents the processing of the flankers. As a consequence, a response 

can often be selected by the information provided by this early 

filtering process, even when the flankers are incongruent. However, if 

the target position is variable and shared with the flankers, and/or the 

target is presented at a lateral position, then spatial filtering is less 

efficient. For incongruent stimuli this leads to a reduced or even 

negative overall rate. Fortunately, the impaired spatial filtering can 

partly be compensated for by a strengthened late stimulus selection 

process, which keeps the performance at an acceptable level, at least 

for slow responses. 

Experiment 3: Proportion of Congruent and 

Incongruent Stimuli 

By analyzing and modeling the data of the last two experiments 

we have demonstrated that late selection can compensate deficits 

of early selection. It turned out that in conditions where early 

selection was not very selective, late selection was strengthened. 

Does this mean that any reduction of early selectivity always leads 
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Table 3 

Parameter Estimates Obtained by Fitting the DSTP Model to Quantile-Averaged Data for the Different Conditions in Experiment 2 

Parameter 

Early selection Late selection 

Condition fJ..w A fLss C f..LRS2 

I-position-central .0860 ±.0562 .0666 .3240 .0820 ± 1.031 .2360 
2-positions-Iateral .0352 ±.0844 .0756 .2907 .0861 ± 1.252 .2434 
3-positions-central .0606 ±.0565 .0706 .3053 .0775 ± 1.016 .2347 
3-positions-lateral .0364 ±.0821 .0756 .2913 .0870 ± 1.253 .2349 

Note. DSTP = dual-stage two-phase; fL = rate or drift of a given diffusion process and condition; ta = target; fl = flanker; A = criterion for response 
selection; SS = stimulus selection process; C = criterion for stimulus selection; RS2 = response selection process in Phase 2; t", = nondecisional parameter 
that represents time used for stimulus encoding, response execution, and so forth. 

to an enhanced late selection? Or are there also situations in which 

both selection mechanisms are adjusted in the same direction? As 

we have seen in the last experiments, the compensation of an early 

selection deficit is actually necessary only if the flankers carry 

incongruent information. With congruent flankers, low early se

lectivity even has an advantage, because it increases the overall 

rate of the response selection process. In this case a strong late 

selection process is of little help. Thus, in a situation where mainly 

congruent stimuli occur, we would expect a low early selectivity 

and, at the same time, only a low to moderate involvement of late 

selection. In contrast, when incongruent stimuli are frequent, then 

early selectivity should generally be high, and, if this is not 

sufficient for a reliable performance, late selection should be 

strong as well. These predictions were tested in the present exper

iment. While keeping the basic stimulus conditions constant, we 

tried to manipulate the selection strategy by varying the proportion 

of congruent trials. 

For several conflict paradigms it has been shown that the pro

portion of congruent trials systematically affects performance 

(e.g., Gratton et aI., 1992; Lindsay & Jacoby, 1994; Logan & 

Zbrodoff, 1979; Logan, Zbrodoff, & Williamson, 1984). These and 

related effects have been interpreted in the way that attention is 

Table 4 

generally less selective when stimuli are congruent in the majority 

of trials (see also Heitz & Engle, 2007; Mattler, 2006). Although 

this attentional control account has also been questioned (e.g., 

Mayr, Awh, & Laurey, 2003; Schmidt & Besner, 2008; Schmidt, 

Crump, Cheesman, & Besner, 2007), several studies strongly 

support it (e.g., Crump, Gong, & Milliken, 2006; Fernandez

Duque & Knight, 2008; Lehle & HUbner, 2008; Wendt, Kluwe, & 

Vietze, 2008). Thus, for our present objective we assumed that 

selectivity is determined by an attentional control strategy. 

In our experiment we had one condition with 80% congruent 

trials and another condition with 20% congruent trials. The stimuli 

and basic procedure were similar to the 2-positions-lateral condi

tion in the previous experiment (see Appendix B). We expected 

that the participants would use a specific selection strategy for 

each condition. If the stimuli are congruent on most of the trials, 

then stimulus processing should be less selective than when the 

stimuli are mostly incongruent. This strategic difference should be 

reflected by the flanker congruency effects. Indeed, in the 80%

congruent condition the flanker congruency effect in RT was 

significantly larger than in the 20%-congruent condition (see Ap

pendix B). If we consider the RT distributions in Figure 5, then it 

is obvious that the congruency effect again increased with RT in 

Empirical Mean Data in Experiment 2 and Corresponding Values Produced by the DSTP Model 

Congruent Incongruent 

Condition p(A) RT PRS' (A) PRS' (B) p(A) RT PRs,(A) PRs,(B) 

I-position-central 
Data .935 456 .860 484 
Model .948 464 .319 .050 .865 493 .193 .127 

2-positions-Iateral 
Data .934 493 .813 536 
Model .952 512 .286 .047 .790 547 .090 .202 

3-positions-central 
Data .931 460 .857 497 
Model .947 479 .282 .051 .857 505 .142 .133 

3-positions-Iateral 
Data .931 484 .813 530 
Model .950 505 .291 .0485 .793 540 .098 .197 

Note. The columns labeled with PRS' (A) contain the probabilities that a correct response is already selected in Phase 1 of response selection. The columns 
labeled with PRs,(B) provide the probabilities that an incorrect response is selected in Phase 1 of response selection. RT response time, in milliseconds; 
DSTP = dual-stage two-phase. 
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Figure 5. The two panels show defective cumulative response time (RT) distributions (quantile averaged) 

separately for congruent and incongruent trials of the two conditions in our third experiment. The two upper 

distributions in each panel refer to correct responses, whereas the two lower distributions in each panel refer to 

error responses. Symbols represent experimental data and lines represent fit values of the dual-stage two-phase 

(DSTP) model. 

both conditions, but to a larger extent in the 80%-congruent 

condition. The congruency effect also differed substantially for 

error responses between the conditions, as can be seen by consid

ering the corresponding distributions (see Figure 5). 

The reduced selectivity in the 80%-congruent condition sped up 

responding, relative to the 20%-congruent condition. However, if we 

consider the distributions in Figure 5, then we see that in the 80%

congruency condition many of the fast responses to incongruent 

stimuli were errors. Thus, whereas the applied attentional strategy is 

reflected in the error rates by costs for fast responses, in RT it is 

mainly reflected by costs for slow responses. The interesting question 

was whether the reduced early selectivity in the 80%-congruent con

dition was this time not compensated for by a strengthened late 

selection process, compared to the 20%-congruent condition. To see 

whether this was the case, we fit the DSTP model to the data. 

Model Fit 

In Table 5 the parameter values estimated by the same proce

dure as before are shown. As expected, the values indicate that the 

selectivity of the spatial filter is relatively low for the 80%-

Table 5 

congruent condition (see Table 5), which leads to a negative 

overall rate for incongruent stimuli. Because the criterion for the 

response selection process is also relatively low, a large proportion 

(42.8%; see Table 6) of the correct responses to congruent stimuli 

are already selected by RSI. This explains the good performances 

for congruent stimuli in the 80%-congruent condition. However, as 

already mentioned, this strategy produces costs for incongruent 

stimuli. The negative overall rate combined with the relatively low 

criterion, produces many fast errors, as reflected by the corre

sponding distribution. In case no response is selected in Phase 1, 

RS2 starts relatively late. Because most of the correct responses to 

incongruent stimuli are selected by RS2, the congruency effect in 

RT is increased for slow responses. 

If we consider the parameter values for the 20%-congruent 

condition, then we see that the selectivity of the spatial filter is 

increased (see Table 5) relative to that in the 80%-congruent 

condition. As a consequence, the overall rate for incongruent 

stimuli is small, but positive. Furthermore, the criterion for the 

response selection process is slightly increased. Although these 

parameter values are helpful for attaining an acceptable perfor-

Parameter Estimates Obtained by Fitting the DSTP Model to Quantile-Averaged DataJor the Different Conditions in Experiment 3 

Parameter 

Early selection Late selection 

Condition iJ.la 1-'17 A I-'ss C I-'RS2 Ie; 

20% congruent .0846 ±:.0656 .0691 .3351 .0856 ±: 1.520 .2573 

80% congruent .0706 ±:.0928 .0616 .3181 .0820 ±: 1.342 .2522 

Note. DSTP = dual-stage two-phase; I-' = rate or drift of a given diffusion process and condition; fa = target; fl = flanker; A = criterion for response 

selection; SS = stimulus selection process; C = criterion for stimulus selection; RS2 response selection process in Phase 2; ler = nondecisional parameter 

that represents time used for stimulus encoding, response execution, and so forth. 
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Table 6 

Empirical Mean Data in Experiment 3 and Corresponding Values Produced by the DSTP Model 

Congment Incongment 

Condition p(A) RT PRS' (A) PRs,(B) p(A) RT PRs,(A) PRS' (B) 

20% congment 

Data .954 472 .863 504 

Model .958 480 .312 .041 .867 509 .138 .130 

80% congment 

Data .937 449 .773 492 

Model .946 456 .428 .053 .775 493 .165 .224 

Note. The columns labeled with PR." (A) contain the probabilities that a correct response is already selected in Phase I of response selection. The columns 

labeled with PRs,(B) provide the probabilities that an incorrect response is selected in Phase 1 of response selection. RT = response time, in milliseconds; 

DSTP = dual-stage two-phase. 

mance on incongruent trials, which make up the majority, the 

achieved early selectivity is obviously not sufficient to meet the 

demands in such experimental conditions. Therefore, late selection 

is strengthened as well by increasing the rate for the stimulus 

selection process (and for RS2), by increasing the rate of the 

stimulus selection process, and by slightly increasing the criterion 

(C). Consequently, RSl selects a correct response on relatively few 

congruent trials (31.2%), which is also responsible for the in

creased mean RT. For incongruent stimuli, RSI even selects a 

correct response on only 13.8% of the trials. Thus, by strengthen

ing both early and late stimulus selection, the selection of a 

response by RSl is largely avoided, which guarantees relatively 

high accuracy. 

All together, the estimated parameter values for the DSTP 

model for the different ratio conditions show that late selection is 

not automatically strengthened when early selectivity is reduced. 

Under certain conditions, for example, when flanker coprocessing 

is advantageous and the risk of committing an error is low, both 

early selection and late selection are reduced. On the other hand, if 

the conditions for achieving a reliable performance are relatively 

difficult, both selection mechanisms are strengthened, if possible. 

Comparison With Alternative Models 

The application of our DSTP model to empirical data demon

strates that it can account weIl for the details of various attentional 

effects. However, because it has a relatively complex structure that 

includes several mechanisms of attentional selection, one might 

ask whether this complexity is really necessary. Perhaps an ad

vanced single-stage selection model could also account for the 

considered distributional data. And even if this is not the case, 

there might be alternative models of similar complexity as the 

DSTP model that could explain the distributional data. Although 

these questions cannot exhaustively be answered in this article, we 

provide at least partial answers. First we examine the performance 

of a single-stage model. Then we examine models with a contin

uously increasing drift. FinaIly, we consider two variants of the 

DSTP model. 

Comparing different models is not an easy task, because they 

usuaIly differ in various aspects, especiaIly if they are expressed in 

different formal frameworks. Therefore, to make the comparison 

easier, we implemented all considered models in the framework of 

diffusion processes and fit them to our distributional data in the 

same way as the DSTP model. The performance of the models was 

assessed by means of the Bayesian information criterion (BIC) 

model-selection statistic (G. Schwarz, 1978), which takes the 

number of free model parameters into account. There are also other 

statistics (cf. Zucchini, 2000), which, however, would lead to the 

same conclusions in the present case. We preferred the BIC be

cause it can be derived from the G2 statistic (cf. Ratcliff & Smith, 

2004) that we used for data fitting. The G2 and BIC statistics for 

all models and fits are listed in Table 7. The best model is the one 

with the smallest BIC. 

Single-Stage Model 

That single-stage models can account for the mean effects of 

flanker congruency has already been shown (e.g., Logan, 1996). 

Here, we examine to what extent such models can also account for 

distributional data. It can be expected that single-stage models 

have problems obtaining an acceptable mean accuracy for incon

gruent stimuli in difficult selection conditions and producing a 

large error rate for fast responses at the same time. To see how a 

single-stage model performs, we combined our early selection 

mechanism with a stationary diffusion process for response selec

tion. However, a simple diffusion process can principally not 

account for faster error responses than correct responses, because 

the corresponding distribution functions are identical. Therefore, 

we assumed a random starting value for the diffusion process, 

which, on average, leads to faster errors than correct responses (cf. 

Ratcliff, 1981). More specificaIly, we assumed that X(O) is a 

uniformly distributed random variable with mean zero and range 

s,. Thus, all together we had five free model parameters: the 

component rates for target and flankers, the response criterion, the 

range of the starting value, and the nondecisional time. 

Fitting the single-stage model to the distributional data of all 

experimental conditions revealed that, as expected, its perfor

mance was relatively poor (see Table 7). To show an example, we 

plotted the performance of this model for the narrow condition in 

our first experiment (see Figure 6). As can be seen, the model 

substantially overestimates the accuracy for responses to incon

gruent stimuli. Also, the fits to the distributions of the correct 

responses deviate systematically. The proportion of fast correct 

responses is overestimated, whereas that for slow correct responses 

is underestimated. If we consider the obtained parameter estimates 

(narrow condition: fL", = .2455, fL(1 = ±.0344, A = .0526, sz = 



Table 7 

Fit Statistics of the Considered Models for the Different 

Experimental Conditions 

Condition and model G2 dj BIC 

Wide 
DSTP 12.4 (12.3) 15 59.9 (59.7) 
No priming 12.6 15 60.0 
Race 16.4 15 63.9 
Nonlinear increase 26.6 13 81.2 
Linear increase 31.6 15 79.1 
Single stage 52.9 17 86.8 

Narrow 
DSTP 15.7 (15.8) 15 63.2 (63.2) 
No priming 16.3 15 63.8 
Race 18.0 15 65.4 
Nonlinear increase 42.3 13 103 
Linear increase 44.0 15 91.5 
Single stage 68.6 17 103 

I-position-central 
DSTP 7.86 (7.33) 15 50.3 (49.7) 
No priming 7.37 15 49.8 
Race 7.87 15 50.3 
Nonlinear increase 18.8 13 73.3 
Linear increase 25.1 15 67.5 
Single stage 33.6 17 63.9 

2-positions-Iateral 
DSTP 10.0 (10.3) 15 52.5 (52.7) 
No priming 10.4 15 52.9 
Race 11.5 15 53.9 
Nonlinear increase 25.5 13 80.0 
Linear increase 49.6 15 92.0 
Single stage 39.0 17 69.3 

3-positions-central 
DSTP 8.18 (7.74) 15 47.7 (47.3) 
No priming 8.19 15 47.7 
Race 8.77 15 48.3 
Nonlinear increase 19.2 13 70.0 
Linear increase 22.3 15 62.3 
Single stage 21.2 17 49.4 

3-positions-Iateral 
DSTP 17.7 (16.8) 15 62.2 (61.3) 
No priming 18.3 15 62.8 
Race 19.1 15 63.6 
Nonlinear increase 40.7 13 97.9 
Linear increase 64.8 15 109 
Single stage 66.8 17 98.6 

20%-congruent 
DSTP 12.6(12.1) 15 61.6 (61.0) 
No priming 13.0 15 61.9 
Race 13.5 15 62.4 
Nonlinear increase 25.7 13 89.7 
Linear increase 54.6 17 104 
Single stage 60.4 17 95.3 

80%-congruent 
DSTP 25.3 (24.8) 15 74.3 (73.9) 
No priming 24.7 15 73.8 
Race 24.7 15 73.8 
Nonlinear increase 51.1 13 114 
Linear increase 95 15 144 
Single stage 102 17 137 

Note. The G2 and Bayesian information criterion (BIC) values are based 
on the performance obtained by computer simulations of the models. The 
values in parentheses for the dual-stage two-phase (DSTP) model represent 
the corresponding values obtained with the analytic version (see Appendix 
A) of the model. 
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.0566, ter = .2848; wide condition: fJ..la = .3049, fJ..jl = :t.0l05, 

A = .0539, sz = .0594, ter = .274548), then we see that the 

component rates and the criteria vary in the expected direction 

between the two spacing conditions, but only moderately. For 

instance, even for the narrow condition the overall rate for incon

gruent stimuli differs by only a relatively small amount from that 

for congruent stimuli. This explains the overestimated accuracy for 

the former condition. Thus, the single-stage model cannot account 

for results whcre performance is poor for fast responses but good 

for slow responses. 

For comparison, we also fit the Ratcliff diffusion model to the 

data, that is, a diffusion model where not only the starting value 

but also the rate and ter vary randomly across trials. It turned out 

that these additional parameters did not improve the performance. 

Thus, it seems that a standard single-stage model is not appropriate 

for explaining our data. 

Continuously Increasing Drift Model 

The poor performance of the single-stage model indicates that at 

least for conflict paradigms it is necessary to assume some form of 

increase in selectivity during stimulus processing. In the DSTP 

model selectivity improves abruptly in one step at some point in 

time. Because this point was interpreted as the time when the 

output of a categorical late selection mechanism is available, the 

success of our model can be considered support for the idea that 

selection can occur either at an early or at a late stage. This idea is 

also in accord with Gratton et al.'s (1992) dual-phase idea, that is, 

with the assumption that there are two phases of different selec

tivity. If we consider the various formal approaches to account for 

Gratton et a!.' s (1988) distributional data, though, then we see that 

all of them assume a gradually increasing selectivity. One reason 

for this characteristic might be that neural networks were mostly 

used for modeling. Cohen et a!. (1992; see also Servan-Schreiber, 

Bruno, Carter, & Cohen, 1998), for instance, used such a frame

work. Although the performance of their model was qualitatively 

in accord with the data, there were relatively large and systematic 

quantitative deviations. For instance, the accuracy for the congru

ent condition was systematically overestimated. Some points of the 

fit even deviate by more than 10% (see Figure 9 in Cohen et aI., 

1992). Furthermore, the details of this approach remain unclear, 

for example, how many free parameters were used and exactly 

how selectivity changes over time. 

Recently, Liu et al. (2008) also modeled Gratton et al.'s (1988) 

data using a neural network model. However, because their model 

involves somewhat arbitrary assumptions on architecture and pa

rameters, the authors also approximated its behavior with a diffu

sion model with a linear, quadratic, or exponential drift rate. It 

turned out that the diffusion model with the exponential drift rate 

best accounted for the data, although there were still systematic 

deviations. Here, we apply similar types of models to fit our data. 

We assumed that response selection proceeds by a diffusion pro

cess whose rate can change gradually with time. In our first 

approach, we further assumed that the contribution of the flankers 

continuously vanishes with time, which corresponds to the idea of 

a dynamic spotlight (Heitz & Engle, 2007) whose diameter shrinks 

gradually until it is focused on the target. 

For incongruent stimuli, where the initial effect of the flankers 

is negative, these assumptions lead to a gradual increase of the 
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Figure 6. The panels show examples of the perfonnance of the alternative models. The symbols in each panel 

represent the data of the narrow spacing condition in our first experiment. The lines in each of the four panels 

represent the fit values of one of the alternative models as identified above each panel. 

overall rate until the spotlight is restricted to the target. For 

congruent stimuli, though, where the initial effect of the flankers is 

positive, such a dynamic would imply that the overall rate de

creases, which seems unreasonable. To avoid such a consequence, 

it is usually assumed that the density of the attention resources 

increases with a decreasing diameter of the spotlight (c. W. 

Eriksen & St. James, 1986; Heitz & Engle, 2007). For the present 

framework this implies that the attentional weight for the target 

increases with a shrinking spotlight. If the weight for the target 

increases to the same extent as that for the flankers decreases, then 

the overall rate for congruent stimuli remains constant. Accord

ingly, for congruent stimuli we assumed that the overall rate of the 

response selection process has a constant value f.Lx' whereas the 

rate for incongruent stirilUli starts with a relatively small value and 

then increases until it also reaches the value f.Lx' 

But exactly how should the rate increase? We first considered a 

model with a linearly changing rate (cf. Spieler et aI., 2000). For 

incongruent stimuli the overall rate was set to f.L(t) = f.Lx - ".tit) 
for t ? 0, where f.L,.(t) decreases linearly with time, that is, f.Lv(t) = 

f.Lyo - tOy, until it reaches zero. The parameter Oy represents the 

decrement per time unit. However, the performance of this model 

was rather poor. Therefore, we additionally assumed that the 

overall rate further increases even after the spotlight has excluded 

the flankers, that is, after f.L/t) has reached zero. Specifically, we 

assumed that the common rate f.Lx increases from that point on by 

to., up to a maximum rate f.L"UH' Including the boundary and 



nondecisional time parameter te,' this dynamic spotlight model has 

seven free parameters. 

The result of the model fit is also shown in Table 7. As can be 

seen, compared to the simple single-stage model the fit has im

proved for most conditions. If we consider the performance for the 

narrow condition in our first experiment (see Figure 6), then it is 

obvious that in this case the fit mainly improved for the distribu

tions of correct RTs. The fit to the distribution of the error RTs 

remains poor. The parameter estimates for this condition are as 

follows: fLx = .1829, i\ .0020, fLmax = .3660, fLyo = .1911, Oy = 
.0024, A = .0501, and ter = .2709. For the wide condition the 

parameter estimates are as follows: fLx = .1741, ox .0016, 

fLmax = .3622, fLvo = .1929, 0" = .0037, A = .0536, and ter = 

.2402. These values are difficult to interpret. For instance, the 

starting value fLyu of the flankers is larger for the wide than for the 

narrow condition, and an even more pronounced relation holds for 

0Y' which is not very plausible. Taken together, we can conclude 

that although the dynamic spotlight led to improved fits compared 

to the single-stage model, it remains rather poor in absolute terms. 

This demonstrates that the simple assumption of a linearly increas

ing selectivity, even if there are different periods with different 

slopes, is not appropriate for satisfactorily explaining our distri

butional data. 

One might argue that the assumption of a stepwise linearly 

increasing rate and the other constraints are too restrictive and that 

a nonlinear increase with fewer constraints might be more appro

priate. To see whether this is the case, we also considered a model 

with a nonlinearly increasing rate. But how should the rate in

crease? As mentioned, Liu et al. (2008) applied a quadratic and an 

exponential drift rate, but with moderate success. A proper func

tion might be obtained by examining how the mean rate (across 

trials) of the DSTP model changes with time (under the condition 

that no response has been selected yet). It turned out that this 

change can almost perfectly be described by a logistic growth 

function of the form fL(t) = (fLo - fLmax)/[l + (tltJ"] + f.lmax' In 

this equation the parameters f.lo and f.l""u are the starting and 

maximal value of the rate, respectively. The parameter tc is the 

point of inflection, and the exponent a determines how fast the 

mean rate grows. We used this type of nonlinear function to model 

the growth in rate with time. Moreover, except for f.lmax' we used 

individual parameter sets of this function for the two congruency 

conditions. Thus, including the common response criterion A and 

ter we had nine parameters. As can be seen in Table 7, compared 

to the piecewise linear model the fit generally improved. 

In Figure 6 the fit to the narrow condition in our first experiment 

is shown. The values of the common parameter values are f.ln"L< = 
.2911, A = .0474, and ter = .2842. The values of the specific 

parameters for the congruent condition are f.lo = .0010, t,. = .0232, 

a = .6006, and those for the incongruent condition are f.lo = .0002, 

tc = .0548, a = .2246. As one would expect, the starting rate (f.lo) 

is larger for the congruent condition than the incongruent one. Also 

the increase of the rate occurs earlier for the former condition and 

is faster, as indicated by the values of tc and a. 

If, for comparison, we consider the wide condition, then the 

values of the common parameters are f.lmax = .2903, A = .0495, 

and ter = .2586. The values of the other parameters for the 

congruent condition are f.lo = .0003, tc = .0297, a = .4914, and 

those for the incongruent condition are f.lo = .0018, tc = .0400, 

a = .2264. Concerning the values of the parameters (. and a, the 
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difference between the two congruency conditions is smaller com

pared with the narrow condition, which is plausible. The starting 

rate, however, is larger in the incongruent condition than in the 

congruent condition, which is implausible. 

Nevertheless, the nonlinear model fit the data generally better 

than the piecewise linear model. However, due to the costs pro

duced by the increased number of parameters, the BIC is smaller 

in only half of the cases (see Table 7). Moreover, the goodness of 

fit of the nonlinear model is still far away from that of the DSTP 

model. Clearly, we cannot definitely exclude that there is a non

linear model that fits the data much better. However, it is hard to 

tell whether such a model exists, and even if there were such a 

model, it would be difficult to find and presumably very special. 

Thus, taken together, our considerations suggest that it is rather 

unlikely that a model with a gradually increasing selectivity can 

generally account well for distributional flanker task data. 

Variants of the DSTP Model 

The considerations so far suggest that the two discrete stages of 

stimulus selection and the corresponding two phases of response 

selection are the crucial characteristics of the DSTP model that are 

responsible for its successful performance. Additionally, however, 

we made a number of further specific assumptions. The question is 

how important these assumptions are. For instance, we assumed 

that there is only one response selection process that changes its 

rate after a stimulus has been selected. Alternatively, though, one 

could assume that a second (controlled) response selection process 

starts (with a starting value of zero) when a stimulus is selected 

and that the first (automatic) response selection process continues 

unchanged. 

Such an architecture would be a realization of a specific variant 

of the dual-route or dual-process idea. As mentioned in the intro

duction, one version of this idea, which is structurally rather 

similar to the DSTP model, assumes that an automatic priming 

process and a controlled rule-based process affect the same re

sponse selection mechanism (e.g., De Jong et aI., 1994; Hommel, 

1998; Hunt & Lansman, 1986; Ridderinkhof, 1997). Another ver

sion, however, assumes that the automatic and controlled routes 

are independent and that each of the corresponding processes can 

select a response (cf. Logan, 1988; Nosofsky & Palmeri, 1997; 

Palmeri, 1997). Thus, the dual processes compete in a race, and 

the process that reaches the response criterion first determines the 

response. This idea can easily be implemented as a variant of the 

DSTP model. Instead of that RS2 takes over from RS1, one would 

simple have to assume that RS2 runs in parallel with RSI after a 

stimulus has been selected until one of the processes selects a 

response. Such a race model has the same number of parameters as 

the DSTP model. 

The performance statistics of this race model are also given in 

Table 7. As can be seen, in some cases the performance is worse 

than that of the DSTP model, in others it is rather similar, and in 

one case it is even better. As for the other models, the fit to the 

narrow condition in our first experiment is shown as an example 

(see Figure 6). The obtained parameter values for the narrow 

condition are as follows: f.lta = .0452, f1t7 = ±.0647, A = .0694, 

f.lss = .3681, C = .0864, f.lRS2 = ± 1.5745, and ter = .2247; those 

for the wide condition are as follows: fL'a = .0442, f.lfl = ±.0172, 

A = .0673, f.lss = .3777, C .0724, f.lRS2 = ±1.l606, and ter = 
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.2135. Obviously, the values are similar to those for the DSTP 

model. For instance, the overall rate for the narrow condition is 

negative and, compared to the wide condition, the rate for RS2 

is larger. If we consider Figure 6, then it is obvious that the fit is 

slightly worse than that of the DSTP model. This is also reflected 

by an overestimation of the error rate in the incongruent condition 

(20% instead of 16%) and by an underestimation of the flanker 

congruency effect (15 ms instead of 30 ms). 

Nevertheless, all together the performance of the race model is 

rather similar to that of the DSTP model. However, this is not 

surprising, if one takes into account that, according to the super

position principle (Diederich & Colonius, 1991; W. Schwarz, 

1994), two parallel diffusion processes are equivalent to a single 

diffusion process. For this equivalence it is usually assumed that 

both processes start from the same value. In the present case, 

though, we have the situation that, considered from stimulus 

selection onward, RS2 starts from zero, but RSI continues from a 

random state, that is, from the end state of the first phase. This fact 

is presumably responsible for the small difference in performance 

between the race and the DSTP model that was observed in our 

analysis. 

These considerations raise the question of whether it is impor

tant that RS2 starts from the end state of RSI. This feature was 

included in the DSTP model to reflect the priming of the state of 

evidence by mechanisms driven by early information, which is a 

crucial characteristic of the continuous flow idea (C. W. Eriksen & 

Schultz, 1979). To examine whether this feature is important in the 

present case, we also simulated a variant of the DSTP model, 

where RS2 again starts at the time when RSl ends, but this time 

always with a starting value of zero. If we consider the perfor

mance statistic of this no-priming model in Table 7, then we see 

that the difference to the DSTP model is rather small. In two cases 

the performance is even better. Thus, for fitting the present data the 

assumption of response priming is not generally important. How

ever, our results suggest that response priming becomes more 

important the more late selection is involved in response selection. 

General Discussion 

Various results observed during the last decades indicate that the 

mechanisms of selective attention are rather flexible and adaptive. 

Depending on the circumstances and the specific task, they select 

stimulus information at an early and/or late stage of processing (cf. 

Kinchla, 1992; Pashler et aI., 2001). Furthermore, results from 

conflict paradigms such as the flanker task suggest that informa

tion provided by the early and the late stages contributes to 

response selection in a dynamical manner. This can be concluded 

from distributional data (e.g., Gratton et aI., 1992). They show that 

response-incompatible information mainly affects the accuracy of 

fast responses, which indicates that there are two phases of selec

tivity. In the first phase selectivity is poor, which produces fast but 

unreliable responses. In the second phase, however, selectivity is 

high, which leads to slow but reliable responses. Thus, it seems 

that selectivity improves in the course of stimulus processing. 

Up to now, however, the flexibility and dynamics of selective 

attention have not been appropriately reflected by models of se

lective attention. Therefore, the aim of the present article was to 

introduce a dual-stage two-phase (DSTP) model that takes these 

properties into account. The basic idea is that there are two stages 

of stimulus selection and that their output leads to two correspond

ing phases of response selection, which are represented by a 

nonstationary diffusion process. In the first phase after stimulus 

onset the rate of this process is determined by the output of the 

early stage, where stimulus information is selected by means of 

perceptual filters. During the second phase the rate of response 

selection is determined by the output of a late stimulus selection 

stage. Late stimulus selection is also represented by a diffusion 

process that runs in parallel to response selection and selects 

specific categorical information from the display. Because it is 

assumed that perceptual filtering is less effective than categorical 

filtering, there are two phases of different selectivity. As the late 

stimulus selection process and the response selection process com

pete in a race, it is possible that a response is already selected 

during the first phase, which usually leads to fast but unreliable 

responses, or during the second phase, which produces slow but 

reliable responses. 

The basic idea that stimulus processing consists of discrete 

phases differing with respect to processing rate has also been used 

in other models (e.g., Busemeyer & Diederich, 2002; Diederich, 

1997; Lamberts, 2000). In the model of multidimensional stimulus 

categorization of Lamberts and colleagues (Lamberts, 2000; for a 

recent overview, see Lamberts & Kent, 2008), for instance, per

formance depends on the similarity of stimulus features sampled 

from the current stimulus to those from exemplars stored in mem

ory (see also Nosofsky & Palmeri, 1997). Stimulus features are 

sampled in a stepwise manner, and therefore, similarity changes in 

discrete steps. Although this resembles the change of processing 

rate across phases in our model, there are also a number of 

differences. Most important, in their model, the number of pro

cessed stimulus features is increasing in the course of stimulus 

processing. In contrast, our model implies that the number of 

stimulus elements affecting response selection is reduced in the 

course of processing. A similar reasoning also applies to multiat

tribute decision field theory (Busemeyer & Diederich, 2002; Died

erich, 1997). Nevertheless, the similarities between the models 

demonstrate the general applicability of the idea of a nonstationary 

process of response selection. 

Although the DSTP model is rather abstract and can potentially 

be applied to various paradigms, in the present study we restricted 

our considerations to selective visual attention in the flanker task 

(B. A. Eriksen & Eriksen, 1974). We reported a series of three 

experiments in which we manipulated the relative contributions of 

early and late selection to performance. In the three experiments 

this was achieved by varying the spacing between target and 

flankers, the spatial uncertainty and eccentricity, and the relative 

proportion of congruent and incongruent stimuli, respectively. 

Fitting our model to the obtained distributional data should reveal 

whether the estimated parameter values vary in the predicted 

direction. In the first two experiments it turned out that, as ex

pected, a stronger involvement of the late selection process com

pensated for early selection deficits in difficult selection condi

tions. In our third experiment, though, we could show that such 

compensation is not obligatory. In the two experimental conditions 

the strength of early and late selection strategically changed in the 

same direction to improve overall performance. 

All together, our results and analyses demonstrate that early and 

late selection mechanisms work hand in hand in a rather flexible 

way, depending on the demands of the task. That selectivity also 



depends on the experimental context can be seen by the fact that, 

although the narrow condition in our first experiment was practi

cally identical to the I-position condition in our second experi

ment, the corresponding performances differed, especially with 

respect to the error RT distributions. This demonstrates that the 

experience with the specific conditions in an experiment can 

influence the stimulus selection strategy. 

Our investigation also extends the view of which selection 

mechanism can be controlled and how this is achieved to adapt to 

task demands. It seems that individuals can not only control early 

selection by tuning their perceptual filters (e.g., B. A. Eriksen & 

Eriksen, 1974; C. W. Eriksen & St. James, 1986) but also that they 

can regulate the strength ofIate selection. According to our model, 

the latter can be achieved indirectly by regulating early selection 

and by adjusting the response criterion. That is, increasing the 

criterion might not only improve the accuracy of responses deter

mined by the output of early selection processes, but the resulting 

prolonged processing may also increase the probability that late 

stimulus selection comes into play and improves response selec

tion. However, our results also suggest that late selection can be 

controlled directly to some extent. 

Possible Alternative Accounts 

The DSTP model was mainly developed to overcome the limits 

of single-stage models of selection. To demonstrate that these 

limits really exist, we also fit a single-stage model to our distri

butional data and found that, as expected, the fit was rather poor. 

It remains poor even when a gradually increasing selectivity is 

assumed. Such models have especially been proposed in connec

tion with the zoom-lens metaphor. A specific version is the dy

namic spotlight of attention proposed by Heitz et al. (2007). These 

authors assumed that at the beginning of stimulus processing the 

spotlight always encompasses all items in the display and then 

gradually shrinks until it is focused on the target. 

A similar idea has also been realized as neural network models 

(Cohen et aI., 1992; Servan-Schreiber et aI., 1998) to account for 

the Gratton et al. (1988) data (see also Yu et aI., 2009). To examine 

the effects of a gradually increasing selectivity, we first considered 

a model with a piecewise linearly increasing rate and then a model 

with a nonlinearly increasing rate. Although these models fit the 

data better than the single-stage model, the fit was still worse than 

that of the DSTP model. Thus, taken together, our comparison 

suggests that models with a gradually increasing selectivity are not 

a compelling alternative to our DSTP model. Even if one could 

find an exemplar that fits the data quite well, the obtained solution 

would presumably be rather specific. 

Thus, it seems that the strength of the DSTP model lies in its two 

discrete stages of selectivity and in the fact that the transition from 

low selectivity to high selectivity occurs randomly at some point in 

time. With these properties the model is highly flexible. That the 

details of the second phase are less important was demonstrated by 

considering two variants of our DSTP model. In one version it was 

assumed that the second phase is characterized by a race between 

the continuing response selection processes from the first phase 

and an additional response selection process. The additional pro

cess should represent the effect of late stimulus selection and 

increase the selectivity. This model, which is similar to a certain 

class of dual-route accounts (cf. Logan, 1988; Nosofsky & Palm-
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eri, 1997; Palmeri, 1997), also fit the data rather well. The same 

holds for a version without priming, that is, a version where we 

assumed that response selection in the second phase always starts 

from a state of zero instead from the end state of Phase 1. 

Even though the considered variants of the DSTP model also fit 

the data rather well, overall, the DSTP model turned out to be the 

most successful version. Moreover, although the present study 

does not provide a strong test between the original and its variants, 

the DSTP model is not only more simple but also more plausible. 

The assumption of a single response selection process that changes 

its rate with the state of stimulus selectivity is conceptually simpler 

than a race between two response selection processes. Further

more, in view of the abundant results collected with the flanker 

task it is rather unlikely that there is no response priming. Besides 

behavioral data, electrophysiological results, especially lateralized 

readiness potentials, also support the existence of such a priming 

mechanism (cf. Gratton et aI., 1988; Leuthold, Sommer, & Ulrich, 

1996). 

Related Models From the Stroop-Task Literature 

From our overview in the introduction it became obvious that 

most models of the flanker task take mainly early selection mech

anisms into account and largely neglect late selection. However, 

late selection mechanisms have often been used to explain perfor

mance in the Stroop task (MacLeod, 1991; Stroop, 1935). There

fore, it might be informative to see how early and late selection and 

their interaction have been conceptualized in this area. 

The Stroop task requires participants to name the color of a 

word while ignoring the word's meaning, which also refers to a 

color. The Stroop effect denotes the finding that color naming 

performance is strongly impaired when the word's meaning is 

incongruent to the word's color (e.g., the word red presented in 

green) compared to when meaning and color are congruent (e.g., 

the word green presented in green). Compared to the flanker task, 

the relevant stimulus dimension in the Stroop task cannot be 

selected effectively by spatial or other perceptual filters. There

fore, most models assume that late selection is applied to accom

plish the task. In the following, we consider some of these models 

and how they relate to our DSTP model. 

Most recent models for the Stroop task were implemented 

within a pure connectionist framework (Cohen, Dunbar, & 

McClelland, 1990; Cohen & Huston, 1994; but see Melara & 

Algom, 2003; Phaf, Van der Heijden, & Hudson, 1990). In these 

models, activation spreads from stimulus units via units represent

ing semantic categories to response units. A response is elicited 

when the accumulated evidence exceeds a response criterion 

(Cohen et aI., 1990; Cohen & Huston, 1994) or the network settles 

in an attractor state associated with a response (phaf et aI., 1990). 

Early information selection proceeds by biasing units representing 

relevant stimulus features, whereas late selection is achieved by 

biasing units representing relevant semantic dimensions. Often 

these models also include components of dual-route models (e.g., 

the direct link in Phaf et aI., 1990). However, they usually lack the 

idea of a race between early and late selection. Moreover, due to 

a gradually increasing bias, selectivity in these models changes 

with time. Thus, these models are rather similar to Cohen et al.'s 

(1992) model for the flanker task. 
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Models that bear more resemblance to our model have been 

proposed by Hunt and Lansman (1986) and by Roelofs (2003). 

These researchers combined a symbolic production system with 

features of the connectionist framework. Stimuli are transformed 

into semantic representations and into a response by production 

rules. Because the rules are consistently applied in accord with the 

current goal, only relevant stimulus features drive response selec

tion via this route. However, representations can also be activated 

by spreading activation across associated nodes. Because associ

ations are rather strong between words and reading responses, 

words interfere with color naming. 

The models of Hunt and Lansman (1986) and Roelofs (2003) 

share some crucial properties with our model. First, response 

selection proceeds by a race between a slow but reliable goal

directed process (the productions) and a fast but less reliable 

automatic process (spreading activation). Second, this race is in

teractive in a similar way as in our model. The automatic process 

wins either the race and produces a response (which is often the 

wrong one for incongruent stimuli), or it affects the speed and 

accuracy of the controlled process. Third, each process has its own 

stimulus selection mechanism. Whereas the selection of goal

relevant stimulus information for the controlled process is based 

on semantic features, which can be considered late selection, the 

stimulus selection for the automatic process is mainly based on 

perceptual filtering, at least in Roelofs's (2003) model, which 

corresponds to early selection. Thus, these models realize very 

similar ideas as the DSTP model, but they do so within a different 

framework. How far these models could also account for the 

present data remains unclear, as they have not yet been fit to 

distributional data. 

Limits and Perspectives 

The DSTP model of selective attention introduced in the present 

article extends existing (formal) models, especially those devel

oped in the area of spatial attention, by a rather general mechanism 

of late stimulus selection. The presence of both an early and a late 

stimulus selection mechanism, and the specific way they compete, 

accounts for relatively complex and detailed attentional phenom

ena, as the fit of the model to distributional data collected with the 

flanker task demonstrates. However, the model is also limited. 

First of all, because it is implemented in the framework of diffu

sion processes, it applies primarily to speeded responses in forced

choice situations. Moreover, it is rather general and abstract. As a 

consequence, the model has to leave several details unspecified. 

For instance, in the present article we assumed that early selection 

proceeds by spatial filtering, which can be represented by atten

tional weights. Although we can use our model to estimate how 

these weights vary across different condition, it says nothing about 

how the attentional weights are determined. In this sense the DSTP 

model is not a model of the low-level details of spatial attention. 

To model these details one would have to include additional 

mechanisms as specified, for instance, by TVA (Bundesen, 1990) 

or the CODE theory of visual attention (CTVA; Logan, 1996). 

A similar abstractness holds for our late selection process. 

Formally, it is represented by a diffusion process that comes to a 

decision at some point in time, which, in turn, changes the rate of 

the response selection process. In the present article we interpreted 

this process in the sense that it selects a single item from the 

display in a categorical manner, and that thereafter the selected 

item exclusively drives the response selection process. These as

sumptions, however, are somewhat vague and need to be validated 

in future work. 

However, the fact that some mechanisms of our model are abstract 

also opens a wide range of potential applications. A potential appli

cation of our model is to generate a more detailed picture of those 

mechanisms that persons use to adapt their selectivity on a trial-by

trial basis to changing conditions. That such a local adaptation can 

take place has been shown by corresponding sequential effects 

(e.g., Botvinick, Braver, Barch, Carter, & Cohen, 2001; Gratton et 

aI., 1992) and by effects of adaptation after stimulus onset (e.g., 

Lehle & HUbner, 2008). Current conflict-control theories (e.g., 

Botvinick et aI., 2001; Botvinick, Cohen, & Carter, 2004) assume 

that early selectivity is adjusted in response to the monitored 

conflict on the previous trial. By fitting our model to appropriate 

data one might find that the degree of late selection is adjusted as 

well. This is only one example of a broad class of conceivable 

applications of the DSTP model in future research. 
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Appendix A 

Formulas of the Dual-Stage Two-Phase Model 

This appendix provides the formulas of the dual-stage two

phase (DSTP) model. In most cases we derive only the equations 

for correct responses (Response A) under the condition that the 

target (Stimulus C) is selected. Because the equations for the other 

cases are analogue, they can simply be obtained by substitution. 

Basic Definitions 

A: Boundary for Response A 

- B: Boundary for Response B 

c: Boundary for Target C 

- D: Boundary for Flanker D 

/-L: Rate or drift of a given diffusion process and condition 

a 2
: Diffusion coefficient or variance of a given diffu

sion process and condition 

RSI: Response selection process in Phase 1 

RS2: Response selection process in Phase 2 

SS: Stimulus selection process 

We start with a standard Wiener diffusion process (for a primer 

of diffusion processes see Smith, 2000). The boundary for a 

correct Response A is denoted by A and that for an error Response 

B by -B. Response A or B is selected if the state of the diffusion 

process hits boundary A before -B, or boundary -B before A, 

respectively. The time until the process hits one of the boundaries 

for the first time is called the first passage time (FPT). The 

formulas for the probabilities peA) and pCB) and for the corre

sponding expectation of the FPT, E(T I A), given Response A, and 

E(T I B), given Response B, can be found elsewhere (e.g., Ashby, 

2000; Ratcliff, 1978; Ratcliff & Smith, 2004). These sources also 

provide formulas for the conditional density functions ft.t I A) and 

ft.t I B) of the FPT and for the corresponding cumulative distribu

tion functions F(t I A) and F(t I B). 

(Appendices continue) 
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DSTP Diffusion Model 

Response Probabilities 

In the formal version of the DSTP model we distinguish three 

diffusion processes and two phases of processing. In the first phase 

there are two diffusion processes running in parallel and racing 

against each other (cf. Usher et aI., 2002). One process, RSI, 

represents the first part of the response selection process, and the 

other process, SS, represents the stimulus-selection process. Phase 

I terminates when RSI hits boundary A or -B, or when a stimulus 

is selected. We denote the corresponding random variables repre

senting the FPTs by TRSI and Tss, respectively. Furthermore, the 

event that RSI wins, that is, that TRSI < Tss, is denoted by W RSI' 

and the event that SS wins is denoted by W ss' If Response A or B 

is selected by RSI, we call this Event AI or B I , respectively. If RSI 

wins, the corresponding response is triggered and the trial is 

finished. If SS wins, the response selection process can change 

its rate and then continues in Phase 2. The response selection 

process in this phase is represented by an individual diffusion 

process which is called RS2. If Response A or B is selected by 

RS2, we call this Event A2 or B2 , respectively. If a response 

symbol is written without index, it represents the event that the 

response was selected by RSI or by RS2. It should be mentioned 

that, where response selection proceeds across the two phases, the 

corresponding overall diffusion process is stationary in Phase I 

and in Phase 2 but can be nonstationary across phases. This 

characteristic is similar to that of other models (cf. Busemeyer & 

Diederich, 2002; Heath, 1992; W. Schwarz, 1994). 

First, we consider the case that a response is selected in Phase I. 

Case W RSI' We start by calculating the probability peW RSI) 

that RSI wins, that is, the probability that a response is selected 

before a stimulus is selected. To calculate this probability we need 

the probability that SS has not yet arrived at a boundary (C or -D) 

by time I > O. This probability corresponds to the survivor func

tion I - Fss(I), where Fss(l) is the cumulative distribution func

tion of Tss. We further need the density function iRS 1 (I) of the FPT 

for RSI, which is simply the density of the FPT for a diffusion 

process, where we use the parameters of the response selection 

process in Phase I. With these functions we can compute the 

probability that RSI wins the race by 

The probability that RSI wins, under the condition that Re

sponse AI is selected, is 

With these formulas we can compute the probabilities of Re

sponse AI and Response B I, respectively, under the condition that 

RSI wins the race against SS. The corresponding equations are (see 

Bayes' theorem) 

(3) 

(4) 

Case W ss. If RSI and SS race against each other, then it is 

also possible for SS to win, that is, for a stimulus to be selected 

before a response is selected. This event Wss occurs with proba

bility I - P(W"SI)' The probabilities that SS selects the Stimulus 

C and the Stimulus D, respectively, conditioned on the event that 

SS wins the race, can be calculated analogously to those for 

Responses A and B (see Equations 3 and 4), that is, 

p(Wss I C)p(C) 

p(C I W ss) = peWss I C)peC) + peWss I D)p(D)' (5) 

p(D I Wss) = I p(C I W ss). (6) 

At time T,.,. when SS wins, RSI is in a certain nonterminated 

state X"sl(T, .. J between -B and A. Thus, response selection is 

unfinished, and we consider this situation as the starting point of 

Phase 2. In Phase 2, response selection continues and is repre

sented by process RS2, whose starting value is the nonterminated 

state XRSI(T,..,} of RSI, and whose rate might differ from that of 

RSI. Here, we assume that the rate of RS2 depends on whether 

Stimulus C or Stimulus D was selected. 

To obtain the density function of the starting value of RS2, we 

have to derive the density of the nonterminated state X RS1 of RSI 

at time T
H

• The distribution of this state can be computed by means 

of a function provided by Ratcliff (1980, 2006): 

(
j.l.X) ~ 2 . ( mrB ) . (mr(x+ B») 

p(x, t) = exp (T2 • ~ (A + B) Sill (A + B) Sill (A + B) 
n=1 

(7) 

On the basis of this function we can define the function 

P,(t) = fA p(x, t)dx, which gives the probability that the process 
-8 

is still within its boundaries at time I (Le., is still a nonterminated 

process). In our case, this function is identical to the survivor 

function of RSI, that is, p,(I) = I FRS I (t). We can use this 

function to derive the density function h of state x of RSI at a given 

time I, which is 

p(x, t) p(x, t) 
hex I t) = ._( -) = I _ F ()' - B < x < A. 

P, t RSI I 
(8) 

For a given time t, which determines the density of the start 

value, the probability that Response A2 is selected, given Stimulus 

C, is 

p(Az I c, t) = fBP( A2 I C, x)h(x I t)dx. (9) 



In our model the starting time t in Equation 9 represents the time 

at which SS wins, that is, it is a random variable with a specific 

distribution. Thus, the density of the starting value is two

dimensional. To compute this density we also need the density 

function of the FPT for process SS, given that SS wins the race and 

a specific stimulus is selected. For instance, when C is selected, we 

have to derive the density function fss{t I C, W d. This function 

is given by 

I 
fdt Ie, Wss) == p(Tss< TRsl1 C)fss(t I C)[I - FRSI(t»). 

(10) 

The corresponding cumulative distribution function is 

Fss(t I c, W ss) == Ifss(Y I C, W ss)dy. (II) 

This formula gives the probability that the race is finished by time 

t, given that SS wins and Stimulus C is selected. 

The density f~s(t I c, W ss) can now be combined with Equation 

8 to obtain the two-dimensional density function of the nontermi

nated state of RSI, conditioned on the events that SS wins and 

Stimulus C is selected: 

q(x, tiC, Wss) == hex I t)fss(t Ie, W ss)· (12) 

The response selection process RS2 begins with a starting value 

defined by this two-dimensional density or by the corresponding 

density for Stimulus D. By combining the different equations, we 

can now calculate the probabilities of Response A2 , given a certain 

selected stimulus. This probability is obtained by conditioning on 

the starting value, whose distribution depends on the finishing time 

of the race between RSI and SS, and on the selected stimulus. For 

instance, the probability of Response A2 , given Stimulus C, is 

P(A21 c, WSS> == f r P(A21 c, x)h(x I t)fss(t Ie, Wss)dxdt. 

o -8 

(13) 

The corresponding probability for Response B2 is p(B21 c, W.d == 

I - P(A21 c, W ss), and the probabilities of A2 and B 2 , con

ditioned on Stimulus D, are calculated analogously. 

We can now calculate the probability peA) of Response A by 

combining the probabilities of the three considered cases: the case 

that RSI wins and selects Response AI; the case that SS wins, 

Stimulus C is selected, and RS2 selects Response A2 ; and the case 

that SS wins, Stimulus D is selected, and RS2 selects Response A2. 

By combining these three possible events we obtain 

+ p(Azl D, Wss)p(D I Wss)]p(Wss). (14) 

To compute the probability of A under different conditions, it is 

important to remember that the result of the stimulus selection has 
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different effects. First, whether C or D is selected could influence the 

distribution of the starting value of RS2. Furthermore, the selected 

stimulus determines the rate of RS2. If we apply the model to the 

flanker task, for instance, then, in case of a congruent stimulus (Le., if 

C and D are mapped onto the same response), it seems reasonable to 

assume that the rate does not depend on the selected stimulus. For 

incongruent stimuli (Le., if C and D are mapped onto opposite 

responses), however, target (C) selection should lead to a higher rate 

than flanker (D) selection. Moreover, it might even be assumed that 

the selection of the flanker leads to a negative drift for RS2. 

Density Functions 

For deriving the formulas for the density functions of the FPTs, 

we first consider the functions that result from the race between the 

processes SS and RSI (cf. Usher et aI., 2002). Equation 10 already 

gives the density function of the FPT for process SS, conditioned 

on the events that SS wins and Stimulus C is selected. The density 

function of the FPT for RSI, conditioned on the events that RSI 

wins and Response AI is selected, is analogous: 

To derive the density function of the FPT for process RS2, we first 

consider the case for a given time (,.s' at which SS wins and selects a 

certain stimulus. If we assume that Stimulus C is selected, the distri

bution function of the starting value is hex I A2 , C, Is,), that is, the 

distribution of the nonterminated state of RSI at time (, .. ," conditioned 

on the events that Stimulus C is selected and Response A2 is selected. 

Thus, the density function for RS2 for this case is given by 

0, for t ~ tsso 

I,., / A2, C, x)h(x / A2, C, tss)dx for t> Iss 

(16) 

The density function of the starting values, conditioned on 

Response A2 , is 

P(A2/ C, x)h(x It,,) 
hex / Az, C, t,,) == (A Ie) (17) 

p 2 , t" 

If we insert Equation 17 into Equation 16, we obtain 

0, for t ~ Iss. 

I fA 
(A let) fRSZ(t - tss I A 2 , C, x)h(x / ts,) 

p 2 'ss 
-8 

p( A2 I C, x)dx for t> Iss 

(18) 

(Appendices continue) 
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The next step is to assume that the starting time of RS2 is itself 

a random variable whose density is conditioned on the selected 

stimulus and the selected response. The starting time of RS2 is the 

finishing time of the race between RSI and SS, under the condition 

that SS wins with a certain stimulus. Thus, the density fRS2(t I A2 , 

C) of the FPT for RS2, conditioned on the events that Stimulus C 

and Response A z are selected, is 

r fRS2(t - y I A2, C, x)h(x I y)p( A2 I C, x)dxdy. (19) 

-8 

By expressing (see Bayes' theorem) the function!ss(t I A2 , C, 

W ss) as 

and by substituting it in Equation 19, we finally obtain 

I!RszCt - y I A2, C, x)h(x I y)P(A21 C, x)dxdy. (21) 

The same function can be used for the case where D is selected. 

Now, to compute the density fdp of the FPT for our DSTP 

model, given Response A, we have to combine the densities of the 

three possible events. However, we need the probability that RSl 

wins the race against SS, given that A is selected. By using 

Equations I, 3, and 14, we obtain 

(22) 

Thus, we have 

fdp(t I A) = P(WRSI I A)fRS,(t I AI> W RSI ) 

+ peW ss I A)[{RS2(t I A2 , C, W ss)p(C I A2 , WSS) 

(23) 

with 

(c I A W ) =p(Azl c, Wdp(C I wSS> 
p 2, ss p( A2 I W d (24) 

The probability p(D I A z) is defined in an analogous way. 

Expectancies 

For deriving the formulas for computing the expected FPT for 

our model, we first consider the expected FPT T, = TRS" given 

Response A I for the case that RS I wins the race. The expected FPT 

under this condition is 

(25) 

When SS wins the race, we have a diffusion process with a 

variable starting value. Let us first consider the case with a fixed 

starting time t,s for RS2. Under this condition the expected FPT T2 

under A2 , if C is selected, is I,s + E(TRS2 I W ss, A2 , C), that is, 

1 
E(T2 1 A, c, I,,) = t" + peA I C t ) 

2 'ss 

f E(TRS2 I A2, C, x)h(x I I,,)p( A2 I C, x)dx. (26) 

We now take the starting time ('s as a random variable. Analo

gous to the density we obtain 

E(T2 1 A2, C, WSS) = flss(t I A2, c, W ss)E(T2 1 A 2, C, t)dl. 

(27) 

If we insert Equation 26 and reformulate the density of the 

stimulus selection, then we get 

E(T2 I A 2, C, W SS) 

+ r E(TRS2 I A2, C, x)h(x I t)p( A2 I C, x)dx]dt. (28) 

-8 

The expected FPT for our DSTP model, given Response A, can 

be computed in a similar way to the densities: 

E(TI A) = P(WRSI I A)E(T, I AI' WSS> 

+ p(Wss I A) [E(T2 I A2, c, Wdp(C I Wss, A2) 

+ E(T2 1 A2, D, Wss)p(D I Wss, A2)]. (29) 

Cumulative Distribution Functions 

The cumulative distribution functions of the DSTP model can be 

computed by integrating its densities. However, it might be easier to 

compute them analogously to the densities. We start by considering 

the distribution of RSI. In this case we have to integrate. It is given by 

(30) 

Next, we consider the cases when SS wins the race. In these 

cases we have a diffusion process with a variable starting point. 

Analogous to the densities we have 
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Combined we have 

Fd/t I A) = p(W RSI I A)FRSI (t I AI' W RSI) 

r FRsz{t - y I A2 , C, x)h(x I y)p(Azl C, x)dxdy. (31) 

-B 

+ p(Wss I A)[FRS2(t I A z, C, Wss)p(C I W ss, A z) 

+ FRsz{t I A z, D, Wss)p(D I W ss, A z)]' (32) 

Appendix B 

Method and Results of Experiments 1,2, and 3 

Experiment 1 

Method 

Participants. Twenty participants (ranging from 20 to 28 

years; 7 men, 13 women) with normal or corrected-to-normal 

vision participated in the study. Participants were recruited at the 

Universitat Konstanz and were paid €8 per hour. 

Apparatus. The stimuli were presented on a 19-in. monitor with 

a resolution of 1280 X 1024 pixels. A personal computer served for 

controlling stimulus presentation and response registration. 

Stimuli. The stimulus set consisted of the numerals from 2 to 9. 

The height of the numerals sub tended a visual angle of 1.27° at a 

viewing distance of 45 cm, and their width was about 0.89°, depend

ing on the specific digit. Items were presented in white on a black 

background. The target always appeared at the central position of the 

screen. Flankers consisted of two copies of a numeral, which were 

presented left and right of the target at eccentricities of 1.27° and 2.8° 

in the narrow and wide conditions, respectively. 

Procedure. Each trial started with a fixation cross presented for 

400 ms, which was followed by a blank screen for 600 ms (cue

stimulus interval) and by a subsequent stimulus array presented for 

165 ms. The task was to judge the parity (odd or even) of the target. 

The participants had to press a left key for "even" and a right key for 

"odd" with the index and middle finger of their right hand, respec

tively. Flankers were congruent on half of the trials (i.e., they had the 

same parity as the target) and were incongruent on the other half (i.e., 

had the opposite parity as the target). One second after the response, 

the next trial began. Errors were signaled by short tones. 

Each block consisted of 64 trials. After a preliminary practice 

session, the participants worked through 28 test blocks in a 2-hr 

session. Pairs of blocks with the wide stimulus spacing alternated 

with pairs of blocks with the narrow stimulus spacing throughout 

the experiment. The order was balanced across participants. In all 

there were 448 trials for each condition. 

Results 

Response times (RTs). The latencies of correct responses were 

analyzed by a two-factor analysis of variance (ANOV A) for repeated 

measures on the factors stimulus spacing (wide vs. narrow) and 

congruency (congruent vs. incongruent). The analysis revealed sig-

nificant main effects of stimulus spacing, F(I, 19) 69.2, p < .001, 

and of congruency, F(l, 19) = 72.5, p < .001. However, there was 

also a reliable interaction between these two factors, F( 1, 19) = 5 I .8, 

p < .001. It indicates that the congruency effect was larger in the 

narrow condition than in the wide condition (29 ms vs. 7 ms). 

Error rates. The mean error rate was 10.9%. The error rates 

were subjected to an ANOV A of the same type as for the RTs. It 

revealed significant main effects of stimulus spacing, F( I, 19) = 27.6, 

p < .00 I, and of congruency, F(1, 19) = 91.1, p < .00 I. However, 

there was also a reliable interaction between these two factors, F(1, 

19) = 52.5, p < .001. It indicates that the congruency effect was 

larger in the narrow condition than in the wide condition (9.35% vs. 

2.33%). 

Experiment 2 

Method 

Twenty participants (ranging from 20 to 36 years; 7 men, 13 

women) with normal or corrected-to-normal vision participated in 

the study. Participants were recruited at the Universitat Konstanz 

and were paid €8 per hour. The same apparatus and the same 

stimuli (narrow condition) as in our first experiment were used. 

Here, however, there were three blocked stimUlus-position condi

tions: The stimuli could occur either at the center of the screen 

(l-position-central), at an eccentricity of 1.27° (center of the 

screen to center of the target) to the left or to the right (2-position

lateral), or equally often at all three positions (3-position). 

Seven blocks for the I -position-central condition, seven blocks 

for the 2-positions-Iateral condition, and 14 blocks for the 

3-positions condition with 64 trials each were mixed and admin

istered in a 2-hr session. In the 2-positions-lateral and 3-positions 

conditions the stimuli were presented with equal frequency at each 

of the possible locations. In all, we had 448 trials for the 

I -position-central and the 2-positions-Iateral conditions and 896 

trials for the 3-position condition. Congruent and incongruent 

stimuli occurred with equal frequency. 

Results 

RTs. The data were first analyzed with a three-factor ANOV A 

for repeated measures. The factors were eccentricity (central vs. 

(Appendices continue) 
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lateral), uncertainty (low vs. high), and congruency (congruent vs. 

incongruent). The analysis revealed a significant main effect of 

eccentricity, F(l, 19) = 168, P < .001. Responses were faster to 

central stimuli than to lateral stimuli (474 ms vs. 511 ms). How

ever, there was also a reliable interaction between eccentricity and 

uncertainty, F(l, 19) = 29.9, P < .001. It indicates that the 

difference between the eccentricity conditions was larger (45 ms 

vs. 28 ms) if uncertainty was low (i.e., in the I-position-central and 

2-positions-lateral conditions) than when it was high (i.e., in the 

3-positions-central and 3-positions-lateral conditions). There was 

also a reliable main effect of congruency, F(l, 19) = 262, P < 
. 001. However, congruency interacted significantly with uncer

tainty, F(l, 19) 5.48,p < .05, and with eccentricity, F(I, 19) = 

13.5, p < .0 I. The first interaction indicates that the congruency 

effect was larger under high than under low uncertainty (42 ms vs. 

35 ms), whereas the latter interaction indicates that the congruency 

effect was larger for the lateral positions than for the central 

position (44 ms vs. 32 ms). 

Error rates. The mean error rate was 12.6%. The error rates 

were subjected to an ANOV A of the same type as for the RTs. It 

revealed significant main effects of eccentricity, F(I, 19) = 6.06, 

p < .05, and of congruency, F(I, 19) = 128, P < .001. However, 

there was also a significant interaction between these two factors, 

F(l, 19) = 25.4, P < .001. The congruency effect was larger for 

the lateral positions than for the central position (11.9% vs. 

7.71%). 

Experiment 3 

Method 

Sixteen participants (ranging from 19 to 36 years; 6 men, IO 

women) with normal or corrected-to-normal vision participated in 

the study. Participants were recruited at the Universitiit Konstanz 

and were paid €8 per hour. Apparatus, stimuli, and procedure were 

similar to the 2-positions condition in our second experiment. 

Here, however, the cue-stimulus interval was reduced to 200 ms. 

Moreover, we had two block types: In one type (80%-congruent) 

80% of the flankers were congruent, whereas in the other type 

(20%-congruent) 20% of the flankers were congruent. On the 

remaining trials the flankers were incongruent. After one training 

block for each type, the participants alternated through nine blocks 

of 80 trials for each type in a single 1.5-hr session, starting with the 

80%-congruent type. This resulted in 576 and 144 trials for the 

majority and minority trial types, respectively. Eight participants, 

who produced too few errors for a distributional analysis, espe

cially for the congruent stimuli in the 20%-congruent blocks, were 

invited to a second session some days later. Thus, for these 

participants we had twice as many data for the analysis . 

Results 

RTs. The latencies of correct responses were analyzed by an 

overall two-factor ANOV A for repeated measures on the factors 

block type (80%-congruent vs. 20%-congruent) and congruency 

(congruent vs. incongruent). 

The analysis revealed significant main effects of congruency, 

F(l, 15) = 255, p < .001, and of block type, F(l, 15) = 22.2, P < 
.001. However, there was also a significant interaction between 

these two factors, F(I, 15) = 6.53, p < .05. The congruency effect 

was larger in the 80%-congruent condition than in the 20%

congruent condition (42 ms vs. 34 ms). 

Error rates. The mean error rate was 11.8%. The error rates 

were subjected to an ANOV A of the same type as that for the RTs. 

The analysis revealed significant main effects of congruency, F(l, 

15) = 170,p < .001, and of block type, F(l, 15) = 40.3,p < .001. 

However, there was also a significant interaction between the two 

factors, F(l, 15) = 48.5, P < .001. The congruency effect was 

larger in the 80%-congruent condition than in the 20%-congruent 

condition (15.4% vs. 8.16%). 
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