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Feature Article

A dual-purpose
watermarking and
fingerprinting
system for
multimedia
screening uses the
same secret key to
mark all content
copies, but different
detection keys
within each media
player. Under
optimal attacks, the
system’s collusion
resistance is super-
linear in object size.

T
he Internet’s growth has made the
unauthorized copying and distribu-
tion of digital media easier than ever
before. As a consequence, the music

industry claims an enormous annual revenue loss
due to piracy (see http://www.riaa.org)—a loss
allegedly exacerbated by file-sharing Web com-
munities. As Internet bandwidth increases, pira-
cy is likely to affect the movie industry in a
similar manner. Legal attempts to alleviate the
problem have had limited success so far. 

One source of hope for copyrighted content
distribution on the Internet lies in technological
advances that would allow copyright enforce-
ment in both client-server and peer-to-peer sce-
narios. Traditional data-protection methods such
as scrambling or encryption are minor hurdles to
attackers because they can always rerecord the
content and freely distribute it. This problem is
commonly referred to as the analog hole. One pro-
posed solution is to hide within the media signal
a secret, robust, and imperceptible watermark. A
watermark designates a multimedia clip as pro-
tected. Before playing the clip, the client machine
searches for watermark existence within the clip.
Watermark detection signals to the client
machine that playing the clip requires a license.
Recent efforts have sought to define standards for
protecting music content using watermarks with
little success (see http://www.sdmi.org). The main
vulnerability of watermark-based content-screen-
ing systems is that each client machine must store

the same key used to mark the content. By break-
ing a single client, the adversary inherently breaks
the entire system. In addition, watermark detec-
tion in this scenario must be performed blindly
(that is, without the original recording) and in
real time, even on small devices. To date, no tech-
nology has been able to robustly detect water-
marks under such circumstances. 

An alternative to content screening is content
fingerprinting. In this scenario, copyright owners
distribute a uniquely watermarked content copy
to each client. Clients can play or redistribute the
content without any barriers. Copyright owners
scan public distribution channels for illegally dis-
tributed clips. Each identified pirated clip is ana-
lyzed for the existence of one or more fingerprints,
which are used to trace piracy to its origin.
Detecting fingerprints usually requires powerful
machines that can devote significant resources to
the forensic process. A fingerprint detector can
access the original unmarked object and use it to
detect fingerprints, even from content modified
by malicious attacks. The main vulnerability of
this forensic protection scenario is collusion. A
clique of malicious users can collude their copies
and create a new copy that is statistically clean of
any traces that might point to any of the collud-
ers. Typically, the collusion resistance of even the
best fingerprint-encoding schemes is low1 (for
example, less than one hundred for a two-hour
high-definition video clip). 

Dual watermark-fingerprint system
This article proposes a multimedia content pro-

tection system in which all copies of a protected
object are identically watermarked, but each user
has a distinct secret detection key that differs from
the secret embedding key. An attacker with access
to one detection key can fool the corresponding
watermark detector but not other watermark
detectors. Surprisingly, analogous to a criminal
action, during this attack the attacker necessarily
inserts his or her fingerprint into the modified
content. Even a collusion clique of relatively large
size cannot entirely remove the secret marks from
the protected content by colluding their detection
keys. More importantly, if the clique is not large
enough, traces of the detection keys of all collud-
ers can be detected with relatively high accuracy
in the attacked clip. Figure 1 (next page) illustrates
the main entities of our dual watermark-finger-
print system and their interactions.

Our proposed watermark-fingerprint system
achieves a minimum collusion size K that grows
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linearly with the size N of the marked object. In
addition, we can augment our watermark-finger-
print system with a segmentation layer. The
media content is partitioned into S segments, in
which media players as well as forensic analyzers
can reliably detect a watermark or fingerprint.
Only detection keys that belong to the same seg-
ment can participate in the collusion clique.
With segmentation, the minimum collusion size
K grows as O(N log N). Therefore, with or with-
out segmentation, our watermark-fingerprint sys-
tem significantly improves on the best-known
asymptotic resistance to (fingerprint) collusion
attacks of about O(N1/4).1 Because we use a new
protection protocol, comparing our system to
classic fingerprint systems might seem unfair.
However, such a comparison is important
because the two technologies share a common
goal: multimedia copyright enforcement. 

Our aim in this article is to characterize the
collusion attacks against this system under the
assumption that watermark detection is robust
against signal-processing attacks on the protected
object. To the best of our knowledge, no modern
watermark technology demonstrates such robust-
ness. To date, attacks such as Stirmark,2 the esti-

mation attack,3 and the swap attack4 have suc-
cessfully removed or obfuscated embedded
watermarks enough to fool blind detection.
When robust watermarking systems become a
reality, however, the techniques we describe here
might contribute significantly in building an effi-
cient content protection system for multimedia
content distribution for a large-scale client base. 

In addition to describing the system, we pre-
sent performance analyses for the low-cost sensi-
tivity attack5 and an improved attack on the
fingerprint detector with additive Gaussian noise.
The two efforts are new with respect to our pre-
viously published work.6

Dual watermarking
Traditional spread-spectrum watermark sys-

tems, outlined in the “Spread-Spectrum Water-
marking” sidebar, detect watermarks using a key
w, which is in essence a secret watermarking key
(SWK). In copyright enforcement schemes, water-
mark detection is done at the client (the media
player), which must then have access to the SWK.
Adversaries can recreate the original content if
they succeed in obtaining the SWK from a single
player. This can be achieved in several ways: by
breaking into a detector—that is, reverse engi-
neering the detection software or hardware—or
using the sensitivity attack.5

In our dual watermark-fingerprint system,
depicted in Figure 1, the watermark detection key
(WDK) differs from the SWK, so breaking into a
single detector does not provide enough infor-
mation to remove the watermark w.  The media
signal x is watermarked the same way as in tradi-
tional spread-spectrum watermarking. However,
for each media player i, an individualized water-
mark-fingerprint detection key WDK hi is created
from an SWK w in the following way. Let C = {cij}
denote an m × N matrix, where cij ∈ R, cij = N (0,
B2), that is, each entry is a zero-mean Gaussian
random variable with standard deviation σc = B.
For any practical purpose of the dual watermark-
fingerprint system, we assume B ≈ A. Each row i
contains a watermark carrier, denoted by ci. The
ith WDK is defined as hi = w + ci. The goal of the
watermark carrier ci is to hide the SWK w in hi so
that knowledge of hi does not deterministically
imply knowledge of w, as long as B is large
enough. In other words, no player contains the
SWK w, but rather a modified version of it.
Because the players use correlation-based water-
mark detection, they should still be capable of
detecting the watermark in a marked content y
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as long as the number of chips N is large enough
to attenuate the noise introduced by the water-
mark carriers ci.

The detection process involves correlating the
received media file ŷ with hi, which generates a
detector output dW = ŷ .hi. Similarly to traditional
spread-spectrum watermarking, if ̂y is marked, dW

= 1 + gW; otherwise dW = 0 + gW. The difference is
that now gW is a function of both the media sig-
nal x and the watermark carrier ci. If there are no
attacks—that is, ŷ = y = x + w—then

dW = y + hi = (x + w) (w + ci) = 1 + gW, where
gW = s (w + ci) + w ⋅ ci

is a zero-mean noise component of dW. For this
case, we derive the detection noise variance as
σ 2

gW ≈ (A2 + B2 + A2B2 )/N. 
In the remainder of the article, we assume

equality in the expression for detection noise
variance σgW. Because the detection noise vari-
ance is significantly increased because of the
watermark carrier ci (if ŷ is watermarked, then gW

= gT + x . ci + w . ci or else gW = gT + x . ci, where
Var[x . ci] >> Var[gT + w . ci]), our watermark-fin-
gerprint system requires larger N than tradition-
al spread spectrum for the same watermark
detector performance. We can improve detector
performance by generating watermark carriers
such that (∀ci ∈ C)w . ci = 0. Although such carri-
ers do not pose any tangible effect on system
security, they reduce the detection noise while
screening watermarked clips. 

Copyright enforcement 
Our dual watermark-fingerprint system com-

prises a number of entities that combine to
enforce copyright protection. 

Watermark detector (WMD). The WMD
correlates a potentially marked signal ŷ with the
client’s WDK hi—that is, dW = ŷ .hi. It decides that
the content is marked if dW > δW. The probability
of false positives (identifying an unmarked con-
tent as marked) is denoted as ε1, which must be
relatively small—for example, ε1 = 10–9.

Attacker. As part of an optimal attack to the
system, the adversary breaks K clients and extracts
their WDKs {hi, i = 1 … K}. Next, the adversary cre-
ates an attack vector v as an optimal estimate of
the SWK w given the collusion key set {hi, i = 1, …
K}, and generates an attacked signal as ŷ = y − v.
The closer v estimates w, the more the attacker

removes the watermark while generating ŷ. We
use ε2 to denote the probability that a watermark
chip is incorrectly estimated by the attacker—that
is, ε2 = Pr[vj ≠ wj]. The attacker aims at forcing ε2 to
be as small as possible, whereas we design the sys-
tem parameters such that ε2 is near 1/2. 
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Spread-Spectrum Watermarking
In spread-spectrum watermarking, the media signal to be watermarked

x ∈ RN can be modeled as a random variable, in which each element of x is
Gaussain random variable with standard deviation A—that is, xj = N (0, A2).
For audio signals, for example, A is typically within A ∈ {5, 15}, after nec-
essary media preprocessing steps. A watermark key w is a spread-spectrum
(SS) sequence vector w ∈ {± 1}N, where each element wj is usually called a
chip. Vector addition—y = x + w—creates the marked signal y.

A small modification of this embedding rule, or improved spread spec-
trum (ISS),1 leads to lower detection-error probability. To simplify the fol-
lowing analysis, we assume the use of traditional spread spectrum.

Let w ⋅ v denote the normalized inner product of vectors w and v—that
is, w ⋅ v ≡ N–1∑wjvj, with w2 ≡ w ⋅ w. For example, for w as defined previ-
ously, we have w2 = 1. We assume the media player contains a watermark
detector that receives a modified version ŷ of the watermarked signal y. The
watermark detector performs a correlation (or matched filter) test dT = ŷ .w,
and, using a classical Neyman-Pearson hypothesis test, decides that the
watermark is present if dT > δT, where δT is the detection threshold control-
ling the tradeoff between the false positive probabilities and false negative
decisions. Modulation and detection theory have shown that such a detec-
tor is optimal.2

With no malicious attacks or other signal modifications (that is, ŷ = y), if
the signal y is marked, dT = 1 + gT where the detection noise gT is a Gaussian
zero-mean random variable with variance σ2

gT
= A2/N. Otherwise, the corre-

lation test yields dT = 0 + gT. For equal probabilities of false positives and false
negatives, we should set δT = 1/2. For robustness against attacks, we must
appropriately choose the signal domain x, and might have to make some
small modifications on the watermark pattern. In this article, we assume that
the designers of the watermark detector have considered these precautions,
so we can disregard media attacks. 

Finally, modeling the host signal x as a Gaussian random variable is a
realistic assumption because most watermarking technologies replicate
watermark chips to provide robustness to desynchronization attacks. From
the watermark detector’s perspective, chip replication is equivalent to aver-
aging samples of the host signal. Consequently, averaged samples of the
host signal, due to the central limit theorem, can be relatively accurately
approximated using Gaussian distribution, regardless of the distribution of
the original host signal samples.
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Fingerprint detector (FPD). The FPD recov-
ers the attack vector v from an attacked content
ŷ and the originally marked content y simply by
v = ŷ − y. Unlike the WMDs, the FPD has access to
the watermark carrier matrix C. Thus, the FPD
correlates v with a suspect watermark carrier ci—
that is, it computes dF = v ⋅ ci and decides that the
ith client is part of the collusion if dF > δF (in other
words, δF is the FPD threshold). The FPD has less
noise in the correlated vectors than the WMD,
and thus the collusion resistance of the FPD is
much higher. We use ε3 to denote the probabili-
ty of false positives in the FPD—that is, incrimi-
nating a player that was not in the collusion set.
Therefore, ε3 must be very small, like ε1. We use
η to denote the probability of false negatives at
the FPD. We would like it to be small, but do not
insist that it is as small as ε1 and ε3. 

Ultimately, the adversary’s goal is to create an
optimal attack vector v ≈ w based on a collection
of K WDKs such that 

❚ v reduces the expected E[dW] to a level at
which the probability of detecting a true pos-
itive at the WMD is relatively low (≈ ε1) and

❚ v reduces the expected E[dF] to a level at which
the likelihood of a false negative at the FPD is
relatively high (for example, η ≥   0.9).

Attacks without collusion
An adversary with knowledge of at most one

WDK can perform several attacks on an object. 

Attacks on protected objects
A basic assumption of our watermark-finger-

print mechanism is that there exists a spread-
spectrum watermarking mechanism that can be
broken only by modifying the marked content
beyond the threshold for low fidelity of the
attacked copy with respect to the original record-
ing.3 Typical attacks in this domain range from
compression, filtering, resampling, equalization,
and various other editing procedures,7 to desyn-
chronization (or data shifting) techniques that
aim to misalign the embedded spread-spectrum
sequence in the content (such as the Stirmark
attack2).

Robustness to desynchronization attacks can
be achieved using a certain amount of chip
redundancy.3 However, spread-spectrum chip
replication also improves the efficacy of a water-
mark estimation attack.3 In addition, the fact that
both audio and video are highly repetitive phe-

nomena has spurred a highly successful new gen-
eration of swap attacks, which replace relatively
lengthy watermarked blocks of audio or video
with perceptually similar blocks found elsewhere
and hence, not marked with the corresponding
watermark.4 It is difficult to achieve protection
against such attacks. The basic assumption of this
article is that if such improvements to water-
making techniques are ever developed, the
attacker would be forced to focus on breaking the
player to retrieve the watermark detection keys.

Having a robust watermarking technology is
not the only requirement for secure e-commerce
transactions of multimedia. Traditional water-
marking assumes that the SWK is hidden at the
client side. By breaking a single client, the adver-
sary can create the original content and thus
allow all clients to play the content as unmarked.
We refer to this as BORE: break once, run every-
where. In our system, we assume the attacker will
eventually break at least one client and capture
that machine’s WDK. For the economic viability
of the dual watermark-fingerprint system, the
effort of breaking a client should be difficult to
automate: a trustworthy operating system would
bar patching, software debugging, and reverse
engineering as simple ways to obtain machines’
WDKs. (Trustworthy computing is usually defined
as storage and computation that cannot be
altered or intercepted by any system user with-
out tampering with the computing hardware.)
Similarly, watermark detectors should deter triv-
ial implementations of the sensitivity attack as a
way to retrieve the detection key, as we discuss
later.

Our scheme is generally BORE-resistant at the
protocol level. By breaking a single client, the
adversary can play content as unmarked on that
broken client, but must collude the extracted
client WDKs with other clients to finally create
content that can play on all players. With our
dual watermark-fingerprint system, we signifi-
cantly improve collusion resistance through a
fingerprinting mechanism that can identify the
members of the clique if the clique’s cardinality
is smaller than a relatively large lower bound.

Subtraction attack
Suppose an adversary breaks client i and

extracts its WDK hi = ci + w. The adversary can
then create an attack vector v = αhi such that the
modified media ŷ = y − v produces E[dw] =
E[ ŷ . hi]�δw, thus defeating that client’s water-
mark detector. To determine α, we note that
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Thus, by setting α = (1 + B2)–1, we get E[dW] = 0—
that is, dW = 0 + gW. We also see that σ2

gw

(3+A 2+B 2+A 2B 2)/N and σ 2
v = α2(1+B 2) = α� 1.

Therefore, given knowledge of the client’s
detection key, the subtraction attack can drive
the detector correlation all the way to zero with
just a slight increase in the detector noise σgW

2

and a negligible increase in content distortion
(because σ 2

v �w 2=1). If the attacker tries to use a
key hl to break a detector i ≠ l, to drive E[dW] = 0,
the attacker would need to set α = 1. However,
this would drive σ 2

v = (1+B 2)�1, causing too
much content distortion. It would also make σ2

gw

increase by an amount equal to 3B4/N, which
would make the decisions in the ith watermark
detector erratic. In other words, even by driving
E[dW] = 0, the ith detector cannot be broken with
probability much better than 1/2.

Resemblance to public-key systems
We have concluded that the attacker’s knowl-

edge of a single detector’s WDK hi is not sufficient
to break any other detector via the key subtrac-
tion attack. Knowing hi is not enough to infer w
either. In that respect, our dual watermark/
fingerprint system resembles a public-key cryp-
tosystem, because knowledge of the verification
key (hi) does not imply knowledge of the signing
key (w). However, unlike public-key cryptosys-
tems, our system does not expose the WDK out-
side an individual player.

Collusion attacks
Consider a collusion clique of size K that has

broken its players and extracted K different
WDKs hi. We devise the optimal attack based on
that set of keys {hi, i = 1, 2, …, K}. Without loss of
generality, we assume that the extracted WDKs
(with indices 1 to K) are those in the collusion.

Optimal attack
The attacker’s job is to estimate the SWK w by

an attack vector v so that the modified media
ŷ = y−v will not show significant correlation in
any watermark detector j, not even for j > K. The
best job the attacker can perform is given by the
sign(mean(·)) attack.

Lemma 1. The optimal attack is performed
using the vector v = sign(ΣK

i = 1hi).

Proof. The optimal estimate for each element vj

of the attack vector is given by vj = +1 if Pr[wj =
+1|{hi}] ≥ 1/2, and vj = –1 if Pr[wj = +1|{hi}] < 1/2.
This estimate is optimal because it minimizes 
Pr[vj � wj]. Because hij = wj + cij, where cij is inde-
pendent and Gaussian, we can write Pr[wj = +1|{hi}]
= 1/(1 + νj), where vj=ΠK

i= 1pc(hij−1) and pc(ζ)=(2π)−

1/2 exp[−ζ2/(2B2)]. We can write νj = exp(–2ρj/B2),
where ρj =ΣK

i=1hij. Thus, Pr[wj = +1|{hi} ≥ 1/2] when
ρj ≥ 0, and Pr[wj = +1|{hi] < 1/2] when ρj < 0. ■

WMD performance
Given the optimal attack, we can compute the

average estimation error in the attack vector, ε2 =
Pr[vj ≠ wj], as follows. Because the wj chips are
equally likely to be +1 or –1, due to the symme-
try of w, ε2 = Pr[sj ≥ 0|wj = –1]. Because for wj = –1,
we have sj = −K+⎯cj, where⎯cj = ΣK

i=1cij. Therefore,
ε2=Pr[⎯cj ≥K], where⎯cj has a Gaussian distribution
with zero mean and variance B√⎯K.

Corollary 1. A collusion of size K produces

Given ε2, we can evaluate the efficiency of the
subtraction attack ŷ=y−v for the optimal attack
vector v. Because E[v ⋅ w] = Pr[vj = wj] – Pr[vj ≠ wj] = 
1 – 2ε2, after attack the expected outcome of the
watermark correlation detector drops to E[dW] =
2ε2. Figure 2 depicts the resulting probability
density functions (PDFs) for dW when computed
against an original, marked, and attacked signal.
The attacker might attempt a stronger subtrac-
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tion attack, of the form ŷ=y−βv with β  > 1, to
bring the WMD output down further, to E[dW] =
2βε2 – (β – 1). As long as β is not too large, the
attacked content ŷ might be acceptable to users.

Defeating the WMD 
To reduce the expected correlation to E[dW] =

θ, the adversary must achieve an attack vector
error rate of ε2 = (θ   + β  – 1)/(2β) through collu-
sion. From Corollary 1, we see that for fixed θ
and β the minimum collusion size grows propor-
tional to B2.

Corollary 2. To reduce the correlation value to
E[dW] = θ, the adversary must collude K WDKs,
with

Example 1. For B = 10, θ = 0.25, and β = 2, the
attacker must collude at least K = 24 keys. For β =
1, the attacker must collude at least K = 133 keys.
Figure 3 illustrates the dependency of K with
respect to θ and β for B = 10.

The attacker must set θ much smaller than δW,

or the probability that a WMD will still detect the
watermark will not be low enough to justify the
attacker’s effort. In other words, the attack is suc-
cessful only if it makes ε1 ≈ 1. It is not necessary
to set θ all the way to zero because doing so
would require an excessively large K. By setting
β > 1, however, we can force θ = 0.

To make the attacker’s job more difficult, we
increase parameter B, the standard deviation of the
watermark carrier c, because K grows with B2. In
doing so, however, we increase the detection noise
variance σ2

gW = (A2 + B2 + A2B2)/N, where A is the
standard deviation of the original content x and N
is the object size. For a given σgW, we determine
that the probability of false positives ε1 = Pr[dw >
δw|object is not marked] is given by Corollary 3.

Corollary 3. An object of size N produces

If δW = 1/2, e1 is also the probability of false nega-
tives—that is, the probability that a WMD will
not detect a marked object that was not attacked.
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Figure 4 illustrates in more detail the receiver
operating characteristic graph of the WMD under
the assumption that the marked signal has been
attacked by averaging K WDKs. From Corollary 1
we compute N using Corollary 4.

Corollary 4. The object size N required to
achieve a given ε1 is

By combining this result with the result in
Corollary 2, we arrive at one of the main results
in this article.

Theorem 1. A minimal collusion size KW that
achieves a fixed E[dW] = θ at a WMD with fixed
δW, β, and ε1 grows linearly with object size N—
that is, KW = O (N).

Proof. As N grows, for a given ε1 B also grows,
and thus σ2

gW →B2(1 + A2)/N. Combining this
asymptotic expression for σgW with the results in
Corollaries 2 and 4, we get

This equation lets us compute the object size
N necessary to achieve any desired collusion
resistance KW for a given WMD performance. ■

The result is so far determined only by the
WMD performance. Next, we confirm the linear
relationship between K and N when considering
the FPD performance.

Important suboptimal attack
The computing environment also impacts the

security of dual watermark-fingerprint systems.
One of the initial assumptions was that both
player WDKs and the WMD are trustworthy. For
media players implemented entirely in hardware,
trustworthiness is achieved with strong tamper-
proof design.5 For software media players, the
computing platform must maintain storage and
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Figure 4. WMD receiver

operating characteristic

graph. The graph

considers the false

positive probability ε1

and false negative

probability εFN(K) after

an attack with v

averaged from K

WDKs. In the example,

A = B = 7 and N = 4 ⋅
105. A possible system

design decision is ε1 =

εFN ≤ 10–6 with K = 5

collusion resistance

and δW = ε2(K = 5).

Keeping δW = 1/2

reduces the likelihood

that the attacked chip

will not be detected as

marked drops to εFN(K =

5,δW = 1/2) ≈ 10–3 at

fixed ε1(K = 5,δW = 1/2)

≈ 10–10.



computing processes that system users cannot
access using arbitrary software. Hence, because in
this case WDKs cannot be extracted using pro-
grams, the adversary must tamper with the com-
puting platform. In both cases, reverse
engineering a tamper-proof chip is an effort
whose cost can easily be kept above the US$100
per player mark.8,9 Assuming the system collusion
resistance analyzed in the “Fingerprint detec-
tion” section, such high attack cost per client
translates into several tens of millions of dollars
as the total cost of breaking the dual watermark-
fingerprint system.

We therefore consider alternative attacks that
might break the dual watermark-fingerprint sys-
tem at a lower cost. The premiere candidate is the
sensitivity attack, which treats the WMD as a
black box and applies series of tests on the WMD
to determine the detection key. In a trivial imple-
mentation, the adversary first mixes the marked
signal with enough noise to bring the detector’s
correlation with the hidden WDK near the
threshold δW. The adversary then aims to esti-
mate the value of chip wj of the watermark by
changing the corresponding sample of the
marked signal yj and analyzing the decision of
the WMD. The complexity of the attack is in the
worst case linear with respect to the length of the
detection key. For traditional spread spectrum,
the sensitivity attack identifies the actual water-
mark bit wj, whereas for the dual watermark-fin-
gerprint system, it identifies only the sign of the
WDK hidden in the player: sign(hij) = sign(cij + wj).
Although such an attack cannot be prevented,
using randomized thresholding can make the
attack’s duration, and ultimately its cost, signifi-
cant. Because the cost of the sensitivity attack is
still estimated to be well below US$100 per play-
er, it is important to analyze its effect on our sys-
tem collusion resistance.

Lemma 2. Given a set of K vectors {ui = sign(hi)
= sign(ci + w), i = 1 … K}, an optimal estimate v of
the watermark w is computed as

Proof. From Lemma 1 for K = 1, it follows that
the optimal estimate of w within a single hi

equals ui = sign(hi). The proof of Lemma 1 shows
that the optimality of the attack is based on the
sign of

Given a set of estimates uij for each hij, the best
estimate of the sign(ρj) from Lemma 1 is given by

Theorem 2. Let Ko denote the size of a collusion
of WDKs: {hi, i = 1 … Ko}. Let Ks denote the size of
a collusion of WDKs extracted using the sensi-
tivity attack: {ui = sign(hi), i = 1 … Ks}. The two
attacks will have the same efficacy—that is, they
will have equivalent probability of error

for

where ψ=1−erfc(1/B√⎯2 )/2.

Proof. From Corollary 1, for K = 1 we conclude
that the Pr[uij = wj] = Pr[|cij| ≤ 1] + Pr[|cij| > 1]/2 = ψ.
Hence,

with

The probability of an estimation error equals

Assuming ε′2 equals ε2 from Corollary 1, we derive
the equation in Theorem 2. ■

We can show that Ks > Ko for all positive real
values of B, confirming that the 

attack is inferior to 
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multimedia data (B ∈  {5, 10}), the ratio Ks/Ko is
approximately constant, with Ks/Ko ≈ 1.56.
Therefore, for brevity and clarity, the remainder of
this article analyzes the case in which an attacker
obtains the original WDK hi upon breaking player
i. If the attacker uses the more realistic sensitivity
attack to obtain WDK information, we assume
with high accuracy that the attacker would need
to collude about 56 percent more WDKs than in
the optimal attack to achieve the same goal.

Fingerprint detection
As we mentioned previously, the FPD has less

noise in its correlation output. Therefore, it
should be able to identify the indices i corre-
sponding to all WDKs hi used in the collusion by
the attacker, even if the collusion size K is large
enough to fool all clients, as computed in the
previous section. 

Recall that the FPD knows the marked content
y, the attacked version ŷ, and the watermark car-
riers ci. It computes the correlation dF = ( ŷ − y) .ci,
and decides that the ith client participated in the
collusion if dF > δF. We assume a realistic modifi-
cation to the sign(mean(⋅)) attack model from the
previous section, ŷ = y−βv+n, where n is a noise
the attacker adds to the attack vector –βv. This
noise aims to increase the correlation variance at
the FPD and thus reduce its performance. We can
model the attack noise n as a zero-mean inde-
pendent identically distributed Gaussian random
variable nj = N (0,σ 2

n ) with variance σ 2
n. To pre-

serve the fidelity of the original media clip, the
adversary can add only noise of limited variance,
usually proportional to the variance of the water-
mark (for example, σn ≈ 1). Now, we can write the
FPD output as:

where gF is the zero-mean FPD correlation noise.
The most critical error for the FPD is a false posi-
tive—that is, incriminating a WDK i that did not
participate in the collusion. The probability ε3 of
that error is given in Lemma 3.

Lemma 3. An object of size N produces

Proof. If ci is not in the collusion, it is inde-
pendent of the attack vector –βv + n. Thus,

which follows from E[vijnij] = 0], ε3 = Pr[gF > δF] and
the fact that gF has Gaussian distribution. ■

As expected, ε3 � ε1 (usually by several orders
of magnitude), because the argument in the com-
plementary error function (erfc(·)) for ε3 is approx-
imately (AδF)/(δW√⎯β2⎯ +⎯⎯σ⎯ 2

n) times larger than the
argument in erfc(⋅) for ε1. Thus, by choosing B and
N for a sufficiently low ε1, we achieve a negligibly
low probability ε3 of false positives in the FPD.

To compute the detection performance of the
FPD, we must determine its expected output
when we correlate the extracted attack vector –βv
+ n with a carrier ci to check whether hi was part
of the collusion. The expected output E[dF] does
not depend on the attack noise n, assuming
E[nijvij] = E[nijcij] = 0. We see that E[dF] = βE[zj],
where zj = vjcij = sign[sj]cij,  with sj = wj + bj, and 

Lemma 4. A collusion of size K produces

Proof. Clearly E[zj] = (E[zj|w = +1] + E[zj|w =
–1])/2 because the wj chips are equally likely. Also,
because of the symmetry of the problem, E[zj|w =
+1] = E[zj|w = –1] and so E[zj] = E[zj|w = +1]. ■

Assuming wj = +1, E[zj] = E[zj|sj ≥ 0]Pr[sj ≥ 0] +
E[zj|sj < 0]Pr[sj < 0] = E[cij|sj ≥ 0]Pr[sj ≥ 0] – E[cij|sj <
0]Pr[sj < 0]. Under each of the conditions sj ≥ 0 or
sj < 0, sj = 1 + bj and cij are jointly Gaussian vari-
ables with variances σ 2

s = σ 2
b = B 2/K and σ 2

c = B 2.
Furthermore, the correlation coefficient between
bj and cij is equal to one, because cij is part of the
average that defines bj. Thus, computing these
conditional expectations is just an exercise in
computing expectations of a Gaussian random
variable, conditioned on minimum or maximum
values for that variable.

Given the expected FPD output, to concur-
rently minimize the likelihood of false negatives η
(that is, the probability that a key index i in the
collusion will not be detected) and false positives
ε3, we could set δF = E[dF]/2. However, the FPD
does not know K at detection time. Because the
probability of a false positive does not depend on
K, we set ε3 to a constant value ε3 = τ (typically τ ≤
10–12), which determines the detection-bound δF.
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Corollary 5. To achieve ε3 = τ, FPD must set

The detection threshold uniquely determines
the probability of a false negative η. Because the
FPD output dF is Gaussian with expected value
E[dF] and variance σ 2

dF = σ 2
gF

= (β 2 + σ 2
n)B2/N, we

deduce Corollary 6. 
Corollary 6. An object of size N produces

The collusion’s foremost goal is to avoid detec-
tion at the FPD. From the second equation, we can
compute the minimal size of a collusion clique KF

that would have the probability of individual
clique member detection η(KF) above a desired
threshold η ≥ τC, where typically τC ≥ 0.9. Figure 5
shows how η(K, σ) changes with the increase of K
and σ, the only parameters the attacker can
change assuming β = 1. For the example system
depicted in Figures 4 and 5, cliques of K ≥ KF = 157

WDKs at σ = 1 would make only one out of 10 col-
luders identifiable by our FPD as η(KF) ≥ 0.9.

We compare this result to the KW computed in
Corollary 2 and Theorem 1. Reducing the expect-
ed correlation of the WMD to E[dW] = θ requires
KW = 2B2{erf−1[(1 −  θ)β–1]2 WDKs, where erf(·) is the
standard error function. Thus, for the example in
Figure 4, the collusion size that drops E[dW] = 0.2
is only KW ≥ 80 WDKs (at β = 1). The discrepancy
between KW and KF is significantly larger with
increased β; however, it decreases as stronger
attack noise n is superimposed. Hence, the goal of
the adversary is to use β = 1 while adding as much
noise as possible. We estimate that an adversary
can add noise with up to four times stronger vari-
ance than the original watermark energy (that is,
σ ≤ 2). In this case, for the example in Figure 3,
the collusion resistance KF|η(KF, σ  = 2) ≥ 0.9 drops
from 157 to 123 WDKs with all other system
parameters intact.

Although the adversary can create a signal
that can play as unmarked on almost all existing
players with colluded KW WDKs, it would be fool-
ish to expect such a collusion as each colluder
could be easily identified. Thus, we assume that
the ultimate goal of the collusion clique is to
average KF WDKs such that each WDK is virtual-
ly undetectable at FPD time.

Using Corollary 6, we can compute the object
size N necessary to achieve a desired probability
η of false negatives in the FPD. As noted previ-

η
δ

β

η

=
⎡⎣ ⎤⎦ −⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

=

1
2 2

1
2

erfc , or

erf

( ]E d N

B
F F

cc exp erfc
N

K

K
Bnπ

σ
β

τ
(

( )

1
2

22

2

2
1

+
−

⎛
⎝⎜

⎞
⎠⎟

−

⎛

⎝

⎜
⎜
⎜

−

⎜⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

δ
σ

τF
n

B
B

N
≥

+( ) −
2

2
2 2

1erfc ( )

68

IE
EE

 M
ul

ti
M

ed
ia

log(  (K,  ))η σ

  (K,  )η σ

σ = {0, 0.2, …, 2}

0

−20

−40

−60

−80

−100

−120

−140

−160

−180

−200

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

η
σ

Pr
ob

ab
ili

ty
 o

f f
al

se
 n

eg
at

iv
e 

lo
g 

( 
 (

K,
  )

η
σ

Pr
ob

ab
ili

ty
 o

f f
al

se
 n

eg
at

iv
e 

lo
g 

( 
 (

K,
  )

20 40 60 80 100 120 140 160 180 2000

Collusion cardinality K

Figure 5. Diagram of
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In a realistic scenario

where σ = 1, a collection

of K ≥ 157 WDKs

imposes likelihood of

detection η ≥ τC = 0.9.



ously, the minimal collusion size to drive down
E[dW] = θ can be computed as KW = 2B2µ2, where
µ = [erf–1[(1 – θ)β–1] is fixed for a fixed attack effi-
ciency (that is, a fixed θ and fixed β). Therefore,
as we increase B, the attacker must increase KF

proportionally to B2, which imposes Corollary 7.
Corollary 7. The object size N required to

achieve a given η for fixed τ and µ is:

This result confirms Theorem 1: that collusion
size and object size are linearly related. In fixing
the WMD performance, we obtained one con-
stant of proportionality, whereas in fixing the
FPD performance, we obtained another.
Therefore, in designing a practical system, we
determine the desired error probabilities and
select N as the largest of the values computed
from the WMD and FPD equations.

Finally, during the forensic search, the FPD
must perform correlation tests individually for
each user’s WDK hi to determine whether it is
contained in the pirated copy ŷ. The length of a
single watermark |w| > 0.5 ⋅  106 and the cardinal-
ity of the user space |C| > 109 can make this a
time-consuming search. However, the search can
be parallelized and effectively distributed over a
network of computers, which can significantly
reduce the search time. For a large user space, we
estimate that the FPD search can be performed in
a week using the idle cycles of a typical enterprise
network of 1,000+ computers.

Segmentation
In our dual watermark-fingerprint system,

watermarks protect the content, and fingerprints
let the copyright owner identify a clique of users
that launched an attack to remove the watermark.
This unique property lets us add multiple water-
marks in the object and force the adversary to cre-
ate cliques independently for each watermark.
More formally, we divide the protected object into
S segments and watermark each of them with a
distinct spread-spectrum sequence. For each seg-
ment i, we publish m distinct WDKs hi,j, j = 1 … m,
created in accordance with the described dual
watermark-fingerprint system. Each client gets a
single WDK hi,j to exactly one segment.

Object and collusion of any realistic size result
in a probability of false positives (ε3) close to zero

such that it can be neglected. For this reason, we
conveniently conclude that a segment can resist
K colluders without mentioning error probabili-
ties. A protected object is defeated if watermarks
are removed from all segments but no finger-
prints are introduced in the process. To break the
system, the adversary must collect at least K
WDKs for each segment. When published, the
WDKs are uniformly assigned to random seg-
ments. We assume the total number of published
WDKs mS significantly surpasses mS>> KS. Thus,
the adversary’s effort to collect a set of WDKs that
would break the watermark-fingerprint system
can be modeled as coupon collecting.10,11

Definition 1. The collusion resistance M of a
segmented dual watermark-fingerprint system
with S segments equals the expected number of
WDKs that must be selected from an infinite pool
of WDKs, such that each segment has a collusion
clique of at least K WDKs.

Let X be a random variable denoting the collu-
sion size in a given segment when we have S seg-
ments and overall M broken clients (that is,
extracted WDKs). X has a Poisson distribution with
mean µ = M/S. Let p = Pr [X ≤ K]. Alon et al.12 show
that Pr [X ≤ µ (1 – γ)] ≤ exp (–γ 2µ /2). In our case, K
= µ (1 – γ), so γ = 1 – K/µ and p ≤ exp[–(1 – K/µ)2µ/2].
Let q = Pr[all segments contain more than K keys].
Then, assuming independence among segments,
q = (1 – p)S, which for a small p becomes q = 1 – pS.
If we try for q = 1 – εs, then εs = pS. So, εs/S ≤ exp[–(1
– K/µ)2µ/2]. Adding µ = M/S gives us

Solving for M, we get Lemma 5.
Lemma 5. If

then q > 1 – εs.
Theorem 3. A dual watermark-fingerprint sys-

tem with segmentation has superlinear collusion
resistance.

Proof. For a fixed collusion resistance per seg-
ment K, the number of segments S is linear in
object size S = O (N). Therefore, using Lemma 5,
we get overall superlinear collusion resistance
with respect to object size M = O (N log N). ■

In an alternate direction, when the asymptot-
ic case of the coupon collecting problem is ana-
lyzed for S → ∞ and minimal K collected WDKs
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per segment, collusion resistance M has a well-
known sharp threshold at

for any real number c ∈ R. This points to the fact
that the number of WDKs, M, that the adversary
must collect to cover at least K keys in S segments
should be centered at M = S ln S + (K – 1)S ln ln S
with exceptionally small variance at both tails.

Because the solution’s variance to the coupon
collecting problem is exceptionally small, we
expected that for a large number of segments
within an object, two distinct attacks to the sys-
tem would require a similar number of collected
WDKs (within S keys) with exceptionally high
probability. Thus, although the collection of
WDKs during the attack is probabilistic, we can
assume with great certainty that the collusion
resistance’s resulting superlinearity is almost
deterministic because of this sharp transition.

Segmentation is impossible in classic finger-
printing systems because they require some form
of marking assumption.1,13

Key compression
The major drawback of the dual system is its

need for a relatively large space in which to store
the detection keys. It is difficult to compress the
sum of two independent pseudorandom
sequences such that it is hard to infer the indi-
vidual sequences. Let g(s, n) denote the output
of length n of generator g given seed s. We need
a way to create two generators g1, g2 with two
seeds s1, s2 such that ∃(g, s)| g1(s1, n) + g(s, n) =
g2(s2, n) and the sequences g1(s1, n) and g(s, n) are
mutually independent. This remains an open
problem. 

The current situation is that we must create
g1(s1, n) and g(s2, n) independently in a secure
machine and store their sum on a client. For real-
istic loads to the system, the length of the key is

approximately 105 bytes, which might be too
much data for some embedded devices.

Recall that the WDK of user i is created as hi =
ci + w, where ci and w are mutually independent.
Alternatively, we can generate the key from a
short seed using any standard cryptographically
secure pseudorandom key generator, perform
sieving for each chosen w, and select only those
seeds whose resulting long sequence (denoted as
s) has the property s ⋅ w ≥ 1, thus inferring hi = s.
The deviation of s ⋅ w is roughly σ * = B√⎯N⎯O, so the
probability of a randomly chosen seed meeting
these criteria is ε* = 1/2erfc(NO/B √⎯2). For exam-
ple, for ε* < 10–6, we get No = 2B2[erfc–1(2ε*)]2 =
2000. Because N = 105, we partition the genera-
tion of hi into N/No segments, where for each seg-
ment we perform sieving expected 1/ε* times. For
a seed size of ξ = 100 bits, we obtain a compres-
sion ratio of No/ξ ~ 20.

Parameter interaction and implications 
The dual watermark-fingerprint technology

aims to build practical secure content-protection
mechanisms. Table 1 presents an overview of the
interrelationships among the parameters of our
watermark-fingerprint scheme. For example, for
a given object size N and variance A2, the other
variables behave as shown in the table. 

The designer’s primary task is to determine
the number of segments S per object. Because col-
lusion resistance within a single segment is K =
O(N), where N = No/S is the segment’s length, and
collusion resistance achieved over S segments is
M = O(S ln(S)), the objective is segments that are
as short as possible to

❚ maximize overall collusion resistance M and 

❚ reduce the storage space for a single WDK. 

On the other hand, security measures for hid-
ing w within a watermark carrier ci make neces-
sary a lower bound on the watermark carrier
amplitude B, commonly set to B ≥  A. Selecting B
uniquely identifies the segment length N with
respect to a desired probability of a false alarm ε1

under the optimal sign(mean(⋅)) attack. Such a
setup directly impacts the maximal collusion size
per segment K and maximal efficacy of the adver-
sary in guessing SWK bits 1 – ε2. It also traces the
guidelines for FPD detection performance ε3 and
η. Finally, η and N imply the collusion size K
(computed from Corollary 6) required to make all
colluders invisible at FPD time

limPr ln lnln
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Table 1. Dependencies among main parameters of the watermark-

fingerprint system.

Parameter Parameter dependencies
ε1 = Pr[dw > δw |object not marked] ~erfc(√⎯N/AB )  

Segment length, N ~B2A2 [erf–1(1 – 2ε1)]2

ε2 = Pr[vj ≠ wj] ~erfc(√⎯K /B)  

Collusion resistance per segment, K O(N)  

ε3 = Pr[dF(ci) > δF|ci ∉ K] ~erfc(√⎯N/B )  

System collusion resistance, M O(N(log (N)))



For realistic loads to the system, such as high-
definition television, the number of bits per
object is in the order of 1011 bytes. Assuming one
chip embedded per 100 pixels, we derive an
object size of NS ≈ 109 chips. Alternatively, from B
= A ≈ 7 and ε1 = εFN ≈ 10–10, we derive N ≈ 4 . 105

chips. This boosts the number of segments to S ≈
2.5 ⋅ 103. The adversarial collusion clique uses
(σ/β)2 = 4 to create the pirated content by sub-
tracting the optimal watermark estimate ampli-
fied by β = 1 and adding the attack noise as a
n=N(0, σ 2

n = 4). For a fixed false negative rate of ε3

= 10–12, the false positive rate follows the diagram
in Figure 5, thus yielding a per-segment collusion
resistance of K ≥ 123 for η ≥ 0.9. Most important-
ly, the achieved overall collusion resistance is
lower-bounded by M > 3 ⋅  105 users. One can
hardly expect that, under realistic piracy scenar-
ios, such a clique could be established to oppose
the protection of the proposed dual watermark-
fingerprint system.

One disadvantage of the dual watermark-fin-
gerprint system is content collusion, in which an
adversary uses L media clips marked with an
identical watermark w to estimate w using the
optimal collusion attack:

For B � A, this attack can be particularly effec-
tive for relatively small L. However, for practical
reasons of limited watermark length in the dual
watermark-fingerprint system, we use B ≈ A. To
reduce sensitivity to this type of an attack, the set
{w, C} must be renewed after several tens of
movies. The WDKs are distributed to users’ play-
ers using standard cryptographic tools for
authenticated communication.

Conclusion
Our dual watermark-fingerprint system limits

the scope of possible attacks, when compared to
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Three main technologies for content protection exist: water-
marking, fingerprinting, and traitor tracing (a fourth worth
mentioning is digital-rights management, or DRM). Table A
briefly compares these technologies to our dual watermark-fin-
gerprint system.

Public-key watermarking
Public-key watermark systems have focused mainly on pro-

viding a solution to the prisoners’ problem.1 This problem
requires two trusting parties (prisoners) to establish a covert
communication channel in the presence of a warden.
Simmons suggested encrypting the embedded message with
the recipient’s public key before watermark embedding so a
warden could not understand it.2 Craver extended this pro-
tocol to include an active warden.3 Neither protocol fits the
requirements of a content-screening system, which aims to
achieve a much harder task—namely, to protect data such
that if a server sends one bit to a set of clients, even if an
adversary fully controls one client, it cannot interfere with the
server’s communication with other clients. 

Fingerprinting
Ergun et al. consider embedding distinct spread sequences

per copy and are among the first to formalize attack metrics
(the limits beyond which a copy is considered too corrupt to be
useful).4 They considers one attack: averaging fingerprinted
copies with additional noise. This attack is weaker than those
Boneh and Shaw consider,5 and accordingly they show a much
higher upper bound on collusion size that can be overcome.4

Boneh and Shaw construct fingerprint codes, which in the
worst case produce collusion resistance of about K = O(N1/4).
Pfitzmann and Waidner introduced a fingerprint scheme in
which users can buy digital content anonymously but can be
identified if they redistribute the fingerprinted content.6

Fiat and Tassa’s copyright protection approach7 is less real-
istic than Boneh and Shaw’s5 because the former assumes that
pirates simply choose one of the symbols available to them in
each round of the tracing process. Boneh and Shaw assume
that they can assign any value to bits about which a collusion
disagrees. Symbols are composed of many bits. Thus, the col-
lusion can create symbols not in the original alphabet.

Traitor tracing
Traitor tracing and fingerprint copyright protection systems

have important differences. (In particular, one cannot blindly
export error correction ideas from traitor tracing to classic dig-
ital fingerprint without some form of the Boneh-Shaw marking
assumption.5) Although they share the same goal, the scenario
and means are different. 

In traitor tracing, the content is usually broadcast in real time
and has little value afterwards. Pirates are assumed to be unable
to manipulate and rebroadcast content in (near) real time. The
content is encrypted, and legitimate clients have distinct sets of
keys that enable decryption when combined. Each legitimate
set of keys is uniquely associated with a single client. If a pirate
resells his or her keys, law enforcement confiscates the suspect
client’s box, and uses the set of keys in the confiscated box to
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classic fingerprinting systems. (See the “Related
Work on Content-Screening Technologies”
sidebar on p. 71.) Under optimal attacks, the size
of the collusion necessary to remove the marks
without leaving a detectable fingerprint is asymp-
totically K = O(N) without segmentation, and M =
O(N log(N)) with segmentation, where N denotes
object size. Classic fingerprinting has a lower
bound on collusion resistance—roughly O(N1/4).
Thus, for example, the dual watermark-finger-
print system can achieve content protection with
collusion resistance of up to 300,000 users for a
two-hour high-definition video. MM
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trace the leak to its source. However, a large enough collusion
can create a good set of keys that does not incriminate any of
the culprits.

Table A. Comparison of main characteristics of content-screening technologies: traitor tracing, fingerprinting, and the dual

watermark-fingerprint system.

Dual watermarking 
Characteristic Traitor tracing Fingerprinting and fingerprinting
Primary target Detection of pirated players Copyright enforcement Copyright enforcement

application

Content replication Decrypt and capture Users collude their Users collude their keys to

content content copies remove the protection mark

Content distribution Real-time broadcast; Each user receives a Single watermarked copy;

single encrypted copy  unique copy each user has a distinct

of content distributed detection key

Collusion resistance Low (hundreds) Low (tens) High (millions)

Trace-back mechanism Player confiscation; player Analysis of pirated content; fingerprint detector can compare 

response to a probe the pirated content to the original copy and the individual marks

with “invalid ciphertext” 

reveals colluders

Advantages Protocols can be based on No action required at High collusion resistance;

provably hard problems client side; players copyright is enforced

remain unchanged through prevention

Disadvantages Difficult to enforce player Exceptionally low collusion Marking key must be

confiscation; low resistance; detects fraud, replaced after marking 

collusion resistance but does not prevent it 100+ media clips
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Boneh and Franklin constructed a public-key encryption
scheme with one public encryption key and many private
decryption keys.8 If a broadcaster encrypts once with the pub-
lic key, each legitimate receiver can decrypt with a different
private key. If a coalition of receivers collude to create a new
decryption key, an efficient algorithm traces the new key to its
creators.

Kiayias and Yung established a black-box traitor-tracing
model in which the pirate-decoder employs a self-protection
technique.9 They proved that any system not meeting certain
well-defined combinatorial conditions cannot overcome a col-
lusion of size superlogarithmic in object size. To the best of our
knowledge the system by Chor et al.10 is the only traitor-trac-
ing scheme for which the Kiayias-Yung conditions hold.

Fiat and Tassa introduced a dynamic traitor-tracing mecha-
nism in which the set of users is randomly grouped into r sub-
sets, each receiving a distinct symbol.7 After identifying the
subset containing the pirate, the search continues within that
subset only. Fiat and Tassa assume that the pirates simply
choose one of the multibit symbols available to them during
each round of the tracing process. 

The main drawback of all traitor-tracing systems (including
black-box traitor tracing) is that they require physical confiscation
of a suspect client machine to examine it, and they assume that
pirates cannot trade the protected content itself. This significant-
ly limits the scenarios in which we can apply traitor tracing.
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