
1

A Duality Model of TCP and Queue
Management Algorithms

Steven H. Low
CS and EE Departments

California Institute of Technology
Pasadena, CA 91125

slow@caltech.edu

May 14, 2003

Abstract

We propose a duality model of end-to-end congestion control
and apply it to understand the equilibrium properties of TCP
and active queue management schemes. The basic idea is to re-
gard source rates as primal variables and congestion measures as
dual variables, and congestion control as a distributed primal-
dual algorithm over the Internet to maximize aggregate utility
subject to capacity constraints. The primal iteration is carried
out by TCP algorithms such as Reno or Vegas, and the dual it-
eration is carried out by queue management algorithms such as
DropTail, RED or REM. We present these algorithms and their
generalizations, derive their utility functions, and study their
interaction.

I. Introduction

Congestion control is a distributed algorithm to
share network resources (called ‘links’ in this paper)
among competing sources. It consists of two compo-
nents: a source algorithm that dynamically adjusts
rate (or window size) in response to congestion in its
path, and a link algorithm that updates, implicitly or
explicitly, a congestion measure and sends it back, im-
plicitly or explicitly, to sources that use that link. On
the current Internet, the source algorithm is carried
out by TCP, and the link algorithm is carried out by
(active) queue management (AQM) schemes such as
DropTail or RED [6]. Different protocols use different
metrics to measure congestion, e.g., TCP Reno [10],
[25] and its variants, use loss probability as congestion
measure, and TCP Vegas [4], it turns out, uses queue-
ing delay as congestion measure [18]. Both are im-
plicitly updated at the links and implicitly fed back to
sources through end-to-end loss or delay, respectively.
In this paper, we present a general model of end-to-end
congestion control and apply it to understand the equi-
librium properties of the closed-loop systems specified
by various TCP/AQM protocols.

The basic idea is to regard the process of conges-
tion control as carrying out a distributed computa-
tion by sources and links over a network in real time

to solve a global optimization problem formulated in
[11]. The objective is to maximize aggregate source
utility subject to capacity constraints. We will inter-
pret source rates as primal variables, congestion mea-
sures as dual variables, and TCP/AQM protocols as
distributed primal-dual algorithms to solve this op-
timization problem and its associated dual problem
(Section II). Different protocols, such as Reno, Vegas,
RED, and REM [1], all solve the same prototypical
problem with different utility functions, and we derive
these functions explicitly (Sections III and IV). More-
over all these protocols generate congestion measures
(Lagrange multipliers) that solve the dual problem in
equilibrium.

The model implies that the equilibrium properties
of a large network under TCP/AQM control, such as
throughput, delay, queue lengths, loss probabilities,
and fairness, can be readily understood by studying
the underlying optimization problem (see later sections
and [18]). Moreover, since the problem is a concave
program, these properties can be efficiently computed
numerically.

It is possible to go between utility maximization and
TCP/AQM algorithms in both directions. We can
start with general utility functions, e.g., tailored to our
applications, and then derive TCP/AQM algorithms
to maximize aggregate utility, as done in, e.g., [11],
[16], [19], [21], [12]. Conversely, and historically, we
can design TCP/AQM algorithms and then reverse-
engineer the algorithms to determine the underlying
utility functions they implicitly optimize and the asso-
ciated dual problem, as we do here and in [18]. This
is the consequence of end-to-end control: as long as
the end-to-end congestion measure to which the TCP
algorithm reacts is the sum of the constituent link con-
gestion measures, such an interpretation is valid.1.

In Section V, we discuss the interaction of gener-
alized Reno algorithms, and that of Reno and Vegas.

To appear in IEEE/ACM Trans. on Networking, October 2003. Partial and preliminary results appear in [15].

This work is suppported by NSF through grants ANI-0113425 and ANI-0230967, and ARO through grant DAAD19-02-1-0283.
1Under some mild assumptions on the TCP and AQM algorithms that are typically satisfied (assumptions C1–C3 in Section II)

2

It will become clear that fairness of TCP algorithms
should not be defined solely in terms whether they re-
ceive the same equilibrium rates, as commonly done
in the literature, because the equilibrium bandwidth
allocation generally also depends on AQM, network
topology, and routing, etc. We will conclude in Sec-
tion VI with some insights from the duality model and
limitations of this work.

II. Duality model of TCP/AQM

A network is modeled as a set L of links (scarce re-
sources) with finite capacities c = (cl, l ∈ L). They are
shared by a set S of sources indexed by s. Each source
s uses a set Ls ⊆ L of links. The sets Ls define an
L × S routing matrix2

Rls =
{

1 if l ∈ Ls

0 otherwise

Associated with each source s is its transmission rate
xs(t) at time t, in packets/sec. Associated with each
link l is a scalar congestion measure pl(t) ≥ 0 at time t.
Following the notation of [23], let yl(t) =

∑
s Rlsxs(t)

be the aggregate source rate at link l and let qs(t) =∑
l Rlspl(t) be the end-to-end congestion measure for

source s. In vector notation, we have (·T denotes trans-
pose)

y(t) = Rx(t) and q(t) = RT p(t)

Here, x(t) = (xs(t), s ∈ S) and q(t) = (qs(t), s ∈ S) are
in �|S|

+ , and y(t) = (yl(t), l ∈ L) and p(t) = (pl(t), l ∈
L) are in �|L|

+ (�+ denotes non-negative real). Source s
can observe its own rate xs(t) and the end-to-end con-
gestion measure qs(t) of its path, but not the vector
x(t) or p(t), nor other components of q(t). Similarly,
link l can observe just local congestion pl(t) and flow
rate yl(t).

The source rate xs(t) is adjusted in each period ac-
cording to a function Fs based only on xs(t) and qs(t):
for all s,

xs(t + 1) = Fs(xs(t), qs(t)) (1)

The link congestion measure pl(t) is adjusted in each
period based only on pl(t) and yl(t), and possibly
some internal (vector) variable vl(t), such as the queue
length at link l. This can be modeled by some func-
tions (Gl, Hl): for all l,

pl(t + 1) = Gl(yl(t), pl(t), vl(t)) (2)
vl(t + 1) = Hl(yl(t), pl(t), vl(t)) (3)

where Gl is non-negative so that pl(t) ≥ 0. Here,
Fs models TCP algorithms (e.g., Reno or Vegas) and

(Gl, Hl) model AQM’s (e.g., RED, REM); see the next
section. We will often refer to AQM’s by Gl, without
explicit reference to the internal variable vl(t) or its
adaptation Hl.

We assume that (1)–(3) has a set of equilibria (x, p).
The fixed point of (1) defines an implicit relation be-
tween equilibrium rate xs and end-to-end congestion
measure qs:

xs = Fs(xs, qs)

Assume Fs is continuously differentiable and
∂Fs/∂qs �= 0 in the open set A := {(xs, qs)|xs >
0, qs > 0}. Then, by the implicit function theorem,
there exists a unique continuously differentiable func-
tion fs from {xs > 0} to {qs > 0} such that

qs = fs(xs) > 0 (4)

To extend the mapping between xs and qs to the clo-
sure of A, define

fs(0) = inf {qs ≥ 0 | Fs(0, qs) = 0} (5)

possibly ∞. If (xs, 0) is an equilibrium point,
Fs(xs, 0) = xs, then define

fs(xs) = 0 (6)

Define the utility function of each source s as

Us(xs) =
∫

fs(xs)dxs, xs ≥ 0 (7)

that is unique up to a constant.
Being an integral, Us is a continuous function. Since

fs(xs) = qs ≥ 0 for all xs, Us is nondecreasing. It is
reasonable to assume that fs is a nonincreasing func-
tion – the more severe the congestion, the smaller
the rate. This implies that Us is concave. If fs is
strictly decreasing, then Us is strictly concave since
U ′′

s (xs) < 0. An increasing utility function implies a
greedy source – a larger rate yields a higher utility –
and concavity implies diminishing return.

Now consider the problem of maximizing aggregate
utility formulated in [11]:

max
x≥0

∑
s

Us(xs) subject to Rx ≤ c (8)

The constraint says that, at each link l, the flow rate
yl does not exceed the capacity cl. An optimal rate
vector x∗ exists since the objective function in (8) is
continuous and the feasible solution set is compact. It
is unique if Us are strictly concave. As the sources
are coupled through the shared links (the capacity
constraint), solving for x∗ directly, however, may re-
quire coordination among possibly all sources, and

2We abuse notation to use L and S to denote sets and their cardinality.

3

hence is infeasible in a large network. The key to
understanding the equilibrium of (1)–(3) is to regard
x(t) as primal variables, p(t) as dual variables, and
(F, G) = (Fs, Gl, s ∈ S, l ∈ L) as a distributed primal-
dual algorithm to solve the primal problem (8) and its
Lagrangian dual (see [16]):

min
p≥0

∑
s

max
xs≥0

(Us(xs) − xsqs) +
∑

l

plcl (9)

Hence, the dual variable is a precise measure of conges-
tion in the network. The dual problem has an optimal
solution since the primal problem is feasible. We will
interpret the equilibria (x∗, p∗) of (1)–(3) as solutions
of the primal and dual problem, and that (F, G) iter-
ates on both the primal and dual variables together in
an attempt to solve both problems.

We summarize the assumptions on (F, G, H):
C1: For all s ∈ S and l ∈ L, Fs and Gl are non-
negative functions. Moreover, equilibrium points of
(1)–(3) exist.
C2: For all s ∈ S, Fs are continuously differentiable
and ∂Fs/∂qs �= 0 in {(xs, qs)|xs > 0, qs > 0}; more-
over, fs in (4) are nonincreasing.
C3: If pl = Gl(yl, pl, vl) and vl = Hl(yl, pl, vl), then
yl ≤ cl with equality if pl > 0.
C4: For all s ∈ S, fs are strictly decreasing.
Condition C1 guarantees that (x(t), p(t)) ≥ 0 and
(x∗, p∗) ≥ 0. C2 guarantees the existence and con-
cavity of utility function Us. C3 guarantees the primal
feasibility and complementary slackness of (x∗, p∗). Fi-
nally condition C4 guarantees the uniqueness of opti-
mal x∗.

Theorem 1: Suppose assumptions C1 and C2 hold.
Let (x∗, p∗) be an equilibrium of (1)–(3). Then (x∗, p∗)
solves the primal problem (8) and the dual problem
(9) with utility function given by (7) if and only if C3
holds. Moreover, if assumption C4 holds as well, then
Us are strictly concave and the optimal rate vector x∗

is unique.
Proof. The discussion after the definition (7) of Us

proves the second claim when C4 holds, so we only
prove the first claim.

By duality theory (e.g., [3, Proposition 5.1.5]),
(x∗, p∗) is primal-dual optimal if and only if x∗ is pri-
mal feasible, p∗ is dual feasible, complementary slack-
ness holds, and

x∗ = argmax
x≥0

L(x, p∗) (10)

where L is the Lagrangian of (8) defined as:

L(x, p) =
∑

s

Us(xs) +
∑

l

pl(cl −
∑

s

Rlsxs)

Hence, to prove the first claim, we only need to estab-
lish (10). Now

max
x≥0

L(x, p∗)

= max
x≥0

∑
s

Us(xs) +
∑

l

p∗l

(
cl −

∑
s

Rlsxs

)

=
∑

s

max
xs≥0

(
Us(xs) − xs

∑
l

Rlsp
∗
l

)
+
∑

l

p∗l cl

By construction of Us, we have from (7) and (4) that,
for any equilibrium at which x∗

s > 0, (x∗, p∗),

U ′
s(x

∗
s) = fs(x∗

s) = q∗s =
∑

l

Rlsp
∗
l (11)

Note that if q∗s = 0, then (11) holds by (6). If x∗
s = 0,

we have from (5)

U ′
s(0) = fs(0) ≤ q∗s (12)

But, (11)–(12) implies that

∂L

∂xs
(x∗, p∗) ≤ 0

with equality if x∗
s > 0. Since L(x, p∗) is concave in

x, this is the necessary and sufficient Karush-Kuhn-
Tucker condition for x∗ to maximize L(x, p∗) over
x ≥ 0. Hence the proof is complete.

Hence, various TCP/AQM protocols can be mod-
eled as different distributed primal-dual algorithms
(F, G, H) to solve the global optimization problem (8)
and its dual (9), with different utility functions Us.
This computation is carried out by sources and links
over the Internet in real time in the form of congestion
control. Theorem 1 characterizes a large class of proto-
cols (F, G, H) that admits such an interpretation. This
interpretation is the consequence of end-to-end control:
it holds as long as the end-to-end congestion measure
to which the TCP algorithm reacts is the sum of the
constituent link congestion measures, under some mild
assumptions on the TCP and AQM algorithms that
are typically satisfied (assumptions C1–C3 in Section
II).

Note that the definition of utility function Us de-
pends only on TCP algorithm Fs. The role of AQM
(G, H) is to ensure that the complementary slackness
condition of problem (1)–(3) is satisfied (condition C3).
The complementary slackness has a simple interpreta-
tion: AQM should match input rate to capacity to
maximize utilization at every bottleneck link. Any
AQM that stabilizes queues possesses this property
(see (16) below) and generates a Lagrange multiplier
p∗ that solves the dual problem.

In the following sections, we apply Theorem 1 to
interpret TCP Reno with RED and with REM, and
TCP Vegas with DropTail. We first derive an algo-
rithm model (F, G, H) from protocol description, and
then use (7) to derive the utility function Us which the
protocol implicitly optimizes. The results are summa-
rized in Table I.

4

TCP

Reno-1 Fs(xs(t), qs(t))
[
xs(t) + 1−qs(t)

D2
s

− 2
3qs(t)x2

s(t)
]+

Utility
√

3/2

Ds
tan−1

(√
2
3 xsDs

)
Reno-2 Fs(xs(t), qs(t))

[
xs(t) + 1−xs(t)Dsqs(t)

D2
s

− 2
3qs(t)x2

s(t)
]+

Utility 1
Ds

log xsDs

2xsDs+3

Vegas Fs(xs(t), qs(t))

⎧⎨
⎩

xs(t) + 1
D2

s
if xs(t) < xs(t)

xs(t) − 1
D2

s
if xs(t) > xs(t)

xs(t) otherwise
Utility αsds log xs

AQM

RED Gl(yl(t), pl(t), vl(t))

⎧⎪⎪⎨
⎪⎪⎩

0 rl(t + 1) ≤ bl

ρ1(rl(t + 1) − bl) bl ≤ rl(t + 1) ≤ bl

ρ2(rl(t + 1) − bl) + ml bl ≤ rl(t + 1) ≤ 2bl

1 rl(t + 1) ≥ 2bl

Hl(yl(t), pl(t), vl(t)) bl(t + 1) = [bl(t) + yl(t) − cl]
+

rl(t + 1) = (1 − αl)rl(t) + αlbl(t)
REM Gl(yl(t), pl(t), vl(t)) 1 − φrl(t+1)

Hl(yl(t), pl(t), vl(t)) bl(t + 1) = [bl(t) + yl(t) − cl]
+

rl(t + 1) = [rl(t) + γ(αlbl(t) + yl(t) − cl)]+

Delay Gl(yl(t), pl(t), vl(t)) pl(t + 1) = [pl(t) + yl(t)
cl

− 1]+

TABLE I

Summary: duality model of TCP/AQM algorithms. Notations are explained in Sections III and IV.

5

III. Reno/AQM

For TCP, we only model the congestion avoidance
phase and ignore other (important) aspects such as
slow-start and fast retransmit/fast recovery. For AQM,
it is useful to distinguish between measure of conges-
tion and feedback of congestion measure. TCP Reno,
for instance, uses loss probability as a measure of con-
gestion. The value of this congestion measure can be
fed back to sources either by dropping packets or set-
ting an ECN bit with this probability. In this paper,
we are concerned with the design of congestion mea-
sure and its equilibrium properties, and our AQM mod-
els do not capture the feedback mechanism. We will
henceforth use ‘marking’ to refer to either dropping a
packet or setting an ECN bit.

A. (F, G, H) model

In this subsection, we present models of TCP Reno,
RED and REM. The implications of these models will
be given in the following subsection and in the Con-
clusion section.

We only model the average behavior of AIMD and
does not differentiate between TCP Reno [25] and its
variants such as NewReno, SACK, etc. All these pro-
tocols (henceforth referred to as ‘Reno’) increase the
window by one every round trip time if there is no
mark in the round trip time, and halves the window
otherwise. There are two versions of multiplicative de-
crease. Older variants of Reno halves the window every
time a mark is detected, whereas new versions of Reno
halves the window only once if there is one or more
marks in the round trip time. We will call the for-
mer version Reno-1 and the latter Reno-2; as we will
see below, they have slightly different utility functions
and fairness property. For both versions, we interpret
packet marking probability as a measure of congestion.

Under DropTail, a packet that arrives to a full buffer
is dropped. We do not know a convenient expression
for the dynamics of marking probability. A model of
loss rate that has been used, e.g., in [7], [12], is that for
a bufferless queue, p(t + 1) = [1 − c/

∑
s xs(t)]+. This

model is suitable for the penalty function approach to
solving (8), but not the duality approach because of the
feasibility constraint. Hence, we only present models
for RED and REM.

Let ws(t) be the window size. Let Ds be the equi-
librium round trip time (propagation plus equilibrium
queueing delay), which we assume is constant, as cus-
tomary in the literature, e.g., [13], [20]. Let xs(t) de-
fined by xs(t) = ws(t)/Ds be the source rate at time
t. The time unit is on the order of several round trip
times and source rate xs(t) should be interpreted as
the average rate over this timescale. Dynamics smaller
than the timescale of a round trip time is not captured
by the fluid model.

A.1 Reno-1

Let pl(t) be the marking probability at link l at time
t. We make the key assumption that the end-to-end
marking probability qs(t) to which source algorithm
reacts is the sum of link marking probabilities:

qs(t) =
∑

l

Rlspl(t) (13)

This is reasonable when pl(t) are small, in which case
qs(t) = 1 −∏l∈Ls

(1 − pl(t)) 	 ∑l∈Ls
pl(t). In period

t, it transmits at rate xs(t) packets per unit time, and
receives (positive and negative) acknowledgments at
approximately the same rate, assuming every packet is
acknowledged. On average, source s receives xs(t)(1−
qs(t)) number of positive acknowledgments per unit
time and each positive acknowledgment increases the
window ws(t) by 1/ws(t). It receives, on average, xs(t)qs(t)
negative acknowledgments (marks) per unit time and
each halves the window. Hence, in period t, the net
change to the window is roughly3

xs(t)(1 − qs(t)) · 1
ws(t)

− xs(t)qs(t) · 1
2
· 4ws(t)

3

Then the source algorithm Fs(xs(t), qs(t)) of Reno-1 is
given by:

xs(t + 1) =
[
xs(t) +

1 − qs(t)
D2

s

− 2
3
qs(t)x2

s(t)
]+
(14)

The quadratic term signifies the property that, if rate
doubles, the multiplicative decrease occurs at twice the
frequency with twice the amplitude.

A.2 Reno-2

Reno-2 increments the window by 1 per round trip
time Ds if there is no mark, and halves the window
once in each round trip time if there is one or more
marks. We model this as follows: in each period t
(which is on the order of a few round trip times), the
window increases by 1/Ds with probability 1 − q̂s(t)
and decreases by 2ws(t)/3Ds with probability q̂s(t),
where q̂s(t) is the end-to-end probability that at least
one packet is marked in period t in the path of s.
Again, let pl(t) denote the probability that a packet
is marked at link l in period t, and qs(t) be the end-
to-end packet marking probability given by (13). We
model q̂s(t) as

q̂s(t) = ws(t)qs(t)
3The factor 4

3
is motivated by considering a single Reno flow,

where in smaller timescale than that of the fluid model, the
window oscillates between 4

3
ws(t) and 2

3
ws(t) with an average

of ws(t). It is more customary to replace the factor 4
3

by 1 in
the literature, as we will do in numerical examples in Section V.

6

where ws(t) is the window size. This would be justi-
fied if packets in the same window are marked inde-
pendently of each other and the packet marking prob-
ability qs(t) is small, in which case q̂s(t) = 1 − (1 −
qs(t))ws(t) 	 ws(t)qs(t).

Then, the average change in window size in period t
is

1
Ds

(1 − q̂s(t)) − 2ws(t)
3Ds

q̂s(t)

=
1 − ws(t)qs(t)

Ds
− 2

3
qs(t)xs(t)ws(t)

Hence the source algorithm Fs(xs(t), qs(t)) for Reno-2
is given by:

xs(t + 1)

=
[
xs(t) +

1 − xs(t)qs(t)Ds

D2
s

− 2
3
qs(t)x2

s(t)
]+
(15)

A.3 RED

RED [6] maintains two internal variables, the instan-
taneous queue length bl(t) and average queue length
rl(t). They are updated according to

bl(t + 1) = [bl(t) + yl(t) − cl]
+ (16)

rl(t + 1) = (1 − αl)rl(t) + αlbl(t) (17)

where αl ∈ (0, 1). Then, (the ‘gentle’ version of) RED
marks a packet with a probability pl(t) that is a piece-
wise linear increasing function of rl(t):

pl(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 rl(t) ≤ bl

ρ1(rl(t) − bl) bl ≤ rl(t) ≤ bl

ρ2(rl(t) − bl) + ml bl ≤ rl(t) ≤ 2bl

1 rl(t) ≥ 2bl

(18)

where

ρ1 =
ml

bl − bl

and ρ2 =
1 − ml

bl

The equations (16)–(18) define the model (G, H) for
RED.

A.4 REM

REM [1] also maintains two internal variables, in-
stantaneous queue length bl(t) and a quantity called
‘price’ rl(t). As in RED, bl(t) is modeled by (16); the
price rl(t) is updated according to

rl(t + 1) = [rl(t) + γ(αlbl(t) + yl(t) − cl)]
+(19)

where γ > 0 and αl > 0 are constants. It marks packets
with a probability that is exponential in price rl(t):

pl(t) = 1 − φ−rl(t) (20)

where φ > 1 is an REM parameter. In practice, (19)
can be replaced by

rl(t + 1) =
[
rl(t) + γ(αl(bl(t) − b̂l) + yl(t) − cl)

]+
where b̂l ≥ 0 is a target equilibrium backlog. A larger
b̂l generally yields a higher utilization especially when
the queue oscillates widely [1]. With this version, the
equilibrium queue length in Theorem 3 below is b∗l =
b̂l. (19) corresponds to setting b̂l = 0.

Exponential marking probability (20) is useful for
estimating end-to-end price

∑
l∈Ls

rl(t) at the source
s. Since this is not used by Reno, other increasing
function can also be used, as explained in [1]. For
instance, the marking probability can be linear in price
rl(t):

pl(t) = min{ρrl(t), 1} (21)

for some constant ρ > 0. The version with nonzero
target queue length b̂l and linear marking probability
is equivalent to the PI controller of [9]. Other proposed
AQM’s such as Adaptive Virtual Queue of [12] can also
be modeled in the form of (2)–(3).

The equations (16), (19), and (20) or (21) define the
model (G, H) for REM.

B. Utility functions of Reno

In this subsection, we derive the utility functions of
Reno-1 and Reno-2 and show that, with RED or REM,
they solve both the primal and dual problem. Note
that all results of this subsection apply to a network
that contains both Reno-1 and Reno-2 sources and both
RED and REM links.

Lemma 2: The functions (F, G, H) that model Reno-
1, Reno-2, RED and REM (equations (14)–(21)) satisfy
conditions C1, C2, C4.
Proof. Clearly, condition C1 is satisfied. For both
Reno-1 and Reno-2, when xs > 0, Fs is continuously
differentiable and ∂Fs/∂qs �= 0. For Reno-1,

qs =
3

2x2
sD

2
s + 3

=: fs(xs) (22)

For Reno-2,

qs =
3

xsDs(2xsDs + 3)
=: fs(xs) (23)

Hence fs(xs) is strictly decreasing for both Reno-1 and
Reno-2, implying strict concavity of their utility func-
tions. Hence conditions C2 and C4 are both satisfied.

Combining (22) and (7), the utility function of Reno-
1 (14) is

Us(xs) =

√
3/2

Ds
tan−1

(√
2
3
xsDs

)
(24)

7

Similarly, from (23), the utility function of Reno-2 (15)
is:

Us(xs) =
1

Ds
log

xsDs

2xsDs + 3
(25)

Note that the utility functions of Reno-1 and Reno-
2 imply that, unlike Vegas, it is possible for a source
that traverses many bottleneck links to receive zero
bandwidth (when its end-to-end price is 1 unit).

The following result applies Theorem 1 to Reno with
RED or with REM. It implies that the equilibrium
queue length with RED depends on the problem in-
stance (network topology, routing, number of sources,
etc.) and RED parameters, and hence inevitably grows
as load increases. RED parameters can be tuned, stati-
cally or dynamically, to reduce equilibrium queue length,
but only at the expense of potential instability; see
Example 1 below. In contrast, the equilibrium queue
length with REM is zero regardless of load.

Theorem 3: 1. Let (x∗, p∗) be an equilibrium of a
network that contains both Reno-1 and Reno-2 sources
and both RED and REM links. Then (x∗, p∗) solves
the primal (8) and the dual problem (9), with utility
functions given by (24) for Reno-1 and (25) for Reno-2
sources. Moreover, the equilibrium rate vector x∗ is
unique.
2. If link l implements RED, then the equilibrium queue
length b∗l satisfies b∗l > bl at links with p∗l > 0. If link
l implements REM, then b∗l = 0.
Proof. By Lemma 2, C1, C2, C4 are satisfied by com-
binations of (14)–(21). Given an equilibrium (x∗, p∗),
to show that it is primal-dual optimal, we need to check
that C3 is also satisfied. From (16), y∗

l ≤ cl with both
RED and REM and hence primal feasibility is satis-
fied. Suppose p∗l > 0. If link l implements RED, then
from (17) and (18),

b∗l = r∗l > bl ≥ 0 (26)

but b∗l > 0 implies that y∗
l = cl. If link l implements

REM, then p∗l > 0 implies r∗l > 0 and hence, from (19),

αlb
∗
l + y∗

l − cl = 0 (27)

We know y∗
l ≤ cl. If y∗

l < cl, then (16) implies that
b∗l = 0; but this contradicts (27). Hence y∗

l = cl (and
b∗l = 0). We have thus shown that complementary
slackness is satisfied with both RED and REM, and
hence C3 is satisfied and (x∗, p∗) is primal-dual opti-
mal.

Moreover, (26) also shows that b∗l > bl when p∗l > 0
with RED. With REM, the preceding argument shows
that b∗l = 0. This completes the proof.

Example 1: Reno/RED at a single link

Consider a single link with capacity c shared by a set of
Reno-1 sources with round trip delays Ds. From (22)
and y∗

l = cl, the equilibrium rates are

x∗
s =

D

Ds
c,

and the equilibrium marking probability is

p∗ =
3

2c2D
2

+ 3
> 0

where D =
(∑

s D−1
s

)−1. If the sources are Reno-2
instead, then the equilibrium rates are the same (use
(23)), but the marking probability

p∗ =
3

2c2D
2

+ 3cD
> 0

is typically lower since cD is usually greater than 1
packet.

If RED is used, the equilibrium probability p∗ deter-
mines the equilibrium queue length through the mark-
ing probability function. Inverting (18), we have (since
b∗l = r∗l and p∗ > 0)

b∗l =
{

bl + ρ−1
1 p∗l if 0 < p∗l ≤ ml

bl + ρ−1
2 (p∗l − ml) if ml < p∗l ≤ 1

In particular, as the number of sources increases, D de-
creases, and hence both p∗l and b∗l increase. Indeed, b∗l
under RED grows toward twice the maximum thresh-
old as load increases:

lim
D→0

b∗l = lim
p∗→1

b∗l = 2bl

To reduce equilibrium queue length b∗l , a large ml (max p)
and a small bl (max th) should be used. But this in-
creases the slope ρ1 and compromises stability; see [14].
Hence, RED parameters can be tuned either to main-
tain stability or reduce equilibrium queueing delay.

Remarks:
1. The relations (22) and (23) imply that Reno-1 and
Reno-2 discriminate against sources with large Ds, as
well known in many previous studies, e.g., [5], [6], [13],
[20]. Moreover, (22) for Reno-1 can be rewritten as

xs =

√
3/2

Ds

√
1 − qs

qs
	

√
3/2

Ds

1√
qs

in packets per unit time, when probability qs is small,
a relation widely observed previously. Some authors,
e.g., [9], [2], assume that Reno increases its window by
1 every round trip time deterministically. This corre-
sponds to replacing (1−qs(t)) by 1 in (14), which holds

8

when the marking probability is small. This model
gives xs =

√
3/2/Ds

√
qs, with a corresponding utility

function

Us(xs) = − 3/2
xsD2

s

(28)

as used in [19], [12] (ignoring a constant term). For
Reno-2, (23) can be approximated by

qs =
3

xsDs(2xsDs + 3)
	 3

2x2
sD

2
s

when 2xsDs
 3, or when qs is small. Then Reno-2
has the same utility function as Reno-1 given by (28).
2. By duality theory, given a dual optimal p, the rate
vector x given by

xs = U ′−1
s (qs) (29)

is the (unique) optimal rate vector, where qs =
∑

l Rlspl.
The rate adjustment process of Reno, (14) or (15), can
be regarded as a smoothed version of this strategy, in
the following sense. Let xs(t) = U ′−1

s (qs(t)) be the
target rate determined by (29), given p(t), using the
utility function of Reno-1 or Reno-2. Then using (24)
for Reno-1, we have

xs(t) = U
′−1
s (qs(t)) =

1
Ds

√
3
2

1 − qs(t)
qs(t)

We can then rewrite the rate adjustment (14) in terms
of the target rate xs(t) as:

xs(t + 1) =
[
xs(t) +

2qs(t)
3

(
x2

s(t) − x2
s(t)

)]+
Hence, instead of setting the rate xs(t + 1) directly
to the target rate xs(t) in one step, Reno-1 moves
the current rate xs(t) toward the target rate xs(t) by
adding an amount proportional to the difference of
their squares, 2qs(t)(x2

s(t) − x2
s(t))/3.

For Reno-2, from (23), the target rate xs(t) must sat-
isfy

qs(t) =
3

xs(t)Ds(2xs(t)Ds + 3)

Hence Fs in (15) can be rewritten in terms of the target
rate xs(t) as

xs(t + 1)

=
[
xs(t) +

1
D2

s

(
1 − xs(t)(2xs(t)Ds + 3)

xs(t)(2xs(t)Ds + 3)

)]+
i.e., increase rate if xs(t) < xs(t) and decrease other-
wise.
3. The approach taken here follows that in [17] where
queue management mechanisms are modeled entirely
by (Gl, Hl). In contrast, the model in [15] includes the
marking probability function as a part of Fs, making
utility function dependent on AQM as well as TCP
algorithms.

IV. Vegas/DropTail

A duality model of Vegas has been developed and
validated in [18]. In this section, we summarize the
main results. We consider the situation where the
buffer size is large enough to accommodate the equilib-
rium queue length so that Vegas sources can converge
to the unique equilibrium. In this case, there is no
packet loss in equilibrium.

It is shown in [18] that Vegas uses queueing delay as
congestion measure, pl(t) = bl(t)/cl, where bl(t) is the
queue length in period t. The update rule is therefore
Gl(yl(t), pl(t)) given by (dividing both sides of (16) by
cl):

pl(t + 1) =
[
pl(t) +

yl(t)
cl

− 1
]+

(30)

Hence, AQM for Vegas does not involve any internal
variable.

Given p(t), or qs(t), let xs(t) given by:

xs(t) =
αsds

qs(t)
(31)

be the target rate, where αs is a parameter of Vegas,
and ds is the round trip propagation delay of source s,
assumed known by s. The update rule for source rate
is then Fs(xs(t), qs(t)) given by:

xs(t + 1) = xs(t) +
1

D2
s

1(xs(t) − xs(t)) (32)

where 1(z) = 1 if z > 0, −1 if z < 0, and 0 if z = 0.
In equilibrium, we have xs = xs = αsds/qs. Hence
U ′

s(xs) = αsds/xs or Us(xs) = αsds log xs. The fol-
lowing result is proved in [18]. It implies, in particular,
that we can compute the queue length at each link by
solving a simple concave program.

Theorem 4 ([18]) 1. An equilibrium (x∗, p∗) of Ve-
gas/DropTail as modeled by (30)–(32) solves the pri-
mal (8) and the dual problem (9), with utility functions
Us given by

Us(xs) = αsds log xs

Moreover, x∗ is unique and weighted proportionally
fair.
2. The equilibrium queue lengths at links l are clp

∗
l .

Again the rate adjustment of Vegas (32) can be inter-
preted as a smoothed version of (29) with the utility
function given in the theorem. Instead of setting the
rate xs(t + 1) in one step to the target rate xs(t) de-
termined by (29), Vegas moves the current rate xs(t)
closer to the target rate xs(t) by 1/D2

s in each step.

V. Generalization and TCP-friendliness

In this section we derive the utility function of Reno-
like algorithms, and consider the interaction of differ-
ent TCP algorithms.

9

A. Reno-like algorithms

Consider algorithms that increase the rate xs(t) by
αs(xs(t)) on each positive acknowledgment, and de-
crease it by βs(xs(t)) on each mark. Then Fs in (14)
and (15) are generalized to

xs(t + 1) = [xs(t) + (1 − qs(t))xs(t)αs(xs(t))
−qs(t)xs(t)βs(xs(t))]

+ (33)

Reno-1 is a special case with αs(xs) = 1/xsD
2
s and

βs(xs) = xs/2, and Reno-2 with αs(xs) = 1/xsD
2
s and

βs(xs) = 1/2Ds. We will index these algorithms by
their increase-decrease functions (αs, βs).

From (33) we have in equilibrium

qs =
αs(xs)

αs(xs) + βs(xs)
:= fs(xs) (34)

and hence the utility function is

Us(xs) =
∫

αs(xs)
αs(xs) + βs(xs)

dxs (35)

A source algorithm (αs, βs) is said to be TCP-friendly
if its equilibrium rate coincides with Reno’s. In the
following, we will use Reno-1 in the definition of TCP-
friendliness; however an analogous analysis applies to
Reno-2.

Equating (14) for Reno-1 and (34), we see that an
algorithm (αs, βs) is TCP-friendly if and only if

αs(xs)
αs(xs) + βs(xs)

=
2

2 + x2
sD

2
s

or

αs(xs)
βs(xs)

=
2

x2
sD

2
s

(36)

Hence, TCP-friendliness of a Reno-like algorithm de-
pends on the increase-decrease functions only through
their ratio.

As an illustration, we consider a class of Reno-like
algorithms called binomial algorithms in [2]. These
algorithms are indexed by a pair (k, l) and corresponds
to

αs(xs) = α/xk+1
s Dk+2

s (37)
βs(xs) = βxl

sD
l−1
s (38)

for some constants α, β > 0 (Reno corresponds to
(k, l) = (0, 1)). Substituting (37)–(38) into the con-
dition (36) for TCP-friendliness yields

αs(xs)
βs(xs)

=
α

β

1
(xsDs)k+l+1

which implies the k+l rule of [2]: a binomial algorithm
is TCP-friendly if and only if k + l = 1 and α/β = 2.

The utility functions of binomial algorithms can be
derived from (35) and (37)–(38) to be

Us(xs) =
1

Ds

(
α

β

) 1
n
∫

dy

1 + yn
∣∣∣∣
y=xsDs(β/α)

1
n

where n = k + l + 1. The class of n = 1 includes the
AIAD algorithm and has a utility function

Us(xs) =
1

Ds

α

β
log
(

1 + xsDs
β

α

)

The class of n = 2 is TCP-friendly when α/β = 2 and
has a utility function

Us(xs) =
1

Ds

√
α

β
tan−1

(
xsDs

√
β

α

)

For n = 3, the utility function is [24, pp. 60]

Us(xs) =
1

3Ds

(
α

β

) 1
n

⎛
⎝log

1 + xsDs(β/α)
1
n√

1 − xsDs(β/α)
1
n + x2

sD
2
s(β/α)

2
n

+
√

3 tan−1 xsDs(β/α)
1
n

√
3

2 − xsDs(β/α)
1
n

)

B. Interaction: binomial algorithms

The duality model provides a convenient framework
in which to study the interaction of different TCP/AQM
schemes, provided all TCP algorithms use the same
congestion measure. Once the schemes under study are
characterized by (F, G, H) and their utility functions,
the equilibrium rates and performance such as loss, de-
lay and queue length can be obtained by solving the
concave program (8). Close-form solutions are usually
unavailable for general network topology, but numer-
ical solutions can be efficiently computed to provide
insight on the equilibrium properties, such as through-
put and fairness. For single-link network, closed-form
solutions can be easily obtained, as we now illustrate.
We first consider the interaction of binomial algorithms
(k, l), which use the same congestion measure, mark-
ing probability. In the next subsection, we consider
the interaction of Reno and Vegas, which use different
congestion measures.

Consider a single link shared by Nn type-n sources
with equilibrium round trip delay Dn, where k + l +
1 = n, n = 1, 2, · · · . Let xn be the common equi-
librium rate of all type-n sources. Let p be the com-
mon equilibrium marking probability. Since, in equi-
librium, p = U ′

s(xs) for all sources s, we have from
(34), p = (1 + λxn

nDn
n)−1 and

xn =
1

Dn

(
1 − p

λp

) 1
n

(39)

10

where λ = β/α. Hence x1D1 = (xnDn)n = (1 − p)/λp
for all n. Since (1− p)/λp is greater than 1 if and only
if (40) below holds, we have

Theorem 5: Consider classes of binomial algorithms
(k, l) indexed by n with n = k + l + 1 that share the
same link. The window wn = xnDn of type-n sources
is related to that of type-1 sources by

w1 = wn
n , n = 1, 2, . . .

If

p <
α

α + β
(40)

then

w1 > w2 > . . .

Otherwise

w1 ≤ w2 ≤ . . .

with equalities if and only if equality holds in (40).
Reno sources are of type n = 2 sources with α = 1, β =
1/2 and λ = 1/2.4 Then (40) becomes p < 2/3, which
usually holds in practice. The theorem then implies
that the window size of a type-n binomial source is no
larger than that of a Reno source if and only if n ≥ 2.

We close by presenting a numerical example.

Example 2: Binomial algorithms
Consider a link of capacity c shared by N1 type-1 sources,
N2 type-2 sources, and N3 type-3 sources, all with the
same round trip delay of D = 200 ms. From (39) we
have

x1 =
η6

D
, x2 =

η3

D
, x3 =

η2

D
(41)

where

η :=
(

1 − p

λp

) 1
6

(42)

Since N1x1 + N2x2 + N3x3 = c the link capacity, we
have

N1η
6 + N2η

3 + N3η
2 = cD (43)

Hence we can solve the polynomial in (43), and then
obtain marking probability p from (42) and equilibrium
rates from (41). We compute the case for α = 1, β =
1/2 and λ = 1/2, under which type n = 2 sources are
Reno. We fix the number of Reno sources, N2 = 200,
and vary the numbers N1 or N3 to observe the effect
of unfriendly sources on equilibrium rates. The link
capacity is c = 30 packets/ms.

4We ignore the factor 4
3

in this section; see footnote 3.

Figure 1 shows the equilibrium rates x1, x2, x3 when
N2 = N3 = 200 and the number N1 of aggressive
sources varies from 0 to 200. Figure 1(a) shows the
rates of individual sources whereas Figure 1(b) shows
the aggregate rates, summed over all sources of the
same type. As observed in [2], type-1 sources are more

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5
Equilibrium rates

N1

Ra
te

s
(p

kt
s/

m
s)

type 1 type 2

type 3

(a) Individual rates

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25
Aggretate equilibrium rates

N1

Ra
te

s
(p

kt
s/

m
s)

type 1

type 2

type 3

(b) Aggregate rates

Fig. 1. Equilibrium rates as type 1 sources varies. N1 =
0, . . . 200, N2 = N3 = 200, D = 200 ms, c = 30 pkts/ms.

aggressive than Reno, while type-3 sources are less
aggressive. Moreover, the presence of type 1 sources
can seize a disproportionally large amount of band-
width: when there is just one type-1 source, x1 = 2.088
pkts/ms while x2 = 0.102 pkts/ms and x3 = 0.037
pkts/ms (when there are no type-1 sources, x2 = 0.111
pkts/ms and x3 = 0.039 pkts/ms). As N1 increases,
while individual rate x1 drops, the aggregate rate of all
type-1 sources rises sharply.

Figure 2 shows the individual and aggregate rates
when N3 varies from 0 to 200, while keeping N1 =
N2 = 200. The effect of polite sources is much less
dramatic than that of aggressive sources. The aggre-
gate share of all type-1 sources ranges from 83% to
75% as N3 varies from 0 to 200.

11

0 20 40 60 80 100 120 140 160 180 200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Equilibrium rates

N3

Ra
te

s
(p

kt
s/

m
s)

type 1

type 2

type 3

(a) Individual rates

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30
Aggretate equilibrium rates

N3

Ra
te

s
(p

kt
s/

m
s)

type 1

type 2

type 3

(b) Aggregate rates

Fig. 2. Equilibrium rates as type-3 sources varies. N1 = N2 =
200, N3 = 0, . . . 200, D = 200 ms, c = 30 pkts/ms.

C. Interaction: Reno and Vegas

Suppose Reno and Vegas sources share the same
network. Under what condition will they receive the
same equilibrium rate? This is not as straightforward
as for binomial algorithms because Reno and Vegas
use different congestion measures, marking probability
for Reno and queueing delay for Vegas. A Reno-like
source is TCP-friendly as long as its increase-decrease
ratio satisfies (36). Note that this means that if such a
source is friendly under any condition (network topol-
ogy, routing, etc.), then it is friendly under all condi-
tions.

In contrast, Vegas sources can receive more, equal,
or less bandwidth than Reno sources depending on the
network condition. Specifically, let qv be the end-to-
end queueing delay of a Vegas source v, in equilibrium,
and let pn be the end-to-end marking probability of a
Reno source n sharing the same network, among other
sources. Then, the equilibrium rate of the Vegas source
v is xv = αvdv/qv, where αv > 0 is a protocol pa-
rameter and dv is the round trip propagation delay
of v. The equilibrium rate of the Reno-1 source n is
xn =

√
2(1 − pn)/pn. Hence they receive the same

equilibrium rate if and only if

(
αvdv

qv

)2

=
2(1 − pn)

pn

Hence, whether v is TCP-friendly or not depends on
the network condition through equilibrium queueing
delay qv and marking probability pn. But these equilib-
rium properties depend not only on TCP Reno and Ve-
gas algorithms Fs, but also on AQM algorithm (Gl, Hl)
and its parameter setting, as well as network topology,
routing, and link capacity. Hence, TCP-friendliness
of a scheme that uses a different congestion measure
should not be defined simply in terms of its equilib-
rium bandwidth share, because one can generally find
scenarios where the scheme receives higher bandwidth
share than TCP Reno and scenarios where the reverse
is true.

To be concrete, consider Reno (again, we consider
only Reno-1 sources though the analysis applies to
Reno-2 sources as well) and Vegas sources sharing a
single link employing RED or REM. Reno sources re-
act to RED or REM marks by halving its rate. If
Vegas reacts to marks in the same way, then its be-
havior would be similar to Reno. Hence we study the
case where Vegas source ignores RED marks and only
reacts to delay in its path as it does under DropTail.
Under REM, we use the Vegas/REM algorithm in [18]
in which a Vegas source estimates the price and uses
it to replace queueing delay in setting its rate.

Notice that RED uses queue length b(t) as an inter-
nal variable that determines both the marking proba-
bility for Reno and queueing delay for Vegas. Hence
we can regard b(t) as a common congestion measure to
which Reno and Vegas react under RED.5 For REM,
the common congestion measure can be taken to be the
price variable. The following examples show that AQM
can have a big effect on the equilibrium rate allocation
when sources react to different congestion signals.

Example 3: Reno and Vegas under RED
Suppose there are N1 Reno sources and N2 Vegas sources.
The round trip propagation delay for type-i sources is
di, i = 1, 2, so that the round trip time is Di = di +b/c
in equilibrium, where b is the queue length, c is the link
capacity, and b/c is the queueing delay. Vegas sources
all have parameter α2 so that each keeps α2d2 packets
in the buffer in equilibrium.

Consider the case where the link uses RED with
marking probability that depends on queue length b:

p(b) =
b − b

b − b
, b ≤ b ≤ b (44)

5The utility function of Reno is different under this formulation;
see [15].

12

i.e., the marking probability rises from 0 to 1 over the
interval [b, b]:

From (22), Reno’s equilibrium rate satisfies

p(b) =
2

2 + x2
1(d1 + b/c)2

Combining with (44), we have

x1 =
(

2(b − b)
b − b

) 1
2 c

b + cd1
(45)

From (31), the equilibrium rate of Vegas sources are

x2 =
α2d2

b/c
(46)

Since N1x1 + N2x2 = c, we have

(
2(b − b)
b − b

) 1
2 N1

b + cd1
+

α2d2N2

b
= 1 (47)

Hence we can obtain equilibrium queue length b by
solving (47), and then equilibrium rates using (45)–
(46).

All sources have a round trip propagation delay of
d1 = d2 = 100 ms. We fix the number of Reno sources,
N1 = 200, and vary the number N2 of Vegas sources
from 0 to 200. Each Vegas source has α2 = 0.01
pkts/ms so that it keeps α2d2 = 1 pkts in its path
in equilibrium. RED parameters are b = 50 pkts and
b = 4000 pkts. The link capacity is c = 20 packets/ms.
Figure 3 shows the individual and aggregate rates of
Reno and Vegas in equilibrium as the number of Ve-
gas sources increases from 0 to 200. The behavior is
qualitatively similar to the interaction of Reno with
aggressive binomial sources shown in Figure 1, with
individual Vegas sources seizing a larger proportion of
bandwidth than individual Reno sources. The aggre-
gate share of all Vegas sources rises as the number of
Vegas sources increases.

Each Vegas source keeps α2d2 = 1 packet in the
link. The equilibrium backlog determines the marking
probability p(b) which then determines the source rate
of Reno through (45). The rates of Vegas sources are
proportional to their shares of the buffer occupancy
(see (46)). Figure 4 shows the number of Reno and
Vegas packets in the queue. As the number of Vegas
sources increases, Vegas packets in the queue exceed
Reno packets and they receive a larger aggregate band-
width.

Example 4: Reno and Vegas under REM
We repeat Example 3 with REM. In this case, the price
r can be regarded as the common congestion measure
to which Reno and Vegas react. The marking proba-
bility is given by (20). We use φ = 1.001 (other REM

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Equilibrium rates

N2

Ra
te

s
(p

kt
s/

m
s)

Vegas

Reno

(a) Individual rates

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40
Aggretate equilibrium rates

N2

Ag
gr

eg
at

e
ra

te
s

(p
kt

s/
m

s)
Reno

Vegas

(b) Aggregate rates

Fig. 3. Equilibrium rates under RED as Vegas sources varies
from 0 to 200. N1 = 200, N2 = 0, . . . , 200, D = 100 ms,
c = 20 pkts/ms.

0 20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200
Equilibrium queue length under RED

N2

Q
ue

ue
 le

ng
th

 (p
kt

s)

Reno

Vegas

Fig. 4. Equilibrium queue and Vegas share under RED. N1 =
200, N2 = 0, . . . , 200, D = 100 ms, c = 20 pkts/ms.

13

parameters do not affect equilibrium). Combining (20)
with (22) and noting that D1 = d1 since backlog is zero
(Theorem 3), we obtain Reno source rate as:

x1 =
1
d1

1√
(φr − 1)/2

(48)

With the Vegas/REM algorithm of [18], Vegas source
rates are given by (46) with queueing delay b/c replaced
by price r. Since N1x1 + N2x2 = c, we have

N1

d1

1√
(φr − 1)/2

+
α2d2N2

r
= c (49)

Hence we can obtain the equilibrium price r by solv-
ing (49) and then rates from (48) and modified (46).
The results are shown in Figure 5. For this example,

0 20 40 60 80 100 120 140 160 180 200
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1
Equilibrium rates

N4

Ra
te

s
(p

kt
s/

m
s)

Reno

Vegas

(a) Individual rates

0 20 40 60 80 100 120 140 160 180 200
0

2

4

6

8

10

12

14

16

18

20
Aggretate equilibrium rates

N4

Ag
gr

eg
at

e
ra

te
s

(p
kt

s/
m

s)

Reno

Vegas

(b) Aggregate rates

Fig. 5. Equilibrium rates under REM as Vegas sources varies
from 0 to 200. N1 = 200, D = 100 ms, c = 20 pkts/ms.

Vegas receives much less bandwidth than Reno, both
individual rates and the aggregate.

VI. Conclusions

We have presented a duality model of several TCP/AQM
protocols. It interprets these protocols as distributed
primal-dual algorithms carried out over the Internet in

real time to maximize aggregate utility subject to ca-
pacity constraints. Different TCP algorithms have dif-
ferent utility functions and we have derived the utility
of Reno and Vegas; see Table I. This model can be used
to analyze equilibrium properties, such as throughput,
loss, delay and fairness, of a network that contains dif-
ferent TCP sources and different AQM links, as long
as they use a common measure of congestion.

The duality model has several interesting implica-
tions. First, it is well-known that a bottleneck queue
can fluctuate about the buffer capacity under Reno
or DropTail, generating packet losses. What is more
intriguing is that increasing the buffer size does not re-
duce loss rate significantly, but only grows the queueing
delay. According to the duality model, loss probabil-
ity under Reno is the Lagrange multiplier, and hence
its equilibrium value is determined solely by the net-
work topology and the utility functions of the sources,
independent of link algorithms and buffer size. Increas-
ing the buffer size with everything else unchanged does
not change the equilibrium loss probability, and hence
a larger backlog must be maintained to generate the
same loss probability. This means that with DropTail,
the buffer at a bottleneck link is always close to full
regardless of buffer size. With RED, since loss prob-
ability (Lagrange multiplier) is increasing in average
queue length, the average queue length must increase
steadily as the number of sources grows. Second, it is
well-known that TCP Reno discriminates against con-
nections with large propagation delays. This is borne
out by the duality model, as discussed in Remark 1 of
Section III. TCP Vegas achieves proportional fairness
as it has a log utility function (so does Reno-2 approx-
imately). Third, when Reno and Vegas sources share
a common network, Vegas sources may receive more,
equal, or less bandwidth than Reno sources, depend-
ing on the network topology and AQM algorithm at the
links. In general, the ‘friendliness’ of TCP algorithms
that adopt different congestion measures depends not
only on themselves, but also on their environment such
as AQM algorithm and network parameters. This sug-
gests that TCP-friendliness that is defined solely in
terms of source algorithm is too restrictive.

We have only studied the equilibrium properties and
have ignored the stability and dynamics of these pro-
tocols. The global stability of REM in the absence
of delay is established in [22] using a Lyapunov argu-
ment. Local stability of Reno/RED has been studied
in [8], [14]. It would be interesting to investigate de-
layed global stability of various TCP/AQM protocols.
Here we derive the utility functions Us from rate ad-
justment algorithms Fs. One can turn the question
around and tailor utility functions Us to applications,
and then design a TCP algorithm Fs to optimize it.

14

Acknowledgment: We gratefully acknowledge insight-
ful discussions with John Doyle (Caltech), Fernando
Paganini (UCLA), and Li Zhu (NJIT) on an earlier
version of the paper.

References

[1] Sanjeewa Athuraliya, Victor H. Li, Steven H. Low, and
Qinghe Yin. REM: active queue management. IEEE Net-
work, 15(3):48–53, May/June 2001. Extended version in
Proceedings of ITC17, Salvador, Brazil, September 2001.
http://netlab.caltech.edu.

[2] Deepak Bansal and Hari Balakrishnan. Binomial congestion
control algorithms. In Proceedings of IEEE Infocom, April
2001.

[3] D. Bertsekas. Nonlinear Programming. Athena Scientific,
1995.

[4] Lawrence S. Brakmo and Larry L. Peterson. TCP Vegas:
end-to-end congestion avoidance on a global Internet. IEEE
Journal on Selected Areas in Communications, 13(8):1465–
80, October 1995. http://cs.princeton.edu/nsg/papers/
jsac-vegas.ps.

[5] S. Floyd. Connections with multiple congested gateways in
packet–switched networks, Part I: one–way traffic. Com-
puter Communications Review, 21(5), October 1991.

[6] S. Floyd and V. Jacobson. Random early detection gate-
ways for congestion avoidance. IEEE/ACM Trans. on Net-
working, 1(4):397–413, August 1993. ftp://ftp.ee.lbl.
gov/papers/early.ps.gz.

[7] R. J. Gibbens and F. P. Kelly. Resource pricing and the
evolution of congestion control. Automatica, 35:1969–1985,
1999.

[8] Chris Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong.
A control theoretic analysis of RED. In Proceedings of
IEEE Infocom, April 2001. http://www-net.cs.umass.
edu/papers/papers.html.

[9] Chris Hollot, Vishal Misra, Don Towsley, and Wei-Bo
Gong. On designing improved controllers for AQM routers
supporting TCP flows. In Proceedings of IEEE Info-
com, April 2001. http://www-net.cs.umass.edu/papers/
papers.html.

[10] V. Jacobson. Congestion avoidance and control. Proceed-
ings of SIGCOMM’88, ACM, August 1988. An updated
version is available via ftp://ftp.ee.lbl.gov/papers/
congavoid.ps.Z.

[11] Frank P. Kelly, Aman Maulloo, and David Tan. Rate con-
trol for communication networks: Shadow prices, propor-
tional fairness and stability. Journal of Operations Research
Society, 49(3):237–252, March 1998.

[12] Srisankar Kunniyur and R. Srikant. End–to–end congestion
control schemes: utility functions, random losses and ECN
marks. In Proceedings of IEEE Infocom, March 2000. http:
//www.ieee-infocom.org/2000/papers/401.ps.

[13] T. V. Lakshman and Upamanyu Madhow. The performance
of TCP/IP for networks with high bandwidth–delay prod-
ucts and random loss. IEEE/ACM Transactions on Net-
working, 5(3):336–350, June 1997. http://www.ece.ucsb.
edu/Faculty/Madhow/Publications/ton97.ps.

[14] S. H. Low, F. Paganini, J. Wang and J. C. Doyle. Lin-
ear stability of TCP/RED and a scalable control. Com-
puter Networks Journal, to appear 2003. http://netlab.
caltech.edu.

[15] Steven H. Low. A duality model of TCP flow controls.
In Proceedings of ITC Specialist Seminar on IP Traffic
Measurement, Modeling and Management, September 18-
20 2000.

[16] Steven H. Low and David E. Lapsley. Optimization flow
control, I: basic algorithm and convergence. IEEE/ACM
Transactions on Networking, 7(6):861–874, December 1999.
http://netlab.caltech.edu.

[17] Steven H. Low, Fernando Paganini, and John C. Doyle. In-
ternet congestion control. IEEE Control Systems Magazine,
22(1):28–43, February 2002.

[18] Steven H. Low, Larry Peterson, and Limin Wang. Under-
standing Vegas: a duality model. J. of ACM, 49(2):207–
235, March 2002. http://netlab.caltech.edu.

[19] L. Massoulie and J. Roberts. Bandwidth sharing: objectives
and algorithms. In Infocom’99, March 1999. http://www.
dmi.ens.fr/\%7Emistral/tcpworkshop.html.

[20] Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Te-
unis Ott. The macroscopic behavior of the TCP congestion
avoidance algorithm. ACM Computer Communication Re-
view, 27(3), July 1997. http://www.psc.edu/networking/
papers/model_ccr97.ps.

[21] Jeonghoon Mo and Jean Walrand. Fair end-to-end window-
based congestion control. IEEE/ACM Transactions on
Networking, 8(5):556–567, October 2000.

[22] Fernando Paganini. A global stability result in network flow
control. System & Control Letters, 46(3):153–163, 2002.

[23] Fernando Paganini, John C. Doyle, and Steven H. Low.
Scalable laws for stable network congestion control. In Pro-
ceedings of Conference on Decision and Control, December
2001. http://www.ee.ucla.edu/~paganini.

[24] I. M. Ryshik and I. S. Gradstein. Tables of series, products,
and integrals. VEB Deutscher Verlag der Wissenschaften,
Berlin, 1963.

[25] W. Stevens. TCP/IP illustrated: the protocols, volume 1.
Addison–Wesley, 1999. 15th printing.

Steven. H. Low (M 92, SM 99) re-
ceived his B.S. degree from Cornell Uni-
versity and PhD from the University of
California – Berkeley, both in electrical
engineering. He was with AT&T Bell Lab-
oratories, Murray Hill, from 1992 to 1996
and with the University of Melbourne, Aus-
tralia, from 1996 to 2000. He is now an
Associate Professor at the California In-
stitute of Technology, Pasadena. He has
held visiting academic positions in the US
and Hong Kong, and has consulted with
companies and governments in the US and
Australia. He was a co-recipient of the
IEEE Bennett Prize Paper Award in 1997
and the 1996 R&D 100 Award. He is on
the editorial board of IEEE/ACM Trans-
actions on Networking and Computer Net-
works Journal. His research interests are
in the control and optimization of net-
works and protocols. His home is net-
lab.caltech.edu and email is slow@caltech.edu.

