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Abstract

In this paper a sufficient condition on the minimum dwell time that

guarantees the stability of switched linear systems is given. The proposed

method interprets the stability of switched linear systems through the

distance between the eigenvector sets of subsystem matrices. Thus, an

explicit relation in view of stability is obtained between the family of the

involved subsytems and the set of admissible switching signals.
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1 INTRODUCTION

The stability analysis of switched linear systems is one of the active research

areas in system theory during the last decades [1, 2, 3, 4]. In general, a switched

system is a hybrid dynamical system defined by a family of subsystems and a

switching rule orchestrating the switching between subsystems [2, 5, 6]. Except

the problem of finding a particular stabilizing switching signal [6, 7, 8] there exist

mainly two stability problems: stability under arbitrary switching and stability

under constraint switching, such as dwell time, average dwell time constraints,

etc. [1, 3, 9]. The arbitrary switching problem has been widely investigated

[10, 11, 12, 13, 14], whereas the stability under constraint switching still needs

to be treated throughly [15, 16, 17, 18]. Especially specifying the minimum

dwell time that ensures the stability of the switched sytems is an attracting

problem. In literature there are some conditions to obtain a minimum dwell time

[15, 16, 18], which do not reveal any explicit relation between the minimum dwell

time and the properties of the involved subsystems. In this paper a novel method

to obtain the minimum dwell time is proposed which improved the results in

[19]. The value for the minimum dwell time is numerically observed to be

smaller than most of the already existing results. Moreover, the method reveals

the missing explicit relation mentioned above, as it shows the dependence of the

minimum dwell time on the weakest eigenvalues and on the distance between

the eigenvector sets of subsystems.

In the next section, definitions and mathematical preliminaries are given. In

Section 3, main results are presented and in Section 4, these are illustrated by
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examples. Finally discussions and comparisons are given in conclusion.

Notation: Rn(Cn) denotes n-dimensional real (complex) vector space and

Mn
R
(Mn

C
) the set of all n × n real (complex) matrices. ‖x‖ is the Euclidean

norm if x is a vector and spectral norm if x is a matrix. For a set X , s(X ) is the

number of elements in X and for a matrix, A ∈ Mn
C
. A∗ denotes the Hermitian

transpose of A.

2 PRELIMINARIES

In this section, a brief definition of switched linear systems is given. Then, two

semimetrics on the set of n × n invertible matrices and the notion of walk in

digraphs are introduced as they will be used for the main results in the next

section.

2.1 Linear Switched Systems

Switched linear systems can be defined as follows,

ẋ(t) = Aσx(t) , σ ∈ S , t ≥ 0 (1)

where S is a set of admissible switching signals σ : [0,∞) → P and P denotes a

finite set of indices. {Ap | p ∈ P} is a parametrized family of m subsystems each

of which is represented by an n×n matrix. In the sequel, the generic case where

each Ap has n distinct eigenvalues will be considered. A switching signal is a

piecewise constant function which is continuous from right and has finitely many

discontinuities on any finite interval. The set of all possible switching functions
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is denoted as Snonchatt. Another set of switching signals can be defined by

restricting the dwell time of switching signals, defined as the minimum length

of intervals where the switching signal is constant. Let Sdwell[τ ] denote the

set of all elements of Snonchatt with dwell time not less than τ . Obviously,

Sdwell[0] = Snonchatt. In this work, the system (1) with S = Sdwell[τ ] will

be considered. For a more broad definition of switched systems and sets of

switching signals see [5].

A solution of (1) is a function x : [0,∞) → P which satisfies the linear time

varying system

ẋ(t) = Aσ(t)x(t) , t ≥ 0 (2)

for some σ ∈ S. In order to represent x(t) explicitly, we define the following

functions from S to [0,∞) as

ωi(σ) := i’th discontinuity point of σ , i = 1, 2, . . . ,

ω0(σ) := 0 (for convenience) ,

∆i(σ) := ωi(σ) − ωi−1(σ) , i = 1, 2, . . . ,

and pi(σ) from S to P as

pi(σ) := σ(ωi−1(σ)),

which gives the index of the i’th active subsystem when switching signal is σ.

In short, ωi, ∆i and pi will be used instead of ωi(σ), ∆i(σ) and pi(σ) (see Fig.

1). Using these functions, the solution of (1) can be stated as

x(t) = eApi
(t−ωi−1)(

i−1
∏

k=1

eApk
∆k)x(0) , t ∈ [ωi−1, ωi) (3)
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Figure 1: A switching signal

There are various stability definions of switched systems [1, 5, 20]. In this

work, some results on stability and asymptotic stability of the switched linear

systems will be obtained. Considering the switched linear system (1) and the

linear time varying system (2) obtained from (1) choosing a specified switching

signal, the system given by (1) is (asymptotically) stable if (2) is (asymptot-

ically) stable for every σ ∈ S. Thus (1) is stable if every solution x of (1)

satisfies ‖x(t)‖ ≤ γ‖x(0)‖, ∀t ≥ 0 for some γ ∈ R and asymptotically stable

if it approaches to zero as t → 0 [21]. We are not concerned with exponential

stability as it is equivalent to asymptotic stability for the switched linear system

(1) (see Lemma 1 in [5]).
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2.2 Distance Between Eigenvector Sets

Consider a matrix Ai ∈ Mn
R

which has n distinct eigenvalues. The eigenvector

set Vi is defined as the set of all eigenvectors of Ai. Vi can also be represented

by an invertible matrix Vi = [v
(i)
1 v

(i)
2 . . . v

(i)
n ] ∈ Mn

C
called as the eigenvector

matrix of Ai, the columns of which are linearly independent and have norm

one. Obviously, an eigenvector set can be represented by different eigenvector

matrices. One can change the order and signs of the columns and obtain a

different eigenvector matrix representing the same eigenvector set.

Let V(n) be the set of all eigenvector sets of n×n real matrices with distinct

eigenvalues. The following two semimetrics can be defined on Vn.

d1(Vi,Vj) := ln(max(‖V −1
i Vj‖, ‖V

−1
j Vi‖)) (4)

d2(Vi,Vj) := ln(‖V −1
i Vj‖ · ‖V

−1
j Vi‖) (5)

It is straightforward to show that (4) and (5) satisfy semimetric conditions,

which are the three axioms of metric excluding the identity of indiscernibles

(d(x, y) = 0 ⇔ x = y). Here Vi and Vj are the eigenvector matrices representing

Vi and Vj , respectively. The semimetrics (4) and (5) are well-defined, for they

are independent from the choice of eigenvector matrices. In order to see this let

Vi and V ′
i be two eigenvector matrices representing the eigenvector set Vi, that is

they differ only by the order or sign of their columns. Then there exist a unitary

matrix U , such that V ′
i = ViU . The spectral norm is unitarily invariant. More-

over ‖UAY ‖ = ‖A‖ for any pair of unitary matrices (U, Y ) [22]. Consequently,
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‖V ′
i
−1

Vj‖ = ‖U∗V −1
i Vj‖ = ‖V −1

i Vj‖ and ‖V −1
j V ′

i ‖ = ‖V −1
j ViU‖ = ‖V −1

j Vi‖.

These imply that both d1 and d2 are independent from the choice of eigenvector

matrices.

A matrix Ai ∈ Mn
C

is said to be normal if AA∗ = A∗A. A set of matrices

{Ap | p ∈ P} is said to be simultaneously normalizable if there exist an invertible

matrix X such that X−1ApX is normal for every p ∈ P [23, 24]. One of the

important properties of normal matrices is that they are unitarily similar to

diagonal matrices. See the spectral theorem for normal matrices in [22]. This

gives rise to the following lemma.

Lemma 1 Let Vi and Vj be the eigenvector sets of two simultaneously normal-

izable matrices. Then d1(Vi,Vj) = d2(Vi,Vj) = 0.

Proof. Let Ai and Aj be two simultaneously normalizable matrices. Then

there exist an invertible matrix X such that X−1AiX = Ni and X−1AjX = Nj ,

where Ni and Nj are normal matrices. From the spectral theorem of normal

matrices Ni = UiDiU
∗
i and Nj = UjDjU

∗
j hold, where Ui, Uj are unitary

and Di, Dj are diagonal. Then Ai = XNiX
−1 = XUiDiU

∗
i X−1 and Aj =

XUjDjU
∗
j X−1, which are the diagonalization form of Ai and Aj . Thus XUi

and XUj are the eigenvector matrices of Ai and Aj , respectively. This implies

d1(Vi,Vj) = ln(max(‖U−1
i X−1XUj‖, ‖U

−1
j X−1XUi‖))

= ln(max(‖U−1
i Uj‖, ‖U

−1
j Ui‖))

and similarly d2(Vi,Vj) = ln(‖U−1
i Uj‖ · ‖U−1

j Ui‖). Since product of unitary

matrices is unitary and spectral norm of a unitary matrix is equal to one, we
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conclude that d1(Vi,Vj) = d2(Vi,Vj) = 0.

2.3 Digraphs: walk, path and cycle

A digraph (directed graph) D consists of two sets D = {V ,A}, where V is a non-

empty finite set of vertices and A is a finite set of ordered pairs of vertices called

arcs [25]. D = {V ,A} is a complete digraph if every ordered pairs of elements

of V is included in A. The number of vertices in a digraph is called as the order

of D. For an arc a = (u, v) the first vertex u is the tail of a and v is the head of

a. A walk in D is an alternating sequence W : v1, a1, v2, a2, . . . , ak−1, vk, where

vi ∈ V for i = 1, 2, . . . , k, and ai ∈ A for i = 1, 2, . . . , k − 1 such that the tail

of ai is vi and the head of ai is vi+1 for every i = 1, 2, . . . , k − 1. A walk W is

called as a path if all its vertices are distinct and called as a cycle if the first

k−1 vertices are distinct and vk = v1. The length of a walk is the number of its

arcs. A walk is said to be open if v1 6= vk. The following lemma is a well-known

result of graph theory [25], so the proof is skipped.

Lemma 2 (Open walk decomposition) Every open walk can be decomposed

into a path and some cycles.

A weighted digraph is defined by D = {V ,A, Ω} where Ω: A → R is a weight

function. For a weighted digraph the weight of a walk W with length k is defined

as

Ω(W ) :=

k
∑

i=1

Ω(ai).
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3 MAIN RESULT

In this section, some sufficient conditions will be given for the stability and

asymptotic stability of the linear switched system (1) where all Ai’s have distinct

eigenvalues and

S = Sdwell[τ ] = {σ ∈ Snonchatt | ∆i(σ) ≥ τ} (6)

or

S = S′
dwell[τ ] = {σ ∈ Sdwell |

∞
∑

i=1

(∆i(σ) − τ) → ∞}. (7)

It is known that (1) with S = Snonchatt is asymptotically stable if the matrices

corresponding to subsystems are Hurwitz and commute pairwise [10]. In the

case that all Ai’s have distinct eigenvalues the commuting condition is equiv-

alent to the condition of eigenvectors laying in the same directions, namely

simultaneously diagonalizability of Ai’s. It is also known that the stable sub-

systems whose trajectories look quite different may result in divergent trajectory

by switching, even if they are individually stable (see Fig.2 in [3]). Moreover

the forms of trajectories of linear systems are mainly determined by eigenvectors

(see page 394 in [26]). These give the idea that the distance between eigenvector

sets defined by (4) and (5) may have a role in finding the minimum dwell time

which guaranties the stability of (1). For the commuting case, where the eigen-

vector sets are equal, τ would be zero and the value of τ would increase as the

distance between eigenvector sets increases. In order to see this let us consider

the solution (3). For stability one needs ‖
∏

Ai‖ < 1. Using the eigenvalue

decomposition Ai = ViDiV
−1
i and triangular inequality for norms we can find a
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sufficient condition for stability as ‖ViV
−1
j ‖e−λ∗

i τ < 1, where λ∗
i is the absolute

value of the real part of the weakest eigenvalue. Note that, we need here the

equality ‖eDi‖ = e−λ∗

i . On the other hand, the terms ‖ViV
−1
j ‖ are related to

the previously defined norms in Section 2.2. Thus it is possible to interpret

stability in terms of the distance between eigenvectors and the closeness of the

weakest eigenvalue to the imaginary axis. The following theorem reveals this

result.

Theorem 1 Consider the switched linear system

ẋ(t) = Aσx(t) , σ : [0,∞) → P ∈ Sdwell[τ ] , t ≥ 0 , (8)

where P is a set of m indices and for every p ∈ P, Ap has distinct eigen-

values with nonpositive real parts. Let Vi be the eigenvector set of Ai and

λ∗
i = minj |Re(λj(Ai))|, where λj(A) is the j’th eigenvalue of A. Then (8)

is stable if

τ ≥ max
j∈P

(max
i∈P

d1(Vi,Vj)

λ∗
j

) (9)

Proof. Let Vi be an eigenvector matrix of Ai. Then the eigenvalue decompo-

sition of Ai is Ai = ViDiV
−1
i , where Di is a diagonal matrix whose diagonal

entries are the eigenvalues of Ai. Note that ‖eDi‖ = e−λ∗

i . For t ∈ [ωi−1, ωi),
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using (3),

‖x(t)‖ =

∥

∥

∥

∥

∥

eApi
(t−ωi−1)

(

i−1
∏

k=1

eApk
∆k

)

x(0)

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

Vpi
eDpi

(t−ωi−1)

(

i−1
∏

k=1

V −1
pk+1

Vpk
eDpk

∆k

)

V −1
1 x(0)

∥

∥

∥

∥

∥

≤ ‖Vpi
‖‖V −1

1 ‖e−λ∗

pi
(t−ωi−1)

(

i−1
∏

k=1

‖V −1
pk+1

Vpk
‖e−λ∗

pk
∆k

)

‖x(0)‖

Since e−λ∗

pi
(t−ωi−1) ≤ 1,

‖x(t)‖ ≤ ‖Vpi
‖‖V −1

1 ‖

(

i−1
∏

k=1

‖V −1
pk+1

Vpk
‖e−λ∗

pk
∆k

)

‖x(0)‖

= ‖Vpi
‖‖V −1

1 ‖

(

i−1
∏

k=1

e
−λ∗

pk
(∆k−τ)+ln ‖V −1

pk+1
Vpk

‖−λ∗

pk
τ

)

‖x(0)‖

By defining α :=
∑i−1

k=1 ln ‖V −1
pk+1

Vpk
‖ − λ∗

pk
τ , β :=

∏i−1
k=1 e−λ∗

pk
(∆k−τ) ≤ 1 since

∆k ≥ τ , and γ := maxi,j∈P (‖Vi‖‖V
−1
j ‖) ≥ ‖Vpi

‖‖V −1
1 ‖ .

‖x(t)‖ ≤ β γ eα‖x(0)‖ (10)

≤ γ eα‖x(0)‖ (11)

Now assume that (9) is satisfied. Then

ln ‖V −1
pk+1

Vpk
‖ − λ∗

pk
τ = λ∗

pk

(

ln ‖V −1
pk+1

Vpk
‖

λ∗
pk

− τ

)

≤ λ∗
pk

(

max
j∈P

(max
i∈P

d1(Vi,Vj)

λ∗
j

) − τ

)

≤ 0

which implies α ≤ 0. Thus from (11), ‖x(t)‖ ≤ γ ‖x(0)‖ follows and this result

does not depend on the chosen interval of t. So (8) is stable.

Remark 1 The condition given by the inequality (9) shows how the minimum

dwell time depends on the weakest eigenvalues and the distance between the
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eigenvector sets of subsystem matrices. In synthesis of switched control systems

one should decrease the distance between the eigenvectors of subsystems when

one wants to allow faster switching.

Remark 2 If all (Ai, Aj) pairs commute then choosing same eigenvector matrix

for both gives d1(Vi,Vj) = 0, ∀i, j ∈ P and (9) implies that the switched system

(1) is stable under arbitrary switching. That is, in case of distinct eigenvectors

Theorem 1 is more general than the result in [10].

Remark 3 In view of Lemma 1, if the set {Ap | p ∈ P} is simultaneously

normalizable then the system (1) is stable under arbitrary switching when all

individual subsystems are stable. One can also see this considering the fact that

v = xTx is a common Lyapunov function for normal matrices.

In Theorem 1 we have made use of the relation between the eigenvector sets

of subsystem matrices. For another condition one can benefit from the innate

restriction stemming from the correspondence between switching signals and

walks in a digraph. While it is easier to calculate the dwell time by Theorem

1, the following theorem may give a smaller dwell time not only due to the

abovementioned approach but also due to the different semimetric (5) used

instead of (4).

Theorem 2 Assume that all assumptions of Theorem 1 are satisfied. Let P2

denote the set of all subsets of P with two or more than two elements. Then
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Figure 2: A digraph corresponding to a switched system with m = 3

(8) is stable if

τ ≥ K max
i,j∈P

d2(Vi,Vj)

λ∗
i + λ∗

j

(12)

or

τ ≥
2 m − 2

m
max
i,j∈P

d2(Vi,Vj)

λ∗
i + λ∗

j

(13)

where

K = 1 + max
I∈P2

(

s(I) − 2
∑

i∈I λ∗
i

min
i∈I

λ∗
i

)

(14)

and m = s(P).

Proof. Consider a complete weighted digraph D = (V ,A, Ω) for which there

exist a bijective map p(·) from V to the index set P (see Fig. 2). By defining

the weight of an arc as Ω ((vi, vj)) = ln ‖V −1
p(vj)

V
p(vi)

‖ − λ∗
p(vi)

τ , the quantity α
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in (11) will correspond to the weight of a walk in D. From Lemma 2, this walk

can be decomposed into cycles and a path with length of at most m − 1. Then

one can write α defined in the previous proof as α = α∗ + α2 + α3 + · · · + αm

where α∗ is the weight of the path and αi is the sum of the weights of cycles

with length i for i = 2, 3, . . .m. Since V is a finite set there exist a number

ᾱ = maxα∗, which is the largest weight of all paths in D. Then from (11)

‖x(t)‖ ≤ γ eᾱ+
Pm

k=1
αk ‖x(0)‖.

Now we will show that αk ≤ 0 ∀k = 2, . . . , m.

Consider a cycle Ck : v1, a1, v2, a2, . . . , vk, ak, v1 in D, where k is the length

of the cycle. Let I = {p(v1), p(v2), . . . , p(vk)}, δ = arg mini∈I λ∗
i . Then the

weight of the cycle is

Ω(Ck) =
k−1
∑

i=1

Ω ((vi, vi+1)) + Ω ((vk, v1))

=
k−1
∑

i=1

ln ‖V −1
p(vi)

Vp(vi+1)‖ + ln ‖V −1
p(vk)Vp(v1)‖ − τ

∑

i∈I

λ∗
i

=

k−1
∑

i=1

ln ‖V −1
p(vi)

VδV
−1
δ Vp(vi+1)‖ + ln ‖V −1

p(vk)VδV
−1
δ Vp(v1)‖ − τ

∑

i∈I

λ∗
i

≤
∑

i∈I

(

ln ‖V −1
i Vδ‖ + ln ‖V −1

δ Vi‖
)

− τ
∑

i∈I

λ∗
i

≤
∑

i∈I,i6=δ

d2(Vi, Vδ) − τ
∑

i∈I

λ∗
i

Assume (12) is satisfied, then eliminating the term d2(Vi, Vδ)

Ω(Ck) ≤ τ
∑

i∈I,i6=δ

λ∗
i + λ∗

δ

K
− τ

∑

i∈I

λ∗
i

=
τ

K

(

∑

i∈I

λ∗
i + (s (I) − 2)λ∗

δ

)

− τ
∑

i∈I

λ∗
i (15)
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From (14)

K ≥

∑

i∈I λ∗
i + (s (I) − 2)λ∗

δ
∑

i∈I λ∗
i

(16)

Substituting (16) in (15) gives Ω(Ck) ≤ 0. Then αk ≤ 0, which implies that (8)

is stable.

Now assume that (13) is satisfied. Using mini∈I λ∗
i ≤

(
∑

i∈I λ∗
i

)

/s(I) and

the equation (14),

K ≤ 1 + max
I∈P2

s(I) − 1

s(I)

can be obtained. Since (x − 2)/x is an increasing function

K ≤
2m − 2

m

follows. Thus, (12) is satisfied and the switched system (8) is stable.

Remark 4 The condition (12) can give a smaller dwell time than the condition

(9). However it is difficult to apply this condition to get a result on dwell time,

because one has to do heavy calculations in order to determine K. On the other

hand, the condition (13) is much easier to apply, whereas it gives slightly larger

value for the minimum dwell time. Both conditions give the same result if m = 2

since in this case K = 2m−2
m

= 1.

The conditions (9), (12), and (13) imply asymptotic stability when a slightly

different set of switching signal is used and all the individual subsystems are

assumed to be asymptotically stable. This result is given by the following the-

orem.
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Theorem 3 Consider the switched linear system

ẋ(t) = Aσx(t) , σ : [0,∞) → P ∈ S′
dwell[τ ] , t ≥ 0 , (17)

where P is a set of m indices and members of the family {Ap | p ∈ P} are

Hurwitz matrices with distinct eigenvalues. Let Vi be the eigenvector set of Ai

and λ∗
i = minj |Re(λj(Ai))|, where λj(A) is the j’th eigenvalue of A. Then (17)

is asymptotically stable if one of the conditions (9), (12), and (13) is satisfied.

Proof. Again (10) is satisfied. Since S′
dwell[τ ] ⊂ Sdwell[τ ] (9), (12), or (13)

implies α ≤ 0 due to the previous theorems. Thus, from (10)

‖x(t)‖ < β γ ‖x(0)‖ , t ∈ [ωi−1, ωi).

From the definition of S′
dwell[τ ] (see (7)) β → 0 as i → ∞. Consequently

‖x(t)‖ → 0.

4 Illustrative Examples

In this section we are going to illustrate our results with examples and compare

them with the ones in literature. In the following we will briefly present the

already existing results to remind.

In [15], where it is proved that the switched system (8) is stable for suffi-

ciently large τ ’s, the minimum dwell time is given by

τmin = max
i∈P

inf
α>0,β>0

{

α

β
| ‖eAit‖ < e(α−βt), ∀t ≥ 0

}

. (18)

In [27] this result was extented to the switched systems with average dwell time,

which is a generalized concept of the dwell time. In this case S = Save[τD, N0],
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where N0 is called chatter bound. Although this method is applicable in a much

more general setting such as in presence of noise and parameter uncertainties, it

overlaps the dwell time approach when N0 = 0. Using this method the minimum

dwell time can be found as

τmin = max
Q,Q̄∈Q

ln (σmax[Q]) − ln
(

σmin[Q̄]
)

2λ0
(19)

where λ0 is a positive number satisfying that all Ap + λ0I , p ∈ P are Hurwitz

stable, Q is the set of matrices Qp satisfying

Qp(Ap + λ0I) + (Ap + λ0I)T Qp = −I , p ∈ P

and σmax (σmin) is the largest (smallest) singular value. A recent work [18] pro-

posed a method by which the minimum dwell time can be found much smaller.

Using multiple Lyapunov functions technique they have given linear matrix in-

equality conditions which imply that the value of the Lyapunov functions at

switching times gets smaller. Their method based on increasing τmin gradually

from zero and checking each time whether some linear matrix inequalities are

satisfied, which is difficult to perform especially when the number of subsystems

or the dimension of each subsystem is increased.

Example 1 Consider the switched system (8) with P = {1, 2}, where A1 =

(

−0.2 5
1 −0.3

)

and A2 =
(

−0.4 −1
5 −0.6

)

. For these matrices λ∗
1 = 0.25, λ∗

2 = 0.5 and

the distance between eigenvector sets are calculated as d1(V1,V2) = 0.8056 and

d2(V1,V2) = 1.6104. Using Theorem 1, the minimum dwell time is estimated as

τmin = 3.2223, whereas by Theorem 2, τmin is obtained as 2.1472.
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Figure 3: A solution of the switched system in Ex. 1 (solid and dashed lines

correspond to the solution for p = 1 and p = 2, respectively.)
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Figure 4: Trajectories of subsystems in Ex. 1 (solid and dashed lines correspond

to the solution for p = 1 and p = 2, respectively.)
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The trajectories of the subsystems given in Example 1 is sketched in Figure 4

and a solution obtained by switching these subsystems with a periodic switching

signal with period τmin = 2.1472 is illustrated in Figure 3. For this example

the condition (18) taken from [15] gives τmin = 3.24 and the average dwell

time method in [27] results in τmin = 8.51, which are larger than our results.

On the other hand, using the method given in [18] we obtain τmin = 2.1384,

which is slightly better than our results. During our excessive trials carried

out by randomly creating stable subsystems we observed that the method in

[18] always gives the best result whereas the condition (12) in Theorem 2 is

always the second best amongst the other methods. The following example

illustrates how the minimum dwell time becomes smaller when the distance

between eigenvector sets is decreased.

Example 2 Consider the switched system (8) with P = {1, 2}, where A1 =

(

−0.2 −5
1 −0.3

)

and A2 =
(

−0.2 −5
2 −0.3

)

. For these matrices λ∗
1 and λ∗

2 are equal to

0.25 and the distance between eigenvector sets are found as d1(V1,V2) = 0.2696

and d2(V1,V2) = 0.3467. Using Theorem 1 the minimum dwell time is found as

τmin = 1.0785 and by Theorem 2 it is found as 0.6934.

For this example the method in [18] gives again a better result τmin = 0.6394,

whereas from (18) and (19) we have estimated the values τmin = 3.24 and

τmin = 3.2333, respectively, which are obviously larger than our results. In

Example 2 the distance between eigenvector sets is smaller than the distance

obtained for the system in Example 1. This can also be followed by comparing

Figure 4 and Figure 6. Thus the last example also demonstrates the fact that
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Figure 5: A solution of the switched system in Ex. 2 (solid and dashed lines

correspond to the solution for p = 1 and p = 2, respectively.)
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Figure 6: Trajectories of subsystems in Ex. 2 (solid and dashed lines corresponds

to the solution for p = 1 p = 2, respectively.)
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if the distance between eigenvector sets is reduced then it is possible to choose

τmin smaller and obtain a stable switched system. Figure 5 illustrates a solution

of the switched system in Example 2, where switching signal is a periodic signal

with period τmin = 0.6934.

5 Conclusion

In this work a method to obtain the minimum dwell time for switched linear

systems is given. The method, besides being easy to use, gives a bound on

dwell time for the stability of switched linear systems and can give a dwell time

smaller than the ones obtained by the already existing methods. The important

aspect of the conditions obtained by the proposed method and stated by (9)

in Theorem 1 and by (12) and (13) in Theorem 2 is their explicitness. These

explicit conditions clearly expose the dependence of the minimum dwell time on

the subsystem properties. So, one can easily follow that to reduce the distance

between eigenvector sets of subsystems or to shift the weakest eigenvalues to

left in complex plane will decrease the minimum dwell time.

The method of the previous studies, such as [15] and [27], considered each

subsystem seperately. First they derived a dwell time for each subsystem guar-

anteeing contraction on the state space and then take the maximum of them.

In this work we considered the interaction between the subsystems, which is

interpreted by the distance between eigenvector sets. We believe that to benefit

from the distance between eigenvectors makes it possible to obtain a smaller
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dwell time.

Even though in this work stable subsytems are taken into account, the pro-

posed method can also be extended to give conditions for different cases, such

as switching between stable and unstable systems. In this case the dwell time

should be bounded from above for unstable subsystems, whereas it remaines

bounded from below for stable subsystems. Moreover the set of admissible

switching signals should exclude the ones that switches only among unstable

subsytems.

The proposed method gives the condition in [10] as a special case. Thus,

the condition for diagonalizable matrices can be easily obtained considering

the distance between eigenvector sets. On the contrary, the proposed method

does not comprehend the result given on the triangularizability of subsystem

matrices in [11] as a special case. One way to extend the result given here in

order to include the triangularizability condition as a special case when τ is

equal to zero could be to consider the distance between invariant subspaces of

subsystem matrices instead of using the semimetrics defined for eigenvector sets.

This approach could further give a better result on the minimum dwell time.
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