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A dynamic AES cryptosystem 
based on memristive neural 
network
Y. A. Liu1, L. Chen2, X. W. Li2, Y. L. Liu1, S. G. Hu1, Q. Yu1, T. P. Chen3 & Y. Liu1*

This paper proposes an advanced encryption standard (AES) cryptosystem based on memristive neural 
network. A memristive chaotic neural network is constructed by using the nonlinear characteristics 
of a memristor. A chaotic sequence, which is sensitive to initial values and has good random 
characteristics, is used as the initial key of AES grouping to realize "one-time-one-secret" dynamic 
encryption. In addition, the Rivest-Shamir-Adleman (RSA) algorithm is applied to encrypt the initial 
values of the parameters of the memristive neural network. The results show that the proposed 
algorithm has higher security, a larger key space and stronger robustness than conventional AES. The 
proposed algorithm can effectively resist initial key-fixed and exhaustive attacks. Furthermore, the 
impact of device variability on the memristive neural network is analyzed, and a circuit architecture is 
proposed.

The advanced encryption standard (AES), a group symmetric encryption processes with variable key lengths, 
takes advantage of good security, high efficiency, easy implementation and strong flexibility and has become 
an international mainstream standard encryption system1–3. However, there are still some security problems in 
AES, such as the fixed initial key, key decoding, and limited key space4–7. Chaotic systems were introduced to 
improve the AES encryption algorithm8–12. In 2004, a one-way coupled spatiotemporally chaotic map lattice was 
used to construct a new AES cryptosystem8. In 2018, a novel chaos-based hybrid encryption algorithm design 
for secure and effective image encryption was presented9. In 2019, an image encryption algorithm was proposed 
based on the combination of a chaos sequence and modified AES10. In 2020, a four-dimensional chaotic system 
was applied to generate keys and improve advanced encryption standard11. In 2021, a modified AES cryptosys-
tem with dynamic random keys based on chaos synchronization was presented12. There are a few of researches 
on neural networks for AES13; and they mainly focus on optimization and searching problems. Hopfield et al. 
introduced the energy function to a neural network to solve the travelling salesman problem (TSP)14. Multilayer 
perceptron neural networks (MLP NNs) were trained for sonar dataset classification15,16.

In addition, the abovementioned algorithms improve AES without considering physical implementations. As 
the fourth fundamental circuit component, memristors have many advantages17, such as nonlinearity, memory 
properties, low power consumption, and simple structures18. There is also much research on building chaotic 
systems and neural networks based on memristors19–31. In 2008, several nonlinear oscillators were derived from 
Chua’s oscillators by replacing Chua’s diodes with memristors19. In 2012, a delayed switching effect was used to 
control the switching of a memristor synapse between two neurons21. In 2020, a physical memristor based on 
the Muthuswamy-Chua chaotic system (circuit) was provided29. These memristive neural networks are rarely 
applied to encryption systems based on lightweight cryptography. Jack Cai presented a cryptography architecture 
based on memristor crossbar array, binary hypervectors, and neural network32. A hardware module based on 
memristor devices was demonstrated for AES key generation33. Some applications in image encryption were 
found by the memristor based chaotic system34.

In this paper, based on the memristor-based transient chaotic neural network (MTCNN)35, a long-time 
chaotic state is realized by altering the value of the parameters. By MTCNN, the AES initial key is dynamically 
generated to realize "one-time-one-secret" encryption. Simultaneously, to improve security, Rivest-Shamir-Adle-
man (RSA) encryption is used to encrypt the initial parameters of a chaotic network. The histogram analysis of 
image encryption, sensitivity and statistics analysis have been carried out, and the capability and improvement 
in this proposed AES cryptosystem have been examined. At the same time, we also tested the variability of the 
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device and the noise immunity of the network, and the results proved that MTCNN has good anti-interference 
characteristics. Finally, the circuit level architecture is proposed and simulated successfully, which proves it can 
be implemented in hardware.

Background and methodology
AES.  Rijndael was chosen as the advanced encryption standard by the National Institute for Standards and 
Technology (NIST) because of its elegance, efficiency and security in 2000. AES is a symmetric encryption algo-
rithm with a block length of 128-bit. The numbers of encryption rounds are related to the key lengths and are 10 
rounds for a 128-bit key, 12 rounds for a 192-bit key and 14 rounds for a 256-bit key. Each round of AES encryp-
tion mainly includes SubBytes, ShiftRows, MixColumns and AddRoundKey. AddRoundKey, which applies XOR 
operation between the input state matrix and the key, is the most important step. The traditional AES system 
generates each round key by a fixed key expansion.

MTCNN.  MTCNN is designed and implemented by introducing a memristor into a transient chaotic neu-
ral network (TCNN), which has great self-control when switching between chaotic and steady states, and it is 
described as35:

 where xi is the output of neuron i , yi is an internal state of neuron i , zi is the self-feedback connection weight of 
neuron i ( zi>0), wij is the connection weight between neuron j and neuron I , α is a positive scaling parameter for 
inputs ( α>0), k is a damping factor of the neuronal membrane (0 < k<1), ε is a steepness parameter of the output 
function ( ε>0), M0 denotes the initial resistances of the memristor, b and c are the scaling parameters, ϕ is the 
magnetic flux of the memristor, dϕdt = c · xi(t) , and km is the initial value of the memristor.

T h e  s e t t i n g s  o f  v a r i o u s  p a r a m e t e r s  c a n  b e  f o u n d  i n 3 5 . 
M0 = 1100, k = 0.9, 1

ε
= 800, I0 = 0.65, km = 109, b = 100, c = 1.25× 10−5, andy0 = 0.5 . This work aims to 

improve the AES algorithm with MTCNN. It requires prolonging the chaotic state of the system to generate 
chaotic sequences. As shown in Fig. 1, the period of the chaotic state can be controlled by the parameters. 
When increasing ε or decreasing km , the duration of chaos becomes significantly longer. Figure 1 shows that the 
number of iterations of chaos could increase from 2000 to 8500 within 1/ε from 500 to 1000 or km from 3 × 109 
to 0.65 × 109.

Dynamic AES using MTCNN.  The MTCNN model is introduced to change the encryption key every 
round, as shown in Fig. 2. The plaintext is encrypted with AES, and the parameters of the key generated by the 
chaotic neural network are encrypted with RSA. The chaotic sequence generated by MTCNN can be used as a 
key for each round of encryption and decryption.

The chaotic sequence generated by MTCNN realizes key generation through the following process, as shown 
in Fig. 3. Firstly, 16 floating-point numbers with values between 0 and 1 are randomly selected by 16 iterations 
in the chaotic period. Then, 6 to 10 digits after the decimal point of every floating-point number are taken, and 
are divided by 256 to obtain an integer in [0, 255]. By converting the decimal system into a binary system, each 
integer in [0, 255] is converted into an 8-bit binary number, and finally, 16 integers can be used to obtain a 128-
bit sequence, i.e., a 128-bit key.

As a chaotic neural network is sensitive to the initial value, with a slight modification in the initial value each 
time, a different nonduplicate key sequence can be obtained and conformed to the key standard. The key gener-
ated from each initial value can be used for one round of AES encryption, and ten initial values can complete 
one round AES block encryption.

Results and analyses
We examine image and text encryption and decryption by the proposed algorithm. The encryption parameters 
are set as mentioned above.

Histogram analysis of image encryption.  As shown in Fig.  4, this system successfully realizes the 
encryption and decryption of the greyscale images (256 × 256) "Cameraman" and "Chemical plant". Their his-
tograms before encryption and after encryption by the proposed AES model and conventional AES model are 
presented. The histograms of the original images have a nonuniform distribution and vary widely, while the 
pixel values of the encrypted images are distributed uniformly. Compared with conventional AES, the proposed 
algorithm has better balance and smaller variations. This demonstrates that the proposed algorithm has better 
security and can resist statistical attacks more efficiently. However, the computing time of the proposed algo-
rithm is a little long due to the high complexity.

(1)xi(t) = 1
1+e−yi (t)/ε

(2)yi(t + 1) = kyi(t)+ α

(

∑n
j=1 wijxj(t)+ Ii

)

− zi(t)(xi(t)− I0)

(3)zi(t) = b · 1√
M0

2+2kmϕ

(4)dϕ
dt = c · xi(t)
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Figure 1.   The period of the chaotic state of MTCNN controlled by parameter value. (a) km = 3*109; (b) km 
=0.65*109; (c) 1/ε = 500 and (d) 1/ε = 1000.

Figure 2.   Schematic illustration of the proposed AES encryption and decryption process based on MTCNN.
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Sensitivity analysis.  The experiment on the sensitivity of the proposed cryptosystem is performed 
by altering the initial values of the memristive neural network parameters. After changing the parameters 
( M0, ε, I0, km, and y0 ) slightly, the bit change rate of ciphertext is shown in Table 1. In the table, when M0, ε, I0, km 
and y0 are varied about 1× 10−16 , each of them can obtain a bit change rate of ciphertext of approximately 50%, 
which means the key avalanche phenomenon is apparent. This verifies the good sensitivity, key dependence and 
effectiveness of the algorithm.

Statistics analysis.  The correlation detection of the proposed encryption algorithm is shown in Fig. 5. To 
calculate the autocorrelation and cross-correlation, the following equations are used36:

where RS1,S2 is the cross-correlation of sequences S1 and S2 ; S1 and S2 are the sequence means; and m is the cor-
relation interval. When S1 = S2 , the above equation becomes an autocorrelation function. It can be confirmed 
that the chaotic sequence generated by MTCNN has good randomness, as shown in Fig. 5a. When m = 0 , the 
autocorrelation function is equal to 0.25, and when m is not equal to 0, the autocorrelation function tends to be 
zero. The whole autocorrelation function is close to the δ function and is quasi-random. Moreover, by measuring 
the frequency of the chaotic sequence, the average value of the balance degree of the chaotic sequence is 49.76%. 
This means that the "0" and "1" sequences of the chaotic sequence are evenly distributed. The balance degree of 
the chaotic sequence is good, as shown in Fig. 5a–d. It can also be seen that the values of the autocorrelation 
sidelobe and cross-correlation function of the ciphertext sequence are close to zero, indicating that the ciphertext 
encrypted by MTCNN shows good randomness and is not related to plaintext.

Theoretically, the key space of conventional "AES128" is 2128 ≈ 3.4× 1038 . The memristive neural net-
work used in this work can act as the parameter of the key, and the parameter type and range of the proposed 
MTCNN method are presented in Table 2. The total key space size is equal to the product of all parameter spaces: 
K = KM0 × Kk × Kε × KI0 × Ky0 × Kkm × Kb × Kc ≈ 8.62× 10123 , where KM0 ,Kk ,Kε ,KI0 ,Ky0 ,Kkm ,KbandKc 
are the key spaces for the parameters in Table 2. The key space of the proposed AES cryptosystem is much larger 
than that of the conventional AES system.

Figure 6 shows the frequency detection for encryption with MTCNN. It should be noted that regardless of 
whether the plaintext has prominent statistical characteristics or randomness, the corresponding ciphertext has 
good randomness. This means that the ciphertext does not depend on the statistical characteristics of the plain-
text. The algorithm has good plaintext independence and can effectively resist differential attacks. Furthermore, 
20 poker tests were carried out, and the test results are shown in Table 3. According to36, the 20,000-bit random 
ciphertext encrypted by AES based on MTCNN is divided into 4-bit groups, and f (i) , the number represented by 
the 4-bit group elements, is counted. The statistic X is calculated by Eq. (6), which passes when 2.16 < X < 46.17.

(5)RS1,S2(m) =
1

N

N−1
∑

i=0

[S1(i)− S1][S2(i +m)− S2]

Figure 3.   Schematic diagram of the 128-bit key generation by MTCNN.



5

Vol.:(0123456789)

Scientific Reports |        (2022) 12:12983  | https://doi.org/10.1038/s41598-022-13286-y

www.nature.com/scientificreports/

Figure 4.   Histograms of the image encryption. (a-f) Cameraman: (a) original image; the image after (b) 
proposed encryption, (c) conventional AES; histogram of the (d) original image, (e) encrypted by proposed 
algorithm, (f) encrypted by conventional AES; (g-l) Chemical plant: (g) original image; the image after (h) 
proposed encryption, (i) conventional AES; histogram of the (j) original image, (k) encrypted by proposed 
algorithm, (l) encrypted by conventional AES.

Table 1.   Bit change rate of ciphertext with the change of parameters.

Parameter Initial value New value Bit change rate of ciphertext (%)

M0 1100 1100 + 1100 × 10–16 47.66

km 109 109+ 109 × 10–16 50.98

1/ε 800 800 + 800 ×  10–16 46.68

I0 0.65 0.65 + 0.65 × 10–16 50.10

y0 0.5 0.5 + 0.5 × 10–16 51.46
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Figure 5.   Correlation detection of encryption algorithm based on MTCNN. The autocorrelation function for 
(a) the chaotic sequence, (b) the ciphertext, (c) the plaintext; and (d) the cross-correlation function values of 
plaintext and ciphertext.

Table 2.   List of parameter types and range of the proposed MTCNN.

Parameter Data type Value range Space size

M0 Double [400,2000] KM0
≈ 1600× 10

16

k Double [0.45,0.99] Kk ≈ 0.54× 10
16

1/ε Int [400,1000] Kε ≈ 600

I0 Double [0.6,0.7] KI0 ≈ 0.1× 10
16

y0 Double [0.1,0.9] Ky0 ≈ 0.8× 10
16

km Double [0.1× 10
9,10× 10

9] Kkm ≈ 9.9× 10
9 × 10

16

b Double [50,150] Kb ≈ 100× 10
16

c Double [9× 10
−6,3× 10

−5] Kc ≈ 21× 10
−6 × 10

16

Figure 6.   Frequency detection of the encryption algorithm based on the proposed MTCNN.
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The results show that X falls in the range of [8.46, 27.28], and its average value is 16.54 ∈ [2.16, 46.17]. The 
ciphertext of this algorithm has good randomness and can resist attacks, such as statistical analysis attacks.

Hardware simulations.  As shown in Fig.  7, the proposed circuit level architecture has four modules, 
including MTCNN controller, 12-bit digital-to-analog converter (DAC), 12-bit analog-to-digital converter 
(ADC), and memristive amplifier. MTCNN controller is mainly used to complete the iterative algorithm of cha-
otic system, and to constantly output voltage excitation. DAC and ADC, using the 0.13-um COMS technology, 
are applied for the conversion between MTCNN controller and device-level circuit. (Pt/TiO2/Pt) memristors 
architecture are fabricated on top of CMOS in our laboratory. The CMOS and memristors are integrated by the 
hybrid technology. The working process is described as follows. Firstly, the initial output of MTCNN controller 
is converted into a voltage through 12-bit DAC. Then the current obtained by the memristor, through the ampli-
fier circuit is convert to a voltage. Finally, the output voltage is sent back to MTCNN controller through ADC for 
calculation, and the next voltage is output.

This circuit involves many conversions between analog and digital. The precision of the convertors has an 
important effect on working of the design. In addition, a small error from quantization accuracy may be continu-
ously accumulated by the iterative process in the circuit, possibly leading to final wrong result. Therefor a 12-bit 
resolution DAC and ADC are very necessary for this work. In this work, both DAC and ADC are designed with 
conventional architecture. The current-steering DAC is designed based on an array of matched current sources 
which are binary decoded. Each switch of different weights is controlled by the input digital code and decides the 
magnitude of the current in each branch. Finally the output of the DAC is obtained by the summing circuit. The 
successive approximation register (SAR) ADC consists of sample-and-hold (S/H), comparator, DAC, and SAR 
logic control circuit. The switch procedure is realized with a binary search algorithm. That means that the input 
signal is compared with the reference voltage output by the DAC from the most significant bit (MSB) to the least 
significant bit (LSB). When input the signal, the switch of largest capacitor CR is turn on and the other capacitors 
are turn off. The first comparison is done by the comparator. If the input voltage is higher than the reference 
voltage, MSB is "1". Otherwise, it is "0". The switch of the largest capacitor becomes turn-off. Then we repeat 
the switch procedure until the LSB is approached. That means the final output digital code value is obtained. 
Each comparison and conversion are controlled by the clock signal generated by the SAR logic control circuit.

The results of circuit simulation based on 12-bit and 10-bit DAC/ADC are illustrated in Fig. 8. Both 12-bit 
and 10-bit DAC/ADC enables the chaos, which proving that the proposed MTCNN can be implemented in 
hardware. Furthermore, it obviously has richer chaotic dynamic characteristics with the 12-bit ADC/DAC than 

(6)X = 16
5000 × (

∑15
i=0[f (i)

2])− 5000

Table 3.   The results of 20 times of Poker test.

Test Results of statistic X

13.34 19.18 23.93 8.46

14.61 17.29 18.64 14.57

20.33 10.62 9.66 27.28

15.87 16.72 12.06 18.98

21.36 13.54 17.22 17.09

Figure 7.   Hardware implementation schematic of the MTCNN system.
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10-bit, and its chaotic time is longer, which will increase the complexity and improve the security of encryption 
cryptosystem.

Discussion
Here, the impact of the variability of the memristor is discussed based on the proposed memristive neural net-
work. Figure 9 shows the current–voltage (I-V) characteristics of the memristor model18. A pinched hysteresis 
loop is observed when a sinusoidal current is applied to the memristor in Fig. 9a. Figure 9b shows the conduct-
ance drift of the memristor from cycle to cycle. The typical conductance-voltage (G-V) characteristics of the 
memristor model is shown in Fig. 10. Figures 10a and c show when negative voltage pulses are applied to the 
memristor, the conductance increases gradually, while it decreases when reversed pulses are applied. Figures 10b 
and d show the white Gaussian noise is added to the device. The white Gaussian noise does not affect the conduct-
ance significantly. To further verify the influence of device variability on the chaotic system, we add these changes 
to the MTCNN. As shown in Figs. 11a and b, the chaotic process of the network after adding Gaussian noise is 
modified. However, as the chaotic state is still existed, the cryptosystem can still work. The device conductance 
drift is related to the scaling parameters b of the memristor. The effect of the scaling parameters on the network 
is shown in Figs. 11c and d. According to Table 2, when the offset of b is within 50%, it only takes effect on the 
duration of chaos. If the offset is more than 50%, there is no chaos state generated and the network does not work.

The proposed network also shows the good performance under the consideration of the non-idealities of the 
device and some randomness, which proves it owns strong robustness. This is because unlike the lightweight 
cryptography, the proposed cryptography does not need absolute stability, and it just needs the general charac-
teristics of memristors. Besides unlike the other improved AES cryptography, it takes the full advantage of the 
memristor and the chaos to realize "one-time-one-secret" dynamic encryption. This paper presents the prospect 
of the combination of memristor and encryption, which can significantly improve the safety of the conventional 
cryptography. However, the proposed system sacrifices some encryption efficiency because of the increase of the 
computational complexity, and owing to introducing the memristor, it is more difficult for hardware implementa-
tion, especially the compatibility of CMOS and memristor.

Conclusion
In summary, this paper proposes an improved AES cryptosystem based on MTCNN. By using the nonlinear 
characteristics of a memristor, a memristive neural network is constructed to generate a chaotic sequence with 
good random characteristics and is applied to improve the key of AES to realize "one-time-one-secret" dynamic 
encryption. Compared with conventional AES, this algorithm has better performance in image encryption with 
a more uniform-distribution histogram and a much larger key space. In addition, the proposed AES algorithm 
has good sensitivity and statistical properties, which can effectively improve the problems of fixed keys and key 
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Figure 8.   Hardware simulation results. (a) and (b) are the output voltage of the neuron and memristor with 
12-bit ADC/DAC, respectively; (c) and (d) are the output voltage of the neuron and memristor with 10-bit 
ADC/DAC.
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Figure 9.   current–voltage (I-V) characteristics of a memristor. (a) an ideal HP memristor; (b) conductance 
drift of the memristor.

Figure 10.   Conductance-voltage (G-V) characteristics of a memristor. (a, c) without white Gaussian noise; (b, 
d) with white Gaussian noise.
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spaces and can improve the anti-attack ability of the AES algorithm. This paper also fully considers the impact of 
device variability on the network, and also proposes a circuit level architecture. The hardware implementation of 
the model in this study with a real memristor and continuous optimization may be carried out in future research.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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