
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 58, NO. 5, JUNE 2009 2471

A Dynamic Anomaly Detection Scheme for
AODV-Based Mobile Ad Hoc Networks

Hidehisa Nakayama, Member, IEEE, Satoshi Kurosawa, Abbas Jamalipour, Fellow, IEEE,
Yoshiaki Nemoto, Senior Member, IEEE, and Nei Kato, Senior Member, IEEE

Abstract—Mobile ad hoc networks (MANETs) are usually
formed without any major infrastructure. As a result, they are
relatively vulnerable to malicious network attacks, and therefore,
security is a more significant issue than infrastructure-based wire-
less networks. In MANETs, it is difficult to identify malicious hosts
as the topology of the network dynamically changes. A malicious
host can easily interrupt a route for which it is one of the forming
nodes in the communication path. In the literature, there are
several proposals to detect such malicious hosts inside the network.
In those methods, a baseline profile, which is defined as per
static training data, is usually used to verify the identity and the
topology of the network, thus preventing any malicious host from
joining the network. Since the topology of a MANET dynamically
changes, the mere use of a static baseline profile is not efficient.
In this paper, we propose a new anomaly-detection scheme based
on a dynamic learning process that allows the training data to
be updated at particular time intervals. Our dynamic learning
process involves calculating the projection distances based on mul-
tidimensional statistics using weighted coefficients and a forgetting
curve. We use the network simulator 2 (ns-2) system to conduct
the MANET simulations and consider scenarios for detecting five
types of attacks. The simulation results involving two different
networks in size show the effectiveness of the proposed techniques.

Index Terms—Ad hoc on-demand distance vector (AODV),
anomaly detection, dynamic learning, forgetting curve, malicious
attacks, mobile ad hoc networks (MANETs), projection distance.

I. INTRODUCTION

INCREASINGLY, mobile ad hoc networks (MANETs) are
receiving more attention as part of the next-generation net-

work technologies. These networks are usually constructed by
using mobile and wireless hosts with minimum or no central
control point of attachment, such as a base station. These
networks can be useful in a variety of applications, such as one-
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off meeting networks, disaster and military applications, and
the entertainment industry. Because the network topology of
MANETs frequently changes, and there is no central manage-
ment entity, all of the routing operations must be performed by
the individual nodes in a collaborative fashion. Consequently,
it is unrealistic to introduce an authentication server that can
employ conventional cryptographic schemes to secure the net-
work against attacks from malicious hosts. The typical types of
attacks in MANETs include eavesdropping, address spoofing,
forged packets, denial of service (DoS), etc. [1].

Secure routing protocols [2]–[4] in which key-based crypto-
graphic technologies [5], [6] are applied have been suggested to
meet the increasing demands for MANET security. However,
besides the topology issue, these methods cannot protect the
network from attacks by a malicious node that has managed
to acquire the network key. Therefore, other security methods
that can detect attacks from malicious hosts are required. If a
well-known attack in the TCP/IP protocol stack is launched in
a MANET, then it is possible to protect the network by using
conventional security techniques [7]. However, if the attacker
maliciously uses the specific routing protocol of the MANET,
prevention becomes remarkably difficult [8]. In such a case, it is
almost impossible to recognize where and when the malicious
node appears. Thus, the attack detection at each node becomes
necessary [9].

The techniques for detecting the malicious attacks are usu-
ally classified into two categories, namely, misuse detection
and anomaly detection. In misuse detection, the method of
using a signature-based analysis is widely implemented. In this
method, the attacks are identified by comparing the input traffic
signature with the signatures extracted from the known attacks
at the network routers. An anomaly detection is a technique
that quantitatively defines the baseline profile of a normal
system activity, where any deviation from the baseline is treated
as a possible system anomaly. It is rather easy to detect an
attack, the traffic signature of which is identifiable by using
misuse detection. However, for those attacks, the type or traffic
signatures of which are hard to identify by misuse detection,
the method is rather inadequate. In such cases, those attacks
can only be detected by using anomaly detection methods. In
anomaly detection, even when the traffic signature is unknown,
if the baseline profile of a network is delineated a priori, then
the abnormality can be recognized. In [10], the effectiveness of
such a detection method in wired networks has been demon-
strated. In this method, the baseline profile is preextracted and
then applied to the same network. However, for MANETs, since
the network conditions are likely to change, the preextracted
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network state may not correctly represent the state of the current
network. This problem indeed influences the accuracy of the
anomaly detection method.

Due to the fact that the MANET environment dynamically
keeps evolving, envisioning a robust anomaly detection method
becomes imperative to thwart the malicious attacks against it. In
this paper, we propose a new anomaly detection scheme based
on a dynamic learning method. The MANET hosts are mobile
on their own so that the MANET environment is dynamically
changing. Our dynamic learning method is based on a statistical
decision theory that calculates the multidimensional projection
distance between the current and normal states of the targeted
host. We propose to use weighted coefficients with a forgetting
curve as its mathematical property has been proved [11], [12]
to suit our requirements. We conduct network simulations with
five types of attacks in [13]–[15] as a case study that concerns
one of the most popular MANET routing protocols, i.e., the ad
hoc on-demand distance vector (AODV) [16]. The simulation
results of the network simulator 2 (ns-2) [17] demonstrate
the effectiveness of the proposed technique, regardless of the
number of nodes in the considered MANET.

The remainder of this paper is organized as follows. In
Section II, we present the problems of conventional detection
schemes in attacks against MANETs. In Section III, we present
an overview of AODV. Section IV describes the proposed
detection scheme and the derivation of the essential parameters.
In Section V, the simulation results concerning the performance
of the proposed scheme are provided. Section VI presents the
conclusions and future research scopes.

II. RELATED WORKS

A. Secure Schemes for Routing Procedures

Secure ad hoc routing protocols have been proposed as a
technique to enhance the security in MANETs. For example,
the secure AODV (SAODV) [18], which uses signed rout-
ing messages, is proposed to add security to AODV [16].
A-SAODV [19], [20] is a mild implementation of SAODV that
uses the RSA [21] as an asymmetric cryptographic algorithm
and the SHA1 [22] as a hash algorithm. The survey conducted
by Yih-Chun and Perrig [23] overviewed the various secure
routing protocols and pointed out their drawbacks and advan-
tages. They also proposed a secure on-demand ad hoc network
routing protocol (Ariadne) [24], which prevents the compro-
mised nodes from tampering with the uncompromised routes,
and the secure efficient ad hoc distance (SEAD) [25], which
is a secure routing protocol, using efficient one-way hashing
functions and not using asymmetric cryptographic operations.
In addition, Zhou and Haas proposed a distributed certification
authority mechanism in which the authentication uses threshold
cryptography [2]. In [26], a MANET is divided into clusters,
and a certification authority is appointed to each cluster. In [27],
a method called key predistribution (KPD) scheme is applied. In
[28], the authenticated routing for ad hoc networks (ARAN) is
proposed by using public-key cryptographic mechanisms based
on the AODV. These methods can only guard against external
attacks. However, the internal attacks mounted by the malicious
or compromised hosts may still have a severe impact on the

network performance, as well as on the connectivity among the
nodes in the targeted MANET.

Deng et al. [29] proposed an approach that requires the
intermediate nodes to send a route reply (RREP) packet with
the next hop information. When a source node receives the
RREP packet from an intermediate node, it sends a “Further
Request” packet to the next hop to verify that it has a route
to the intermediate node and a route to the destination. As a
response to this request, the intermediate node will send another
RREP packet. When the next hop receives a “Further Request”
packet, it sends a “Further Reply” packet that includes the
verified result to the source node. Based on the information in
the “Further Reply” packet, the source node judges the validity
of the route. Again, the method in [30] requires the intermediate
node to send the route confirmation request (CREQ) to the next
hop node toward the destination, and then, the next hop node
receives the CREQ and looks into its cache for a route to the
destination. If it has such a route to the destination, then it sends
a route confirmation reply (CREP) message to the source node
with its route information. The source judges whether the path
in RREP is valid by comparing the information with CREP.
In these methods, the routing protocol has to be modified.
These modifications may increase the routing overheads, which
results in the performance degradation of the bandwidth-limited
MANETs.

B. Network Monitoring-Based Attack Detection

In addition to the aforementioned techniques, an attack
detection by network monitoring, which can detect attacks
from inside MANETs, has also been proposed. For instance,
Kachirski and Guha [31] proposed a method that detects attacks
by employing distributed mobile agents. Network monitor-
ing nodes are selected to be able to collect all the packets
within a cluster, and the decision agents in the nodes are
used to detect and classify the security violations. The concern
of this method is that the monitoring nodes will consume
a large amount of energy. Vigna et al. [32] detect attacks
by placing AODV-based State Transition Analysis Technique
(AODVSTAT) sensors within the network and by either ob-
serving solely contiguous nodes or trading information with
other sensors. However, it is necessary to deploy a large number
of AODVSTAT sensors on the nodes for detecting a varied
range of attacks. In addition, a large number of UPDATE mes-
sages may cause an overwhelming congestion in the network.
Tseng et al. [33] introduced a method that places a network
monitor (NM) inside the network. In this method, the NM
constantly monitors the packet flow in the network within a
certain range to detect any attacks. However, placing effective
detectors, i.e., mobile agents, sensors, or NMs, is considered to
be difficult when the MANET topology dynamically changes.
One solution to this problem is to observe the packet flow on
each node and to detect any potential attack.

C. Anomaly Detection

Huang et al. [34] proposed a method in which the packet
flow is observed at each node. In this method, 141 features that

Authorized licensed use limited to: TOHOKU UNIVERSITY. Downloaded on August 19, 2009 at 05:22 from IEEE Xplore.  Restrictions apply. 



NAKAYAMA et al.: DYNAMIC ANOMALY DETECTION SCHEME FOR AODV-BASED MOBILE AD HOC NETWORKS 2473

Fig. 1. Route-discovery process on AODV.

are both traffic and topology related are defined. Huang et al.
suggested an anomaly detection mechanism with interrela-
tion between features. Moreover, in [35], they constructed an
extended finite-state automaton (EFSA) according to the
specification of the AODV routing protocol, envisioned nor-
mal condition modeling, and detected attacks with both
specification-based and anomaly-based detection schemes. In
specification-based detection, the attacks were detected as de-
viant packets from the conditions defined by EFSA. In addition,
in anomaly detection, the normal conditions are defined as
the baseline with which the condition of EFSA and also the
amounts of transition statistics are compared. The deviations
from those conditions are then used to detect the potential
attacks. For determining the baseline profiles, in both methods,
the training data are extracted beforehand from the same net-
work environment where the test data are applied. However, we
note that the MANET topology can rather easily be changed,
and the differences in network states grow larger with time. Fur-
thermore, these methods cannot be applied to a network where
the learning phase has been conducted in another network.

Sun et al. [36] proposed an anomaly detection method in
which mobility is considered. This method computes the recent
link change rate (LCRrecent) and can select the training data,
the link change rates of which have the smallest Euclidean
distance to LCRrecent. However, the change of network states
can be caused not only by mobility; it may also occur due to the
sudden participation and disappearance of nodes in a MANET.
When the nodes in the current MANET differ from those in
the training data, the defined baseline profile cannot express the
current network state. As a result, these methods are rendered
inadequate and considered difficult in a MANET environment.

To solve this problem, a normal state needs to be defined by
using the data reflecting the trend of the current situation, and
this leads to the idea of updating the learning process within a
time interval. By doing so, the attack detection can adaptively
be conducted even in a changing network scenario.

III. ATTACKS ON AODV PROTOCOL

A. Overview of AODV Protocol

The AODV [16] is a reactive routing protocol in which the
network generates routes at the start of communication. Each
node has its own sequence number, and this number increases
whenever a link changes. According to its sequence number,
each node judges whether the channel information is recent.
Fig. 1 illustrates the route-discovery process of the AODV.
In this figure, node S attempts to establish a connection to
destination D. First, the source node S refers to the route map
at the start of communication. In the case where there is no
route to destination node D, it sends a route request (RREQ)
message by using broadcasting. The RREQ ID increases by one

Fig. 2. Transferring RERR messages on AODV.

every time node S sends an RREQ message. Nodes A and B,
which have received the RREQ message, generate and renew
the route to its previous hop. They also evaluate if this is a
repeated RREQ message and accordingly discard it. If A and
B have a valid route to the destination D, then they send an
RREP message to node S. In the case where the node has no
valid route, they send an RREQ message using broadcasting.
The exchange of route information will be repeated until an
RREQ message reaches node D. When node D receives the
RREQ, it sends an RREP message to node S. When node S
receives the RREP message, a route is established. In case of
multiple RREPs received, a node selects an RREP message,
the Destination Sequence number (Dst_Seq) of which is the
largest among all the previously received RREPs. However,
if the Dst_Seqs were the same, then it will select the RREP
message whose hop count is the smallest.

In Fig. 2, when node B detects a disconnection of route, it
generates route error (RERR) messages and puts the invalidated
address of node D into its list and then sends RERR to node A.
When node A receives the RERR message, it refers to its route
map and the current list of RERR messages. If there was a route
to the destination for node D included in its map, and the next
hop in the routing table is a neighboring node B, it invalidates
the route and sends an RERR message to node S. This way, the
RERR message can finally be sent to the source node S.

B. Classification of Attacks

According to the aforementioned features, the malicious
nodes can misuse the AODV by forging source IP addresses,
destination IP addresses, RREQ IDs, hop counts, Destina-
tion Sequence numbers (Dst_Seqs), Source Sequence numbers
(Src_Seqs), and also by flooding the network with routing pack-
ets. According to prior works (e.g., [13]–[15]), we can classify
the attacks against AODV into routing disruption attacks and
resource consumption attacks.

1) Routing Disruption Attacks: These attacks interrupt the
establishment of a route or destroy an existing route. The
most common attacks of this type are the modification of
RREP (same as the Blackhole Attack) and the modifica-
tion of RREQ.

2) Resource Consumption Attack: This attack wastes re-
sources of a specific node and the network as a whole. The
most common attack of this type is malicious flooding.

A short explanation of the preceding three attacks is
given here.

1) Modification of RREP: The Dst_Seq represents the fresh-
ness of routing information in the network. When a
source node receives multiple RREP messages, it selects
the node that has the largest Dst_Seq value and accord-
ingly constructs a route. Therefore, a malicious node may
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intentionally attempt to modify the RREP packet and
increase the Dst_Seq value of the RREP message. As a
result, a false route will be established, and the legitimate
data traffic will be interrupted. In addition, the victim
nodes will further spread the false routing information to
others, and thus, the damage will propagate throughout
the network. In this case, we can consider two types of
forged packets. In the first type, the source and destination
IP addresses are spoofed or forged to the destination node.
In the second type, the destination IP address is forged to
the destination node, and the source IP address is spoofed
to a randomly selected node. We call the “Modification of
RREP (1)” as an attack that uses the first packet type and
the “Modification of RREP (2)” as an attack that uses the
second packet type.

2) Modification of RREQ: The RREQ ID represents the
freshness of an RREQ message in the network. Based
on the RREQ ID, each node decides whether to forward
an RREQ message. Therefore, a malicious node attempts
to intentionally increase the RREQ ID when an RREQ
packet is received. Additionally, when a forged packet
with a false source address in the IP header is sent, the
route will never be established.

3) Malicious Flooding: Generally, the RREQ messages are
broadcasted to select new routes. If a malicious node
sends an excess number of RREQ messages, then the
network will become congested with a huge amount of
RREQ traffic. In our preliminary experimental results,
when a malicious node sends more than 20 RREQ packets
per second, the congestion occurs, which leads to signif-
icant unnecessary delays and packet drops. In this case,
we can consider two forged packet types. In the first type,
the source IP address is forged to a randomly selected
node. In the second type, the source IP address is forged
to a destination node, and the RREQ ID is intentionally
increased at the same time. We define the “Malicious
Flooding (1)” as an attack that uses the first packet type
and the “Malicious Flooding (2)” as an attack that uses
the second packet type.

See [13]–[15] for detailed information on these attacks.

IV. DYNAMIC ANOMALY DETECTION

In this section, we first introduce the features that are es-
sential for our envisioned anomaly detection scheme, and then
delineate the module of the detection scheme based on the
projection distances.

A. Definition of Features

Each node observes its own traffic and uses a time slot to
record the number of packets (messages) according to their
types (see Fig. 3). In time slot Δτ , the instantaneous value
of the network state is expressed by a p-dimension vector
x = [x1, x2, . . . , xp]T , where each feature xk (k = 1, . . . , p)
is measured. In this paper, we define nine features related to
path finding, four features related to path abnormality, and one
feature related to a major characteristic of AODV. Therefore,

Fig. 3. Feature definition. The traffic features in a time slot are expressed by
the elements of the p-dimensional vector x.

we obtain p = 14. According to [10], [34], and [35], a small
value for the time slot is preferred, and therefore, Δτ is set to a
constant small value of 5 s.

Furthermore, in the learning process shown in Fig. 3, a time
interval ΔT is defined. It contains several time slots. In other
words, the number of time slots is equal to the number of all
training samples at a given time interval. Note that if we use a
shorter time interval ΔT , the data sets contained in one time
interval will decrease. On the other hand, a larger value of ΔT
slows down the learning process.

The statistics for a time interval define a state in the network,
and a further explanation about the statistics is described in
Section IV-B.

1) Path Finding Features (Nine Dimensions): The path find-
ing features comprise the following:

1) number of received RREQ messages (three types);
2) number of forwarded RREQ messages;
3) number of outbound RREQ messages;
4) number of outbound RREP messages (two types);
5) number of received RREP messages (two types).
For each node, the number of received RREQ messages

includes three types, i.e., messages with their own source IP
addresses, messages with their own destination IP addresses,
and messages with neither source nor destination IP addresses
of their own. When counting the number of received RREP
messages, the packets with a matching destination IP address,
source IP address, RREQ ID, or Src_Seq in the training data
are recorded once for each time slot. Similarly, the number of
outbound RREP messages includes two types, for which the
destination node is itself, and for which it holds the path toward
the destination node. The number of received RREP messages
includes two types: the first type is a packet, both source and
destination addresses of which exist in the training data. All
of the other packets are classified as the second type (with
either one or no matching features). As an example, when a
node is under attack by the “Malicious flooding,” it receives
a tremendous amount of RREQ messages, and therefore, the
number of received RREQ messages increases. This indicates
the presence of anomaly in the network.

2) Path Abnormality Features (Four Dimensions): The path
abnormality features comprise the following:

1) number of received RERR messages;
2) number of outbound RERR messages;
3) number of dropped RREQ messages;
4) number of dropped RREP messages.
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Fig. 4. Distance of sample x to the first principal element φi. d(x) is the
projection distance.

When counting the number of received RREQ messages, the
packets with the same destination IP address and Dst_Seq are
recorded only once for each time slot. As an example, when a
node is under attack of the “Modification of RREQ” messages
caused by packets with a forged source address in the IP header,
a large number of RREP messages will not successfully be
able to be sent out. As a result, the number of dropped RREP
messages will increase, and this acts as a sign of abnormality in
the network.

3) AODV Characteristic Feature (One Dimension): The
AODV characteristic feature comprise the average of the dif-
ferences of Dst_Seq in each time slot between the number of
received RREP messages and the one held in the list.

When sending or forwarding an RREQ message, each node
keeps the destination IP address and the Dst_Seq in its list.
When an RREP message is received, the node looks over the
list to see if there is the same destination IP address. If it does
exist, the difference of Dst_Seq is calculated, and this operation
is executed for every received RREP message. The average of
this difference is finally calculated for each time slot as the
feature. Due to the link error in the ad hoc networks, sometimes
the nodes might receive an old RREP message. In this case,
the newly received Dst_Seq in RREP is smaller than the one
already kept in the list. When this happens, the calculation
is excluded. In a normal state, the Dst_Seq increases in a
relatively stable pace. On the contrary, when a node is receiving
“Modification of RREP” attacks, this value drastically changes,
and thus, we may recognize this particular abnormality.

B. Detection Module by Projection Distance

In pattern recognition, based on statistical decision theory,
the distance measure is an effective way to formulate the differ-
ent types of categories because the same category is distributed
in the close area in a multidimensional feature space [37]. Here,
the normal and attack states as two different categories can be
considered. In this section, we describe the detection module by
using the projection distance (see Fig. 4).

Let us consider a training data set Di = {x} collected by
each node i (i = 1, . . . , N), where N is the number of all nodes
participating in MANET, and the current time interval consists
of Di time slots (Di = |Di|, in case of using all training
samples). First, we calculate the mean vector and the covariance
matrix at node i as

x̄i =
1
Di

∑
x∈Di

x. (1)

Σi =
1
Di

∑
x∈Di

(x − x̄i)(x − x̄i)T . (2)

Fig. 5. Example of the division by using the projection distance.

From (1) and (2), we use the principal component analysis
(PCA) [37] to analyze the statistical nature of the current time
interval. The PCA is the method that explores the correlations
between each feature and finds the most important axis to
express the scattering of data. Here, the most important axis
denotes the baseline profile of network activity. When an attack
takes place, it generates the deviation sample from this axis.
By using PCA, the first principal element φi, which reflects the
approximate distribution of the training data sets, is calculated.
Here, we consider the projection distance of an input data
sample x as

d(x;Di) = ‖x − x̄i‖2 − φT
i (x − x̄i). (3)

When the projection distance is larger than the threshold MI ,
it is evaluated as{

d(x;Di) > MI : attack
d(x;Di) ≤ MI : normal.

(4)

Here, when Mi is the maximum value of projection distance
for node i in the training data sets Di, the suffix I of MI is
extracted from all the nodes (N) as

I = arg
i

max
i=1,...,N

Mi

where

Mi = max
x∈Di

d(x;Di). (5)

Fig. 5 shows a rough image of determining the normal or at-
tack states by using the projection distances in two dimensions.

C. Proposal of Dynamic Anomaly Detection

Since the network topology easily changes in MANET, the
current state may not appropriately be expressed over time.
Therefore, by only using the method described in Section IV-B
to define the normal state, it is rather insufficient to reflect the
changing situation of MANET, and a learning method that can
follow these changes is indispensable. We explain the idea of
dynamically updating the training data sets in the remainder of
this section.

Let T0 be the current time interval, and let T1 be the first
time interval. By using the data collected in T1, initially, the
first principal element is calculated, and then the calculated first
principal element is used in the following time interval T0 for
anomaly detection. If the state in T0 is judged as normal, then
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Fig. 6. Flow chart of the proposed method for learning and evaluation.

the corresponding data set will be used as the training data set.
Otherwise, it will be treated as the data including attack, and it
will consequently be discarded. This way, we keep on learning
the normal states of the network. This procedure is shown
in Fig. 6.

As mentioned earlier, when updating the database, it is
possible to use the most recent data set. However, since the
most recent data set is easily affected by the sudden change
in the network, it is necessary to take the time series model into
consideration to keep the database from being too sensitive to
the changes in the network topology. Here, we use the forgetting
curve [11], [12] as the weighting function to adjust the degree
of importance of the time slot. The forgetting curve aims at
reducing the weight when the data become old and of less
significance.

Suppose using mi data sets as the training data. Fig. 7
shows how to weigh the data sets while learning. λi(t), t =
1, 2, . . . ,mi, are the forgetting coefficients that correspond to
each training data set, respectively. As shown in Fig. 8, the
forgetting curve is expressed as

λi(t) = λi(0)e−aiTt

= λi(0) · exp(−aiΔT · t), i = 1, . . . , N (6)

where the current coefficient λi(0) and the common time
interval ΔT are constants. λi(t) are constrained by

1 =
mi∑
t=1

λi(t), i = 1, . . . , N. (7)

Additionally, we describe the derivation algorithm of determin-
ing the parameters mi, ai in Section IV-D. Using the number of
data sets mi and the forgetting coefficients λi(t), the statistics
of the current state “0” can be calculated from (1) and (2) as

x̄i(0)=
mi∑
t=1

λi(t)x̄i(t)

=
mi∑
t=1

λi(t)
Di(t)

∑
x(t)∈Di

x(t) (8)

Σi(0)=
mi∑
t=1

λi(t)Σi(t)

=
mi∑
t=1

λi(t)
Di(t)

∑
x(t)∈Di

(x(t)−x̄i(t)) (x(t)−x̄i(t))
T . (9)

Here, we consider all the training data sets

U i = {Di(1) ∪ Di(2) ∪ · · · ∪ Di(mi)} . (10)

By using PCA, the first principal element φi(0) is calculated.
As a general scheme, the distance d(x;U i) of the input data
sample x can be computed from (3) and then evaluated as

{
d(x;U i) > MI : attack
d(x;U i) ≤ MI : normal.

(11)

Here, when Mi is a maximum value of the projection distance
for node i in all the training data sets U i, the suffix I of MI is
extracted from all the nodes (N) as

I = arg
i

max
i=1,...,N

Mi

where

Mi = max
x(0)∈Ui

d (x(0);U i) . (12)

D. Derivation Algorithm of Parameters

According to [38], the mobility metric of the MANETs is
expressed by using the number of neighbor nodes. Using the
number of neighbors, the number of training data sets mi

used in the learning process and the parameter ai in (6) can
dynamically be determined. Assume that for a given node i, at
time t, its neighbor set is Si(t), t = 0, 1, 2, . . . ,mi,mi+1. If
Si(0) ∩ Si(mi + 1) = ∅, then we can recognize that the net-
work state has considerably changed, and then mi is determined
as the number of training data sets. Next, we consider ai in (6).
ai represents the change in the size of the considered network.
The change in size of a network is expressed by the change in
the number of its neighboring nodes. Assume that for a given
node, at the first time interval (t = 1), its neighbor set is Si(1).
|Si(0) − Si(1)| is the number of new neighbors during ΔT ,
and |Si(1) − Si(0)| is the number of neighbors that moved
away. Then, ai can be calculated as

ai =
|Si(0) − Si(1)|

N
+

|Si(1) − Si(0)|
N

. (13)

Here, ai is normalized by N (the number of all nodes partici-
pating in MANET). Next, we give an example of the simulation
data. Fig. 9 shows the changes of the number of training data
sets mi. We can see that mi dynamically varies as the time
elapsed.

V. PERFORMANCE EVALUATION

In this section, we describe the details to evaluate the pro-
posed method.

A. Simulation Environment

The experiments were carried out by using ns-2 (ver. 2.27)
[17]. We assume that the simulation network being used is in a
place where various events in a MANET can occur [39], [40]. In
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Fig. 7. Renewing training data using the forgetting coefficients.

Fig. 8. Ebbinghaus’ forgetting curve.

Fig. 9. Example of the number of training data sets, dynamically updated.

this simulation, the run time is 10 000 s, and five types of attacks
were randomly executed from 2500 to 5000 s. All of the nodes,
except the attack node, employed the proposed method to detect
attacks. The simulations were performed for the following two
scenarios: 1) a 50-node network with a network topology of
1000 m × 1000 m and 2) a 100-node network with a network
topology of 2000 m × 2000 m. The traffic loads were constant
bit rate flows with a data packet size of 512 B. In 1), the load
was varied by using 40 flows (at four packets per second). In
2), the load was varied by using 80 flows (at four packets per
second). The 802.11 Media Access Control (MAC) layer was
used with a transmission range of 250 m, and it was set for a
2-Mb/s throughput. As for the moving pattern for each node, we
use a random waypoint (RWP) model [41] in which each node
randomly selects the destinations in the designated simulation
area with random speeds. Here, the node velocity was set

Fig. 10. Mobility pattern for RWP in 5 s.

between 0 and 5 m/s. The pause time was set to 10, 50, 100,
200, and 500 s, respectively. For example, Fig. 10 shows the
moving pattern within 5 s.

To start the learning process, the first normal state, which
excludes the attack data, was manually preextracted from the
training data. This is because our proposed method detects the
possibility of attacks according to the degree of which a state
deviates from the normal state. Here, the first time interval is
set to 300 s. This is a period in which enough normal state
samples can be collected. We also deemed that it necessary
to shorten the updating interval as the mobility rates increase.
However, the shorter the updating interval, the more processing
overhead is required. Therefore, more battery power will be
consumed. From these facts, it is necessary to take into account
the MANET environment and the available battery power to
determine the time interval of updating. In our results, the time
interval of updating ΔT was set to 600 s.

B. Simulation Results

To evaluate our proposed methods, we assume the following
three ways of using the training data sets:

1) M-1: method of using only the initial training data set;
2) M-2: method of using the most recent training data set at

every time interval;
3) M-3: method of using the training data sets dynamically

decided at every time interval.
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Fig. 11. Detection module by projection distance against modification of RREP(1), N = 50. (a) M-1 (conventional method). (b) M-2 (reference method).
(c) M-3 (proposed method).

Fig. 12. Detection module by projection distance against modification of RREP(1), N = 100. (a) M-1 (conventional method). (b) M-2 (reference method).
(c) M-3 (proposed method).

“M-1” is the conventional method, and “M-3” is our proposed
method. For reference, we also show the result of “M-2,” which
is the simplest case of our proposed method.

Figs. 11 and 12 show the projection distances of the first
principal element of a node in the conventional scheme “M-1,”
in the reference method “M-2,” and in the proposed method
“M-3.” From these figures, we can see that, as a general
trend, the value of the projection distance increases during the
time period of 2500–5000 s, when the attacks were executed.
In particular, in the proposed method “M-3,” the value of
the projection distance rapidly increases at 2500 s and then
sharply decreases at 5000 s as well. On the contrary, for the
conventional method “M-1,” the large projection distances can
be found through the whole period, and they do not descend at
the time when attacks stop. This is the reason behind the lower
detection rates (DRs) and a large number of false positives
of the conventional method “M-1.” For the method “M-2,”
comparing with “M-3”, the values of the projection distance
are relatively small and are scattered in a wide range; the result
is better than “M-1” and worse in contrast with “M-3.”

As evident from Fig. 11, where the value of N is 50 during
the attack period, “M-3” yields a higher projection distance and
can detect the current anomaly compared to the other methods.
During the normal period, it should be noted that there are
many points that exceed the threshold in “M-1” and “M-2.”
On the other hand, there is a significant peak at around 9000 s,
and this peak largely exceeds the threshold in “M-3.” Despite
being a normal period when there is no attack, because of the

rapid changes of network topology, this point is incorrectly
evaluated and produces a false positive. As a whole, we can
see that, in the proposed method, there are fewer parts where
the projection distances exceed the threshold than those in the
other methods. This implies that we can obtain a lower number
of false detections in the proposed method. Next, from Fig. 12,
where N = 100, similar to the case of N = 50, during the
attack period, we can see that the proposed method can detect
the anomaly. However, different from the case of N = 50, in
case of “M-1,” the projection distances increase.

This is because, in case of N = 100, there are significant
changes in the network environment. This causes the predefined
baseline profile and the present network state to dramatically
differ. Therefore, compared with the case of N = 50 during
the normal period, we can see that “M-1” produces more false
detections. Meanwhile, compared with the case of N = 50 in
“M-3,” we can see that although there is a number of parts
that exceed the threshold, it generates less false detection than
the other methods. From these facts, we can see that “M-1”
cannot adapt with the changing environment. “M-1” does not
reflect the whole network state since it only represents the
temporary state of the network. For “M-2,” by updating the
training data set, it can adapt to the changing environment to
some extent. Note that, in “M-3,” the false detection in the case
of N = 100 is higher than that of N = 50. This is caused by
the increase in the RERR packets when the link is disconnected
due to the network mobility and size, in addition to the sudden
increase of the RREQ packets when a large number of route
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TABLE I
PERFORMANCE OF DETECTION MODULE BY PROJECTION DISTANCE: N = 50

TABLE II
PERFORMANCE OF DETECTION MODULE BY PROJECTION DISTANCE: N = 100

requests occur at the same time. These trends become more
apparent as the scale of the network becomes larger. Same
reasons can be found for the increase of the false positives.
Increasing the dimensionality may be effective to reduce these
false detections.

In greater detail, Tables I and II display the average of the DR
and the false positive rate (FPR) about the projection distance,
respectively. Based on the results shown in these two tables, we
can see that the proposed method “M-3” provides the highest
average DR and the lowest FPR. Compared to the conventional
method “M-1,” the proposed method “M-3” increases the av-
erage DR by more than 25%. In addition, the average FPR
is decreased by more than 10% in “M-1.” Furthermore, as an
effectiveness of dynamic learning, “M-3” increases the average
DR by more than 15% compared to “M-2” in our simulation.
On the other hand, the FPR of “M-3” is only marginally better
than that of “M-2.” This is because we approximately fixed the
FPR in the range of 10%–20% for clearly understanding the
difference of the DR between “M-2” and “M-3.”

Now, we evaluate the computational complexities of these
three methods. The computational complexity of “M-1” using
the initial data is the lowest, and its order is O(1). “M-2” and
“M-3” compute the principal elements using PCA, which needs
to compute the mean and the covariance. The order is O(p2)
for computing both the mean and covariance, where p is the
number of features described in Section IV-A. The order of
finding the first principal element depends on the technique
of finding the first eigenvalue end eigenvector. For example,
the complexity of the power method [42] is O(k × p2) for
finding the first k eigenvalues and eigenvectors. The “M-2”
is O(p2), where k = 1. Because “M-3” has mi times more
learning processes than those of “M-2,” the complexity of
“M-3” is O(mi × p2) in total. Apparently, there is a tradeoff
between the computational complexity and the accuracy of the
DRs. We actually tested the computation time of our proposed
method by considering p = 14. Using a Linux-based computer

(Pentium 4, 2.4 GHz), this computation time of “M-3” is
below 10 ms. Considering the importance of network security
and the increasing power of ad hoc nodes, we believe that
our proposed method can be a possible choice for performing
anomaly detection in MANETs.

VI. CONCLUSION

In this paper, a new dynamic anomaly detection system
for MANETs has been proposed. For enhancing the security
in MANETs, which are vulnerable to attacks, robust learning
methods against these attacks are required. To differentiate an
attack state from the normal state, we have defined multidi-
mensional features based on the characteristics of these attacks
and utilized the projection distance using PCA based on sta-
tistical theory. Our proposed system demonstrates an effective
performance in terms of high DRs and low FPRs against five
simulated attacks, in addition to the scalability of the proposed
scheme clarified by the simulation results obtained from two
distinct network topologies of varying sizes.

Future works will be focused on the various routing proto-
cols in the MANET architecture. Although AODV is a major
routing protocol in MANETs, new protocols are emerging,
e.g., dynamic MANET on-demand protocol (DYMO) [43].
We will evaluate these protocols and give an analysis for the
additional types of attacks to further improve the accuracy
of the overall system. Moreover, in [44] and [45], Yan et al.
reported an interesting scheme with the context of studies on the
intrusion detection system (IDS). The proposed IDS autonomic
event analysis system that is represented by description logics
allows inferring the attack scenarios and enabling the attack
knowledge semantic queries. To cite a case, first, using our
proposed system to detect attacks and then rigorously applying
this IDS to analyze these attacks may bring about a reliable
approach. Our future works will comprise of feasibility studies
on these more intelligent detection schemes in MANETs.
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