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Abstract: As Coronavirus Disease 2019 (COVID-19) hospitalization rates remain high, there is an

urgent need to identify prognostic factors to improve patient outcomes. Existing prognostic models

mostly consider the impact of biomarkers at presentation on the risk of a single patient outcome

at a single follow up time. We collected data for 553 Polymerase Chain Reaction (PCR)-positive

COVID-19 patients admitted to hospital whose eventual outcomes were known. The data collected

for the patients included demographics, comorbidities and laboratory values taken at admission

and throughout the course of hospitalization. We trained multivariate Markov prognostic models

to identify high-risk patients at admission along with a dynamic measure of risk incorporating

time-dependent changes in patients’ laboratory values. From the set of factors available upon

admission, the Markov model determined that age >80 years, history of coronary artery disease and

chronic obstructive pulmonary disease increased mortality risk. The lab values upon admission most

associated with mortality included neutrophil percentage, red blood cells (RBC), red cell distribution

width (RDW), protein levels, platelets count, albumin levels and mean corpuscular hemoglobin

concentration (MCHC). Incorporating dynamic changes in lab values throughout hospitalization lead

to dramatic gains in the predictive accuracy of the model and indicated a catalogue of variables for

determining high-risk patients including eosinophil percentage, white blood cells (WBC), platelets,

pCO2, RDW, large unstained cells (LUC) count, alkaline phosphatase and albumin. Our prognostic

model highlights the nuance of determining risk for COVID-19 patients and indicates that, rather

than a single variable, a range of factors (at different points in hospitalization) are needed for effective

risk stratification.

Keywords: SARS-CoV-2; prognostication; triage; time trends; Markov model

1. Introduction

As global coronavirus disease (COVID-19) deaths exceed 2.5 million [1], predictors of
severe disease and mortality are necessary to inform clinical decisions and guide patient
care. Efficient COVID-19 transmission, a relatively high infection fatality ratio [2] and
underprepared health systems [3] have seen many hospitals exceed capacity [4,5]. In the
context of insufficient surge capacity, these predictors, alongside ethical considerations
to avoid health inequities [6,7], may save lives through early risk stratification and better
resource management [8,9]. Consequently, prognostic models are needed to identify the
relative importance of different prognostic factors, their impact on mortality risk and to
predict the course of infection of hospitalized patients [10]. Since the beginning of the pan-
demic, a wide variety of prognostic models have been developed [11,12]. Such models have
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identified novel predictors of mortality, including a range of socioeconomic variables, de-
mographic variables and biomarkers. In particular, patients who are older [13,14] and have
existing comorbidities (such as cardiovascular disease, hypertension and diabetes) [15]
are at greater risk of in-hospital mortality. Laboratory markers are also indicative of cer-
tain pathologies associated with mortality: including (i) abnormal inflammatory markers
(elevated C-reactive protein, ferritin, lactate dehydrogenase and procalcitonin, and lym-
phopenia) [16], (ii) myocardial injury biomarkers (elevated troponin) [17,18], biomarkers of
acute respiratory distress syndrome (ARDS) (hypoxaemia and hypercapnia) [19], (iii) coag-
ulopathy markers (elevations in D-dimer, thrombocytopenia, and prolonged prothrombin
time) [20–22].

By combining multiple variables into a single analysis, prognostic models can be used
to investigate the relative importance of different prognostic factors and evaluate their
impact on mortality risk [23]. Existing prognostic models, which quantify the in-hospital
mortality risk associated with these biomarkers, have mostly considered test values at a
single time-point only (typically presentation) and to a single outcome (typically mortality)
at a single maximum follow-up time [11,12]. Throughout the course of hospitalization
there are, however, outcome-specific dynamic changes in certain biomarkers. Upward
trends in D-dimer, neutrophil-lymphocyte count ratio (NLR), neutrophils, interleukin-6
(IL-6), procalcitonin, amyloid-A protein and C-reactive protein (CRP) have been associated
with mortality [24,25], whilst increasing levels of lymphocytes, eosinophils and platelets
from admission are indicative of survival [25,26], sustained IL-6 and interleukin-10 (IL-10)
(cytokines) and interferon gamma inducible protein 10 (IP-10, a chemokine) are also useful
to anticipate disease progression [9].

To quantify dynamic changes in biomarkers on in-hospital COVID-19 mortality risk,
studies have either incorporated the difference in biomarker values between presentation
and outcome within a Cox model [25], fit individual logistic regressions each day post
hospitalization, or used a joint model in which the survival model hazard can vary with
longitudinal changes in biomarkers, which are estimated using a mixed effects frame-
work [27,28]. At a given time, hospitalized COVID-19 patients have, however, multiple
possible outcomes: (1) discharge, (2) remain in hospital or (3) mortality. Incorporating these
competing risks into survival models is challenging, and to facilitate model fitting, some
analyses exclude or treat as censored those patients that do not meet the required criteria,
such as those experiencing the event of interest, causing a high risk of bias [12,29].

Markov models can be used to model individual trajectories through a finite number
of states. Assuming transition probabilities from one state to another depend only on
the current state and remain constant over time it is possible to calculate the probability
individuals will transition from one state to another, which allows multiple competing
risks [30]. We aimed to develop a prognostic Markov model for hospitalized COVID-19
patients which incorporates dynamic laboratory value data along with patients’ admis-
sion profiles: allowing us to identify key determinants of risk. A recent comparison of
22 prognostic models found none demonstrated considerably more benefit than using the
univariable predictor age [11]. We hypothesize that incorporating dynamic changes in
laboratory findings will improve the predictive accuracy of prognostic models.

2. Materials and Methods

2.1. Case Selection and Data Extraction

Approval for the study was obtained from the State University of New York, Down-
state Medical Center Institutional Review Board (IRB#1595271-1).

A retrospective query was performed among patients admitted to SUNY Downstate
Medical Center with COVID-19-related symptoms and confirmed Polymerase Chain Re-
action (PCR)-positive from early February 2020 until the end of March 2020. Stratified
randomization was used to select at least 200 patients who were discharged and 200 pa-
tients who died due to COVID-19 complications. Patients whose outcome was unknown
were excluded. The outcome for patients was recorded as either “discharged” or “COVID-
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19 related mortality” (expired). Demographic, clinical history and laboratory data were
extracted from the hospital’s electronic health records.

2.2. Models of Dynamic Risk

The data were processed to convert them into a form amenable to estimation (see
Supplementary Materials (SOM)), resulting in a few individuals and tests being dropped
from the analysis (mainly due to missing data). This meant that 475 individuals and
28 laboratory tests were included in our models.

Two sets of analyses were conducted: the first was a Markov model, which analyzed
the dynamic sequence of observations for each patient throughout their stay and aimed to
examine how changes in these variables affected the probability a patient was discharged
or died on a given day (Figure 1; SOM). The second was a logistic regression analysis,
which aimed to determine those factors most predictive of patient mortality, and not assess
dynamic changes in mortality risk. Both models were estimated in a Bayesian framework
(details in SOM) and, as such, there is no need for an arbitrary cutoff representing whether
a factor is significant: any probabilities reported represent the posterior probability that a
given variable had an odds ratio exceeding one.

Figure 1. Markov model schematic: colors indicate each of the three distinct states. Arrows indicate potential changes in the

patient’s state from one day to the next. These state transitions are influenced by probabilities which, in the model, can vary

with patient characteristics, timing of their admission, initial lab values and dynamic changes in values.

For both approaches, we estimated a series of models including different sets of
predictors. The first set (“patient” variables) included demographic characteristics. The
second set (“pat. + comorbidities”) supplemented the background variables with patient
comorbidities. The third set (“admission”) supplemented the previous with the initial mea-
surements for the laboratory tests. The final regression (“post-admission”) then included
percentage changes in each laboratory value from that at admission. See Section 3.3.2 for a
description of these variable sets.

3. Results

3.1. Patient Characteristics

We collected data for 553 patients. Here, we describe the patient characteristics prior
to data processing required for estimation.

The cohort consisted of 342 discharged patients and 211 expired patients. There
were 271 (50.3%) females and 268 (49.7%) males. The median age was 69 years (range:
6–101 years). Most of the patients hospitalized were black (n = 472, 86.8%; Table 1).
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Table 1. Summary of patient characteristics. Note, that a number of variables have missing observa-

tions meaning that the totals across all groups do not sum to the total number of patients (n = 553):

for example, there were 14 patients whose sex was not recorded.

Category Variable Count Frequency

Outcome
Outcome: Discharged 342 61.8%

Outcome: Expired 211 38.2%

Demographic Sex: Female 271 50.3%

Sex: Male 268 49.7%

Age: 0–40 26 4.8%

Age: 40–50 43 7.9%

Age: 50–60 93 17.2%

Age: 60–70 140 25.8%

Age: 70–80 137 25.3%

Age: 80–100 103 19.0%

Ethnicity: Black 472 86.8%

Ethnicity: Caucasian 25 4.6%

Ethnicity: Hispanic 17 3.1%

Ethnicity: Other or Unrecorded 39 7.1%

Comorbidities Asthma 24 4.4%

Cancer 16 2.9%

Cerebrovascular Disease 25 4.6%

Congestive Heart Failure 23 4.2%

Chronic Kidney Disease 19 3.5%

Chronic Obstructive
Pulmonary Disease

25 4.6%

Coronary Artery Disease 44 8.0%

Dementia 13 2.4%

Diabetes 229 41.9%

End-Stage Renal Disease 54 9.9%

Hepatitis 4 0.7%

Hyperlipidemia 103 18.8%

Hypertension 350 64.0%

The most common comorbidity was hypertension (n = 350, 64.0%) followed by dia-
betes (n = 229, 41.9%), hyperlipidemia (n = 103, 18.8%), end-stage renal disease (n = 54, 9.9%)
and coronary artery disease (CAD) (n = 44, 8.0%). There was considerable within-patient
clustering of the comorbidities (Figure S1).

We defined the test values at admission as the mean of those taken during the first
day of hospitalization (Table S1). At admission, most patients had marked increase in CRP
(median: 149 mg/L, Interquartile range (IQR): 80–246 mg/L), LDH (median: 468 IU/L, IQR:
342–638 IU/L) and ferritin (median: 879 ng/mL, IQR: 415–2132 ng/mL) levels. The patients
also had decreased lymphocyte percentage (median: 12%, IQR: 8–16%). Patients also tended
to have increased blood urea nitrogen (BUN; median: 27 mg/dL, IQR: 16–50 mg/dL).

3.2. Characteristics of Discharged and Expired Patients

Expired patients were generally older (median: 73 versus 65 years old; t540 = 7.4,
p < 0.01 ), more likely to be male (57% versus 45%: posterior overlap p < 0.01) and to have



Infect. Dis. Rep. 2021, 13 243

hypertension, diabetes, hyperlipidemia, CAD, cerebrovascular disease, cancer or dementia
(Figure 2A).

Figure 2. (A) Characteristics of patients according to outcome: the points indicate posterior median frequencies and the

upper and lower whiskers indicate 2.5% and 97.5% posterior quantiles, calculated assuming a uniform prior and binomial

likelihood. Asterisks indicate that the overlap in posteriors for each outcome was less than 0.05 for a given variable. (BAME

refers to patients of non-Caucasian ethnicity.) (B–H) Time-series graphs of select laboratory values in hospitalized COVID-19

patients: Panels (B–G) show individual patient trajectories (solid lines) colored according to outcome for a selection of tests;

dashed lines show fitted regression lines (see supplementary materials) for patients grouped by outcome). Panel (H) shows

daily averages of platelets count (vertical axis) versus alkaline phosphatase levels (horizontal axis) for all patients remaining

in hospital during the first 15 days of hospitalization. Each point indicates the paired mean of both tests for one of the two

patient groups. (CHF: congestive heart failure, COPD: chronic obstructive pulmonary disease, N: number).

For 27 of 38 tests considered, there were significant differences in the initial test values
between the discharged and the expired patients (Table S2). Notably, expired patients
had higher CRP (median: 192 versus 124 mg/L) and LDH levels (median: 551 versus
427 IU/L), and lower lymphocyte percentage (median: 10.4% versus 12.8%), platelets
(median: 188 versus 223 10ˆ3/µL) and albumin levels (median: 3.3 versus 3.5 g/dL).

We then compared the trends in test values throughout patients’ hospitalization
courses and analyzed the trends in test values as percentage changes from the values upon
admission. To do so, we determined trends for patients grouped by outcome separately
using linear mixed effects models (see SOM). Most tests showed visually distinct time
trends for the two groups, indicating that, throughout hospitalization, those who went
onto survive diverged from those who would not (Figure 2B–G, Figure S3). For example,
patients who expired displayed less marked increases in platelet levels over time (Figure 2B)
but exhibited relative increases in red cell distribution width (RDW; Figure 2C), white blood
cell (WBC; Figure 2D), BUN (Figure 2E), creatinine (Figure 2F) and alkaline phosphatase
(ALKP; Figure 2G) levels. Plotting the average tests scores for platelets and ALKP over
time shows that it is possible to further separate survivors from those who died (Figure
2H). Indeed, this principle underpins the multivariate approach to determining risk factors
in our dynamic Markov model.

3.3. Analysis of Dynamic Patient Risk

3.3.1. Univariate Analysis

We used univariate Cox survival analyses [31] to illustrate the baseline patient charac-
teristics and lab values upon admission that, individually, were the strongest determinants
of risk within our sample (unadjusted). Increased age was the only statistically significant
demographic risk factor (Table S3; Figure S2). From the comorbidities, only hyperlipidemia
and CAD led to increases in mortality risk. Of the initial lab values, 17 were associated
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with mortality: the tests whose high values were most associated with mortality were total
bilirubin (OR: 1.25), followed by mean platelet volume (OR: 1.15). Conversely, increased
eosinophil percentage (OR: 0.67), large unstained cells percentage (OR: 0.81) and platelets
level (OR: 0.99) were associated with lower mortality.

3.3.2. Multivariate Analysis

We used our Markov model with different combinations of variables to determine
patient risk at admission and throughout the course of hospitalization. The multivariate
results indicate fewer variables had a strong impact on risk of death; by controlling for
more factors, certain variables, for example, age and sex, become less important predictors
(Figure 3; Figure S4). Contrastingly, some factors, like CAD and chronic obstructive
pulmonary disease (COPD), became more important. Similar results were also obtained by
logistic regression analysis (Table S4), which considered only patients’ outcomes: not the
time taken for the outcome to occur. Overall, the multivariate analyses show that there is
substantial redundant information in the various factors, and only a relative few contain
relevant independent information.

Figure 3. Estimated odds ratios for daily risk of death from Markov model: Panel (A) shows odds ratios (ORs) for

demographic factors, variables associated with admission timing and comorbidities; Panel (B) shows ORs associated with

lab values: both those upon admission (“Initial”) and % changes in lab values from these initial values (“Dynamic”).

Marker types indicates the selection of regressors included in the model (see main text). Orange points indicate those odds

ratios where the 5–95% posterior quantiles did not cross zero. Note, that the results for the lab values were obtained on

data that had been standardized so that differences best reflect clinically relevant differences (see main text). (NEU PCT:

neutrophils%, RBC: red blood cells, WBC: white blood cells, RDW: red cell distribution width, MONO PCT: monocytes%,

LUC ABS: absolute large unstained cells count, LYM PCT: lymphocytes%, MCH: mean corpuscular hemoglobin, BUN:

blood urea nitrogen, LYM ABS: absolute lymphocyte count, AST: aspartate aminotransferase, MCV: mean corpuscular

volume, BASO PCT: basophils%, LUC PCT: large unstained cells%, MPV: mean platelets volume, NEU ABS: absolute

neutrophil count, MONO ABS: absolute monocyte count, PLAT: platelets, EOS PCT: eosinophils%, MCHC: mean corpuscular

hemoglobin concentration).
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Controlling for all the variables available upon admission, individuals aged over
80 were at higher risk (Figure 3A, circular markers; Table S5; OR: 1.64, Pr(OR > 1) = 0.92).
Upon admission, CAD (OR: 1.77, Pr(OR > 1) = 0.98), cerebrovascular disease (OR: 1.35,
Pr(OR > 1) = 0.80) and COPD (OR: 1.33, Pr(OR > 1) = 0.81) were the comorbidities
most associated with elevated mortality risk.

To ensure that our odds ratios across different lab tests upon admission were on a
comparable scale, we standardized data for each test meaning that odds ratios (shown
in Figure 3B) are associated with the degree to which a value is above the mean and
relative to the standard deviation (Table S6). Consistent with previous studies, upon
admission, high values of certain tests were associated with a lower risk of death includ-
ing albumin (>3.4 g/dL, OR: 0.79, Pr(OR > 1) = 0.04); platelets (>236,000/µL, OR: 0.78,
Pr(OR > 1) = 0.03); eosinophil percentage (>0.64%, OR: 0.76, Pr(OR > 1) = 0.03) and
mean corpuscular haemoglobin concentration (MCHC; >30.9%, OR: 0.78, Pr(OR > 1) = 0.15).
For other variables, high values were associated with increased risk: neutrophil percentage
(>79.4%, OR: 1.55, Pr(OR > 1) = 0.92); red blood cell count (RBC; >4.47 × 106 cells/µL,
OR: 1.41, Pr(OR > 1) = 1.00); monocyte percentage (MONO PCT; >5.0%, OR: 1.26,
Pr(OR > 1) = 0.89); red cell distribution width (RDW; >14.9%, OR: 1.25, Pr(OR > 1) = 0.96)
and total bilirubin (>0.74 mg/dL, OR: 1.17, Pr(OR > 1) = 0.92).

After a patient has been admitted, the predictive factors change as the results of
ongoing laboratory tests are included (Figure 3, square markers). At this time, many of the
variables most important at admission become less important predictors, for example, being
older than 80 years is less predictive (OR: 1.15, Pr(OR > 1) = 0.66). Other variables, how-
ever, became more important predictors including CAD (OR: 2.62, Pr(OR > 1) = 1.00) and
COPD (OR: 2.19, Pr(OR > 1) = 0.97). Many of the lab tests found important at admission
continued to be so: high values of neutrophil percentage (OR: 2.48, Pr(OR > 1) = 0.99),
RBC (OR: 1.68, Pr(OR > 1) = 1.00) and RDW (OR: 1.46, Pr(OR > 1) = 0.99) were associ-
ated with inflated mortality risk. Some of the admission values became more predictive, for
example, high lymphocyte percentage was associated with higher risk (if >12.7%, OR: 1.72,
Pr(OR > 1) = 0.94). Additionally, in the dynamic analysis, the risk of mortality increased
the longer a patient was hospitalized (OR: 1.36, Pr(OR > 1) = 0.97).

In our analysis, we tracked the percentage change in each lab value relative to that
at admission for each patient. Since different tests exhibited different dynamics over time
(Figure S2), we standardized these percentage changes so that the odds ratios estimated
across the different tests were on a comparable scale (Table S6). For a number of tests,
above average increases in values over time raised the chance of death including: white
blood cell count (OR: 1.5, Pr(OR > 1) = 0.99), RDW (OR: 1.28, Pr(OR > 1) = 0.99),
total protein (OR: 1.25, Pr(OR > 1) = 0.92), the absolute count of large unstained cells
(LUC ABS; OR: 1.25, Pr(OR > 1) = 0.95), bilirubin total (OR: 1.11, Pr(OR > 1) = 0.95)
and ALKP (OR: 1.17, Pr(OR > 1) = 0.97). Above average changes in other variables
signaled lower risk including: EOS PCT (OR: 0.62, Pr(OR > 1) = 0.00), platelets (OR: 0.69,
Pr(OR > 1) = 0.01) and CO2 (OR: 0.73, Pr(OR > 1) = 0.01).

To assess the internal validity of the Markov model [23], we performed k-fold cross-
validation (see SOM). We performed this analysis for each of the four regressions performed.
The first three regressions offered similar levels of mean accuracy: the patient regression
was able to determine the patient outcome with an accuracy of 67% (Figure S5); the
pat. + comorbidities regression had an accuracy of 64%; and the admission regression had an
accuracy of 67%. Including dynamic test values boosted predictive power to an accuracy
of 83%. These results suggest that patient prognosis should be based on multiple factors
rather than individual variables such as age.

3.4. Dynamic Measure of Risk

We determined a dynamic measure of patient risk throughout hospitalization based
on the Markov model which incorporated dynamic laboratory measurements. The model
identified differences between the two groups upon admission: the group who went on to
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eventually be discharged had a mean probability of death on the first day of 0.015, whereas
the expired group had a corresponding value more than four times greater. Throughout
the course of hospitalization, the model could more accurately differentiate these groups,
with the regression line for the discharged group remaining flat and that for the expired
group increasing (Figure 4A)—highlighting the importance of accounting for dynamic test
values. Despite this, it was not possible to perfectly predict patient outcomes due to the
strong overlap in estimated probabilities between the groups (see selected individuals in
Figure 4A).

Figure 4. (A) Dynamic risk estimates for individual patients: Solid lines represent individual patients from time of admission

until either their discharge (left) or death (right). Orange lines represent linear regression lines fitted on the linear scale.

Vertical axis represents estimated daily probability of death during hospitalization (log-scale), which were obtained using

the posterior median parameter values from the Markov model with post-admission regressors. Individual a was female

aged over 80 with a history of hypertension and, generally, throughout the course of her stay was indicated to have a

heightened risk of death: she was eventually discharged. Individual b was a male also aged over 80 with no recorded

comorbidities: over time, his lab values changed substantially meaning their risk declined precipitously until his discharge.

Individual c was female between 70 and 80 years old with a history of hypertension, hyperlipidemia, diabetes and coronary

artery disease: over time, her values dramatically worsened, and she died five days after admission. Individual d was male

aged between 50 and 60 years old and had end-stage renal disease, hypertension and diabetes: while his test values upon

admission suggested low mortality risk, over time, his values worsened, and he died after more than 20 days in hospital.

(B) Clinical decision tool for hospitalized COVID-19 patients: Each row of the diagram illustrates the key variables most

useful for patient risk stratification based on the levels of available information. The block sizes, color and numbers within

blocks represent odds ratios representing risk of daily mortality. The lab values indicate the cutoff point and direction of

change associated with the given odds ratio.
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3.5. Dynamic Triage

To facilitate decisions about risk stratification, we bring together the results of the
Markov models into a clinical decision tool. This tool uses the most important factors for
risk stratification dependent on the data available to clinicians at each time point. The
decision tool is shown in Figure 4B.

4. Discussion

In this retrospective cohort study, we calculated the daily mortality risk of patients
hospitalized with COVID-19 by developing a Bayesian Markov model that uses patient
characteristics, including demographic variables, comorbidities, biomarkers at admission
and time-dependent biomarkers. Our results suggest that solely relying on admission
variables had limited accuracy and that only a handful of factors contributed to predictive
accuracy (in line with current evidence [11]). Contrastingly, incorporating into our model
dynamic variation in biomarkers measured throughout hospitalization led to dramatic
improvements in predictive power. The sequential approach we propose provides clin-
icians with a tool that enables decision making depending on the level of information
available [32].

Since the beginning of the COVID-19 outbreak, numerous decision support tools for
patient prognosis have been developed [11,12]. Given the reactive nature of the pandemic
response, prognostic modelling efforts have suffered from a number of limitations, in-
cluding lack of external validation and a high risk of bias [12]. We fit our model to data
from a single hospital in New York, where our study population mostly consisted of black
African American patients who have been disproportionately affected by the COVID-19
pandemic [33,34]. Socioeconomic variables may impact in-hospital mortality risk [21,35],
and external validation of ours and other models is therefore required. Finally, any clinical
implementation requires an assessment of the impact of the prognostic model on clinicians’
behavior, patient health and associated costs [10].

Our model allows for risk stratification and triage. At the patient level, the model
allows for individualization of care for each hospitalized COVID-19 patient and identi-
fication of need for additional levels of care [36]; the main advantage of our approach is
the incorporation of dynamic variables which allows for daily adjustments to the patient’s
in-hospital mortality risk. In addition, by identifying high-risk patients and determining
the surge capacity needed for advanced intensive care, our approach could allow for
early resource allocation and ultimately improved outcomes for patients [17,37]. However,
with insufficient surge capacity, triage should consider both patient prognosis and ethical
considerations to avoid health inequities [6,38].

Currently, COVID-19 hospitalization rates remain high in many countries, and it is
imperative that patients receive the best care available, and prognostic models like ours
likely have a role to play in achieving this. Whilst our approach was applied to severely ill
COVID-19 patients, similar patterns of inflammatory response and multi-organ injury are
also seen in other acutely ill patients [39,40]. Identifying the effect of dynamic changes in
relevant biomarkers on mortality risk in real time, using a tool like the one we develop,
could be transformative in caring for these patients.
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