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Abstract

Background: Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease progressively affecting

upper and lower motor neurons in the brain and spinal cord. Mean life expectancy is three to five years, with
paralysis of muscles, respiratory failure and loss of vital functions being the common causes of death. Clinical

manifestations of ALS are heterogeneous due to the mix of anatomic regions involvement and the variability

in disease course; consequently, diagnosis and prognosis at the level of individual patient is really challenging.
Prediction of ALS progression and stratification of patients into meaningful subgroups have been long-standing interests

to clinical practice, research and drug development.

Methods: We developed a Dynamic Bayesian Network (DBN) model on more than 4500 ALS patients included in the
Pooled Resource Open-Access ALS Clinical Trials Database (PRO-ACT), in order to detect probabilistic relationships among

clinical variables and identify risk factors related to survival and loss of vital functions. Furthermore, the DBN was used to

simulate the temporal evolution of an ALS cohort predicting survival and the time to impairment of vital functions
(communication, swallowing, gait and respiration). A first attempt to stratify patients by risk factors and simulate the

progression of ALS subgroups was also implemented.

Results: The DBN model provided the prediction of ALS most probable trajectories over time in terms of

important clinical outcomes, including survival and loss of autonomy in functional domains. Furthermore, it allowed

the identification of biomarkers related to patients’ clinical status as well as vital functions, and unrevealed their
probabilistic relationships. For instance, DBN found that bicarbonate and calcium levels influence survival time;

moreover, the model evidenced dependencies over time among phosphorus level, movement impairment and

creatinine. Finally, our model provided a tool to stratify patients into subgroups of different prognosis studying the
effect of specific variables, or combinations of them, on either survival time or time to loss of autonomy in specific

functional domains.

Conclusions: The analysis of the risk factors and the simulation allowed by our DBN model might enable
better support for ALS prognosis as well as a deeper insight into disease manifestations, in a context of a

personalized medicine approach.
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Background
Amyotrophic lateral sclerosis (ALS) is an adult-onset

neurodegenerative disease characterised by the progres-

sive involvement of motor neurons [1–6]. The incidence

of ALS in Europe is 2–3 cases per 100,000 person-years

[2], while in the United States is approximately 1–2/

100,000 with a prevalence of 4–6/100,000 [6]; in east

and south Asia the incidence is lower (~ 0.8 and ~ 0.7

cases per 100,000 person-years, respectively) [2]. The

clinical hallmark of ALS is the degeneration of both

upper motor neurons (originating in the motor cortex

and descending to the brainstem and the spinal cord)

and lower motor neurons (connecting the brainstem and

the spinal cord to the muscle). Several studies suggested

that many molecular and cellular mechanisms might be

implicated in a cell damage cascade leading to motor

neuron death, including altered calcium homeostasis,

glutamate excitotoxicity, aggregation of ubiquitylated

proteinaceous inclusions in motor neurons, prion-like

spreading, and RNA metabolism defects and toxicity [2,

4, 6]. Accumulating evidences suggest that the interplay

between genetic and environmental factors might have

an important role in ALS causation [1–5], although the

pathophysiological processes underlying ALS is still

unclear.

Commonly, the primary symptoms of ALS are associ-

ated with motor deficits, such as foot drop, spasticity

and difficulty walking and lifting arms due to weakness,

followed by dysphagia, impaired fine movements and

emotional lability [2]. The 70% of ALS patients exhibit

limb-onset disease and the 30% of cases present

bulbar-onset disease; mean life expectancy after symp-

tom onset is three to five years, with respiratory failure

being the most common cause of death [1, 7]. The vari-

ability of onset site, the relative mix of upper and lower

motor neuron involvement, the rate and the pattern of

progression result in heterogeneous ALS phenotypes [8]

and a challenging diagnosis. Moreover, since no diagnos-

tic test for ALS is available, a two-step procedure is

commonly adopted in clinical practice to diagnose ALS:

the exclusion of other conditions that present similar

features to ALS and the definition of “diagnostic cer-

tainty” based on specific criteria [2]. In detail, El Escorial

and Airlie House are the criteria with the wider agree-

ment among clinicians. The diagnosis according to these

criteria is based on the identification of the extent and

spreading of upper and lower motor neuron signs, sup-

ported by neurophysiological and imaging data. How-

ever, a timely diagnosis is challenging since these criteria

require the history of disease progression.

ALS is a disease with a wide heterogeneity in terms of

clinical manifestations, rate and pattern of progression,

and ultimately survival; therefore, the identification of

predictive biomarkers is needed for stratification and

prognosis support. Several systems for monitoring ALS

staging have been designed, including the ALS Func-

tional Rating Scale Revised (ALSFRS-R), the King’s clin-

ical staging system [9] and the ALS Milano-Torino

functional staging system (MITOS) [10]. The ALSFRS-R

is based on 12 items rated on a 0–4 point scale evaluat-

ing bulbar functions, fine and gross motor skills and

respiratory functions; MITOS encodes the loss of auton-

omy in four key domains that are included in

ALSFRS-R: bulbar functions (communication and swal-

lowing), fine and gross motor skills (such as walking)

and respiratory functions. King’s maps ALSFRS-R do-

mains to equivalent body regions affected by ALS and

encodes the occurrence of nutritional or respiratory

dysfunction.

Most of the costs associated with ALS is related to the

management of the disease complications. In the clinical

context of the patient management and treatment, it is

thus of particular interest to predict the dynamics of

ALS and to perform simulation analyses about the po-

tential effectiveness of specific therapeutic interventions.

In this work, we focus our attention on the problem of

deriving a probabilistic simulator of the progression of

ALS and its complications, by learning a Dynamic

Bayesian Network (DBN) model from a large public

dataset such as the Pooled Resource Open-Access ALS

Clinical Trials Database (PRO-ACT). The model can be

used to predict the progression of single patient or of a

population of patients. A major strength of our approach

is the explicit representation of the relations between the

different risk factors and the pathways along which each

risk factor influences the clinical outcomes. This could

be used to tailor better patient-specific interventions, by

studying the temporal evolution of risk factors and the

estimated alteration of the different variables’ pathways.

Methods
The PRO-ACT database

The Pooled Resource Open-Access ALS Clinical Trials

Database (PRO-ACT) is an open-access database re-

trievable at https://nctu.partners.org/ProACT, which in-

cludes records of more than 10,700 ALS patients from

different clinical trials, providing over 2,869,973 longitu-

dinally collected data measurements. The PRO-ACT in-

cludes a broad spectrum of information assessed over

subsequent screening visits such as demographics, family

history, forced and slow vital capacity, laboratory data

(e.g., basophil, blood and platelets count), concomitant

medication and Riluzole use, ALSFRS-R and vital signs

(e.g., pulse, blood pressure). PRO-ACT was funded by

ALS Therapy Alliance and was developed in the context

of DREAM Phil Bowen ALS prediction Prize4Life in 2012

[11]. During the following years, Prize4Life included more

than 9000 new ALS patients into PRO-ACT. In 2015, the
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DREAM ALS Stratification Prize4Life Challenge utilized

this growth in data to develop tools for the identification

of subgroups of ALS patients with distinct clinical out-

comes. In December 2015, new clinical trials were added

into the PRO-ACT database that accounts for 10,723 sub-

jects for a total of 2,869,973 records. The dataset includes

static variables, which are either time-independent covari-

ates (e.g., gender) or data collected at first visit only (e.g.,

age at onset), and dynamic variables that are

time-dependent measurements collected over subsequent

visits. The latest version of PRO-ACT database (April 1st,

2016) was used in this work.

Preprocessing

We excluded variables that were missing for more than

50% of the subjects. Measurement units were then ho-

mogenized. Finally, we filtered out patients for which

time of onset or multiple visits were not available. We

then split the data into a training set for developing the

Dynamic Bayesian Networks, and a validation set

(around 25% of subjects) for validating our model, for a

total of 3970 and 987 subjects in the training and in the

validation set, respectively (see Additional file 1 for data

details). The split between training and test was per-

formed stratifying patients for number of deaths, which

resulted in a well-stratified split also for other variables

(see Additional file 1). ALSFRS-R was converted into

MITOS using the algorithm proposed in [10]: the

MITOS scale encodes the loss of independence in the

four key domains (movement, communication, swallow-

ing and breathing) on the ALSFRS-R. Values equal to

zero are assigned to the domains that are not impaired,

whereas values equal to one are assigned to the domains

in which patient’s independence is lost. Since the impair-

ment of a domain is not reversible, MITOS was then set

to monotonically increase over time, with the purpose of

fixing some mistakes/variability occurred during the

ALSFRS-R clinical compilation.

Data were quantized using the clinical thresholds as

given in PRO-ACT website (https://nctu.partners.org/

ProACT/) and as reported in Additional file 1. Only age

at onset, time between onset and the start of the trial,

and time between visits were quantized using tertiles so

to guarantee a number of intervals similar to the major-

ity of the other variables and equal distributions of ex-

amples in the bins. For instance, age at onset was

discretized in three levels based on its distribution: lower

than 51, between 51 and 61, or higher than 61.

The preprocessing was implemented by in-house R

scripts.

Dynamic Bayesian networks

A Bayesian Network [12, 13] is a mathematical represen-

tation of a joint probability distribution of a set of

random variables based on a set of conditional inde-

pendence assumptions. The structure of a Bayesian Net-

work is a directed acyclic graph (DAG) such that each

random variable corresponds to a node and the influ-

ence of one node (parent) on another (child) corre-

sponds to a directed edge. The network structure

induces a set of conditional probability distributions

(CPDs), since each variable is a probabilistic function of

its parents. The network structure annotated with its

CPDs, completely defines a Bayesian Network (BN). The

extension of a BN to model dynamic processes is a Dy-

namic Bayesian Network (DBN), which describes the de-

pendencies among the variables over time [13]. Nodes in

a DBN are still connected through a DAG; however,

DBNs allow encoding cycles and feedbacks between vari-

ables when considering their relationships over different

time slices. The key assumption is that the probability

distributions describing the temporal dependencies are

time invariant and DBNs relate variables to each other

over a discrete number of time steps, called time slices.

For example, weight at time (t – 1) influences the state

of weight at time (t).

To learn a DBN model from the data we used bnstruct

[14], an R package that performs structure and param-

eter learning on discrete/categorical data even in the

presence of missing values, which is the case of our data

and a common situation in the clinical context. Bnstruct

makes use of state-of-the-art algorithms for network

learning and provides also methods for bootstrap

re-sampling of the data and inference.

Table 1 Layering. Layering and type of variables in the DBN

Layer Variable Type

1 Gender, age at ALS onset Static

2 Onset site, onset delta (start of the trial - onset) Static

3 Riluzole intake, placebo/treatment Static

4 Variables at time t-1 Dynamic

5 Variables at time t, TSO Dynamic

6 Survival Static

Table 2 Simulation error. Simulation error (%) computed at

different time points as the difference between the percentage

of real and simulated patients experiencing either the impairment

in the four MITOS domains or death

Months 12 24 36 42

Outcomes

MITOS Movement 2.26 16.71 4.27 0.63

MITOS Communicating 0.74 1.86 0.97 0.72

MITOS Swallowing 0.12 1.20 5.37 1.66

MITOS Breathing 0.09 2.85 1.85 7.61

Survival time 2.53 7.15 1.84 2.76
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Constraints can be applied to the network structure

learned by bnstruct to codify the domain knowledge. To

this purpose, variables were divided into six layers

(Table 1) and edges from lower to higher layers were

forbidden to exclude any clinically or biologically

non-sense relations among variables, such as the de-

pendence of gender from the site of onset. It is also pos-

sible to constrain the influence of upper layers to lower

layers. In our case, variables at time t were allowed to in-

fluence each other, and variables at time t-1 were

allowed to affect both survival and variables at time t.

Variables in layer 1 (gender, age at onset) were allowed

to affect only variables in layer 2 (onset site and time be-

tween onset and diagnosis), variables in layer 3 (Riluzole,

placebo/treatment intake), variables at time t and sur-

vival. Variables in layer 2 were allowed to influence only

variables in layer 3, variables at time t and survival.

The dynamic variables of the PRO-ACT dataset were

collected on a non-uniform, but quite inhomogeneous,

time grid (training set: 44 ± 20 days; validation set: 44 ±

21 days), because different patients were visited at differ-

ent time intervals, with their specific frequency of visits.

The time window during which each patient was ob-

served in the trial is also non-uniform (training set: 549

± 244 days; validation set: 549 ± 244 days). To account

for different observation-windows and different time-

grids among subjects, we added, as additional variable in

the network, the cumulative time since onset (TSO),

Fig. 1 Subset of the DAG obtained on training dataset. Only nodes with at least one direct edge are shown. MITOS items and survival are

reported in orange and green, respectively; variables with direct or indirect influence on either survival or MITOS items are evidenced in cyan.

ALT: alanine amino transferase, AST: aspartate amino transferase, AlkP: alkaline phosphatase, BUN: blood urea nitrogen, OnΔ: onset delta (time

between onset and the first time the patient was tested in a trial), OnSite: onset site, P: phosphorus, RBC: red blood cells, AST: aspartate amino

transferase, Ca: Calcium, CK: creatine kinase, Eosin: Eosinophils, FVC: forced vital capacity, GGT: gamma-glutamyltransferase, K: Potassium, Hct:

hematocrit, Hgb: hemoglobin, TSO: time since onset, WBC: white blood cells. (PDF 430,5 KB)
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with the possibility of influencing variables at time t and

survival.

The DBN was inferred on the training data through a

two-step iterative procedure: i) learning the graph topology

(i.e., dependencies among nodes) and ii) learning the pa-

rameters of each CPD (i.e., distribution over the values of a

node given each possible joint assignment of values to its

parents), computed as Maximum-a-Posteriori estimates.

The DBN structure learning was performed using the

Maximum Minimum Hill-Climbing (MMHC) algorithm

[15, 16]. MMHC is an hybrid algorithm combining tech-

niques from both constraint-based and search-and-score

approaches for learning Bayesian networks from data.

The algorithm is based on two steps: first, the Maximum

Minimum Parents Children (MMPC) [17] algorithm in-

fers the skeleton of the network, and then Hill Climbing

[16] algorithm (HC) reconstructs edges orientation.

MMPC uses a constraint-based technique that tests the

conditional independence and measures the strength of

relationship between pairs of variables. MMPC identifies

an edge between the nodes X and Y if and only if they are

not independent given any subset of nodes S; at the end,

MMPC provides the parents and children set of each

node. Subsequently, MMHC performs Hill-Climbing

search in the space of Bayesian networks starting from the

initial configuration provided by MMPC. A score function

quantifying how well the network fits the data is com-

puted at this first step of HC. The score metric that was

adopted in the present study was the Bayesian Informa-

tion Criterion (BIC), which trades off both the likelihood

and the model complexity. The BIC score is defined as:

scoreBIC G : Dð Þ ¼ ℓ ϑG : Dð Þ−
logM

2
Dim G½ �

Where ℓ is the likelihood function of the network G, ϑ

are the parameters maximizing the likelihood, M is

number of observations, and Dim[G] is the number of

independent parameters in G. In detail:

Dim Gð Þ ¼
XN

i¼1

Ri−1ð ÞQi

Where N is the number of nodes in G, Qi is the num-

ber of possible combinations of values for the parents of

node i and Ri is number of possible values for variable i.

Over subsequent steps of Hill-Climbing algorithm, all

the neighbours in the G space are considered and the

BIC score is computed for each of them, after adding,

deleting or reversing the direction of the edges recur-

sively. At each step, the change in the network G that

results in the largest increase of the score is then ap-

plied. The main difference between MMHC and the

standard search-and-score techniques is that the search

is constrained to only add an edge if it was identified by

MMPC in the first stage. The algorithm stops when ei-

ther the score does not improve with any change in the

network or a specific number of iterations (15 in our

case) has been reached. Thus, the structure learning

phase provided the topology of the DBN with the high-

est probability to have generated the data. Subsequently,

a Maximum a Posteriori estimation computed the set of

parameters of the conditional probability distribution at

each node.

We adopted MMHC algorithm for DBN learning be-

cause of the higher BIC score with respect to the stand-

ard HC.

ALS simulation

In a DBN, the temporal evolution of the analysed

process can be reconstructed by knowing the temporal

dependencies represented in the DBN graph [13, 18] and

the data at time 0. The DBN learnt from the training

data was thus used to simulate the ALS temporal evolu-

tion in terms of MITOS changes over time and survival.

The conditional probability distributions inferred on the

training set encode variable dependencies over time,

thus the temporal evolution of each patient was simu-

lated by sampling, at each discrete time point, the state

of the patient conditioned on his/her state in the previ-

ous time point in accordance to the CPDs. In detail, we

ran a simulation starting from the first visit of each of

Fig. 2 Simulated probability of death over time. Probability of death

over time in the validation dataset (orange line) and in the simulated

population (green line: mean values over population; shaded region:

standard deviation), based on probabilities modelled by DBN.

(PDF 29,3 KB)
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the 987 patients in the validation set and we let the sys-

tem evolve for 30 time slices or until an in-silico patient

death occurred. For each patient, 400 different simula-

tions were run for a total of 394,800 in-silico patients, so

to have a probabilistic distribution of clinical variables

evolution over time.

Model assessment

The simulation performance was measured for different

time points (month 12, 24, 36 and 42) as the difference

between the percentage of deceased patients in simulated

and real data (Table 2). The same was done for

time-of-events related to the functional impairment in the

MITOS domains.

In addition, the ability of DBN model to rank subjects

based on their risk (of death and of functional impair-

ment based on the four MITOS domains) was assessed

in terms of Areas Under the ROC (AU-ROC) Curve cal-

culated based on events observed at different time

points (months 12, 24, 36 and 42). The greater the

AU-ROC (range 0–1), the more accurate is our

simulation.

To further validate the DBN approach, we adopted a

cross-validation (CV) schema, in order to detect possible

bias effects (i.e., overfitting, selection bias) and warrant ad-

equate accuracy of the DBNs on novel data. In detail, we

considered the entire dataset (tot_ds of 4957 subjects) and

implemented a 10-fold cross-validation approach as fol-

lows, for each of the 10 iterations:

1. First, tot_ds was split in 9/10 as training set (CV_tr)

and 1/10 as validation set (CV_val)

2. CV_tr was used for DBN development

3. The DBN model, learnt at step 2, was used to simulate

patients evolution as explained in paragraph “ALS

simulation” and compared with real patients

progression as observed in CV_val in terms of

Areas Under the ROC Curve calculated based on

events observed at different time points (months

12, 24, 36 and 42).

Fig. 3 Simulated probability of MITOS impairment over time. Distribution of the temporal evolution of MITOS items in the validation set (orange

line) and in the prediction (green line: mean values over population; shaded region: standard deviation), based on probabilities modelled by DBN.

(PDF 66,4 KB)
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We finally computed the mean and the standard devi-

ation of the 10 AU-ROCs obtained for each time point.

Results
The DBN learnt on the training dataset encoded the

probabilistic relationships among variables as a DAG of

68 nodes and 127 edges (Fig. 1). Some of the identified

dependencies were expected, such as the dependence of

disease severity stage on Forced Vital Capacity (FVC),

which is a common clinical measure for ALS progres-

sion [19]. The DBN clearly evidenced that the loss of in-

dependence on the four MITOS domains was related to

the changes in FVC along time. The DBN model also

confirmed the relationship between gender and site of

onset; indeed, most women have bulbar-onset disease

and men have higher propensity for spinal-onset dis-

ease [2, 8]. A relationship between the respiratory im-

pairment and chloride levels was also found, which is

an expected result since chloride has been related

with respiratory symptoms that are predictive of

death [20]; in addition, chloride represents the degree

of respiratory acidosis [21] that is consequence of re-

spiratory failure.

Notably, our analysis revealed also new dependencies

among variables. For instance, our model showed a

probabilistic dependence of survival time on the levels of

calcium, which might be based on an ALS-related dys-

function in the endoplasmic reticulum (ER) of motor

neurons that is a major source of calcium [22].

Moreover, the DBN modelled the dependencies over

time among phosphorus levels, movement impairment

and creatinine, which has been already indicated as a

marker of ALS outcome [23]. In detail, it has been

shown that creatinine at diagnosis is a reliable prognos-

tic factor of motor dysfunction in ALS, but its evolution

along ALS progression is still unclear. Both creatinine

and phosphorus were identified as non-standard predict-

ive features in recent studies [11, 24], which claimed the

need to further explore their potential predictive proper-

ties. Our analysis showed that phosphorus mediated the

role of creatinine on disease progression and modelled

how the changes in the levels of these two hematological

factors can affect each other as well as movement ability.

In addition, the DBN identified a probabilistic relation-

ship between the survival time and bicarbonate, which

has been recently detected as a possible biomarker to

predict the death risk [25]. Furthermore, our model evi-

denced the impact of experimental medication or Rilu-

zole intake on both survival and ALS progression.

As explained in paragraphs “ALS simulation” and

“Model assessment”, the true dynamics of the patients in

the validation set were compared with the ones pre-

dicted by simulation. Figure 2 shows the survival time of

the simulated vs. the true validation data population; the

comparison between the probability of death in real (val-

idation set) and simulated ALS population is reported,

showing that the DBN model provides a precise simula-

tion of survival.

A good correspondence between simulated and real

distribution was also found for all the four MITOS do-

mains over the first 80 months of ALS progression. Fig-

ure 3 reports the probability distribution of impairment

in the four functional domains encoded by MITOS, in

the true vs. the simulated ALS populations.

Prediction error (in %) and AU-ROC at different time

points (paragraph “Model Assessment”) were also com-

puted, in order to assess the simulation performance

over all the simulated time points. A good correspond-

ence between real and simulated ALS progression was

evidenced for all the four MITOS domains as well as for

Table 4 AU-ROCs for the CV models. Average AU-ROCs of the DBNs obtained from the CV computed for each simulated time to

MITOS impairment and predicted survival time

AU-ROC
mean ± standard deviation

Months

Outcomes 12 24 36 42

MITOS Movement 0.91 ± 0.09 0.82 ± 0.04 0.84 ± 0.05 0.87 ± 0.07

MITOS Communicating 0.89 ± 0.09 0.71 ± 0.14 0.77 ± 0.07 0.81 ± 0.08

MITOS Swallowing 0.63 ± 0.32 0.77 ± 0.11 0.81 ± 0.07 0.84 ± 0.11

MITOS Breathing 0.63 ± 0.51 0.66 ± 0.06 0.75 ± 0.08 0.84 ± 0.08

Survival time 0.87 ± 0.18 0.77 ± 0.11 0.85 ± 0.04 0.85 ± 0.07

Table 3 AU-ROCs. AU-ROCs computed for each simulated time

to MITOS impairment and predicted survival time

AU-ROC

Months

Outcomes 12 24 36 42

MITOS Movement 0.92 0.77 0.91 0.93

MITOS Communicating 0.91 0.95 0.90 0.98

MITOS Swallowing 0.89 0.88 0.89 0.95

MITOS Breathing 0.90 0.85 0.96 1.00

Survival time 0.96 0.9 0.94 0.92
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survival time (Tables 2 and 3). The DBN model was thus

able to efficiently predict the times to the impairment of

the functional domains coded by MITOS (breathing/

swallowing/movement/communicating ability), as well

as the survival time.

Moreover, we adopted a 10-fold Cross-Validation (CV)

schema in order to control the risk of overfitting and

bias effects of our approach. Table 4 reports the average

AU-ROC of the 10 different DBN models that were ob-

tained inside the CV. The simulation performance of the

Fig. 4 Patient-level probability of MITOS impairment over time. Density plot of the probable values (color-coded) of MITOS items, FVC and weight

predicted along 30 months (x-axis) for a single patient. 400 different temporal evolutions were generated for each simulated patient so to have a

distribution of variable values in time. (PDF 134,7 KB)
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DBN learnt on the training set was comparable with the

mean performance of the models from the CV, except

for the performance on MITOS breathing of the first 24

months. In this scenario, the models from CV achieved

fairly different AU-ROCs (note the high standard devi-

ation), because the split between training and validation

inside the CV was performed not stratifying patients for

number of breathing impairment events. Furthermore,

these events are commonly experienced at the last stages

of the disease, thus the DBN could learn only on a few

examples over the first 24 months and the performance

was lower than for further time points.

Overall, we ensured that our model was not perform-

ing well only on this specific training-validation scenario,

rather it warranted comparable accuracy on different

data partitions.

Our model can be used also to simulate, for a single

patient, the time-dependent probability of a variable be-

ing in a certain state. This can be useful to provide clini-

cians with a probabilistic prognostic tool, useful to

allocate resources and provide indications on therapeutic

interventions. Figure 4 reports the density plot of the

values of MITOS items, FVC and weight predicted for a

single patient on 400 simulations. The simulation of

ALS progression on a population can also be used to

study the effect of specific variables, or combinations of

them, on survival time or time to loss of autonomy in

some functional domains (i.e., MITOS changing from 0

to 1), thus providing a tool for the stratification of

patients into subgroups of different prognosis. For in-

stance, Fig. 5 reports the effect of experimental medica-

tion intake on survival time. The graph was obtained by

simulating the temporal evolution of two different ALS

populations treated with placebo or experimental medi-

cation, then assessing the survival time. As expected, the

patients receiving placebo treatments since the onset

showed shorter survival compared to the patients that

were provided with experimental treatments. MITOS

items distribution for the two treated populations are re-

ported in Additional file 1.

Discussion
This study introduces a Dynamic Bayesian Network

(DBN) model for the analysis of clinical measures in

Amyotrophic Lateral Sclerosis (ALS) and its application

on more than 4900 ALS patients included in the Pooled

Resource Open-Access ALS Clinical Trials Database

(PRO-ACT). The aim of this model is to unravel the

probabilistic dependencies among clinical variables over

time and predict the ALS temporal evolution. Moreover,

our model can be useful to stratify ALS patients into

subgroups of different prognosis and to predict their

most probable trajectories over time, in terms of survival

and loss of autonomy in functional domains.

One of the main limitations of our work is that our

DBN model requires variables discretized in a limited

number of states, thus the predictions of variables pro-

gression indicate the most probable range for a variable,

rather than its continuous value.

Nevertheless, as far as we know our model is the first

DBN used to simulate ALS progression in a probabilis-

tic, dynamic setting. Differently from other predictive

methods, which allow predicting survival time or, more

in general, time to some kind of event, Dynamic Bayes-

ian Networks allow modelling and predicting how all dy-

namic variables evolve in time and how these variables

influence each other (in terms of conditional depend-

ence). Therefore, a comparison with other methods is

not straightforward.

However, it is legitimate to ask whether a different

method would perform better or worse in terms of abil-

ity to predict, e.g., the survival time. At this purpose, we

trained a LASSO ‘least absolute shrinkage and selection

operator’ regression analysis [26] coupled with Cox sur-

vival model [27] and recursive feature elimination as

done in [28], on the same training data used to learn the

DBN model. We obtained an AU-ROC equal to 0.79 and

0.64 at months 12 and 24, respectively; at the same time

points the DBN achieved an AU-ROC equal to 0.96 and

0.90. The performance dropped at following time points

probably due the fact that only the first visit can be used

to train the Cox-LASSO model. One of the advantages

of DBNs is indeed the possibility to exploit all dynamic

Fig. 5 Patients’ stratification. Density plot of the probable survival

time for two ALS populations with placebo intake (green curve)

and experimental medication intake (orange curve). 100 different

temporal evolutions were generated so to have a distribution of

variable values in time. (PDF 17,7 KB)
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data information contained in the training set to learn

the model.

We believe that our model provides a support for ALS

prognosis in the context of a personalized medicine ap-

proach, and can be used by clinicians to stratify patients

according to their most probable disease course. Note

that the DBN was learnt on patients with a recent ALS

diagnosis and using the clinical variables from the entire

course of the disease; our next aim will be the evaluation

of the performance of our model on patients that have

not been recently diagnosed with ALS. Moreover, build-

ing two different models, one for long and another for

short-term predictions will be considered.

As a further development, the DBN model will be

tested on clinical datasets and will be made available to

the scientific community as a web-based computational

tool.

Conclusions

The development of effective therapies in Amyotrophic

Lateral Sclerosis is urgently required; in particular, a

support of the prognosis process is crucial for

decision-making and clinical interventions planning. In

this study, the proposed model identified potential risk

factors of ALS and simulated the dynamics of disease

progression. Our method has the potential to confidently

predict the outcome of patients in the four main areas

of disability of ALS (communication, swallowing, gait

and respiration), as well as to predict their survival.

Additional file

Additional file 1: A PDF document with training and validation sets

characteristics, quantization levels or categories of variables, and

additional results. (PDF 754 kb)
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