
A Dynamic Binary Instrumentation Engine
for the ARM Architecture

Kim Hazelwood
University of Virginia

Artur Klauser
Intel Corporation

ABSTRACT
Dynamic binary instrumentation (DBI) is a powerful technique for
analyzing the runtime behavior of software. While numerous DBI
frameworks have been developed for general-purpose architectures,
work on DBI frameworks for embedded architectures has been fairly
limited. In this paper, we describe the design, implementation, and
applications of the ARM version of Pin, a dynamic instrumentation
system from Intel. In particular, we highlight the design decisions
that are geared toward the space and processing limitations of em-
bedded systems. Pin for ARM is publicly available and is shipped
with dozens of sample plug-in instrumentation tools. It has been
downloaded over 500 times since its release.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Code generation, Optimiza-
tion, Run-time environments

General Terms
Languages, Management, Measurement, Performance

Keywords
Pin, Binary instrumentation, Dynamic translation, Embedded ar-
chitectures

1. INTRODUCTION
Understanding the run-time behavior and bottlenecks of applica-

tions is extremely important to both software developers and end
users. Software-based instrumentation tools facilitate this task by
enabling transparent access to the processor and memory state after
every executed application instruction. Instrumentation tool users
can gather arbitrary statistics about the run-time actions of an ex-
ecuting application without disrupting the normal behavior of that
application. The information gathered can then be used to locate
inefficiencies or errors in the implementation.

More recently, researchers have taken advantage of the transpar-
ent nature of DBI frameworks to do more than just inspect program

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’06, October 23–25, 2006, Seoul, Korea.
Copyright 2006 ACM 1-59593-543-6/06/0010 ...$5.00.

behavior. The same frameworks have been used to implement run-
time optimizations, run-time enforcement of security policies, and
run-time adaptation to environmental factors, such as power and
temperature. Yet, almost all of this research has targeted the high-
performance computing domain.

The embedded computing market is a great target for dynamic
binary instrumentation. On these systems it is critical for perfor-
mance bottlenecks, memory leaks, and other software inefficiencies
to be located and resolved. Furthermore, considerations such as
power and environmental adaptation are arguably more important
than in other computing domains. Unfortunately, robust, general-
purpose instrumentation tools aren’t nearly as common in the em-
bedded arena (compared to IA32, for example). The Pin dynamic
instrumentation system fills this void, allowing novice users to eas-
ily, efficiently, and transparently instrument their embedded appli-
cations, without the need for application source code.

Pin currently works on four architectures (IA32, EM64T, IPF,
and ARM) and four operating systems (Linux, Windows, FreeBSD,
and MacOS), and in fact a large portion of the code base is platform
independent. In this paper, we focus on the ARM1 implementation
running on Linux, and discuss its unique challenges and features.
Indeed some features—such as limited memory—will test the lim-
its of our trace selection and caching algorithms. Other features—
such as explicit instruction cache flush requirements—actually sim-
plify our support for self-modifying code.

Prior work has shown the performance overhead of the ARM im-
plementation of Pin to be up to twice that of the IA32 implemen-
tation [23]. In this work, we document our experiences tuning the
implementation to the point where it rivals the overhead for IA32.

The remainder of this paper will proceed as follows. In Sec-
tion 2, we provide an overview of dynamic instrumentation and the
Pin system in particular. We also highlight some of the features of
the ARM architecture itself to provide a foundation for the rest of
the paper. Section 3 delves into the implementation details of Pin
for ARM, and discusses how we handle challenges such as indirect
branches and self-modifying code. Next, in Section 4 we report the
run-time performance of our implementation and Section 5 high-
lights the potential applications of our system. Finally, Section 6
presents related work, and Section 7 concludes.

2. BACKGROUND
Before delving into the implementation details of Pin for the

ARM architecture, we first provide a high-level view of Pin and
an overview of the ARM architecture.

1We will use the term ARM to refer to any processor that imple-
ments the ARM ISA, including StrongArm and XScale.

261

JIT Compiler

Emulation Unit D
is

p
a
tc

h
e
r

Virtual Machine (VM)

Code

Cache

Instrumentation APIs

A
p

p
li

c
a

ti
o

n

Operating System

Hardware

Pin

Pintool

Address Space

Figure 1: Software architecture of Pin.

2.1 Pin Overview
Pin [23] is a dynamic binary rewriting system developed at In-

tel Corporation. Pin was designed with instrumentation in mind.
Hence, instrumenting a program is both easy and efficient. A user
may write instrumentation tools using an API that is rich enough to
allow many plug-ins to be source compatible for all the supported
instruction sets. Pin allows a tool to insert function calls at any
point in the program. It automatically saves and restores registers
so the inserted call does not overwrite application registers.

Figure 1 illustrates Pin’s software architecture. At the highest
level, Pin consists of a virtual machine (VM), a code cache, and
an instrumentation API invoked by Pintools. The VM consists of
a just-in-time compiler (JIT), an emulator, and a dispatcher. After
Pin gains control of the application, the VM’s components work
together to execute the application. The JIT compiles and instru-
ments application code, which is then launched by the dispatcher.
The compiled code is stored in the code cache. Entering/leaving the
VM from/to the code cache involves saving and restoring the appli-
cation register state. The emulator interprets instructions that can-
not be executed directly, such as system calls that require special
handling from the VM. Since Pin sits above the operating system,
it can only capture user-level code.

Like many other binary rewriters, Pin uses a code cache to store
previously instrumented copies of the application to amortize its
overhead. Code traces–or more specifically, superblocks–are used
as the basis for instrumentation and code caching in Pin. After
generating a trace, Pin immediately places it in the code cache and
updates the cache directory hash table. For every potential off-trace
path, Pin generates an exit stub, which redirects control back to the
VM and passes information about the next trace to execute. Over
time, Pin will patch any branches targeting exit stubs directly to
the target trace in the code cache, which greatly improves perfor-
mance. A thorough description of the internal functionality of Pin
is provided elsewhere by Luk et al. [23].

2.2 ARM Architecture Overview
ARM is an acronym for Advanced RISC Machines. Most im-

plementations of the ARM architecture focus on providing a pro-
cessor that meets the power and performance requirements of the
embedded systems community. Unlike processors designed for
high-performance computing, ARM-based processors often lack

features such as a floating-point unit or a second- (or third-) level
on-chip cache.

The ARM instruction-set architecture (ISA) is quite powerful.
ARM is a RISC architecture with 32-bit fixed-width instructions.
(In this paper we do not discuss Thumb, a 16-bit ISA extension to
ARM.) The ISA provides such features as full generalized predica-
tion, the PC being a general register that can be read and/or written
by any instruction, and single-instruction context save and restore
support. For a dynamic binary rewriter, some of these features can
be challenging to handle. In the following section we describe how
Pin for ARM tackles some of these challenges.

3. IMPLEMENTATION DETAILS
Dynamic instrumentation systems perform various transforma-

tions to the original code sequences before inserting the transformed
copy into the code cache. Some of these transformations are de-
signed to ensure that the VM maintains control of execution at
all times, and control never escapes back to the original, uninstru-
mented version of the executable. Other transformations ensure
transparency to the executing application.

3.1 Application Transparency
Pin provides transparency to any application running under its

control. All memory and register values, including the PC, will ap-
pear to the application as they would had the application been run
directly on the hardware. Yet, in reality the code never executes at
its original address but in the code cache instead. To achieve trans-
parency, all original references to the PC are replaced by appropri-
ate constants before insertion into the code cache. PC updates that
can not be statically analyzed are converted into sequences that en-
ter the VM at run time, which will inspect the new PC and transfer
control to the appropriate target in the code cache.

In the ARM ISA, any instruction can reference the PC as either a
source or destination register. Pin’s JIT compiler modifies any such
instruction according to the following rules:

PC Read Instructions If an instruction references the PC as a
source register, the JIT compiler replaces the instruction by a se-
quence. First, it sets up a constant (original PC+8) in a tempo-
rary register. Next, it includes the original instruction with the PC
reference replaced by a reference to the temporary register (Fig-
ure 2 (a)). Temporary registers are searched with liveness analysis.
If no dead register is found, a live register is temporarily spilled
around this code sequence to guarantee that the sequence can al-
ways be generated.

PC Write and Jump Instructions Unlike other ISAs, on ARM
any instruction can target the PC as destination register. This ef-
fectively performs the operation of the instruction followed by a
jump to the result of the operation. Our JIT compiler breaks up
this instruction into a sequence. It first produces code to spill some
context onto the VM stack, followed by code to compute the target
address into a known register, and finally code to transfer control
to the VM to find the target of the indirect jump in the code cache
(Figure 2 (b)). A jump is a simple form of this rewriting where the
operation itself is just a move (MOV PC ⇐ Rx).

The ARM ISA also allows base register updates for memory in-
structions. This is a side effect of the instruction and, on loads,
effectively produces an additional result. If a load or load-multiple
instruction targets the PC and has a base register update, the JIT
compiler includes the base register in the spilled context. This is
followed by the load instruction without the base register update,
and then two more instructions to emulate the base register update

262

(a) PC Read Instruction
original code: <OP> Rn ⇐ PC, ...

JIT compiled: [spill Rtmp if necessary]
MOV Rtmp ⇐ #<original PC> + 8
<OP> Rn ⇐ Rtmp, ...
[fill Rtmp if necessary]

(b) PC Write Instruction
original code: ADD PC ⇐ R0, R1 sll #2

JIT compiled: STM SP! ⇐ {<context>}
ADD Rtarget ⇐ R0, R1 sll #2
B <VM or indirect jump predictor>

(c) PC Write Load with Base Register Update
original code: LDR PC ⇐ [R0], #4

JIT compiled: STM SP! ⇐ {<context incl. R0>}
LDR Rtarget ⇐ [<R0>]
ADD Rtmp ⇐ <R0>, #4
STR Rtmp ⇒ [SP, #<offset of R0>]
B <VM or indirect jump predictor>

(d) Call Instruction
original code: BL <offset>

JIT compiled: MOV LR ⇐ #<original PC> + 4
B <VM or compiled target in CC>

Figure 2: Code samples showing JIT compiler transformations
on PC references.

on the spilled version of the base register (Figure 2 (c)). When the
VM returns to the application code after locating the target code in
the code cache, it loads the spilled context, including the updated
base register, back into the machine registers.

Call Instructions Direct branches and indirect jumps on ARM
also exist in the form of calls that deposit the follow-on PC of the
call (PC+4) into the LR register to be used by a later return in-
struction (MOV PC ⇐ LR). Pin’s JIT compiler breaks up call
type instructions into a separate update of LR followed by a regular
branch or jump (Figure 2 (d)).

3.2 Direct and Indirect Branches
To ensure that the VM maintains control of execution at all times,

and control never escapes back to the original, uninstrumented code,
all branches within the cached code are patched and redirected to
their transformed targets within the code cache. For those code re-
gions that branch to code that is not yet present in the code cache,
the system directs execution through an exit stub which performs
two tasks. First, it stores the execution context of the running ap-
plication (so that we may resume execution after building the next
instrumented code region). Second, it transfers control back to the
JIT compiler, passing along information about the next region to
compile. Since traversing an exit stub and returning to the JIT is a
very expensive task, the system attempts to avoid this step when-
ever possible, as we describe below.

Direct Branches In many instances, it is possible to avoid the
overhead of traversing an exit stub, performing a state switch to
VM mode, and entering the VM. A fairly straightforward instance
is when an existing cached instruction sequence contains (or ends
in) a direct branch. The moment that branch target appears in the
code cache, Pin will patch any relevant direct branches to jump
directly to that target trace. One alternative to our pre-emptive link-
ing approach is to employ lazy linking, where we wait until control
enters the VM and we discover that the intended target is already

Figure 3: Static (executable) and dynamic (runtime) branch
distribution for ARM. Results are averaged over the same sub-
set of Spec 2k benchmarks as in Section 4.

present in the code cache. At that time, we can patch the two traces
together. We found that it wasn’t worth the overhead of entering
the VM unnecessarily, and that it was better to go ahead and link
all potential branches as soon as the code is inserted, even at the
risk of linking branches that may never be executed at run time.

Indirect Branches A major challenge for any dynamic instru-
mentation system is how to handle indirect branches, which can re-
sult from switch statements in the source code, function returns,
and indirect call stubs of shared library functions. These branches
cannot be automatically patched to their intended target in the code
cache, as the target varies at run time. Yet, as Figure 3 indicates,
they are not uncommon.

The general solution is to transfer control to the VM which will
look up the code cache location of the original target PC in its in-
ternal directory and will then transfer control to that code cache
location. However, entering and leaving the VM as well as the di-
rectory search of the target inside the VM are very expensive oper-
ations. They represent an overhead of several orders of magnitude
over the execution of the original instruction. To remedy this situa-
tion, Pin for ARM implements an indirect jump predictor. Instead
of transferring control to the VM for target resolution, partial state
is saved, a per-branch target prediction table pointer is loaded, and
control is transferred to a tightly coded table lookup. If the original
target is found in the table, the saved context is restored and control
is transferred immediately to the corresponding code cache loca-
tion (also stored in the table). If the target is not found in the local
prediction table, the predictor performs a full (heavyweight) entry
into the VM which engages in a full code cache directory search
and potentially a JIT compile of the target if it is not yet present in
the code cache. Finally, the local predictor table is updated with the
target prediction so it can be found by the jump predictor the next
time the same indirect jump is executed.

The jump predictor works well for indirect branches that have
a small number of different targets. It does not perform well for
returns from functions that have many different call sites, therefore
we also implemented a return address stack.

Return Prediction with a Return Address Stack As can be
seen in the overall branch profile Figure 3, return instructions are
the most common form of indirect branches executed. In order to
predict returns efficiently, we have implemented a software Return
Address Stack [22] in Pin for ARM.

Figure 4 (a) depicts the original application code of a call I1 and
an associated return I3 of the called function myfunc. The return
will transfer control back to I2, the instruction after the call. If

263

(a) Original Code
I1: BL <myfunc> ; call
I2: ...

myfunc: ...
...

I3: MOV PC ⇐ LR ; return

(b) RAS
orig addr cc addr
... ...
I2 0 ← top

(c) JIT Compiled Call Instruction
RAS.top ++
RAS[top].orig_addr = <I2>

B1: RAS[top].cc_addr = <CC addr of I2>

MOV LR ⇐ #<I2>
B <VM or CC target of myfunc>

(d) JIT Compiled Return Instruction
STM SP! ⇐ {<context>} ; spill partial context
MOV Rtarget ⇐ LR ; materialize target addr
B <RAS_predictor> ; goto shared RAS predictor

RAS_predictor:
if (Rtarget != RAS[top].orig_addr)

goto Indirect_predictor

cc_target = RAS[top].cc_addr
RAS.top --
if (cc_target == 0)

cc_target = enter VM for target lookup
backpatch cc_target into <B1>

STR cc_target ⇒ [SP, #<offset of PC>]
LDM SP! ⇒ {<context>} ; context restore

; and control transfer

Figure 4: Predicting return instructions with a Return Address
Stack (RAS) predictor.

return prediction is enabled, the VM also keeps an auxiliary data
structure in its private memory, the Return Address Stack (RAS) as
depicted in Figure 4 (b).

When the JIT compiler translates the call instruction I1, it pro-
duces the code shown in Figure 4 (c) and puts it into the code
cache. The code first pushes the original return address I2 in the
orig addr field of a new location on the RAS. It then stores the
code cache address of the translation of I2 into the cc addr field
of the same RAS entry. If I2 is not yet in the code cache, a 0 value
is written into the cc addr field. In addition, the code cache is in-
structed to store the address of the generated store instruction B1 as
an unresolved incoming edge to target I2. Finally the LR update
and control transfer instructions for the original call are generated.

Let’s assume the call has executed and has pushed its <I2,0>
entry onto the RAS and execution now reaches the return instruc-
tion which has been converted into a call to the RAS predictor
lookup depicted in Figure 4 (d). If the original target PC Rtarget
is found on top of the RAS, the cc target is loaded and the RAS
is popped. Since the cc target of the <I2,0> RAS entry is un-
known (0), the VM is entered and the JIT compiles the code for I2.
When the compiled code is entered into the code cache, the previ-
ously recorded unresolved incoming edge to target I2 is found.
This initiates a back-patch of the source of the incoming edge, in-
struction B1, overwriting the previous placeholder value of 0 with
cc target, the real code cache address of instruction I2. Finally
execution is resumed at cc target.

The next time the call I1 executes, it pushes the correct entry
<I2,cc I2> onto the RAS and the associated return will find the
code cache target of I2 on the RAS, without the need to look it up
in the VM. Thus, the return is predicted correctly.

An interesting challenge on ARM is that it is not always clear
whether an instruction is a return instruction or an arbitrary indirect
jump. The ARM ISA does not feature a special return instruction.
Instead, any instruction that targets the PC as destination register
can potentially be used as return. The simple solution that Pin for
ARM employs is to always try to predict an indirect jump first with
the RAS. If the target matches the orig addr on top of the RAS,
the instruction was a return instruction and will pop and update the
RAS. If the top of the RAS does not match, the RAS is not updated
and a table based indirect-branch prediction is attempted. Only if
that fails do we have to pay the heavy price of a VM entry and
full code cache directory search. Note that since the RAS is really
implemented as a small circular buffer of limited size instead of a
true stack, any potential errors in correlating RAS pushes with pops
are self healing in that they merely degrade predictor performance
somewhat but do not cause functional errors.

3.3 System Calls
From an ISA standpoint, system calls do not present any partic-

ular problem in Pin for ARM, since they can be executed directly
without further intervention from Pin. However, in order to stay
in control of the application under all circumstances, some system
calls must be intercepted and emulated instead. These system calls
include the signal and thread related system calls in order to be
able to intercept the delivery of signals and creation of additional
application threads. Pin on IA32 already has full support for sig-
nals and multi-threading. Similar support is currently under devel-
opment in Pin for ARM as well.

Pin also monitors mmap related system calls to manage the lo-
cation of mapped regions between the application, the Pin VM,
and the Pin tool, all of which share the same address space. Any
munmap calls must be tracked by the code cache, to ensure that the
cached code remains consistent with the original application and
shared libraries. Finally, the exit system call is monitored in or-
der to cleanly shut down Pin, e.g. writing out final statistical reports,
rather than having the operating system terminate Pin involuntarily
upon application exit. Note that the number of intercepted and em-
ulated system calls is typically very small (less than 100 for all
our benchmarks) such that we have not found system call handling
techniques to be performance critical.

3.4 Code Caches and Policies
As mentioned earlier, Pin uses a code cache to store previously

instrumented copies of the application to amortize its overhead. If
not carefully managed, the code cache and its associated metadata
can quickly consume massive amounts of memory [20]. While this
is simply a performance issue on some systems, it becomes a cor-
rectness problem when one considers the limited memory available
on embedded systems.

Pin’s code cache is partitioned into multiple equal-sized cache
blocks in memory that are generated on demand. This config-
uration allows the code cache to adapt to increasing application
requirements. In the default case, each cache block is sized at
(PageSize * 16), which evaluates to 64 kB on IA32, EM64T
and ARM, and 256 kB on IPF. Pin’s entire code cache is unbounded
by default on IA32, EM64T and IPF, while a 16 MB limit is placed
on the ARM code cache due to hard limitations on resources. Users
may override or dynamically adjust the code cache and cache block
sizes at run time using a code cache client API [18].

264

Figure 5: Max unbounded code cache size for our benchmarks.

The code cache stores application traces, exit stubs, and data.
One exit stub is required for every application branch appearing in
the code cache, and one data region is required for every exit stub
(to store relevant application state). Additional stubs and data are
used for performance features such as indirect branch prediction.

While many systems assume that the majority of the code cache
consists of application traces, the reality is quite different [17]. Fig-
ure 5 shows a breakdown of the code cache contents by category.
This breakdown turns out to be much more dominated by exit stubs
and data for ARM than for many other architectures.

We take as baseline native instructions, the cumulative size of
all instructions executed during the run of the program. Pin only
translates executed instructions, thus we do not count unexecuted
instructions from the binary image. The next two categories native
BBL and native trace extend the coverage to whole basic blocks and
traces respectively, accounting for the overhead of building larger
fetch regions (see Section 3.5). Now entering the realm of genuine
Pin overhead, trace instructions adds the overhead of breaking up
some instructions into longer sequences, such as those that refer-
ence the PC (see Sec. 3.1). The main tasks of exit stubs are to save
the application context onto the VM stack (2 instructions), to set up
an argument pointer for the VM (1 instruction), and to jump to the
VM (1 instruction). Each stub contributes to 4 ∗ 4 = 16 bytes of
stub instruction overhead and 2 ∗ 4 = 8 bytes of stub data over-
head as well as roughly 44 bytes for the VM argument structure.
When enabling the indirect jump predictor, an 8-entry target table
(jump predictor data) is also kept in the code cache for every in-
direct branch. Another significant contributor to code expansion is
RAS-based return prediction. Each call site includes code (19 in-
structions) to push two 32-bit constant values onto the revolving
RAS, contributing to 76 bytes of RAS instruction overhead and an
additional 4 bytes of RAS data overhead.

Since the net result from this analysis is that a code expansion of
over 10x is typical, limiting and managing code cache size is quite
important on ARM. While on some architectures it is worthwhile to
perform fine-grained code cache evictions [19], this result does not
hold for embedded architectures where memory is one of the most
critical resources. Therefore, we implement a simple, yet efficient
flush-on-full policy in Pin for ARM.

3.5 Trace Selection
Superblocks (single-entry, multiple-exit regions) are used as the

basis for instrumentation and code caching in Pin. Just before the
first execution of a basic block, Pin speculatively creates a straight-
line trace of instructions that is terminated by either (1) an uncon-
ditional branch, or (2) an instruction count limit. Pin’s approach to

Figure 6: The effects of limiting the trace size on code cache
size and run-time performance.

trace selection, unlike other profile-based or statistical [14] schemes,
stems from the fact that it is designed to be an instrumentation sys-
tem, thus it is important for traces to reside in contiguous memory.

One ARM-specific trace selection optimization we explored was
to limit trace lengths to a fixed maximum number of basic blocks.
This optimization reduces the tail duplication resulting from cach-
ing superblocks (since side entries are not permitted, occasionally
one superblock may be duplicated within another). Figure 6 shows
the results of this optimization for traces of 1, 2, 4, and 8 basic
blocks as well as unlimited basic blocks per trace. The figure shows
the run time and code expansion relative to that obtained by unlim-
ited basic blocks per trace (there is a limit of 70 instructions per
trace, however). We see that limiting trace sizes does reduce the
code cache footprint, though that reduction will only translate into
notable run-time performance improvements if we reduce the size
to the point where it will fit in the hardware cache. Sometimes, as
in the case of bzip2, smaller traces actually degrade performance.
In these cases, the benefits of smaller footprints are outweighed by
an increase in the number of context switches into trace generation
mode. For the remainder of this paper, all results were obtained by
using traces with an unlimited number of basic blocks.

3.6 Self-Modifying Code
A major challenge in many dynamic instrumentation systems

is self-modifying code (SMC). Any time an application modifies
its own code region, the instrumentation system must be aware of
this change in order to invalidate, regenerate, and re-instrument its
cached copy of the modified code. Otherwise, the system will con-
tinue to execute the stale, cached copy. Self-modifying code is gen-
erated, for example, by managed runtime systems like Java, there-
fore it should be handled in a robust instrumentation framework.

Detection The challenge turns out not to be efficient handling of
self-modifying code, but efficient detection. On IA32, for example,
SMC detection requires expensive page-protection mechanisms to
mark the original code as unwritable, then to catch and handle any
write attempts to code regions. This becomes particularly challeng-
ing in the face of mixed code and data (prevalent on IA32), which
triggers a great deal of SMC false alarms. Fortunately, architec-
tures such as ARM and IPF all but trivialize SMC detection, as the
architecture contains an explicit instruction that must be used by
the software developer in order to correctly implement SMC.

Handling In Pin for ARM (and for IPF), we simply watch the
instruction stream for this special instruction, and handle the self-
modifying code using the same techniques as on other architec-

265

Figure 7: Performance improvements due to indirect branch
prediction.

tures. This instruction on ARM (write register in System Control
Co-processor) is protected. Since Pin is operating at the user level,
what we actually have to watch is the interface provided by the
operating system to invoke this functionality, which is the ARM
specific Linux system call ARM NR cacheflush. We simply
invalidate the corresponding cached code, knowing that the next
time that code is executed, it will be regenerated and cached.

4. PERFORMANCE ANALYSIS
It goes without saying that performance overheads are important

to the user experience. While users are willing to tolerate a rea-
sonable amount of overhead if the benefits are high enough, it is
an uphill battle to maintain users when the system degrades perfor-
mance by an order of magnitude or more. As such, we’ve put a
great deal of effort into driving the performance overheads of Pin
for ARM down to their current levels.

Our results were gathered on an iPAQ PocketPC H3835 run-
ning Intimate Linux with kernel 2.4.19. The iPAQ has a 200 MHz
StrongARM-1110 processor and 64 MB RAM. We report results
relative to the native performance of each benchmark (without Pin)
on the same hardware and software configuration.

We use a subset of the Spec 2k benchmarks for our performance
studies. Although Spec is not a widely applied benchmarking set
in the embedded processor world, we are accustomed to using it
across Pin’s supported architectures (IA32, EM64T, IPF, ARM) in
order to compare Pin’s performance across different architectures.
In order to be able to run on the restricted resources of our test ma-
chine, we have reduced the input data set of the benchmarks to val-
ues that result in native run times of approximately 1-15 minutes.
We also limit the benchmark data set sizes to fit within approxi-
mately 1/2 the available physical memory on the machine and have
turned off paging. Since our test hardware does not contain a hard-
ware floating point unit, we have only selected benchmarks that do
not contain a significant number or FP operations.

4.1 Indirect Prediction Performance
As described earlier in Section 3.2, Pin for ARM spends a lot of

effort predicting the code cache target of indirect jumps rather than
going through a full VM entry and code cache directory search.

Indirect Branch Prediction Figure 7 shows a performance com-
parison of Pin for ARM without and with indirect branch predic-
tion. As we can see, without indirect branch prediction the bench-
mark run times are on average between one and two orders of mag-
nitude worse than the native application. In the worst case we see

Figure 8: Performance improvements due to the Return Ad-
dress Stack (RAS).

a slowdown of over 112 X. This overhead is clearly not accept-
able to users which would like to use Pin for ARM for application
studies. Adding indirect branch prediction with a per branch pre-
diction table of 8 targets brings the average performance loss down
to approximately 4 X slower than native, over an order of mag-
nitude better than without the predictor. While some benchmarks
like crafty and gap still show a significant slowdown of close to
an order of magnitude, others like bzip2 and gzip run at close
to native speed. The most impressive performance improvement
is achieved by parser which executes more than 20 times faster
with indirect code cache target prediction under Pin for ARM.

Return Prediction From the data in Figure 7 we saw the impor-
tance of indirect branch prediction in general. Figure 8 focuses on
the performance effects of return address prediction with the RAS
as described in Section 3.2. Starting with an average slowdown of
3.75 X, adding a return predictor brings the average performance
loss down to 2.87 X. It is particularly effective for crafty and
vortex where it reduces the performance loss to much less than
half. Due to the added overhead of maintaining a RAS (push and
pop of return address tuples at every call and return respectively)
some benchmarks like gap and perlbmk suffer minor perfor-
mance losses. Although these benchmarks do have considerable
call/return traffic, each return only jumps to a small number of call
sites. In such cases the generic indirect jump predictor can capture
all return targets in its 8-entry prediction table and the added over-
head of keeping a RAS outweighs its benefits. Overall, however,
adding a RAS has improved performance considerably.

4.2 Remaining Prediction Problems
As can be seen in Figure 8, gap and perlbmk still suffer high

overheads. Our analysis has revealed that these overheads are caused
by indirect prediction misses. An indirect prediction miss costs us
approximately 45 µs (about 9000 clock cycles) of processing time
in the VM code cache directory lookup. Using this knowledge we
arrive at Figure 9. It gives a breakdown of the relative time spent
in the native execution of the applications, the overhead of Pin if
it could predict indirect jumps perfectly, and the additional over-
head of the indirect prediction misses. Both gap and perlbmk
show an overhead of 4-5 X which could be removed with a better
indirect prediction scheme. We are still investigating ways to re-
duce the number of prediction misses further within the constraints
of adding additional space, search, and maintenance time overhead
for possible candidate solutions.

266

Figure 9: Remaining contribution of indirect and return pre-
dictor misses.

Figure 10: Performance of PinARM with and without Pintools
relative to native.

4.3 Overall Pin and Pin Tool Overhead
We report the overall results of our efforts in Figure 10. For each

benchmark, we present the following overhead:

• Benchmarks with Pin - This test illustrates the baseline over-
head of Pin without employing any instrumentation.

• Benchmarks with Pin and BblNull Tool - This test exercises
many of Pin’s APIs and measures their overhead. The end
result is that Pin will embed empty instrumentation calls into
the executable.

• Benchmarks with Pin and BblCount Tool (source code shown
in Figure 11) - This test illustrates the overhead that a user
would see if they wished to use Pin to count the number
of instructions executed at runtime. It has the same instru-
mentation overhead as BblNull, but adds analysis overhead.
In each call to the analysis routine, the number of executed
instructions in the basic block is added to a global 64-bit
counter. Figure 11 (b) shows that this contributes seven in-
structions of additional overhead per analysis call.

The results in each category in Figure 10 represent the additional
overhead contributed by that category relative to native execution.
For example, on average we see that running the benchmarks under
Pin for ARM contributes 1.87 X of overhead. Adding an empty
analysis function (BblNull) at the entry of each basic block adds
another 2.98 X of overhead. Finally, adding contents to the analysis
functions (BblCount) contributes 0.84 X of overhead.

(a) BblCount Pin Tool Code
#include <iostream>
#include "pin.H"

UINT64 icount = 0;

VOID DoCount(INT32 c)
{

icount += c;
}

VOID Trace(TRACE trace, VOID *v)
{

for (BBL bbl = TRACE_BblHead(trace);
BBL_Valid(bbl);
bbl = BBL_Next(bbl))

{
INS_InsertCall(BBL_InsHead(bbl),

IPOINT_BEFORE, (AFUNPTR)DoCount,
IARG_UINT32, BBL_NumIns(bbl),
IARG_END);

}
}

VOID Fini(INT32 code, VOID *v)
{

std::cerr << "Count: " << icount << endl;
}

int main(INT32 argc, CHAR **argv)
{

PIN_Init(argc, argv);

TRACE_AddInstrumentFunction(Trace, 0);
PIN_AddFiniFunction(Fini, 0);

PIN_StartProgram();
return 0;

}

(b) DoCount Disassembled
DoCount:

ldr ip, [pc, #24] ; & icount
str r4, [sp, -#4]! ; spill
ldmia ip, {r3, r4} ; load icount
adds r1, r3, r0 ; icount += c (low)
adc r2, r4, r0, asr #31 ; icount += c (high)
stmia ip, {r1, r2} ; store icount
ldmia sp!, {r4} ; fill
mov pc, lr ; return

Figure 11: Source code for the BblCount Pintool.

Various factors contribute to the diverse distributions of these
factors across the different benchmarks. Gcc for example sees the
largest overhead of 6.36 X for adding the BblNull instrumentation.
This is due to the fact that gcc has the largest native code footprint
of 533 kB of all benchmarks analyzed. Due to the large number
of different basic blocks instrumented, Pin spends a proportionally
larger amount of time in the JIT compiler generating the instru-
mentation stubs. Also, due to the large size of the generated code
of more than 6.5 MB, the small instruction cache of 32 kB of the
StrongARM processor becomes less effective as it can not capture
the working set efficiently. On the other hand we see that the over-
head of BblCount for gcc is relatively small at 0.52 X. This is
because basic blocks in gcc are sufficiently large such that the ad-
ditional execution of seven more assembly instructions per basic
block does not incur much overhead.

On the other hand, gzip, which has the smallest working set
size of only 27 kB, exhibits a small slowdown of only 1.85 X for
adding the null instrumentation due to the small number of instru-
mentation stubs generated by the JIT compiler and the resulting
smaller generated code size of 312 kB.

267

Branch Percentage: ARM vs. IA32

0%

5%

10%

15%

20%

25%

bzip2 crafty gap gcc gzip parser perlbmk vortex avg

D
yn

am
ic

 In
st

ru
ct

io
n

s

Branches (IA32)
Branches (ARM)

Figure 12: Architectural comparison of branch vs. non-branch
instructions executed at run time.

5. POTENTIAL APPLICATIONS
Just as program instrumentation opened the doors for many re-

search opportunities within the high-performance computing do-
main, the same (if not more) potential is present in the embedded
domain. The added challenges of an embedded environment truly
test the limits of many algorithms and implementation decisions.
Designers can use dynamic instrumentation to rapidly prototype
new ideas, debug existing bottlenecks, and even add new function-
ality to existing hardware and software. These applications are just
as relevant in the context of embedded systems as they are in high-
performance general-purpose computers. In the following sections,
we will discuss several potential applications of Pin and other in-
strumentation systems in more detail.

5.1 Software Introspection
Understanding software applications is the key to effective hard-

ware design. Designing for the common case requires an under-
standing of the common case, and this goal is best accomplished by
measuring various attributes of new and existing applications. In-
strumentation tools like Pin greatly simplify the measurement pro-
cess, allowing users to inspect the state of the system after every
executed instruction. While similar details could be acquired by
manually modifying millions of lines of code over numerous ap-
plications and shared libraries, Pin allows its user to write a single
plug-in (Pintool) that gathers the desired information in rarely more
than 100 lines of code. This single Pintool can then be applied to
countless applications and libraries, regardless of whether or not
the application source code is still (or was ever) available.

There are numerous application features that can be directly mea-
sured using Pin, including details about static and dynamic instruc-
tion frequencies, branch behavior, and memory usage. Writing a
Pintool that outputs the overall dynamic instruction count can be
accomplished in approximately 15 lines of C code using Pin’s API
(and indeed this Pintool – called icount – is shipped with Pin.)
Pin is currently packaged with several dozen open-source plug-
in tools that perform actions such as instruction tracing, memory
tracing, cache simulation, a range of statistical code analyzers, call
graph analysis, memory allocation/deallocation checks, code cov-
erage testing, etc. In fact, most of the results in Sections 3–4 were
gathered using existing Pintools that are shipped with Pin. These
tools may be used directly, or may be used as a template for de-
veloping other tools. (More details and features of various Pintools
are available in the Pin manual and on the Pin web site [21].)

Pin was designed to meet the need for software introspection,
thus its contribution to the embedded community is just as signifi-
cant as it is to the high-performance community, as understanding
application behavior is equally important to both communities.

Crafty on ARM

call
26%

direct branch
46%

indirect branch
2%

return
26%

Crafty on IA32

direct branch
72%

indirect branch
2%

call
13%

return
13%

Figure 13: Run-time branch distribution for crafty.

5.2 Architecture and Compiler Design
As we mentioned earlier, the Pin dynamic instrumentation sys-

tem is unique in that it currently supports four architectures: IA32,
EM64T, IPF, and ARM. This feature gives users the ability to per-
form comparisons of application behavior across different archi-
tectures. A user can develop a simple, system-independent Pintool,
then compile and execute it on all four architectures. While we
might expect the same application to behave similarly on different
architectures, Figures 12–13 show that results often vary widely
between architectures.

Figure 12 shows that the percentage of branches on IA32 is not a
good predictor of the percentage of branches on ARM even though
the same applications and input sets (test) were used. Both the
architecture and the compiler2 changed, and for applications like
bzip2, this resulted in 22% fewer executed branches on ARM
than on IA32. The variation results from ARM’s support for (and
the compiler’s use of) predication, which alters both the number of
generated branches and the behavior of those branches. Therefore,
it’s clear that embedded systems designers should design branch
predictors using results gathered by an embedded instrumentation
system like Pin for ARM, because the IA32 branch results do not
necessarily correlate.

More evidence is shown in Figure 13 where we see the distribu-
tion of branches in the crafty benchmark. Clearly, the ARM ver-
sion of crafty exhibits a much higher percentage of call-return
sequences than the IA32 version. The reason is quite intuitive,
since ARM supports predication, thus many of the direct branches
have been elided. This result makes it clear that the designers of
ARM systems should focus on indirect branch performance, as we
have in Pin, because a great performance benefit may result.

Even more evidence of an architectural variation can be seen in
Table 1 where we used the opcodemix Pintool to output the dy-
namic frequency of the top five opcodes used by bzip2. We see
that explicit load instructions are much more common on ARM,
as almost any instruction can perform a load/store on IA32.
Also, explicit branch instructions are much more common on
IA32 since ARM is predicated and any instruction can write to the
PC, effectively performing a jump. These features will undoubt-
edly impact hardware and software design of embedded systems.

Instrumentation systems also enable compiler developers to un-
derstand, debug, and improve code generation techniques. For in-
stance, Pin has been used to improve the quality of code generated
by a proprietary ARM compiler tool chain. First, the compiler de-
veloper compiles an application using two different compilers (dif-
ferent tool chains, compiler versions, or even two different target

2We used the arm-linux-gcc cross compiler for ARM and the
gcc native compiler for IA32.

268

Opcode Dynamic Opcode Dynamic
Rank (ARM) Frequency (IA32) Frequency

1 add 16.99% movzx 24.76%
2 cmp 16.61% mov 19.65%
3 ldrb 15.82% cmp 15.88%
4 mov 15.34% inc 13.14%
5 ldr 12.44% jnz 10.73%

Table 1: Top-5 opcodes executed while running bzip2 on two
different architectures. The second and fourth columns report
the dynamic execution frequency of the corresponding opcode.

architectures). Then, those two binaries are executed using Pin
and a Pintool similar to opcodemix, which outputs static and
dynamic instruction frequencies. A post-processing comparative
analysis tool can then present statistics at the global and per func-
tion level. Finally, these statistics are used to pinpoint inefficiencies
in the generated code, e.g. due to inefficient code templates or id-
ioms being used in the code generation phase.

5.3 Architectural Compatibility
The ARM architecture is regularly extended and refined. Within

the past five years, we have seen a transition from the ARM ISA
version 5 to version 6. The main improvements in version 6 include
improved memory management, multiprocessing support, multi-
media support and improved data handling, while still providing
full support for backward compatibility with version 5.

Yet, as one might expect, it is infeasible to provide forward com-
patibility such that any future ARM binary can execute on existing
hardware. Newly introduced instructions will result in an illegal
instruction exception when executed on older hardware. One inter-
esting application of Pin for ARM is that it can be used to detect
and emulate any instructions from future ISA versions. The micro-
processors in our iPAQs implement an older version of the ARM
ISA (version 4). We have used this emulation technique to execute
newer binaries on this older hardware. The same technique has
been used to evaluate the effects of proposed new ISA extensions
before they are actually implemented on any existing hardware.

Not all embedded applications were designed to run on a real op-
erating system as they do on our Linux-based iPAQ machines. In
the embedded world, it is customary to run applications on a very
rudimentary OS or even the bare hardware. We have taken such
baremetal applications and have successfully executed them under
Pin on Linux by having the JIT compiler generate calls to OS em-
ulation code for all SWI instructions (system calls) requesting OS
services. This allowed us to run any Pin tool on these baremetal ap-
plications in order to do performance studies on them, which would
not be possible directly on a baremetal system.

5.4 Instrumentation System Design
As can be inferred from this paper, the design of a dynamic bi-

nary instrumentation system consists of countless intermediate de-
sign decisions. This makes instrumentation system design a very
challenging, yet interesting research area. To enable outside re-
search into this design space, several API hooks have been inte-
grated into Pin that provide user control to the internal workings
and behavior of Pin itself. This allows a novice user to experiment
with design decisions in dynamic instrumentation systems for vari-
ous architectures and operating systems, without the need to access
and understand a large amount of source code. Furthermore, sev-
eral specialized sets of Pin APIs have been announced, including
the optimization and trace generation interface [31] and the code
cache design interface [18].

6. RELATED WORK
Dynamic instrumentation for high-performance architectures is

well-charted territory [3, 23, 29]. Furthermore, a similar internal
design is frequently used in dynamic optimizers [6], dynamic trans-
lators [4, 7], architecture simulation tools [8, 25], profilers [26], and
co-designed virtual machines [1, 12, 15].

Embedded systems differ in many ways from high-performance
systems, thus binary translators for embedded systems are quite dif-
ferent in character. Perhaps the closest related work to ours is the
DELI [13] system from Hewlett-Packard and ST Microelectronics,
which translates and optimizes code for the LX embedded archi-
tecture. The main distinctions between DELI and Pin for ARM are
the end goals (optimizations vs. instrumentation), the target archi-
tectures (LX vs. ARM), and their availability to the community.

Java virtual machines [9, 10, 11, 28, 30] are widely used at the
embedded level. Because JVMs do a form of translation on-the-
fly, they serve a similar purpose as dynamic translation systems,
however the internal structure of most JVMs is quite different.

There are several techniques that have been used for embedded
system virtual platforms to make them lightweight and feasible to
implement [2, 16, 24, 28, 30]. Some approaches even use the em-
bedded system as a client with a more powerful server [27, 32].
The server is used to compile, optimize, and store code using either
online or offline profiles as a guide for optimization and or stor-
age. These approaches are quite dissimilar to the unified approach
implemented in Pin.

7. CONCLUSIONS
Dynamic instrumentation systems have proven to be quite useful

to software developers and end users. Until now, efficient, robust,
easy-to-use instrumentation tools for embedded systems haven’t
been readily available. In this paper, we presented the overall de-
sign, implementation, performance, and applications of the ARM
version of Pin. We detailed the design decisions we made that were
geared toward the idiosyncrasies of the ARM architecture, and de-
scribe how we handle challenges such as indirect branches and self-
modifying code. Our efforts improved the performance of the over-
all system to the point where it rivals the performance of the IA32
implementation, despite the unique challenges and constraints of
embedded systems.

Dynamic instrumentation systems have opened the doors for a
multitude of research directions, often many more directions than
the original system designers had ever anticipated. While we have
initially intended Pin for ARM to be used for program instrumen-
tation, it could also be used to explore opportunities for security,
reliability, program adaptation, and optimization on embedded ar-
chitectures.

Acknowledgments
The Pin project is a collaborative effort supported by Intel Cor-
poration and developed over several years by a large team of re-
searchers, including Geoff Lowney, Robert Cohn, Robert Muth,
Greg Lueck, C.K. Luk, Steven Wallace, Harish Patil, Mark Char-
ney, Vijay Janapa Reddi, and Ramesh Peri. We also thank the
anonymous reviewers for their constructive feedback.

8. REFERENCES
[1] E. R. Altman, M. Gschwind, S. Sathaye, S. Kosonocky,

A. Bright, J. Fritz, P. Ledak, D. Appenzeller, C. Agricola,
and Z. Filan. BOA: The architecture of a binary translation
processor. IBM Research Report RC 21665, Dec 2000.

269

[2] D. F. Bacon, P. Cheng, and D. Grove. Garbage collection for
embedded systems. In 4th ACM International Symposium on
Embedded Software, pages 125–136, Sep 2004.

[3] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A
transparent dynamic optimization system. In ACM
Conference on Programming Language Design and
Implementation, pages 1–12, Jun 2000.

[4] L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skaletsky,
Y. Wang, and Y. Zemach. IA-32 execution layer: a two-phase
dynamic translator designed to support ia-32 applications on
itanium-based systems. In 36th Intl. Symp. on
Microarchitecture, pages 191–201, Dec 2003.

[5] D. Bruening and S. Amarasinghe. Maintaining consistency
and bounding capacity of software code caches. In 3rd Intl.
Symp. on Code Generation and Optimization, Mar 2005.

[6] D. Bruening, T. Garnett, and S. Amarasinghe. An
infrastructure for adaptive dynamic optimization. In First
Intl. Symp. on Code Generation and Optimization, pages
265–275, Mar 2003.

[7] C. Cifuentes, B. Lewis, and D. Ung. Walkabout - a
retargetable dynamic binary translation framework.
Technical Report TR2002-106, Sun Microsystems
Laboratories, Jan 2002.

[8] B. Cmelik and D. Keppel. Shade: A fast instruction-set
simulator for execution profiling. ACM SIGMETRICS
Performance Evaluation Review, 22(1):128–137, May 1994.

[9] M. Debbabi, A. Gherbi, L. Ketari, C. Talhi, N. Tawbi,
H. Yahyaoui, and S. Zhioua. A dynamic compiler for
embedded java virtual machines. In 3rd International
Symposium on Principles and Practice of Programming in
Java, pages 100–106, Jun 2004.

[10] M. Debbabi, A. Gherbi, L. Ketari, C. Talhi, H. Yahyaoui, and
S. Zhioua. A synergy between efficient interpretation and
fast selective dynamic compilation for the acceleration of
embedded java virtual machines. In 3rd International
Symposium on Principles and Practice of Programming in
Java, pages 107–113, Jun 2004.

[11] M. Debbabi, A. Mourad, and N. Tawbi. Armed e-bunny: a
selective dynamic compiler for embedded java virtual
machine targeting arm processors. In ACM Symposium on
Applied Computing, pages 874–878, Mar 2005.

[12] J. C. Dehnert, B. K. Grant, J. P. Banning, R. Johnson,
T. Kistler, A. Klaiber, and J. Mattson. The transmeta code
morphing software: Using speculation, recovery, and
adaptive retranslation to address real-life challenges. In First
Intl. Symp. on Code Generation and Optimization, pages
15–24, Mar 2003.

[13] G. Desoli, N. Mateev, E. Duesterwald, P. Faraboschi, and
J. A. Fisher. Deli: A new run-time control point. In 35th Intl.
Symp. on Microarchitecture, pages 257–268, 2002.

[14] E. Duesterwald and V. Bala. Software profiling for hot path
prediction: Less is more. In 12th International Conference
on Architectural Support for Programming Languages and
Operating Systems, pages 202–211, Oct 2000.

[15] K. Ebcioglu and E. Altman. DAISY: Dynamic compilation
for 100% architectural compatibility. In 24th Intl. Symp. on
Computer Architecture, pages 26–37, Jun 1997.

[16] P. Griffin, W. Srisa-an, and J. M. Chang. An energy efficient
garbage collector for java embedded devices. In Conference
on Languages, Compilers, and Tools for Embedded Systems,
pages 230–238, 2005.

[17] A. Guha, K. Hazelwood, and M. L. Soffa. Reducing exit stub
memory consumption in code caches. In High Performance
Embedded Architectures and Compilers, Jan 2007.

[18] K. Hazelwood and R. Cohn. A cross-architectural interface
for code cache manipulation. In 6th Intl. Symp. on Code
Generation and Optimization, pages 17–27, New York, NY,
Mar 2006.

[19] K. Hazelwood and J. E. Smith. Exploring code cache
eviction granularities in dynamic optimization systems. In
2nd Intl. Symp. on Code Generation and Optimization, pages
89–99, Palo Alto, CA, Mar 2004.

[20] K. Hazelwood and M. D. Smith. Generational cache
management of code traces in dynamic optimization
systems. In 36th Intl. Symp. on Microarchitecture, pages
169–179, San Diego, CA, Dec 2003.

[21] Intel. Pin web pages. http://rogue.colorado.edu/Pin.
[22] D. R. Kaeli and P. G. Emma. Branch history table prediction

of moving target branches due to subroutine returns. In 18th
Intl. Symp. on Computer Architecture, pages 34–42, 1991.

[23] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. Janapareddi, and K. Hazelwood.
Pin: Building customized program analysis tools with
dynamic instrumentation. In ACM Conference on
Programming Language Design and Implementation, pages
190–200, Chicago, IL, Jun 2005.

[24] M. Mamidipaka and N. Dutt. On-chip stack based memory
organization for low power embedded architectures. In
Conference on Design, Automation and Test in Europe,
pages 1082–1087, 2003.

[25] M. Moudgill, J.-D. Wellman, and J. H. Moreno. Environment
for powerpc microarchitecture exploration. IEEE Micro,
19(3):15–25, 1999.

[26] N. Nethercote and J. Seward. Valgrind: A program
supervision framework. Electronic Notes in Theoretical
Computer Science, 89(2), 2003.

[27] J. Palm, H. Lee, A. Diwan, and J. E. B. Moss. When to use a
compilation service? In Conference on Languages,
Compilers, and Tools for Embedded Systems, pages
194–203, 2002.

[28] U. P. Schultz, K. Burgaard, F. G. Christensen, and J. L.
Knudsen. Compiling java for low-end embedded systems. In
Conference on Languages, Compilers, and Tools for
Embedded Systems, pages 42–50, 2003.

[29] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. Davidson,
and M. L. Soffa. Reconfigurable and retargetable software
dynamic translation. In First Intl. Symp. on Code Generation
and Optimization, pages 36–47, Mar 2003.

[30] N. Shaylor, D. N. Simon, and W. R. Bush. A java virtual
machine architecture for very small devices. In Conference
on Languages, Compilers, and Tools for Embedded Systems,
pages 34–41, Jun 2003.

[31] Q. Wu, V. J. Reddi, Y. Wu, D. Connors, D. Brooks,
M. Martonosi, and D. W. Clark. A dynamic compilation
framework for controlling microprocessor energy and
performance. In 38th Intl. Symp. on Microarchitecture, pages
271–282, Nov 2005.

[32] S. Zhou, B. R. Childers, and M. L. Soffa. Planning for code
buffer management in distributed virtual execution
environments. In 1st ACM/USENIX International Conference
on Virtual Execution Environments, pages 100–109, 2005.

270

