
tudying

ystems,

alytical

l simula-

tem [6].

h, and

execu-

IPS
A Dynamic Binary Translation Approach to Architectural
Simulation

Harold W. Cain, Kevin M. Lepak, and Mikko H. Lipasti

Department of Computer Sciences
Department of Electrical and Computer Engineering

University of Wisconsin
Madison, WI 53706

(608) 265-2639
(608) 262-1267 (FAX)

{cain}@cs.wisc.edu, {lepak,mikko}@ece.wisc.edu

Abstract
We present the design of a PowerPC-based simulation infrastructure for architectural
research. Our infrastructure uses an execution-driven out-of-order processor timing simula-
tor from the SimpleScalar tool set. While porting SimpleScalar to the PowerPC architecture,
we would like to remain compatible with other versions of SimpleScalar. We accomplish this
by performing dynamic binary translation of the PowerPC instruction set architecture to the
SimpleScalar instruction set architecture, and by mapping the PowerPC architectural state
onto the SimpleScalar register set. Using this infrastructure, we execute unmodified PowerPC
binaries on an out-of-order processor timing simulator which implements the SimpleScalar
architecture. We describe and investigate trade-offs in the translation of some complex Pow-
erPC instructions and advocate adoption ofspeculative decodeto optimize instruction trans-
lations for the common case. We find that simple decode predictors can reach better than
90% accuracy for guiding speculative decode.

1 .0 Introduction

Simulation has gained widespread use in the computer systems research community as a method of s

the behavior of complex computer systems. Simulation can be used not only to study pre-existing computer s

but also proposed architectures, a welcome alternative to physically building hardware or creating complex an

models. Recent advances in hardware performance have enabled the use of increasingly detailed architectura

tors, modeling the attributes of computer systems in such detail that they can boot a commercial operating sys

We are currently developing a simulation infrastructure for performing computer architecture researc

are basing this infrastructure on the SimpleScalar architectural toolset [1]. The SimpleScalar simulators are

tion-driven simulators which run programs compiled for the Portable Instruction Set Architecture (PISA), a M

derivative instruction set. We have modified SimpleScalar’s most detailed processor simulator,sim-outorder , so



esearch

in exist-

ge this

struc-

mpleS-

Scalar

set. We

t is capa-

rated

kind

vidual

ind of

e[3, 4].

or fetch

pleSca-

rectly

s were

lar for

. While

s from

given

st two

han two

on-

ake a

ansla-

th the

l state

includ-

es the

g this

ve of

t exe-
that it can execute unmodified PowerPC binary executables. This toolset has become quite popular in the r

community as a platform for computer architecture research. Consequently, there are many different versions

ence, modeling alternative processor and memory system organizations. In the future, we would like to levera

significant body of work by possibly incorporating other versions of SimpleScalar into our own research infra

ture. In order to ensure compatibility between our version of SimpleScalar and other versions, we must port Si

calar to the PowerPC architecture while minimally changing its source code.

We have chosen to perform dynamic binary translation from the PowerPC architecture to the Simple

architecture as a means of executing PowerPC applications while minimally changing the SimpleScalar tool

are interested in the PowerPC instruction set because we have access to a PowerPC full-system simulator tha

ble of running complex commercial workloads, including all of the AIX operating system as well as code gene

dynamically by just-in-time compilation frameworks for Java [6]. Performing this translation is analogous to the

of translation already performed in hardware by many modern microprocessors[2, 9], which transform indi

instructions into a series of less complex operations. Traditionally reserved for CISC instruction sets, this k

instruction cracking also occurs in recent implementations of the somewhat complicated PowerPC architectur

Implementing this cracking in SimpleScalar involves adding a translation pipeline stage between the process

and decode pipeline stages, in which incoming PowerPC instructions are decoded and translated into the Sim

lar instruction set, which are then fed to the normal SimpleScalar PISA decode stage.

An alternative method of porting the SimpleScalar simulators to the PowerPC architecture is to di

modify the SimpleScalar source code, rather than performing this translation. The SimpleScalar simulator

designed with porting to other architectures in mind; in fact there is already a distributed version of SimpleSca

the Alpha platform, and we are aware of SPARC and PowerPC versions currently in development elsewhere

performing the necessary modifications is certainly feasible, there are many complications which prevent u

adapting SimpleScalar to the PowerPC architecture as cleanly as we would like. For instance, thesim-outorder

implementation contains a machine definition file which describes the semantics of each instruction in a

instruction set. The format of this machine definition allows for instructions which change the contents of at mo

registers. However, the PowerPC architecture contains many instructions whose execution updates more t

registers. Rewritingsim-outorder to support additional target registers would be non-trivial, and would also c

tradict our goal to remain compatible with other versions of SimpleScalar. Many small issues such as this m

direct implementation of PowerPC in SimpleScalar undesirable.

This paper focuses on some of the issues that we have dealt with in implementing dynamic binary tr

tion. We begin with a brief overview of the SimpleScalar and PowerPC architectures, for those unfamiliar wi

two. This overview is followed by a description of how we maintain all of the necessary PowerPC architectura

in the SimpleScalar architecture. In Section 4, we present a detailed description of our translation mechanism,

ing examples of a few PowerPC instructions for which performing translation is problematic. Section 5 discuss

efficiency of our translator for a few benchmarks, and we conclude with a summary of future plans for extendin

simulation infrastructure.

2 .0 Architecture Overview

2.1 The SimpleScalar Architecture
Although the Portable Instruction Set Architecture (PISA) implemented in SimpleScalar is a derivati

the MIPS instruction set architecture, there are a few noticeable differences:

• Instructions use a 64-bit encoding.

• There are no architected delay slots: the instructions following control transfer instructions are no



.

r) and

Pow-

lpha or

gister

PISA

as side

in Sec-

e Sim-

ed in this

leScalar

dd this

y user-

l purpose

ister set

using

neces-

ternals

g point

register

eral pur-
cuted prior to the control transfer.

• The results of comparison operations are stored in 32-bit general purpose registers

• Two additional addressing modes are provided for loads and stores: indexed (register+registe

auto-increment/decrement.

• All data and instruction memory accesses must be aligned.

• There is no equivalent of “supervisor” state--SimpleScalar proxies system calls to the host.

• There is no system exception handler.

• The endian mode is inherited from the host running the simulator.

• All register-writing instructions modify at most two registers.

2.2 The PowerPC Architecture
Our current simulator implements a subset of the 32-bit specification of the PowerPC architecture [8].

erPC is a relatively complicated load-store RISC architecture (as compared with simpler RISC ISAs such as A

MIPS). Relevant features of the architecture when comparing to SimpleScalar include:

• Instructions use a 32-bit encoding.

• The results of comparisons are stored in one of eight fields of a 32-bit condition register.

• Instruction memory accesses must be 32-bit aligned.

• Data memory accesses need not be naturally aligned.

• Bi-endian support is defined in the architecture, with preferred mode being big-endian.

• Supervisor state is defined, as well as various exception handling mechanisms.

• Some instructions may write up to 32 general purpose registers, many also write the condition re

and exception register in addition to a single result operand.

Of these differences, the most pertinent to our translation efforts are the alignment restrictions of the

architecture, the PowerPC arithmetic instructions which set condition register fields and the exception register

effects, and the lack of system level state and exception support. We present our handling of these operations

tion 4.

3 .0 PowerPC State Mapping

There are two major components of the PowerPC architectural state which must be emulated by th

pleScalar architecture: the PowerPC register state and the PowerPC memory state, both of which are discuss

section.

We map the register state of the PowerPC architecture onto the general-purpose registers of the Simp

architecture. Although our translator does not currently support supervisor-mode instructions, we intend to a

support in the near future. In order to facilitate this work, we have defined a register-state mapping for not onl

level PowerPC registers but also system-level PowerPC registers. To achieve this mapping, we use 79 genera

SimpleScalar registers and 64 SimpleScalar floating point registers which correspond to the full PowerPC reg

(32 general purpose, 32 floating point, 35 control registers). Although we could have performed this mapping

the default number of SimpleScalar registers (32 general-purpose, 32 floating point), this solution would have

sitated frequent spilling of register values to memory, and would have contradicted our goal of modeling the in

of a PowerPC processor with reasonable accuracy. Increasing the size of SimpleScalar’s integer and floatin

register set is trivial for up to 256 registers because the SimpleScalar instruction set encoding uses eight bit

specifiers, allowing us to implement this state mapping with minimal changes to the simulator.

From Table 1 we see that there is a one-to-one correspondence between each of the PowerPC gen



register,

erPC

ndently

nt the

n paral-

Pow-

egisters,

9 bits of

each of

tor uses

MIPS

ers or

n regis-

impleS-

to the

werPC

owerPC

werPC

he pipe-

r fetch

een in

translate

r instruc-

need to

h these

results.
pose registers and SimpleScalar registers. There is also a one-to-one correspondence for the PowerPC link

count register, and floating point status register. We split each of the four bit condition fields in the 32-bit Pow

condition register into its own SimpleScalar register. Each of these bit fields is accessed and modified indepe

by the PowerPC ISA, as if it were a single register. By splitting this 32-bit entity into eight registers, we preve

creation of artificial dependences in the translated code, allowing an out-of-order processor model to execute i

lel instructions which read or modify separate fields of the condition register. We use a similar technique for the

erPC exception register. In this case, we split the least significant three bits of the register into three separate r

because each of these bits is often accessed independently by many different instructions. The remaining 2

the exception register are included in a fourth SimpleScalar register. There is also a one-to-one mapping for

the system level registers, with the exception of the 64-bit time base register. Because the SimpleScalar simula

32-bit registers, the time base register must be implemented using two registers. PISA is a derivative of the

instruction set, and its floating point registers follow the MIPS convention of having 32 single precision regist

16 double precision registers, where each double precision floating point register occupies two single precisio

ters. Each of the 32 PowerPC floating point registers is double precision, so we must double the size of the S

calar floating point register set to perform this mapping.

The mapping of PowerPC memory state to SimpleScalar memory state is relatively simple compared

above register mapping. In the SimpleScalar simulator, all memory in the simulated system belongs to the Po

machine state; there is no SimpleScalar memory state. All PISA load and store instructions reference the P

memory, and instruction fetches in the i-fetch pipeline stage also reference the PowerPC memory, fetching Po

instructions. Translated PowerPC instructions are stored in a buffer between the fetch and decode stage of t

line, so there are never any PISA instructions resident in the simulated machine’s memory.

4 .0 Instruction Translation Mechanism

As mentioned in the introduction, we add a stage to the processor pipeline between the SimpleScala

and decode stages, which performs the dynamic binary translation. An illustration of this pipeline can be s

Figure 1. PowerPC instructions are fetched in the first pipeline stage, and these instructions are passed to the

stage. The translate stage decodes the PowerPC instructions and converts them into a series of SimpleScala

tions. When a PowerPC instruction is translated into more than one SimpleScalar instruction, we sometimes

store temporary values between each SimpleScalar instruction. We cannot overwrite architectural state wit

temporary values, so we use two additional general purpose and floating point registers for storing temporary

PowerPC Registers (32 or 64 bits) SimpleScalar Registers (32 bits)

32 General Purpose Registers 32 General Purpose Registers

Condition Register 8 General Purpose Registers

Link Register 1 General Purpose Register

Count Register 1 General Purpose Register

Exception Register (XER) 4 General Purpose Registers

System Level Register Set (31 registers) 32 General Purpose Registers

Floating Point Status And Control Register 1 General Purpose Register

Floating Point Registers 0-31 64 Floating Point Registers

Table 1: Register State Mapping



.

in con-

more

anslated

struc-

reads.

Scalar

g, and

ntation

10]), is

werPC

tions,

. Also,

A (e.g.

rget

indi-

f the

Scalar

eeping

er the

it, and

n Sim-

the

side at
With the exception of translated branch instructions, all translated code is straight-line, containing no change

trol flow. Branch instructions are translated into a series of SimpleScalar instructions, including one or

branches. All branches must jump to a new program counter value; there are no side-entrances to blocks of tr

code. We make this requirement in order to simplify the bookkeeping of translated instructions. Translated in

tions are placed into a translated instruction buffer, from which the normal SimpleScalar decode pipeline stage

The remaining portion of the pipeline behaves as usual, and has not required any modification on our part.

Many of the instructions in the PowerPC architecture have a clear one-to-one mapping to Simple

instructions. In this section, we discuss a few of those instructions for which we do not have an obvious mappin

the design decisions that we have made for these instructions. One luxury which we have had in the impleme

of our dynamic binary translator, which has not been an option in many other binary translation systems (e.g. [

that our target ISA is not necessarily a fixed target. We make a best effort at an efficient translation for all Po

instructions. However, if a critical PowerPC instruction is translated into a long series of SimpleScalar instruc

we have the option of changing the Simplescalar architecture to provide support for this PowerPC instruction

there are some PowerPC instructions for which no mapping is possible given the pre-existing SimpleScalar IS

the PowerPCicbi - instruction cache block invalidate). In cases like these, we have the luxury of a flexible ta

architecture. We use this approach for critical arithmetic instructions which conditionally set the XER register to

cate exceptional conditions such as overflow.

4.1 Branch Instructions
Control flow instructions are particularly interesting in translating from PowerPC to PISA because o

rich set of branching instructions provided in the PowerPC architecture which do not map directly onto Simple

operations, as contrasted with ALU operations/etc. which tend to be fairly uniform across architectures. In k

with the goal of needing the fewest possible modifications to the SimpleScalar simulator, we had to consid

translations of control instructions carefully so as to minimize changes to the fetch engine, branch prediction un

retirement unit. As an example of the potential complication, consider the PowerPCbclr (branch conditional to link

register) instruction. In PowerPC, as implied by the mnemonic, a subroutine return jump can be conditional. I

pleScalar, there are no conditional register direct jumps, only unconditional register direct jumps (e.g.jr, jalr instruc-

tions). Therefore, in order to translatebclr, we must test the condition (with a conditional branch) and also have

ability to perform a register direct jump in the translation of a single PowerPC instruction1. This scenario is illustrated

in Figure 2.

Since we have chosen to make all PISA instructions corresponding to a given PowerPC instruction re

Figure 1. Modified processor pipeline including translation stage and translated instruction buffer

1. It is possible that if we could predicate certain instructions within SimpleScalar, this construct could be
avoided. However, the default SimpleScalar PISA does not have this capability so it is not explored.

Decode Execute Mem CommitFetch Translate



poses a

ction--

e case

of one-

t and b)

ot suf-

are pre-

.

nches.

some

lways

quisite

itional

emits

the two

ed guar-

h, and

we indi-

). If the

ash the

isting

single

cution

branch

ause it

the dis-

s into a

decode
the same logical program counter (PC) value (to eliminate instruction address space translation issues), this

potential problem regarding fetching, branch prediction, and retirement. Specifically, consider branch predi

now that two control flow instructions can exist at the same logical PC, our prediction hardware must handle th

where multiple branches exist at the same PC, and be able to either predict them correctly independent

another, or behave in such a way that the desired behavior for the combination of the two branches is a) correc

an accurate model of what might occur in a true out-of-order implementation of a PowerPC architecture (i.e. n

fering a misprediction for one of the two branches every time it is encountered). As shown in column two of Table 2,

there is considerable variability in the dynamic behavior of such branches. Though such conditional branches

dominantly taken, three benchmarks (gcc , go , perl ) have a nontrivial number of not-taken branches of this form

Hence, it is important that we do not compromise the operation of the branch predictor for these types of bra

We handle this by mandating that this two branch structure shown in Figure 2 (which occurs only in

control instruction translations) has the following form: (i) the target of the protecting conditional branch must a

be a new PowerPC instruction, (ii) the protecting conditional branch must always directly precede the re

unconditional branch, and (iii) both branches must exist in the translation buffer at the time the protecting cond

branch is dispatched. Condition (iii) is easily handled by the design of the decode/translate unit in that it only

the two branches as a pair subject to resource constraints. Conditions (i) and (ii) are handled by tagging

branch structure at decode time and handling it as a special case at branch resolution time. The translation us

antees that if the protection branch is taken, the result of the translated PowerPC instruction is a fall-throug

hence we squash the subsequent unconditional branch (because correct program behavior is fall through) and

cate the inverted condition to the branch prediction/fetch hardware (i.e that the PowerPC branch was not taken

protection branch is not taken, it is guaranteed that the unconditional branch will be taken, and hence we squ

protection branch (by converting it to a nop) and evaluate the result of the unconditional branch with the ex

branch prediction/fetch resolution hardware. Notice that in either case, due to our design, we end up with a

control instruction at the given logical PC after the protecting branch is evaluated. Therefore, from the exe

back-end’s point of view, only one control instruction exists at that PC, and hence we maintain the expected

predictor, fetch, and retirement behavior.

We must also take special care when converting the PowerPC unconditional branch instruction, bec

can produce a larger range of branch displacements than the equivalent PISA branch. In the cases in which

placement is too large, we must convert this branch to three PISA instructions--two to load the branch addres

temporary register, and a register direct branch. The translator examines the displacement at PPC instruction

Figure 2. Illustration of PowerPC bclr instruction implementation. Depending on the conditional, the regis-
ter-direct branch or the protection branch is squashed before it can affect control-related logic.



.

pos-

exam-

r is non-

werPC

domi-

ches in

sed fre-

eneral

iency in

branch

lar/PISA

opera-

ences,

ether or

which

lly deter-

the

n-flight

opera-

ate and

mpt an

ng this

naligned

ed
and emits the proper sequence depending on the displacement.

Finally, it is interesting to note that for all PowerPC control instructions, many different translations are

sible for instructions of the same form, because of the flexibility offered in the PowerPC branch opcodes. For

ple, one of lengthiest branches to translate is thebdnztlrl form of the PowerPCbc instruction, which decrements the

PowerPC counter register, sets the link register, and branches if the condition specified is false and the counte

zero. In our current implementation, it takes 13 PISA instructions to implement the semantics of this single Po

instruction. Of course, converting all conditional branches to 13 PISA instructions would cause programs to be

nated entirely by the execution of instructions associated with branches, given the relative frequency of bran

general programs [5]. Part of the ongoing refinement of the simulator is to determine which branch types are u

quently and to emit very efficient PISA sequences for those common types and to default to longer, more g

sequences for less common encodings. We discuss our initial evaluation of the translation mechanism’s effic

Section 5. As the simulator progresses, we also plan to examine the execution efficiency of our translated

sequences, as compared with implementing the complex branches directly. We may also extend SimpleSca

to exploit the usage of the branch hints present in each PPC branch instruction.

4.2 Memory Operations
Although there is a one-to-one mapping between many of the PowerPC and SimpleScalar memory

tions, there are a few complications. The first complication is that PowerPC allows unaligned memory refer

while the SimpleScalar architecture does not. For some operations, our translator can statically determine wh

not a memory operation is aligned. However, the majority of memory operations use addressing modes in

some part of the address is stored in a register [5]. In these cases, our translation mechanism cannot statica

mine if an operation will be aligned. The translator can derive this information dynamically, but must first allow

processor pipeline to drain, because the register used in a memory operation may be overwritten by an i

instruction. We do not want to pay the penalty of draining the pipeline for every register-addressed memory

tion, so we have found an alternative solution.

Because we have an out-of-order processor model with support for precise interrupts, we can transl

issue memory operations under the assumption that they are aligned. If the translated instructions atte

unaligned access, we throw a soft exception, drain the pipeline, and retranslate the faulting instruction. Duri

retranslation, we can issue the appropriate sequence of aligned memory operations to emulate a single u

access. We call this approachspeculative decode, since a static instruction is speculatively and optimistically decod

Table 2: Branch and Memory Reference Characteristics

Benchmark
% branch

register not-
taken

% refs
unaligned

% refs
predictable
(8 entries)

% refs
indexed

% length
predictable

(256 entries)

compress 2.79% .00% 72% .06% 98%

gcc 15.98% .01% 93% 4.43% 99%

go 8.45% .00% 74% .03% 98%

ijpeg 3.83% .02% 86% 8.67% 100%

li 2.07% .00% 75% .04% 98%

m88ksim 2.48% .00% 73% .03% 98%

perl 7.64% .00% 12% 2.52% 91%

vortex 2.34% .00% 58% 13.6% 100%

Java TPC-W 2.61% .34% 29% 10.67% 100%

DB2 TPC-B 1.17% .00% 40% .05% 100%



latively

ench-

run on

rks. The

redictor.

ctions.

e decode

bytes

ine the

in-flight

time at

hat are

s (

ed the

e

we are

h of the

at have

accura-

owerPC

ed for

upports

cations

small

ce out-

transla-

ransla-

6% for

branch

imple-

s are

h these
to a simpler sequence that exploits a runtime attribute (namely, natural alignment), rather than nonspecu

decoding it to a sequence of instructions that will work correctly in all cases.

The third column of Table 2 shows the frequency of unaligned memory references for the SPECint95 b

marks as well as our Java TPC-W workload[15] and the TPC-B transaction processing workload [14], when

the SimOS-PPC functional simulator. In general, there are very few unaligned references in these benchma

fourth column shows the percentage of unaligned references that can be identified at runtime using a simple p

In this case, the predictor is a fully-associative memory that holds the PC of up to eight load or store instru

Such a mechanism predicts 12% to 93% of all unaligned references, and can be used to guide the speculativ

process to eliminate a large fraction of the soft exceptions used for recovery.

An additional complication of the PowerPC architecture are thestswx(store string word indexed) instruc-

tions andlswx (load string word indexed) instructions. These instructions write/read a variable number of

to/from memory, specified by a register (up to 128 bytes). In all other cases we are able to statically determ

number of translated instructions necessary for a single PowerPC instruction. In this case we cannot, because

instructions may change the value of the length register between the instruction’s translation time and the

which it should execute. The fifth column of Table 2 shows the percentage of all load and store instructions t

indexed. There is a great deal of variation, with four benchmarks showing a significant fraction of indexed loadgcc,

ijpeg, vortex, Java TPC-W).

Because of the relative frequency of this type of instruction in some critical benchmarks, we investigat

possibility of using a length predictor to guide ourspeculative decodemechanism for the indexed load and stor

instructions. As shown in the rightmost column of Table 2, such a predictor can be quite accurate. In this case,

using a standard last value predictor [11] indexed by the load or store PC, which remembers the dynamic lengt

previous instance of that indexed load or store (we do not pollute the table with values for loads and stores th

fixed lengths). As we can see, even a small direct-mapped predictor with only 256 entries achieves prediction

cies of greater than 90% in all cases, and nearly 100% for most cases.

4.3 Exception-generating Instructions
Because each of the translated PISA instructions carries the same program counter value as the P

instruction from which it was translated, we can guarantee that precise exception semantics will be maintain

exception-causing translated instructions. A more general problem is that the SimpleScalar simulator only s

user-level code, and does not support exception handling. For this reason, in the future we must make modifi

to the SimpleScalar simulator to support PowerPC exception semantics.

5 .0 Instruction Translation Efficiency

Although our simulator is still in the development phase, we are currently able to execute several

benchmarks, including two of the SPECint95 benchmarks,go andli . We have performed instruction by instruction

verification that the execution of these benchmarks is correct, comparing our translating simulator to a referen

of-order PowerPC processor simulator. In this section, we present some initial results regarding the dynamic

tion of these benchmarks.

For the two SPECint95 benchmarks, the dynamic instruction expansion caused by PowerPC to PISA t

tion varies considerably. As we can see from Table 3, The dynamic instruction count expands by 35% and 8

li andgo respectively. The primary causes of instruction expansion for both benchmarks are the branch and

conditional instructions. As described above, these PowerPC instructions require many PISA instructions to

ment their powerful semantics. Even for the simplest PowerPC conditional branch, two PISA instruction

required to test the PowerPC condition register field and conditionally take the branch. We are not satisfied wit



.

n. This

ch.

rations

y opera-

ctions

counts

ults, we

ory sys-

that it

owerPC

to the

r simu-

must

werPC

ulator

th hard-

ssively,

pleS-

align-

e bugs

imula-

consin.

to the

tage of

include

daptive

he L1
instruction expansion numbers, and plan to optimize our instruction translations to reduce this code expansio

work will be necessary before using this simulation infrastructure for processor core-level architectural resear

Despite the increase in overall instruction count, Table 3 also shows that the number of memory ope

executed by our translating simulator and our reference simulator are nearly the same. The number of memor

tions from our simulator is slightly larger because our simulator performs PowerPC string manipulation instru

(which load or store up to 128 bytes) as a series of smaller memory operations, while the reference simulator

each multiple-load/store string instruction as a single operation. Given these memory operation expansion res

believe that the translation process does not materially affect the processor’s behavior with respect to the mem

tem.

6 .0 Simulator Verification

Of course, because we plan to use our simulator for architectural evaluation, we must guarantee

implements the specified program semantics. In order to enable this verification, we have leveraged existing P

simulators [1, 6]. After the execution of each instruction on our simulator, we compare its machine state

machine state of a separate verification simulator. Using this technique, we have verified the correctness of ou

lator for all benchmarks reported in this paper.

Once we have verified that our simulator is functionally correct for a wider range of benchmarks, we

also verify that the performance reported by the simulator accurately reflects the performance of similar Po

processor implementations. We plan to perform this verification by running identical workloads on both the sim

and actual hardware, and comparing the simulator’s performance results to performance results collected wi

ware performance monitoring counters. If the use of dynamic translation skews the performance results exce

we will refine our translations, in some cases adding direct support for complex PowerPC instructions in the Sim

calar simulator, rather than generating long sequences of SimpleScalar instructions.

7 .0 Conclusions and Future Work

As mentioned above, our implementation is still in a preliminary phase. Our work onspeculative decode

appears promising, with simple prediction techniques resulting in up to 93% accuracy for memory reference

ment and virtually 100% accuracy for memory reference length prediction. Once we have worked out all of th

for user-level single-threaded programs, we plan on incorporating our translation engine into the SimpleMP s

tor, a multiprocessor simulator based on SimpleScalar and developed by Ravi Rajwar at the University of Wis

Once we have a working multiprocessor simulator, we plan on incorporating our detailed timing simulator in

SimOS-PPC full system simulator, and also extending it to support system-level instructions.

We also plan to extend our work on speculative decode to study further optimizations that take advan

runtime characteristics when decoding instructions from one instruction set to another. These optimizations

varying code generation for loads that are likely to alias to earlier stores in the store queue (similar to the a

scheduling mechanism in the Alpha 21264 [7]), varying code generation for loads that are likely to miss in t

Table 3: Dynamic Instruction Count Expansion for all Instructions and Memory Operations

Benchmark Instruction Count Memory Operation Count

PowerPC PISA growth PowerPC PISA growth

go 79,457,833 147,418,082 86% 31,855,629 31,849,123 1%

li 53,964,399 72,614,311 35% 25,366,976 25,368,880 1%



likely

struc-

hank

or their

hich

nces

tion”,

o-

ance,

raig
ture
cache (again, as in the Alpha 21264 [7]), varying code generation for verifying and eliminating stores that are

to be silent [12], and optimizing pairs or sequences of instructions by compounding them into more complex in

tions (as studied in [13], for example).

8 .0 Acknowledgments

This work was supported in part by a grant from the National Science Foundation. We would like to t

the IBM and Intel corporations for their generous equipment donations, and also the anonymous reviewers f

insightful comments on this work. We would also like to thank Karthikeyan Sankar for his PowerPC simulator, w

has been used as a reference throughout our development.

References

[1] D.C. Burger and T. M. Austin. “The SimpleScalar Tool Set, Version 2.0," University of Wisconsin Computer Scie
Technical Report #1342, June, 1997.

[2] D. Christie, “Developing the AMD K5 architecture,”IEEE Micro, 16(2):16-26, 1996.
[3] K. Diefendorff, “Power4 Focuses on Memory Bandwidth”,Microprocessor Report, 13(13):1-8, 1999.
[4] M. Gschwind, E.R. Altman, S. Sathaye, P. Ledak, and D. Appenzeller, “Dynamic and Transparent Binary Transla

IEEE Computer, 33(3):54-59, 2000.
[5] J.L. Hennessy and D.A. Patterson,Computer Architecture: A Quantitative Approach, Morgan Kaufmann, San Mateo, Cal-

ifornia.
[6] T. Keller, A. M. Maynard, R. Simpson, and P. Bohrer.SimOS-PPC full system simulator.http://www.cs.utexas.edu/us-

ers/cart/SimOS.
[7] R. E. Kessler, “The Alpha 21264 Microprocessor”,IEEE Micro, March-April, pp. 24-36, 1999.
[8] C. May, E. Silha, R. Simpson, and H. Warren,The PowerPC Architecture: A Specification for a New Family of RISC Pr

cessors, 2nd ed. Morgan Kaufmann, San Francisco, California. 1994.
[9] David B. Papworth, “Tuning the Pentium Pro Microarchitecture”,IEEE Micro, 16(2):8-15, 1996.
[10] C. Zheng and C. Thompson, “PA-RISC to IA-64: Transparent Execution, No Recompilation”,IEEE Computer, 33(3):47-

52, 2000.
[11] M. Lipasti and J.P. Shen, “Exceeding the Dataflow Limit via Value Prediction”, Proceedings of MICRO-29, Paris, Fr

November 1996.
[12] K. M. Lepak and M. H. Lipasti. “On the Value Locality of Store Instructions.” In Proceedings ofISCA-2000, Vancouver,

B.C., June, 2000.
[13] S. Vassiliadis and B. Blaner and R.J. Eickemeyer, “SCISM: A scalable compound instruction set machine,”IBM Journal

of Research and Development, 38(1):59-78, 1994.
[14] Transaction Processing Performance Council.http://www.tpc.org.
[15] Todd Bezenek, Harold Cain, Ross Dickson, Timothy Heil, Milo Martin, Collin McCurdy, Ravi Rajwar, Eric Weglarz, C

Zilles and Mikko Lipasti. “Characterizing a Java Implementation of TPC-W,” Third Workshop on Computer Architec
Evaluation Using Commercial Workloads, Tolouse, France, January 2000.


	A Dynamic Binary Translation Approach to Architectural Simulation
	Harold W. Cain, Kevin M. Lepak, and Mikko H. Lipasti
	Department of Computer Sciences Department of Electrical and Computer Engineering University of W...
	(608) 265-2639 (608) 262-1267 (FAX)
	{cain}@cs.wisc.edu, {lepak,mikko}@ece.wisc.edu
	Abstract
	1 .0 Introduction
	2 .0 Architecture Overview
	2.1 The SimpleScalar Architecture
	2.2 The PowerPC Architecture

	3 .0 PowerPC State Mapping
	Table 1: Register State Mapping

	4 .0 Instruction Translation Mechanism
	Figure 1. Modified processor pipeline including translation stage and translated instruction buffer
	4.1 Branch Instructions
	Figure 2. Illustration of PowerPC bclr instruction implementation. Depending on the conditional, ...

	4.2 Memory Operations
	Table 2: Branch and Memory Reference Characteristics

	4.3 Exception-generating Instructions

	5 .0 Instruction Translation Efficiency
	Table 3: Dynamic Instruction Count Expansion for all Instructions and Memory Operations

	6 .0 Simulator Verification
	7 .0 Conclusions and Future Work
	8 .0 Acknowledgments
	References




