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A Dynamic Call Admission Policy With Precision
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Abstract—Call admission control is one of the key elements in
ensuring the quality of serivce in mobile wireless networks. The
traditional trunk reservation policy and its numerous variants
give preferential treatment to the handoff calls over new arrivals
by reserving a number of radio channels exclusively for handoffs.
Such schemes, however, cannot adapt to changes in traffic pattern
due to the static nature. This paper introduces a novel stable
dynamic call admission control mechanism (SDCA), which can
maximize the radio channel utilization subject to a predetermined
bound on the call dropping probability. The novelties of the
proposed mechanism are: 1) it is adaptive to wide range of system
parameters and traffic conditions due to its dynamic nature; 2)
the control is stable under overloading traffic conditions, thus can
effectively deal with sudden traffic surges; 3) the admission policy
is stochastic, thus spreading new arrivals evenly over a control
period, and resulting in more effective and accurate control; and
4) the model takes into account the effects of limited channel
capacity and time dependence on the call dropping probability,
and the influences from nearest and next-nearest neighboring
cells, which greatly improve the control precision. In addition,
we introduce local control algorithms based on strictly local
estimations of the needed traffic parameters, without requiring
the status information exchange among different cells, which
makes it very appealing in actual implementation. Most of the
computational complexities lie in off-line precalculations, except
for the nonlinear equation of the acceptance ratio, in which a
coarse-grain numerical integration is shown to be sufficient for
stochastic control. Extensive simulation results show that our
scheme steadily satisfies the hard constraint on call dropping
probability while maintaining a high channel throughput.

Index Terms—Call admission control, mobile wireless networks,
QoS guarantee.

I. INTRODUCTION

T HERE HAS been a rapid development in wireless cellular
communications, in which the quality-of-service (QoS)

guarantee remains one of the most challenging issues [2], [23].
One of the key elements in providing QoS guarantees is an ef-
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fective call admission control (CAC) policy, which not only has
to ensure that the network meets the QoS of the newly arriving
calls if accepted, but also guarantees that the QoS of the existing
calls does not deteriorate.

This paper deals with admission control related to the radio
channel assignment. When a mobile moves across cells during
its lifetime, dropping is primarily caused by the unavailability of
the channels in the new cell. Dropping a call in progress is gen-
erally considered to have more negative impact from users’ per-
ception than rejecting (blocking) a newly requested call. There-
fore, one of the key design goals is to minimize the call drop-
ping probability, which is precisely the objectives of most ex-
isting proposals on call admission control. This, however, usu-
ally comes at the expense of potentially poor channel utiliza-
tion by admitting fewer new calls. Given that radio channels are
considered to be the primary scarce resource in mobile wireless
networks, themain challengein the design of an efficient admis-
sion control scheme is to balance these two conflicting require-
ments. Hence the major performance parameters of interest in
this paper are thecall dropping probability, channel utilization,
andnew call blocking probability.

There are a number of unique aspects in the next generation
of multimedia wireless networks that the design of an effective
admission control scheme needs to take into account.

• Smaller cells will be employed (microcells or picocells),
thus the number of handoffs during a call’s lifetime is
likely to be increased; additionally, there is an increased
influence fromneighboring cellsand evennext-neigh-
boring cells[22].

• Possibly different QoS requirements for different calls,
and potentially more stringent QoS requirements of indi-
vidual calls mandate a highly precise resource allocation
[15].

• Diversified traffic load requires that admission control has
to beadaptiveto the changing traffic pattern. Therefore, a
dynamic approach is preferred.

This paper introduces a novelstable dynamic call admission
control mechanism(SDCA) that aims to maximize the radio
channel utilization while satisfying a predetermined bound on
the call dropping probability. The novelties of the proposed
mechanism are as follows.

1) It is dynamically adaptive to a wide range of system pa-
rameters and traffic condition due to its dynamic nature.

2) The model takes into account the effects of limited
channel capacity and time dependence on the call drop-
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ping probability, and the influences from nearest and
next-nearest neighboring cells, which greatly improve
the control precision.

3) The admission policy is probabilistic, thus spreading new
arrivals evenly over a control period, leading to a more
effective and stable control.

We compare our method with a static control, and a recently
proposed approximate method for dynamic control. Extensive
simulation results show that our scheme outperforms the others
by steadily satisfying the hard constraint on call dropping prob-
ability while maintaining a high channel throughput.

The paper is organized as follows. We review the relevant
work in Section II. In Section III, we describe the control al-
gorithm. In Section IV, we study and compare the performance
of our proposed call admission scheme through extensive sim-
ulations, and further investigate the impact on its performance
from a variety of parameters. To avoid signaling overhead be-
tween cells, we introduce localized versions of the admission
control in Section V. We present the conclusion in Section VI.
Mathematical details for deriving the algorithm are included in
Appendices A–C.

II. EXISTING CALL ADMISSION STRATEGIES

The rationale behind the traditionalguard channel scheme(or
trunk reservation policy) is to give preferential treatment to the
handoff calls, which reserves a fixed number of channels exclu-
sively for handoffs [5], [19]. This scheme was shown by Ramjee
et al. [21] to be optimal for the linear objective functions of
the dropping and blocking probabilities defined above. How-
ever, it has a number of deficiencies, in particular, the guard
channel scheme cannot satisfy the hard constraints on the call
dropping probability often required by multimedia applications.
The fractional guard channel policyproposed in [21] is shown
to be optimal for minimizing the call blocking probability sub-
ject to a hard constraint on the call dropping probability. In ad-
dition, there have been numerous extensions based on the guard
channel scheme. Epstein and Schwartz [4] considered a mixed
traffic type with narrow-band and wide-band calls. Another pro-
posal by Acampora and Naghshineh [1] suggests to cluster a
group of neighboring cells and allocates a portion of the chan-
nels from those cells for handoffs. Liet al. [15] extended the
guard channel scheme to handle multiple streams of traffic, each
having potentially different QoS requirements, thus requiring
potentially different channel thresholds. All such policies, how-
ever, arestatic in that they do not adapt to changes in the traffic
pattern.

A number of recent proposals have made fine attempts to im-
plement dynamic control in the above schemes. The proposed
schemes make the admission decision in a distributed manner
relying on the status information exchange between adjacent
cells, taking into consideration the active calls in the cell where
a new call arrives, as well as its neighboring cells to which the
call is likely to be handed off.

Theshadow cluster mechanismby Levineet al. [14] is based
on the observation that “every mobile terminal with an active
wireless connection exerts an influence upon the cells (and their
base stations) in the vicinity of its current location and along

its direction of travel.” The coverage of a shadow cluster for a
given active mobile mainly consists of the cell where the mo-
bile is currently present (i.e., the center of the shadow cluster)
and all its adjacent cells along the direction of travel. This area
changes when the mobile call is handed off to other cells, thus
a tentative shadow clusterneeds to be implemented for every
new call as well as every handoff call. Simulations show that
the shadow cluster mechanism is able to reduce the percentage
of dropped calls in a controlled fashion. The efficiency of this
scheme depends on the accuracy of prediction of the future mo-
bile movement, which makes it most suitable for a strong direc-
tional environment such as the highway.

On the other hand, the distributed call admission (DCA)
scheme by Naghshineh and Schwartz [18] does not need the
status information exchange upon each call arrival (new call
and handoff). Rather, it only requires the exchange of such
information periodically [18]. The admission control algorithm
calculates the maximum number of calls that can be admitted
to a given cell without violating the QoS of the existing calls
in the cell as well as calls in its adjacent cells. One of the main
features of the DCA is its simplicity in that the admission
decision can be made in real time and does not require much
computational effort.

The DCA cannot always guarantee the target call dropping
probability, which can be observed from the limited results in
the original paper [18] (e.g., Fig. 7) and our own reproduced
results shown later. This is due to a number of simplifying ap-
proximations in the control mechanism used in the DCA, which
potentially can lead to imprecise control decisions. Specifically:

1) It approximates the dropping probability by the tail of a
Gaussian distribution, which is applicable only for cells
with infinite capacity.

2) It neglects the time dependence of the dropping proba-
bility, and the estimateat the endof the control period is
assumed to be the average.

3) It approximates that all the admitted new calls are in
progressat the beginningof the control period.

4) It neglects the probability that a call can hand off more
than once. As a result, the performance of DCA becomes
very sensitive to network load. Generally speaking,
it yields an excessively low dropping probability at
intermediate traffic, which grows rapidly with increasing
traffic load.

III. T HE CONTROL ALGORITHM

Our main motivations are twofold: 1) an effective call admis-
sion control mechanism has to always guarantee the QoS (call
dropping probability) under a variety of system configuration
and traffic settings; and 2) the scarce radio channel has to be ef-
ficiently utilized.

We consider a cellular network consisting of closely packed
hexagonal cells, using a fixed channel allocation scheme. Each
cell has a capacity of channels. Since we are dealing with the
circuit-switched voice traffic in this paper, following the con-
vention, we assume that new calls arrive according to a Poisson
distribution with the rate of in cell , call duration time or call
holding time is exponentially distributed with the average call
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duration time 1/ (i.e., connected calls terminate at a rate of).
Channel holding time, however, does not necessarily obey the
exponential assumption [6], [7] as there exist certain conditions
to be held (a necessary and sufficient condition is given in [5]).
Jedrzycki ad Leung [11] showed that a lognormal distribution
is a more accurate model for channel holding time through field
data, and a similar conclusion was drawn in [3]. In this paper, for
mathematical derivation, we assume that channel holding time
is exponentially distributed with being the rate of handoff
from cell to a neighboring cell. It turns out that the control
algorithm is rather insensitive to this assumption, since we adopt
a periodic control in which the length of the control periods is
set to less than the dwell time of a call in a cell. This will be
further discussed in Section IV using examples.

The objective of our call admission scheme is to maximize
the channel utilization (minimize the new call blocking prob-
ability) subject to a hard constraint that the handoff dropping
probability should be maintained below a predefined threshold

required by a QoS guarantee. In a dynamic and distributed
control scheme, this is implemented by periodically exchanging
status information between neighboring, and even next-neigh-
boring cells if necessary. Each cell updates its control action
at the beginning of the control period of duration. The ex-
changed information includes the channel occupancies and the
new call arrival rates. In SDCA, the control action is to deter-
mine for the next control period the fraction of new calls to
be admitted. We summarize the key features of the algorithm
below.

1) We estimatethe time-dependent dropping probabilityin
a cell, taking into account itsfinite capacity.The deriva-
tion is based on the solution to the evolution equation of
the occupancy distribution. It greatly improves over the
Gaussian approximation.

2) We compute the average dropping probability over a con-
trol period, taking into account its time dependence. This
increases the precision over a single-value approximation
within the control period.

3) To alleviate the effects of multiple handoffs over a control
period, we base our estimation of the dropping probability
on the call transition probabilities between nearest as well
as second and third nearest neighboring cells. We show
that this has significant impact under certain parameters.
While the exact computation of the transition probabili-
ties involves the exponentiation of a matrix whose dimen-
sion is the number of cells in the network, we introduce
a local approximationwhich reduces the computational
complexity, yet yields an excellent precision.

4) The QoS requirement on the dropping probability yields
an expression for theacceptance ratio , which is the
maximum fraction of new calls to be admitted into cell
in the coming control period. Instead of using it to deter-
mine the admission threshold as in a guard channel policy,
we spread the new calls uniformly over the period, by
stochastically accepting each new call with probability.
This avoids a sudden overload of the network at the be-
ginning of the control period during congestion, leading
to more effective and stable control.

The rest of the section describes the details of the computa-
tion. The key is to derive the acceptance ratiofor cell peri-
odically, which is obtained via (21) according to three steps.

1) We compute the intercellular transition probabilities
using a local approximation, and hence the mean and
variance of the time-dependent occupancy distribution in
each cell, summarized in (8) and (9).

2) We derive a diffusion equation whose solution describes
the evolution of the occupancy distribution.

3) We introduce a mean-rate approximation which enables
us to obtain the dropping probability in (9) by combining
the results of 1) and 2).

The major computational complexity of the control algorithm
is to obtain the acceptance ratio by solving a nonlinear equa-
tion (21) for the average dropping probability on-line. However,
since the control is stochastic, a coarse-grain integration of the
average dropping probability is already sufficient. On the other
hand, the call transition probabilities for constant handoff rates
can be precalculated off-line, either by exact matrix computa-
tion or local approximation. For evolving handoff rates, they can
also be easily computed on-line using the local approximation.

A. The Local Approximation

Consider the single-call transition probability that an
ongoing call in cell at the beginning of the control period (
) is located in cell at time . For an effective control enforcing

dropping probabilities of the order 10 to 10 , we assume
that essentially all calls hand off successfully, resulting in the
evolution equation

and (1)

where is the transition matrix given by and
for . The solution to (1) is

(2)

The matrix elements could be obtained by using
, where is an eigenvalue

of , and is the th element of the corresponding
eigenvector. However, the computational complexity of
this matrix operation can be reduced by considering the
off-diagonal terms as perturbations to the diagonal part of

. Each term in the resultant perturbation series of
corresponds to the contribution of a path connectingand
by cell hopping. For illustration, we consider in Appendix A
the case of homogeneous handoff rates, i.e., for all
pairs of nearest neighborsand . In this case, the contribution
of a path takes the simple form

(3)

where is the number of hops along the path fromto . Hence
is obtained by summing over all possible paths between

and . For the cellular network in Fig. 1(a), Fig. 1(b) shows
the example of , in which each diagram represents the
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Fig. 1. (a) A 19-cell cellular network. (b) Topology of paths connectingk = i.
(c) Topology of paths connectingk, i = nearest neighbors. In (b) and (c), the
vertices and edges of each graph represent, respectively, the cells and hops of
the corresponding path.

topology of a path connectingto itself, with vertices and edges
representing cells and paths, respectively. Hence there are one
path of 0 hops, no path of 1 hop, six paths of 2 hops, and twelve
paths of 3 hops, leading to

(4)

Similarly, Fig. 1(c) shows the paths connecting nearest
neighbors, giving

(5)

Likewise

for 2nd nearest neighbors

for 3rd nearest neighbors. (6)

Since is the average number of hops in time, the resultant
perturbation series is rapidly converging forup to . For a
handoff rate as high as 0.05 s and s, s ,
the computed values for are lower than the true values by
1% up to 2 hops, and 0.3% up to 3 hops.

The transition probabilities enable us to estimate the distri-
bution of ongoing calls in cell at time . At there
are calls in cell initially. Since all events (call arrivals,
handoffs, and terminations) are stochastic, the number of on-
going calls in cell at time is then a superposition of bino-
mial variables, with resultant mean and variance

.
For the new calls arriving in cell at time , the probability

of finding them in cell at time is . Since they are
evenly distributed over time, the number of new calls in cellat
time obeys a Poisson distribution with mean ,
where is the integrated transition probability given by

(7)

Knowing the algebraic expressions of , it is straightfor-
ward to obtain close forms for . Thus the mean of the oc-
cupancy distribution in cell at time is given by

(8)

Fig. 2. Schematic diagram of the channel occupancy distribution at (a)t = 0,
and (b) a subsequent timet > 0. (c) The finite capacityN causes a deviation
from the Gaussian tail. (d) The evolution of the dropping probabilityp (t).

and the variance is

(9)

Equations (8) and (9) include the contributions from all calls that
can be possibly handoff to cellfrom other cells (i.e.,
and ) during a control period, and cell’s calls that stay
at the same cell ( ), new calls admitted to a cell that
are handoff to cell during the control period ( and

), and new calls admitted in cell( ). The equa-
tions are applicable to long control periods, and the labelcan
include cells up to arbitrary distance. In practice, we truncate
the summation beyond third nearest neighboring cells, since
long-range cell hopping can be neglected in a single control pe-
riod.

The transition probabilities for inhomogeneous handoff rates
are derived in Appendix B.

B. The Diffusion Equation

As shown in Fig. 2(a), the initial channel occupancy distribu-
tion at the beginning of a control period is adelta functiongiven
by . At a subsequent timewithin the control
period, the distribution broadens because of the stochastic na-
ture of the events of call handoffs, arrivals, and departures, as
schematically shown in Fig. 2(b). For large system sizes, the dis-
tribution evolves into a Gaussian distribution with mean
and variance .

However, the limited capacity of cells modifies the occupancy
distribution to non-Gaussian, especially for nearly full occu-
pancy, which is the region of interest in estimating the dropping
probability [Fig. 2(c)]. The modified distribution is derived by
considering the evolution equation for :

(10)

(11)

where and are the total arrival and departure rates for calls
in cell . Their dependence on and is assumed to be neg-
ligible. (Unless explicitly specified, the subscriptis omitted
hereafter.) In the limit of large , the evolution equation (10)
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reduces to a diffusion equation for the continuous distribution
, where :

(12)

where is the drift velocity, and
is the diffusion coefficient, in analogy with particle

diffusion [13].
To consider the boundary conditions in the limit of large,

we first estimate the scaling of various terms. In typical network
problems, . For an effective admission control,
the arrival rate should be adjusted so that vanishes to
the leading order O( ), and only statistical fluctuations should
contribute, hence . This yields
and , and (12) implies that should vary
significantly over a range of and a range of

.
Applying the scaling argument to (11), the time derivative of

becomes negligible, and we arrive at the boundary condi-
tion on the right-hand side

at (13)

Since varies significantly in the range
, we assume that the boundary condition

on the left hand side is at .
The initial condition is

at (14)

where .
This equation is solved in Appendix C. In particular, the so-

lution at the boundary is

(15)

where

(16)

which is related to thecomplementary error functionvia
/2 [20]. The dropping probability is given

by .

C. The Mean-Rate Approximation

By (15), the dropping probability is determined by the drift
velocity and the diffusion coefficient . They determine, re-
spectively, the evolution of the peak and width of the occupancy
distribution. To estimate these parameters, we focus on the dis-
tribution for occupancies far away from the boundary . For
an effective control, this is the region with dominant contribu-
tion to the distribution, and hence should give a reliable estimate

on the peak and width. In this case, the boundary condition (13)
is replaced by at , leading to

(17)

which is a Gaussian distribution with mean and vari-
ance . This solution also applies to cells with finite capacity
except for the region near the boundary.

A comparison of (17) with (8) and(9) allows us to identify for
cell

(18)

This amounts to a mean-rate approximation, which assumes that
the occupancy distribution at timeis the consequence of a con-
stant drift velocity and diffusion coefficient from time 0 up to.
These constants are assigned so that they yield the correct mean
and variance of the occupancy distribution at that particular in-
stant. They are updated for every instant the dropping proba-
bility is computed. However, since they are only mildly depen-
dent on time, the approximation is very satisfactory.

Hence the dropping probability for cell can be ex-
pressed in terms of the quantities , and :

(19)

where is the normalized vacancy in
cell at time . The average dropping probability over a control
period is obtained by

(20)

For stochastic control, the precision for integration does not
need to be high. We found that it is sufficient to use a 7-point
Simpson rule [20]. The acceptance ratiocan be obtained by
solving numerically

(21)

At low traffic, it may happen that even for .
Then is set to 1. Similarly, at high traffic, is set to 0 if

even for .

IV. RESULTS

At the beginning of the control period, cells exchange their
status information. To avoid excessive status information ex-
change, the exchange is limited to first, second, and third nearest
neighboring cells, and the computation of the average drop-
ping probability is truncated accordingly. The information trans-
mitted by cell includes its cell occupancy at that instant
and the number of admitted new callsin the previous period.
The average new call arrival rate is computed by the moving av-
erage / . The transition probabilities
are computed in the local approximation for paths up to 3 hops.
These parameters are then used to compute the admission ratio
in cell , assuming that the admission ratios in other cells take
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Fig. 3. Dropping probabilities for uniform traffic.

Fig. 4. New call blocking probabilities for uniform traffic.

Fig. 5. Channel utilizations for uniform traffic.

their average values. This is done by substituting (8), (9), (19),
and (20) into (21), and solving for numerically. We use the
bisection method to find the solution.

Simulations were performed on a hexagonal cluster of
19 cells. To alleviate finite size effects, we implement peri-
odic connections on the three pairs of opposite sides of the
cluster (wrap-around). The parameters used in Figs. 3–5 are

, s , s ,
s, and , and the results for SDCA are used as
benchmarks for comparing the effects of various parameters in
subsequent figures. In Figs. 3–5, the dropping probability and
new call blocking probability are compared for SDCA, DCA,

Fig. 6. Dropping probabilities for SDCA and TR when the handoff rate
changes from 0.01 to 0.02 s.

and the trunk reservation scheme (TR). Since TR is designed
for a static traffic pattern, the dropping probability increases
rapidly with the network load when the guard channels are few,
but remains too low when the guard channels are many. Here,
we choose the number of guard channels to be 5 for comparable
performance when the network starts to get overloaded. In each
case, simulations were done by averaging over 10 samples, each
for 10 s of traffic [except in Case 11), where the simulation
time is 10 s]. Below, we present the results for a number of
cases.

1) Uniform traffic: Fig. 3 shows that the proposed method
maintains an almost constant dropping probability for
a large range of call rates. Results for DCA are quali-
tatively the same as in [18], except that here the drop-
ping probabilities are presented in linear rather than log-
arithmic scale. We remark that in most previous work,
QoS guarantees were at most achieved up to the same
order of magnitude, i.e., thelogarithm of the dropping
probabilities agrees with the QoS guarantee, whereas
here we have enforced the QoS guarantee with a much
higher precision. This precision and stability makes it
a suitable method for dynamic control. In contrast, nei-
ther TR and DCA can enforce the QoS guarantee for
the dropping probability. For TR, it grows with the call
arrival rate. For DCA, it is far below the QoS require-
ment for call arrival rates up to 1 per second, and Fig. 4
shows that this is accompanied by a substantial sacrifice
in the new call blocking probability. For higher call rates,
the dropping probability for DCA grows rapidly. Fig. 5
shows that the channel utilization of SDCA is compa-
rable to TR, and significantly higher than DCA.

2) Changes in handoff rates:Fig. 6 shows the performance
of SDCA when the handoff rate changes from

s to 0.02 s . In both cases, SDCA maintains the
same level of dropping probability. For comparison, we
also show the performance of TR with six guard chan-
nels, which is comparable to SDCA at s ,
but yields a significantly higher dropping probability at
0.02 s .

This experiment illustrates that SDCA is applicable
to a range of handoff rates. Hence if on-line statistics of
the handoff rates is available, SDCA can adapt to their
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Fig. 7. The dropping probabilities for (a) nonuniform traffic, and (b)
inhomogeneous handoff rates.

Fig. 8. Dropping probabilities for cell sizesN =100, 70, 40.

changes. Since on-line computation of transition proba-
bilities is greatly simplified in the local approximation,
the computational complexity is acceptable.

3) Non-uniform traffic: We also simulate a situation for
nonuniform traffic, in which the central cell has 2 times
the normal call rate and its nearest neighbors have 1.5
times the normal call rate and s . Fig. 7(a)
shows that the proposed method continues to maintain a
stable level of dropping probability.

4) Inhomogeneous handoff rates:We consider the situation
in which the handoff pattern is inhomogeneous but ra-
dially symmetric. Referring to the network in Fig. 1(a),
cells are arranged in three consecutive rings. For the in-
nermost ring, s . For outer rings,

and the inward, sideways and outward handoff
rates have the ratio3 : 2 : 1. Thetransition probabilities
are computed as in Appendix B. Fig. 7(b) shows that
SDCA can cope with the situation very well.

5) Effects of cell capacity:Although the SDCA algorithm
is derived in the limit of large , Fig. 8 shows that it is
still very effective for down to 40.

6) Effects of control period:To reduce signaling and com-
putational load, it is desirable to increase the control pe-
riod. Fig. 9 shows that SDCA has a steady performance
when the control period is lengthened up to 80 s, roughly
comparable to the dwell time of a call in a cell. However,
in order to remain adaptive to sudden changes in network

Fig. 9. Dropping probabilities for control periodsT =10, 20, 80 s.

Fig. 10. Dropping probabilities for different QoS requirements.

Fig. 11. Dropping probabilities for including up 1, 2, and 3 hops in the local
approximation.

situations, the control period should not be lengthened
indefinitely.

7) Effects of QoS requirement:As shown in Fig. 10, SDCA
can adjust the dropping probability to suit the changes
in the QoS requirement, both when is lowered to
0.2%, or raised to 5%.

8) Effects of lower order local approximation:To demon-
strate the relevance of the higher order terms used in
computing the transition probabilities, we compare
in Fig. 11 the results of including up to 1, 2, and 3
hops in the local approximation. Here, we consider

s and s so that an average of one
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Fig. 12. Dropping probabilities for the mean-field algorithm (symbols) and
the measurement-based algorithm (line) in a network with nonuniform traffic.

Fig. 13. Dropping probabilities for erroneous measurements of the handoff
rate.

handoff event per call takes place in a control period.
Since the dropping probabilities for 1 and 2 hops both
exceed the requirement of , we conclude
that multiple hops are essential to a precise control.

9) Effects of reducing the distance of information ex-
change:The significance of multiple hops is relevant
to the issue of reducing the signaling load in the net-
work. We have based the control function on periodic
exchange of status information among cells up to third
nearest neighbors. Restricting the distance of exchange
to nearest neighboring cells will reduce the signaling
load, but merely neglecting handoffs from cells beyond
will inevitably sacrifice the control precision.

Fig. 12 illustrates a mean-field algorithm which main-
tains the control precision while restricting the distance
of exchange. Here the transition probabilities are still
computed up to 3 hops, with the status of the nearest
neighboring cells beingmeasured,whereas those of the
second and third nearest neighbors beingassumedto
take the average values of the nearest neighbors. Using
the network with nonuniform traffic in 4), the control
performance essentially matches its measurement-based
counterpart.

The effectiveness of the mean-field algorithm can be
attributed to the fact that fluctuations of the status of the
twelve second and third nearest neighbors cancel out,

Fig. 14. Dropping probabilities for erroneous measurements of the call arrival
rate.

Fig. 15. Dropping probabilities forP = 10 when the network starts to
saturate. In this and Fig. 16, there are six guard channels in TR.

Fig. 16. New call blocking probabilities forP = 10 when the network
starts to saturate.

thus improving the precision of estimating their average.
Even for networks with nonuniform traffic, the admis-
sion control maintains their occupancy and controlled
arrival rate at about the same level.

10) Robustness against measurement errors:To study the ro-
bustness against measurement errors in the handoff rate,
we simulate a network whose traffic is characterized by

s , while the control is based on an inaccu-
rate estimation . Fig. 13 shows that when differs
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Fig. 17. Handoff dropping probabilities under exponential channel holding time versus under lognormal distribution.

Fig. 18. New call blocking dropping probabilities under exponential channel holding time versus under lognormal distribution.

from by up to 20%, the dropping probability is still ac-
ceptable. For larger differences, the error becomes unac-
ceptable.

Similarly, we study the robustness against measure-
ment errors in the call arrival rate, by simulating a net-
work whose traffic is characterized by, while the con-
trol is based on an erroneous estimation of

at each control period, being a Gaussian variable
with zero mean and unit variance. Fig. 14 shows that for

up to 20%, the performance is still acceptable.
11) Normal load:While the emphasis so far is on the sta-

bility of the control under heavily loaded conditions, it
is interesting to consider the situation under normal load
(and usually with stricter QoS requirements). In Fig. 15,
we use and consider the range of call rates
which just start to saturate the network. Again, we see

that SDCA satisfies the QoS requirement up to the call
rate of 0.44 s , much higher than those of DCA and
TR. At the same time, Fig. 16 shows that a reasonable
level of blocking probability is maintained.

12) Non-exponential channel holding time:As stated ear-
lier, one of the key assumptions in our model is the ex-
ponential channel holding time, which is necessary for
the derivation of the corresponding evolution equations
[(10) and (11)]. We now compare the results with those
obtained under more realistic assumptions, specifically,
the lognormal distribution described in [11]. The same
mean value (i.e., the average channel holding time) and
the variance are used in both distributions. Observed
from Figs. 17 and 18, the exponential channel holding
time yields accurate control. This shows that the control
algorithm is rather insensitive to this assumption, mainly
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because we adopt a periodic control in which the length
of the control period is set to be less than the dwell time
of a call, and effectively, the exponential distribution is
a good approximation in the time interval truncated by
the control period.

V. LOCAL ESTIMATION ALGORITHMS

One practical limitation of this algorithm is that it requires
the periodical status information changes (signaling overhead)
among neighboring cells for the precision of the control, as ob-
served from Fig. 11. This of course depends on the relative mag-
nitude of mobility and the length of the control period. As dis-
cussed in Section III-A on the convergence of the local approxi-
mation, and confirmed in the result of Fig. 11, such status infor-
mation exchange is indispensable, unless the probability that a
call can handoff more than once in a control period is negligible.
Though reducing the length of the control period may alleviate
this problem, the frequency of the signaling is increased at the
same time.

To overcome this limitation, we propose local estimation al-
gorithms in which the information used by a cell is restricted
to those available locally, while the status of the neighboring
cells is derived by estimation rather than actual signaling. An
exponential smoothing technique from time series analysis is
adopted to compute the expected values from the periodically
observed values. Such a technique was used in TCP adaptive
retransmission to estimate the round-trip time (RTT) [10]. The
detailed algorithm based on local control can be found in [16].

Specifically, the mean channel occupancy and vari-
ance at time can be estimated from local information,
although their explicit evaluations in (8) and (9) require infor-
mation from both local and neighboring cells. The key is to note
that at the end of a control period, the channel occupancy be-
comes the initial occupancy of thenextcontrol period, which
is the local information readily available without extra mea-
surements. One can then subtract from it the estimated number
of new and ongoing calls which originate from the local cell
and survive at the end of the period. The difference yields the
number of background calls which originate from neigh-
boring cells. From (8)

(22)

In the last term, is expected to exhibit some long-term
statistical behavior provided that the traffic does not change
rapidly. Hence its estimated value can be updated at the end of
each control period by exponential smoothing via

(23)
The coefficients used in (23) need to be properly selected to
smooththe estimated value. In general, a large value ofcan
keep track of the changes more accurately, but can be too heavily
influenced by temporary fluctuations. On the other hand, a small
value of is more stable, but could be too slow in adapting to
real traffic changes.

Next, we need to estimate the number of background calls
at a general time during a control period. We expect

that this number would increase linearly with time at the be-
ginning of a control period. However, it levels off subsequently
because the background calls themselves can handoff or depart.
Neglecting this leveling-off effect would inevitably lead to er-
roneous control.

Without the intercellular information, it is easier to estimate
the number of local calls and infer back the number of back-
ground calls. This estimation is based on the typical condition
of a cell after averaging over different control periods, in which
case we can assume:

1) the average occupancy in a cell is , independent of
time ;

2) the average number of ongoing local calls at timeis
;

3) the average number of new local calls from time 0 tois
;

4) the average number of handout and hand-in calls balance
each other, so that the average number of admitted new
calls is balanced by the average number of departures
only, yielding .

Hence the average number of background calls at timeis given
by

(24)

Eliminating the average occupancy , is now related
to the measured quantity via

(25)

Indeed, this result is confirmed by more elaborate analyses.
Assuming that all neighboring cells have identically an average
initial occupancy of and an average call arrival rate of

, we estimate from (8) that

(26)

The sum of the transition probabilities in the first term is the
probability that a call survives inanyneighboring cell, provided
that it is still ongoing. Hence we have

and

(27)

yielding (24) and hence (25).
Thus the mean occupancy at a general time, to be used in

computing the evolving dropping probability, is estimated by

(28)

To compute the variance of the channel occupancy
distribution, we note that in (9), the background calls of cell
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Fig. 19. Handoff dropping probabilities for the local estimation algorithm,
with and without the QoS buffer, compared with that of SDCA.

consist of both the new and ongoing calls originating from the
neighboring cells . The numbers of new calls are Poisson dis-
tributed, but the numbers of ongoing calls are binomially dis-
tributed with means and variances of and

, respectively. However, for , remains
small within a control period, and both the mean and variance
are approximately . This implies that the number of
background calls is approximately Poisson distributed. Its vari-
ance is thus identical to given in (25). Similar to (28),
the variance at a general timeis estimated by

(29)

Summarizing, the local estimation algorithm is given by as-
signing the acceptance ratios according to the solution of
(21), where is time averaged by (20) for given in (19),
in which the parameters and are given by (28)
and (29), respectively, and is estimated by exponential
smoothing via (23). All information is derived locally, and the
only transition probability used is the local survival probability
in (4) and its integrated value in (7) for .

As shown in Fig. 19, the local estimation algorithm results
in stable control, with similar accuracy as the version of SDCA
with intercellular communications. To further improve the local
estimation algorithm, we introduce the concept of a QoS buffer.
When a cell is overloaded, its local dropping probability may
be higher than the QoS even when the acceptance ratio is set to
0. In this case, it may be advantageous to reduce the target QoS
in the following control periods, so that the QoS averaged over
control periods can be still be maintained. Similarly, when the
load of a cell is light, it may be advantageous to set a higher
target QoS in the following control periods. This mechanism
can be implemented by introducing a QoS bufferfor cell .
At the beginning of each control period, the acceptance ratio is
obtained by solving, instead of (21)

(30)

followed by an update of the QoS buffer using

(31)

Fig. 20. New call blocking probabilities for the local estimation algorithm,
with and without the QoS buffer, compared with that of SDCA.

As shown in Fig. 19, the local estimation algorithm with a
QoS buffer performs comparably with SDCA. Compared with
SDCA, its corresponding blocking probability is lower when
the network starts to saturate, and only slightly higher when the
network is overloaded, as shown in Fig. 20.

VI. CONCLUSION

In this paper, we present a new distributed and dynamic
call admission control scheme. The novelties of the proposed
scheme that make the control stable and precise are as follows.

1) We have taken into account the effects of limited capacity
and time dependence on the call dropping probability.

2) We have included the nonzero probability of multiple
hops from distant cells for longer control periods, which
improves the accuracy of the control mechanism.

3) Instead of implementing the control by adjusting the
admission threshold, we have computed the acceptance
ratio, which is able to spread the new calls uniformly over
the control period. In contrast, adjusting the admission
threshold tends to block late comers when it increases
above the previous value, and early comers when it
decreases below the previous value.

The major advantage of SDCA is its insensitivity to the net-
work load. The dropping probability is maintained at a stable
level over a wide range of call rates. By comparison, the per-
formance of DCA varies rapidly with the network load, and TR
is designed for static control. Though there is a slight deviation
from the prescribed in, say, Figs. 7 and 10, the stability
of the algorithm implies that this can be offset easily. We also
found that the control algorithm is rather insensitive to the as-
sumptions of exponential holding times, since the length of the
control period is set to be less than the dwell time of a call in
a cell, observed from Figs. 17 and 18. In situations where the
termination and handoff rates change with time, it is possible to
further improve the algorithm by using a moving average to es-
timate them. This approximates the rates as exponential within
a control period, whose mean rates change with the moving av-
erage from period to period.

The algorithm can operate over a wide range of networks:
homogeneous and inhomogeneous call rates and handoff rates,
large and small cell capacities, long and short control periods,
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tight and loose QoS requirements, and erroneous measurements
of call rates and handoff rates. Besides being adaptive to changes
in the call rates, it also has the potential to be adaptive to changes
in the handoff rates using the local approximation for on-line
updates. No matrix operations are required.

While the dropping probability is an important parameter for
network management, the probability of forced termination may
be more relevant to the subscriber. If a mobile moves across
cells during its lifetime, the probability of forced termination is
given by where is the average drop-
ping probability. Though we have not presented results for the
average probability of forced termination, it can be readily ob-
tained by .

The major complexity of the algorithm comes from solving
(21) by the bisection method. However, since the precision for a
stochastic control does not need to be high (here, we use a preci-
sion of 0.01 for ), this is not a problem for modern computers.

Efforts are in progress to extend the method for call admis-
sion control with multiple classes of traffic, each having its
own requirements bandwidth, QoS guarantee, and handoff rates.
Specifically, we are investigating the call admission control for
two types of traffic using a complete partition scheme with a
movable boundary [9], and employing the preassignment policy
[17].

APPENDIX A
TRANSITION PROBABILITIES FOR UNIFORM

HANDOFF RATES

We note that the transition matrixdefined in Section III-A
can be written as

(32)

where

nearest neighbors

otherwise.
(33)

For homogeneous handoff rates, and . Con-
sidering as the perturbation, we have

(34)

The 0th-order term consists of those terms in (34) which contain
no . Hence the 0th-order contribution goes only to , with

(35)

It corresponds to the case that no handoff events take place be-
tween time 0 and.

The first-order terms consist of one and only one. Since
the elements of are nonzero only for neighboring cells, the

first-order contributions go only to neighboring cellsand ,
with

(36)

It corresponds to the event that a call is handed off from cell
to .

Higher order contributions can be evaluated similarly.

APPENDIX B
TRANSITION PROBABILITIES FOR INHOMOGENEOUS

HANDOFF RATES

In the local approximation, the transition probabilities
from cell to consist of contributions from all possible paths
starting from cell and ending at cell. Let be a path of
hops following the sequence . This
path makes an th-order contribution to given by

(37)

Since the path may visit a cell more than once, we denote the dis-
tinct cells along the path by the label(including and ), and
the number of stops in each cell by . Hence after collecting
terms corresponding to the same cell, (37) can be written as

(38)

Consider the number of terms allowed in the sum-
mation , where are integers.
It is equal to the number of ways of partitioningindistin-
guishable objects into groups (empty groups allowed). Hence

, leading to

(39)

Substituting into (37), we have

(40)
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To simplify this expression, we use two algebraic identities. The
first is

(41)
Identity (41) can be verified directly by repeatedly applying row
transformations to the determinant. The second identity is

(42)

Identity (42) can be proved by mathematical induction in. It
can be easily verified for . Now assume that it holds for
the value , then for the value , we can write

(43)

where , and we have applied the theorem for the value
and the condition . The expression

now reduces to a geometric series, and the result is

(44)

The first term is just the desired terms up to . In the second
term, which will be denoted by , we first rearrange the factors
appearing in the denominator for a givenas follows:

(45)

where and . The factor
appears since we have rearranged terms when

. Multiplying both the denominator and numerator by
, the second term in (44) becomes, on using

(41)

(46)

We can rewrite as

(47)

This can be verified by expanding the determinant down the last
column. Multiplying and dividing theth row by , and
performing column operations successively, (44) reduces to

(48)

Combining with the first term in (44), (42) is proved.
We can now return to (40) which, on using (42), becomes

(49)

where the number of distinct cells along the path is equal to
. The summation over further reduces

the expression to

(50)

APPENDIX C
SOLUTION OF THE DIFFUSION EQUATION

Equation (12) with boundary condition (13) can be solved by
Laplace transform, analogous to problems in heat conduction
[8]. Let

(51)

Using integration by parts and the initial condition (14), (12)
can be transformed to

(52)
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Since (52) reduces to a homogeneous linear differential equation
for and , can be obtained by piecewise
construction, subject to the condition that is continuous at

. The result is

(53)

where . is determined by the
continuity condition that at

(54)

and is determined by the boundary condition (13)

(55)

We are particularly interested in the solution at . Substi-
tuting (54) and (55) into (53), we find

(56)

The distribution can be obtained by inverse Laplace
transform

(57)

where runs from to to the right of all
singularities of .

Case 1, : has a pole at and a branch cut
terminating at . Evaluating the contour integral
along the branch cut explicitly

(58)

where, after a change of variable to

(59)

Though this is difficult to integrate, we note that solving
is simpler, since

(60)

Integrating and using , we arrive at (15).
Case 2, : In this case, there is no pole at . For the

integral along the branch cut, we integrate and
using , we again arrive at (15).
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