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Abstract

We apply cross-spectral methods, dynamic correlation index of comovements and a VAR model to study
the cyclical components of GDP and tourism income of Switzerland with annual data for the period 1980 -
2007. We find evidence of 4 dominant cycles for GDP and an average duration between 9 and 11 years.
Tourism income is characterized by more cycles, giving an average cycle of about 8 years. There are also
common cycles both in the typical business cycle and in the longer-run frequency bands. Lead / lag
analysis shows that the two cyclical components are roughly synchronized. Simulations via a VAR model
show that the maximum effect of 1% GDP shock on tourism income is higher than the maximum effect of
1% tourism income shock on GDP. The effects of these shocks last for about 12-14 years, although the
major part of the shocks is absorbed within 5-6 years.

Keywords: Switzerland, Tourism Economics, Economic Fluctuations, Business Cycle,
Spectral Analysis, Dynamic Correlation, VAR Models.

JEL classification: C51, E32, L83.

1. Introduction

The tourism sector is one of the most significant sectors in the modern world
economy. However, despite its significance, the economics of tourism has not been
given much attention, at least when compared with more core economics areas such
as macroeconomics or econometric theory and methods, (Papatheodorou, 1999).
Furthermore, within the economics of tourism literature, econometric tools are rather
limited in comparison to those applied in macroeconomics, for example. However, in
recent years, the number of papers using econometric methods and tools in tourism
research has increased significantly. Several authors already employ standard
econometric tools such as ARIMA modelling, Cointegration and Error Correction
Mechanisms for forecasting purposes and to measure the long-run relationship
between tourism and GDP, and when data are not available or are of low quality,
Computable General Equilibrium models are implemented to assess the impact of
tourism on other sectors. See, inter alia, Ballaguer and Catavella-Jorda (2002),
Dritsakis (2004), Durbarry (2004), Papatheodorou and Song (2005), Narayan
(2004), Sugiyarto et al (2003), Wyer et al (2004). Reviewing the relevant literature
one can realize that the vast majority of econometric research in tourism is
conducted almost exclusively in the time domain while frequency-domain (spectral
and cross-spectral) methods are rather the exception. For example, out of 121
studies referring to modeling and forecasting of the tourism demand, only one
(Coshall, 2000) apart from seasonality modeling, applied frequency-domain analysis,
as it is evident from a review made by Song and Li (2008) of post 2000 research
papers on the issue. In his research, Coshall (op.cit.) found that cycles of passenger
flows from UK to France, Belgium and the Netherlands depend on cycles in exchange
rates, not on the GDP cycle.



It is also interesting to note that frequency-domain methods studying the
relationship between macroeconomy and tourism, to our knowledge, are not met in
the literature for Switzerland. Frequency-domain methods are valuable in that they
allow the decomposition of an economic time series into several periodic components
with different weights, providing, thereby, a clearer picture within a particular
frequency band, which otherwise would not be visible had classical time-domain
methods been employed.

In this paper we would like to contribute to tourism research by studying the
relationship between GDP and tourism income in Switzerland in the business cycle
frequency and longer-run bands (i.e. cycles of 1.5 - 10, or even more, years) by
means of classical spectral methods and the recently introduced dynamic correlation
analysis, as well as of classical time-domain methods with Vector Autoregressive
(VAR) models. Dynamic correlation, developed by Croux et al/, (2001), is an index of
comovement within the cross-spectral methods and measures the percentage of
shared variance between two time series at a particular frequency band of interest.
In particular, we seek to identify which individual cycles in both GDP and tourism
income are important in terms of duration within the business cycle band. Further,
we ask which of these individual cycles are more intensively correlated with each
other and study the lead / lag relationships between these two cycles. Finally, since
frequency-domain and time-domain methods are considered two alternative
representations of the same stochastic process, highlighting different aspects of the
process in question, we are also experimenting with a VAR model to investigate the
interaction of GDP with tourism income by means of impulse response functions, in
terms of magnitude, trajectory path and time required for the system to return to
the long-run equilibrium. Our findings are: First, average cycles of 9 or 11 years
(depending on the method of computation) for GDP, of 8 years for tourism income,
and common cycles positively correlated in the business cycle and in the longer-run
frequency bands. The dominant cycles of both variables are roughly synchronized.
Second, the maximum effect of 1% GDP shock on tourism income is higher than the
maximum effect of 1% tourism income shock on GDP. The effects of these shocks
last for about 12-14 years, although the major parts of the shocks are absorbed
within 5-6 years.

The remainder of the paper is organized as follows: In Section 2 we present a short
description of the Swiss tourism sector. Section 3 deals with the statistical
methodology (spectral analysis and VAR models) and in Section 4 we perform a
series of preliminary tests and present the spectral estimates. Section 5 refers to the
estimates of the VAR model, simulation of policy scenarios and the corresponding
transmission mechanisms. Section 6 concludes the paper. Tables and Figures are
given in Appendix A and a brief exposition of spectral methods and VAR models is
given in Appendix B.

2. A Short Description of the Swiss Tourism Sector

Tourism is an important sector for Switzerland. It accounts for 5%-6% of the GDP of
the Confederation and employs a workforce corresponding to 335000 full time
employees, accounting for 10% of total employment. At some cantons the
importance of tourism is very high. For example, in the canton of Grison, tourism
accounts for 30% of the cantonal GDP and 30% of the employment. In the canton of
Valais, the figures are 25% and 27% for the cantonal GDP and the employment,
respectively (Swiss Tourism in Figures, 2008). The multiplier effect of tourism in the
total economy is particularly high in Switzerland. This can be ascribed to the fact that



the country has specialized in tourism for more than a century, leading to high
productivity per employee. Indeed, in Switzerland there are many natural beauties
(e.g. the Alps and the lakes) along with high quality resort centers, and, probably, in
these areas not many alternatives for development, beyond tourism, exist. At the
word level, Switzerland still holds one of the top positions on the basis of many of
indices of tourism. According to a new index compiled by the World Economic Forum,
Switzerland has been recognised as the most competitive travel and tourism sector
in the world. As an example, in the World Economic Forum'’s first Travel and Tourism
Competitiveness Index (TTCI), and according to the Travel & Tourism
Competitiveness Report 2007, Switzerland outranked 124 other countries based on
its safety record and high quality staff in the tourism sector (World Economic Forum
website). This is a very positive evaluation for the tourism sector of the country
despite the fact that Swiss tourism has lost much of the dominant position it had
enjoyed in its heyday of the "belle époque" in the 19th century. Due to the
importance of the tourism sector for the country, the Swiss government and
parliament again decided to consider tourism as a strategic sector of the economy
during the parliament's summer session in June 2000 (OECD, 2000).

3. Methodology: Spectral Analysis and VAR Models

Spectral analysis has not been very frequently met in economic literature as in other
disciplines, such as engineering or physics. However, spectral analysis is the subject
of growing interest among economists during the last decades. See, for example,
Granger and Hatanaka (1964), Granger and Watson (1984), Granger (1966), Baxter
and King (1995), Levy and Dezhbakhsh (2001), Iacobucci (2005). On the other
hand, VAR models both in their ‘atheoretical’ form (e.g. see Sims, 1980) and in their
connection to economic theory (e.g. the cointegration variants, see inter alia,
Johansen (1988) and Johansen and Juselius (1990, 1992, 1994)), have been
employed for a long time in economics and are now considered standard tools in
economic analysis. Appendix B presents some basics of spectral analysis and VAR
models that are relevant to the present paper.

4. Data, Descriptive Statistics, Stationarity Tests and Spectral Estimates

4.1 Data

Annual GDP and tourism income data, expressed in logarithms, covering the period
1980 - 2007 at constant 2000 prices (in Swiss Francs), deflated by the GDP deflator,
are used in our analysis and have been obtained from the OECD and the Swiss
National Bank websites (www.oecd.org and www.snb.ch, respectively). Each of
theses series, denoted by ., is decomposed as y = Tr + C: + w, where
Tr:,Ct, u: are the (unobserved) long-run trend, the cyclical and the irregular (noise)
components of the series, respectively. Therefore, it holds that cyclical component +
noise = actual data - estimated trend. The long-run trends have been estimated by
the Hodrick-Prescott (HP) filter (Hodrick and Prescott, 1997) with smoothing
parameter A\ = 100. Since the HP filter has been applied in the logarithms of the
series y: (the actual series), the difference actual data - estimated trend expresses,

approximately, the percentage change of each observation at time ¢ from the
estimated trend (extracted by the HP filter) at time ¢. The long-run developments of
the variables are presented in Figure 1 and the cyclical components in Figure 2. It
seems from Figures 1 and 2 that the HP filter captures quite well all the recessions of
the past decades since 1980. In general, the Swiss business cycle follows the same
path as the European cycle. See Parnisari (2000) for the recessions in Switzerland
and their connections with the European business cycle.



4.2 Descriptive Statistics

Descriptive statistics of these series are presented in Table 1. From these statistics
we observe that the volatility (measured by the standard deviation) of the tourism
income cycle is almost double that of the volatility of GDP cycle. This reflects the
higher uncertainty tourism income exhibits, relative to GDP, and it is a well-
established fact in the literature. Further, the minimum points (the troughs) of the
cycles also differ: tourism income cycle has reached even 5.6% below the trend line
whereas GDP cycle has reached at 2.9% below the trend line. Both cycles follow the
normal distribution, as this is evident from the Jarque - Bera (JB) statistics which
indicate that the null hypothesis of normality cannot be rejected at any conventional
significance level (1%, 5%, 10%). The mean of both series is zero, since the cycles
have been constructed as deviations from the flexible HP trend line. Last, but not
least, cross-correlation coefficients, displayed in Table 2, show that the maximum
correlation 0.65 occurs at zero lag / lead, while the correlations at other leads and
lags are quite lower. On the basis of the cross-correlation coefficients, this is an
indication that the tourism income cycle is mainly procyclical.

4.3 Stationarity Tests

The above tests are meaningful only if both cycles are stationary. Although we
expect them to be stationary on theoretical grounds, statistical tests are required to
verify the stationarity properties of the variables. We initially employ the ADF test
(Dickey and Fuller, 1979) and the SIC, i.e. the Schwarz information criterion
(Schwarz, 1978) for the determination of the integration order of these two series.
However, since we use a VAR model for the study of the transmission mechanism of
the stochastic shocks, we also employ the Johansen (op.cit.) cointegration test to
determine the integration order of the series. Table 3 and Tables 4(a) and 4(b)
display the ADF test and the Johansen (op.cit.) cointegration test (with trace and
maximum eigenvalues statistics), for which the lag length has been determined
according to SIC, shown in Table 5. Finally, as a further indication of the integration
order, we provide in Table 6 the roots of the inverse characteristic polynomial of the
VAR model. From the ADF test we conclude that the null hypothesis of a unit root
process is rejected for both series at 5% and 10% significance levels. Hence, on the
basis of this test, both series are stationary. Tables 4(a) and 4(b) present the
Johansen (op.cit.) cointegration test with a constant in the cointegration space and
no trend in the data. Both trace and maximum eigenvalue statistics confirm that the
cointegrating rank equals 2, implying that the VAR model is stationary. Table 5
presents several information criteria for the determination of the optimal lag length.
According to Likelihood Ratio (LR), Final Prediction Error (FPE) (see Patterson, 2000),
and SIC criteria, the optimal lag length is 2, whereas according to AIC (Akaike,
1974), and HQ (Hannan and Quinn, 1979), the optimal lag length is 8. Given the
small sample (28 observations), we decided to consider that optimal lag length is 2
and not 8, in order to save valuable degrees of freedom, required for better
statistical properties of the estimators. The selection of 2 lags still ensures the
statistical adequacy of the VAR model, see Table 11 and Figures 9 and 10. The
stationarity of the VAR can also be confirmed from the inverse roots of the
characteristic polynomial of the VAR, shown in Table 6 and Figure 3, where all roots
are inside the unit circle of the complex plane. All inverse roots are complex and
have modulus less than 1, a fact that verifies the stationarity of the VAR.

From all these tests concerning the integration order of our processes, we conclude
that both processes are of zero integration order, that is, they are stationary.
Therefore, the information concerning the descriptive measures, displayed in Tables
1 and 2, is statistically valid and meaningful from an economic point of view.



Stationarity is also required for meaningful spectral estimates, given in the following
Section 4.4.

4.4 Spectral Estimates and Reconstruction of the Cycles

4.4.1 Univariate Spectral Analysis

We now proceed to spectral estimates. Figure 5 shows the univariate spectral
densities of GDP and tourism income. Table 7(a) and Table 7(b) display the
amplitudes of cosine and sine terms, the periodogram values and the spectral
density both for GDP and tourism income, respectively. The spectral window used
here, which acts as a filter in the periodogram in order to produce consistent
estimates of the power intensities, is the one suggested by Bartlett (Oppenheim and
Schafer, 1999), whose M =11 weights and shape are given in Figure 4. The number

of weights M has been determined as M=2ﬁ, where T is the number of
observations in the sample, (Chatfield, 1989). From these cycles, 4 have been
identified as the most significant ones, accounting for about 85% of the total
variance of the GDP cycle. They are cycles of 9.3 years (45%), 14 years (24%), 5.6
years (9.8%) and 7 years (5.3%). The relative importance of each of these cycles
has been calculated on the basis of the periodogram values but the picture is roughly
the same with the spectral density values instead of the periodogram. See Table 7(a)
and Figure 5. Despite that the dominant cycle being 9.3 years, all 4 cycles are
required to reconstruct the original GDP cycle in such a way that the simulated and
the original cycles are in phase as much as possible. From these estimates, the
average cycle is about 9 years (from the periodogram), and about 11 years from the
spectral density.

Using the same reasoning above, we identify the cycles of tourist income. Here we
have many cycles of almost equal importance, in contrast with the GDP cycle. We
reconstruct the cycle of the tourism income by cycles of 7, 9.3, 14, 5.6, 4.7, 4, 3.5
and 3.1 years, all having equal importance about 10%, with the exception of one
having importance approximately 4%. Overall, these cycles account for about 74%
of the total variance (on the basis of the spectral density estimates). The average
cycle is about 8 years. The relevant information is given in Table 7(b) and Figure 5.

On the basis of these cycles and their relative importance, the GDP and income
cycles are reconstructed in Figure 8. Both simulated cycles capture fairly well the
troughs and the peaks of the actual cycles in most of the cases. In some other cases
(GDP cycle in 1996, 2003 and the tourism income in 1982 and 1987) the simulated
peaks or troughs deviate about 1 year from the actual peaks or troughs.

4.4.2 Cross-Spectral Analysis and Dynamic Correlation

The next step is to identify the relationship between GDP and tourism income in
business cycle frequencies. Cross-spectral analysis reveals some interesting
characteristics of the relationship of two variables in the frequency domain. In
particular, Figure 6 displays the cross-spectral densities and the squared coherency
estimates, while Figure 7 presents the phase spectrum and the dynamic correlation
estimates. In addition, Tables 8(a) and 8(b) show the same plus other relevant
information in numerical form. According to these estimates, cycles existing in the
band of 5.6 up to 14 years are common in both cycles. This is evident from the fact
that squared coherency, Figure 8(b), takes the highest values in this frequency band.
The common cycles account for about 72% of the common variance (estimated as
the sum of the cross-spectral density percentages in the corresponding frequencies).
These estimates offer support for the view that GDP and tourism income cycles are



linked together both in the typical business cycle frequencies (cycles of 5.6 - 9.3
years) and in the longer-run (the cycle of 14 years). Knowing the phase spectrum,
we can also find the lead / lag relationship between GDP and tourism income. The
time of lead or lag (in months) for a particular period is computed as
Phase x Period

2

positive then GDP lags the tourism income. Thus, the cycles of 9.3 and 14 years
have negative phase, meaning that GDP cycles at these frequencies lead the tourism
income cycles by 1.9 and 2.7 months, respectively. On the contrary, the cycles of
5.6 and 7 years have positive phase, implying that GDP lags tourism income by 1.2
and 0.3 months, respectively. Therefore, on average, the lead / lag effect is small
and GDP and tourism income can be considered rather synchronized at these
frequencies, which account for the major part of the common variance (72%). This
also verifies the evidence provided by the cross-correlation coefficient at zero lead /
lags (0.65) that tourism income is procyclical.

x12 . If phase is negative, then GDP leads tourism income and if it is

The dynamic correlation sheds light on the relationship between two variables for
individual frequencies or for frequency bands and serves as an index of comovement.
Figure 8(b) presents the dynamic correlation which, in all frequencies, is between
0.65 and 0.79. Especially, in the frequency band of 5.6 — 14 years (the frequency of
interest in this paper) dynamic correlations take values from 0.69 - 0.77 and this is
an indication that the two series are correlated in a high degree both in the business
cycle and the longer-run frequency bands.

5. VAR Model and Transmission Mechanisms

5.1 Estimates and Diagnostics

The estimated VAR model and some diagnostics are given in Tables 9 and 10. The
estimates are meaningful only if the model is statistically adequate. Indeed, a well-
specified model must be free of residual autocorrelation, ARCH effects (Engle, 1982),
non-normality and must exhibit stability in its estimated parameters. Table 11 shows
the diagnostics for autocorrelation, ARCH effects and normality. Figures 9 and 10
present two sorts of stability tests: the Cusum and the Cusum of Squares Test
(Brown et al, 1975), both at 5% significance level, and the recursive coefficients
tests. The autocorrelation tests (Portmanteau test and Lagrange Multiplier test)
cannot reject the no-autocorrelation null hypothesis at any conventional significance
level. The same applies to ARCH effects and the normality tests: the null hypothesis
cannot be rejected at the conventional significance levels. Also, stability analysis,
based on the Cusum and the Cusum of Squares test shows no evidence of structural
instability within the sample. Given this picture, we hold that the VAR model is
suitable for policy scenarios and simulations.

5.2 Policy Scenarios and Simulations

We now examine the transmission of stochastic shocks generated in GDP and
tourism income. We simulate two policy scenarios and we trace the trajectory path of
the transmission by impulse response functions. In particular, Scenario 1 generates a
positive stochastic structural shock in the GDP equation of 1% in magnitude for one
period (one year) and no shock to tourism income equation. However, due to the
interdependence of the two variables, both variables will be affected by the GDP
shock. The trajectory path of GDP is the Transmission Mechanism 1 (TM1) and the
trajectory path of tourism income is the Transmission Mechanism 2. Scenario 2
generates a positive stochastic structural shock in the tourism equation of 1% in
maghnitude for one period (one year) and no shock to GDP equation. The trajectory



path of GDP is the Transmission Mechanism 3 (TM3) and the trajectory path of
tourism income is the Transmission Mechanism 4 (TM4). Again, due to the
interdependence of the variables in the VAR system, both variables will be affected
by the tourism shock. Table 12 presents the scenarios and the 4 corresponding
transmission mechanisms and Figure 11 shows the trajectory path that each variable
follows under the 4 transmission mechanisms. All trajectories have an oscillating
pattern due to the complex roots in the inverse characteristic polynomial of the VAR.

TM1 shows that the effect of the GDP shock to itself has a maximum 1% and lasts
about 13-14 years, but the major part of the shock is absorbed within the first 4
years.

TM2 and TM3 are interesting since they capture the effects of two shocks, from GDP
to tourism income and from tourism income to GDP, respectively. TM2 shows a
maximum response of 0.62%, the duration of the cycle is about 12-13 years and the
major part of the shock is absorbed within the first 5 years.

TM3 shows that the response of GDP cycle to tourism income shock is zero for the
first two years and it reaches a maximum response of 0.15% on the fourth year.
From that year onwards the effect on GDP declines, it reaches a minimum of -0.05%
on the seventh year and the whole cycle decays within 13-14 years. The major part
of the shock is absorbed within the first 6 years.

Lastly, TM4 shows that the effect of the tourism income to itself has a maximum of
1%, it lasts about 6 years and the major part of the shock is absorbed within the
first 3 years. It is interesting to note that the maximum effect of the GDP shock on
tourism income is higher (0.62%) than the effect of the tourism income shock on
GDP (0.15%).

6. Concluding Remarks

In this paper we have studied the spectral properties of the cyclical components of
the Swiss GDP and tourism income and their interaction by means of a VAR model
during the period 1980 - 2007. We found that the Swiss GDP is dominated by 4
cycles, listed in descending order of significance, of 9.3 years, 14 years, 5.6 years
and 7 years. These cycles account for about 85% of the total variation of the cyclical
component of the GDP. The average GDP cycle is 9 or 11 years (according to the
periodogram or the spectral density, respectively).

The tourism income is dominated by 7 cycles of 7, 9.3, 14, 5.6, 4.7, 4, 3.5 and 3.1
years, all having equal importance about 10%, with the exception of one having
importance approximately 4%. The average duration of the tourism income cycle is
about 8 years. Overall, these cycles account for about 74% of the total variance (on
the basis of the spectral density estimates). The average tourism cycle is about 8
years.

Cycles existing in the band of 5.6 up to 14 years are common in both GDP and
tourism income cyclical components and the comovements of these (and all of the
remaining) cycles are strong, on the basis of both squared coherency and dynamic
correlation indices. The common cycles account for about 72% of the common
variance. For the common cycles of 9.3 and 14 years, it has been shown that GDP
leads the tourism income by 1.9 and 2.7 months, respectively, whereas for the
common cycles of 5.6 and 7 years, the GDP lags the tourism income by 1.2 and 0.3
months, respectively. Thus, on average, the lead lag effect is small and the two



cycles are synchronized in the sense that their simulated peaks and troughs do not
deviate very much from the original ones.

Further, and as the VAR analysis shows, all trajectory paths are oscillatory. This is
due to the complex roots of the inverse characteristic polynomial of the VAR.

The findings of the TM2 and TM3 are interesting from a tourism policy point of view.
The implications are that a negative GDP shock affects the tourism income negatively
and vice-versa. In a hypothesized (though not tested) symmetry of shocks, the
implication of TM2 is that 1% negative GDP shock will result in 0.62% (at maximum)
negative growth in tourism income and this lasts for a period of about 13-14 years,
although the major part of the negative shock is absorbed within the first 5 years.
Further, and according to the findings of TM3, a negative 1% shock in tourism
income results in  0.15% (at maximum) negative growth in GDP, lasting 12-13
years, but the major part of the negative shock will be absorbed within the first 6
years.

Our estimates are based on a set of assumptions that are implicitly built into the
methods used (the HP filter, the sinusoid basis functions of Fourier transform /
spectral analysis, and the identification scheme of the VAR model). It is probable
that different filtering procedures, different identification schemes especially in case
of VAR models of higher dimension and different basis functions for spectral
estimates (e.g. in a wavelet analysis context) may produce different findings. In this
sense, our conclusion should be considered as indicative and tentative.
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APPENDIX A: Figures and Tables

Figure 1: Actual Data and Long-run Trends
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Note: GDP, Tourism Income: logarithms of GDP and Tourism Income, respectively. The long-run trends
have been estimated by the HP filter with smoothing parameter)x = 100. The smoothed line is the
trend.

Figure 2: GDP and Tourism Income Cycles
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Figure 3: Roots of the Inverse Characteristic Polynomial
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Note: All roots are inside the unit circle of the complex plain. VAR is stationary.
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Figure 4: Bartlett Window (M =11)
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Note: The figures in the bottom are the 11 weights of the Bartlett window.

Figure 5: Spectral Densities: GDP and Tourism Income
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Figure 6: GDP and Tourism Income Cycles: Cross-Spectral Density and Squared
Coherency
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Figure 7: Phase Spectrum and Dynamic Correlation
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Figure 8: Actual and Simulated Cycles
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Note: The blue (continuous) line is the simulated cycle and the red (dashed) line is the actual cycle.

Figure 9: VAR Model Stability Analysis: Cusum and Cusum of Squares Test
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Note: Both tests verify the structural stability of the model within the sample. The external lines define a

95% confidence interval.
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Figure 10: VAR Model Stability Analysis: Recursive Coefficients

Lag 1 Coefficients Lag 2 Coefficients

Note: Lag 1 Coefficients: Top panel, from left to right: coefficients of the first equation: GDP and tourism
income. Lag 1 Coefficients: Bottom panel, from left to right: coefficients of the second equation: GDP and
tourism income. Lag 2 Coefficients: Top panel, from left to right: coefficients of the first equation: GDP
and tourism income. Lag 2 Coefficients: Bottom panel, from left to right: coefficients of the second
equation: GDP and tourism income. All recursive coefficients verify structural stability of the model within
the sample. The external lines define a 95% confidence interval.

Figure 11: Transmission Mechanisms (Impulse Response Functions)
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Note: Transmission Mechanisms (TMs): TM1 refers to the response of GDP to its own stochastic shock.
TM2 refers to the response of tourism income to the GDP shock. TM3 refers to the response of GDP to the
tourism income shock. TM4 refers to the response of tourism income to its own stochastic shock.
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Table 1: Descriptive Statistics of the GDP and the Tourism Income Cycles

Variable Mean Standard Maximum Minimum Normality
Deviation JB Statistics

GDP Cycle 0 0.017 0.046 -0.029 1.905, p-value: 0.385

Tourism 0 0.030 0.052 -0.056 1.864, p-value: 0.413

Income Cycle

Table 2: Cross-Correlation Coefficients between GDP and Tourism Income Cycles

Lag / Lead! Corr(yu, y2-i)Lag Corr(yu, y2+i) Lead
0 0.65 0.65
1 0.35 0.33
2 -0.04 0.16
3 -0.22 0.13

Note: Y1is the GDP cycle, Y2 is the tourism income cycle.

Table 3: ADF Test

Variable ADF t statistic SIC Lag Length
GDP Cycle -3.771998 1
Tourism Income Cycle -3.229050 0

Note: MacKinnon et al, (1999) one-sided p-values: 1%: -3.699871, 5%: -2.976263, 10%: -2.627420.

Table 4(a): Cointegration Test with Trace Statistic

Hypothesized Eigenvalue Trace 5% CV 1% CV
Number of Statistic
Equations
k=0 0.412526 23.18650 15.49471 0.0029
k<1 0.326682 9.888420 3.841471 0.0017

Note: Trace Statistic suggests that cointegrating rank equals 2. VAR is stationary at both 5% and 1%
significance levels. CV: Critical Value.

Table 4(b): Cointegration Test with Maximum Eigenvalue Statistic

Hypothesized Eigenvalue Maximum 5% CV 1% CV
Number of Eigenvalue
Equations
E=0 0.412526 15.39606 14.26460 0.0330
E <1 0.326682 9.614142 3.841466 0.0019

Note: Maximum eigenvalue statistic suggests that cointegrating rank equals 2. VAR is stationary at both
5% and 1% significance levels. CV: Critical Value.
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Table 5: Determination of Optimal Lag Length

Lag Logl LR FPE AIC SIC HQ
0 104.9472 NA 1.16e-07 -10.29472 -10.19515 -10.27529
1 111.3482 10.88157 9.16e-08 -10.53482 -10.23610 -10.47650
2 119.3572 12.01353 6.24e-08 -10.93572  -10.43785 -10.83853
3 120.9218 2.034026 8.29e-08 -10.69218 -9.995169 -10.55612
4 122.0710 1.264055 1.19e-07 -10.40710 -9.510937 -10.23216
5 131.4858 8.473323 7.92e-08 -10.94858 -9.853270 -10.73476
6 133.3653 1.315698 1.23e-07 -10.73653 -9.442081 -10.48384
7 139.4938 3.064239 1.47e-07 -10.94938 -9.455782 -10.65781
8 153.1038 4.083013 1.17e-07  -11.91038 -10.21764  -11.57994

Note: LogL: Log Likelihood. LR, Likelihood Ratio, AIC: Akaike Information Criterion, FPE: Final Prediction
Error, SIC: Schwarz Information Criterion, HQ: Hannan - Quinn Information Criterion. Bold font indicates
the values of the criteria corresponding to the optimal lag length (also in bold).

Table 6: Inverse Roots of the Characteristic Polynomial of the VAR

Roots Moduli
0.559381 - 0.523355i 0.766034
0.559381 + 0.523355i 0.766034
0.097614 - 0.443933i 0.454539
0.097614 + 0.443933i 0.454539

Note: All moduli are less than one. VAR is stationary.

Table 7(a): GDP: Cosine and Sine Terms, Periodogram and Spectral Density

Frequency Period Cosine Sine Perio- Perio- Spectral Spectral
Coefficients Coefficients dogram dogram Density Density
% %

0.000000 NA 0.000000 0.000000 0.000000 NA NA NA
0.035714  28.0000 -0.001803 0.003618 0.000229 2.9 0.001186 16.0
0.071429  14.0000 -0.000767 -0.011788 0.001954 24.4 0.001232 16.6
0.107143 9.33333 0.015460 0.004383 0.003615 45.2 0.001280 17.2
0.142857  7.00000 0.003598 -0.004152 0.000423 5.3 0.001117 15.0
0.178571  5.60000 0.003343 -0.006712 0.000787 9.8 0.000930 12.5
0.214286 4.66667 0.003921 0.003723 0.000409 5.1  0.000682 9.2
0.250000 4.00000 -0.002203 0.004202 0.000315 3.9 0.000411 5.5
0.285714  3.50000 0.001152 -0.000192 0.000019 0.2 0.000196 2.6
0.321429 3.11111 -0.001034 -0.000486 0.000018 0.2 0.000126 1.7
0.357143  2.80000 -0.001676 0.000904 0.000051 0.6 0.000073 1.0
0.392857  2.54545 0.000025 -0.000946 0.000013 0.2  0.000050 0.7
0.428571  2.33333 -0.001585 0.001270 0.000058 0.7 0.000046 0.6
0.464286  2.15385 -0.001959 0.000870 0.000064 0.8 0.000049 0.7
0.500000 2.00000 0.001883 -0.000000 0.000050 0.6 0.000050 0.7

Note: The dominant frequency of 0.107 cycles (9.3 years), the corresponding periodogram values and the
spectral density are displayed in bold. The average cycle is 9 years, from the periodogram, and 11 years
from the spectral density.
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Table 7(b):

Tourism Income: Cosine and Sine Terms, Periodogram and Spectral

Density
Frequency Period Cosine Sine Perio- Perio- Spectral Spectral
Coefficients Coefficients dogram dogram Density Density

% %

0.000000 NA 0.000000 0.000000 0.000000 NA NA NA
0.035714 28.0000 0.000607 0.012164  0.002077 8.3  0.002289 9.6
0.071429 14.00000 0.000200 -0.014296  0.002862 11.5 0.002461 10.4
0.107143 9.33333 0.007351 0.011630 0.002650 10.6  0.002570 10.8
0.142857 7.00000 0.001944 -0.018410 0.004798 19.2 0.002587 10.9
0.178571 5.60000 0.001644 -0.015123  0.003240 13.0 0.002391 10.1
0.214286 4.66667 0.002733 -0.004664  0.000409 1.6  0.002004 8.4
0.250000 4.00000 0.003465 0.009826  0.001520 6.1 0.001711 7.2
0.285714 3.50000 -0.002246 0.001671  0.000110 0.4 0.001414 6.0
0.321429 3.11111 -0.012363 -0.002341  0.002217 8.9 0.001256 5.3
0.357143 2.80000 -0.006049 0.009230 0.001705 6.8 0.001160 4.9
0.392857 2.54545 -0.006064 -0.006333  0.001076 4.3 0.001099 4.6
0.428571 2.33333 -0.001977 0.001673  0.000094 0.4 0.000972 4.1
0.464286 2.15385 -0.007753 0.003677 0.001031 4.1 0.000941 4.0
0.500000 2.00000 -0.009233 -0.000000 0.001193 4.8 0.000900 3.8

Note: The dominant frequency of 0.143 cycles (7 years), the corresponding periodogram values and the
spectral density are displayed in bold. The average cycle is 8 years (on the basis of the spectral density).

Table 8(a): Periodogram and Cross-Spectral Density

Frequency Period Periodogram Periodogram Cross Cross Cross

(Real) (Imaginary) Spectral Quadratic Amplitude
Density Spectrum

0.000000 NA 0.000000 0.000000 0.001220 0.000000 0.001220
0.035714  28.00000 0.000601 0.000338 0.001280 -0.000180 0.001293
0.071429 14.00000 0.002357 -0.000187 0.001335 -0.000136 0.001342
0.107143 9.33333 0.002305 -0.002066 0.001312 -0.000140 0.001320
0.142857 7.00000 0.001168 0.000814 0.001198 0.000013 0.001198
0.178571 5.60000 0.001498 0.000553 0.001022 0.000117 0.001029
0.214286 4.66667 -0.000093 0.000399 0.000736 0.000181 0.000758
0.250000 4.00000 0.000471 0.000507 0.000486 0.000231 0.000538
0.285714 3.50000 -0.000041 -0.000021 0.000294 0.000233 0.000375
0.321429 3.11111 0.000195 0.000050 0.000209 0.000154 0.000260
0.357143 2.80000 0.000259 0.000140 0.000155 0.000104 0.000186
0.392857 2.54545 0.000082 0.000083 0.000150 0.000065 0.000163
0.428571 2.33333 0.000074 0.000002 0.000138 0.000035 0.000142
0.464286 2.15385 0.000257 0.000006 0.000142 0.000029 0.000145
0.500000 2.00000 0.000000 -0.000000 0.000134 0.000000 0.000134

Note: The highest cross-spectral estimates are in the frequency of 0.07 cycles (14 years), displayed in

bold.
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Table 8(b): Squared Coherency, Phase Spectrum, Lead / Lag Time and Dynamic
Correlation

Frequency Period Squared Phase Lead / Lag Time in Dynamic
Coherency Spectrum Months Correlation
0.000000 NA 0.60 0.000000 NA 0.77
0.035714 28.00000 0.62 -0.139691 -7.5Ld 0.78
0.071429 14.00000 0.59 -0.101799 -2.7 Ld 0.77
0.107143 9.33333 0.53 -0.106436 -1.9 Ld 0.73
0.142857 7.00000 0.50 0.010825 0.1Lg 0.70
0.178571 5.60000 0.48 0.113528 1.2 Lg 0.69
0.214286 4.66667 0.42 0.241527 2.2 g 0.65
0.250000 4.00000 0.41 0.444370 3.4 Lg 0.64
0.285714 3.50000 0.51 0.669736 4.5 Lg 0.71
0.321429 3.11111 0.43 0.636078 3.8 Lg 0.65
0.357143 2.80000 0.42 0.592255 3.2 Lg 0.65
0.392857 2.54545 0.52 0.408985 2.0 Lg 0.72
0.428571 2.33333 0.52 0.250606 1.1Lg 0.72
0.464286 2.15385 0.54 0.201688 0.8 Lg 0.73
0.500000 2.00000 0.49 0.000000 0.0 0.70

Note: Ld: GDP leads tourism income. Lg: GDP lags tourism income. Bold letters indicate the most
important common cycles in the business and the longer-run frequency bands.

Table 9: VAR Model Estimates

yu) (=0.001 1.023  0.003 \( yir-1 -0.446 —-0.128 \( yu-2 Ui

+ + +
Vau +0.001 0.468 0.291 )\ y2r-1 0.009 —0.269 )\ y2-2 U

where: Y1 is GDP, and y2is tourism income. Sample range: [1982, 2007], effective number of

observations 7' =26, corr(ui,u2) =0.069.

Table 10: Diagnostics of the VAR Model

R? 0.63 0.21
Adjusted R> 0.56 0.06
Residual Sum of Squares 0.002750 0.018395
Standard Error of Error Term 0.011443 0.029596
F-statistic 8.897186 1.409434
Log likelihood 82.11291 57.40695
AIC Akaike -5.931763 -4.031304
SIC Schwarz -5.689821 -3.789362

VAR Model Statistics: Log Likelihood: 147.9865, AIC: -10.61435, SIC: -10.13047, Determinant of the
residuals covariance matrix (d.o.f adj.): 5.98E-08. Determinant of the residuals covariance matrix: 3.90E-
08
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Table 11: VAR Model: Autocorrelation, ARCH and Normality Diagnostics

Autocorrelation Tests ARCH Effects Test Normality Test
Pormanteau adj. test statistic (16 Multivariate ARCH-LM  JB test statistic for the GDP equation:
lags): 56.6144 test statistic (5 lags): 0.0638
p-value: 0.4519 47.5341 p-value: 0.9886

p-value: 0.3698
LM test statistic (5 lags): JB test statistic for the tourism income
24.8379. p-value: 0.2077 equation: 0.6723

p-value: 0.7145

Note: No autocorrelation, ARCH effects and non-normality are evident. VAR is a well-behaved model,
suitable for policy scenarios.

Table 12: Policy Scenarios and Transmission Mechanisms

Scenario Shock / Variable Transmission
Mechanisms (TMs)

1 1% shock in GDP and no shock in tourism income TM1: effect on GDP
TM2: effect on tourism
income

2 No shock in GDP and 1% shock in tourism income TM3: effect on GDP
TM4: effect on tourism
income

Table 13: Transmission Mechanisms (Impulse Response Functions)

Year T™M1 TM2 TM3 TM4
1 1.00 0.00 0.00 1.00
2 1.02 0.47 0.00 0.29
3 0.60 0.62 0.12 -0.18
4 0.10 0.35 0.17 -0.19
5 -0.24 -0.01 0.09 -0.08
6 -0.34 -0.21 0.00 -0.02
7 -0.24 -0.22 -0.06 0.02
8 -0.06 -0.12 -0.06 0.04
9 0.07 -0.01 -0.03 0.03
10 0.11 0.06 0.00 0.02
11 0.09 0.07 0.02 0.00
12 0.03 0.05 0.02 -0.01
13 -0.02 0.01 0.01 -0.01
14 -0.04 -0.02 0.00 -0.01
15 -0.03 -0.02 0.00 0.00

Note: Transmission Mechanisms (TMs): TM1 refers to the response of GDP to its own stochastic shock.
TM2 refers to the response of tourism income to the GDP shock. TM3 refers to the response of GDP to the
tourism income shock. TM4 refers to the response of tourism income to its own stochastic shock. Duration
is estimated approximately on visual inspection.

Table 14: Dynamic Convergence to Equilibrium: Trajectory Path, Maximum
Magnitude and Duration

Transmission Trajectory Path Maximum Magnitude Maximum Duration
Mechanisms (in years)
TM1 Oscillating 1.00% 13-14
TM2 Oscillating 0.62% 12-13
T™M3 Oscillating 0.15% 13-14
TM4 Oscillating 1.00% 6

Note: Transmission Mechanisms (TMs) as defined in Table 13. Duration is estimated approximately on
visual inspection.
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APPENDIX B: Spectral Analysis and VAR Models

Spectral Analysis

Important characteristics of the cyclical components of our series can be revealed by
means of spectral analysis. The basic premise of spectral analysis, in its univariate
version, is the decomposition of a stationary and ergodic time series in different
frequencies and the estimation of amplitudes and phase shifts in individual time
series. This decomposition allows for a more insightful view of the cyclical behaviour
of series in comparison to the traditional time-domain analysis. An extension of the
univariate spectral analysis, the bivariate cross-spectral analysis, employed in the
present paper, attempts to find correlations at different frequencies. For example,
the decomposition of the GDP in various frequencies might reveal that a periodic
component of this series at some particular frequency (or frequencies) is correlated
with a periodic component of the tourism income at the same frequency (or
frequencies), a fact that traditional correlation analysis cannot show because it
assigns equal weights at all frequencies.

Consider a real stationary and ergodic stochastic zero mean process x: with
autocorrelation functionyx(k) at the lag k. Then, the spectral density s«(w) (the

spectrum) of x: is defined as the Fourier transform ofy«(k), i.e.
1 o _

sx(a))zz—f y+(k)e ™ dk . This is a transform from time domain into frequency
72' o0

domain, where w=2xf, f =1/T with T being the period of the x: wave. Thus, by its

definition, the spectrum of a series decomposes its total variation into frequencies of
various periodic components. The ‘typical’ business cycle frequencies are between
m/l6and 7 /3, corresponding to waves of 1.5 and 8 years, respectively. In a
seasonally adjusted time series, frequencies below 7 /3 correspond to longer cycles
(more than 8 years) and frequencies higher than /16 correspond to cycles with
shorter duration (less than 1.5 years), i.e. noise. In the same way we can define the

1 o _
spectrum sy(@) for another real zero mean process y: as sy(a))zz—I yy(k)e ™ dk .
7z' 0

Consider now two stationary and ergodic zero mean processes yrand x: with cross-

1 = _
correlation function yw(k)and its Fourier transform sxy(a)):z—j yo(k)e ™ dk . This
7z' 00

is the cross-spectral density of the two real processes x: and y:, which, however, is
complex. Then, we define an index hw(®w) of comovement, called coherency, as

So(w)

A/ Sx(a)) . Sy(a))
difficult. Because of this undesired property of the coherency, the literature suggests
a more convenient measure of comovement, called squared coherency, hzxy(a)),

su(@)’|

sx(w) - sy(@)

ho(w) = . Since this is a complex function of @, its interpretation is

defined as h’y(w)= , @ measure analogous to the coefficient of multiple

determination R”in the regression context, for a particular frequency @. But this
index has the drawback that it is invariant with respect to a shift in the time process,

that is, h’w(w)=h’=(w)with zbeing a shifted process of x (i.e. zz=xi+x). It is
exactly this disadvantage of the squared coherency that made Croux et a/ (op.cit.) to
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propose an alternative measure of comovement, called dynamic correlation, denoted
ny((t))

\Sx(@) - sy(w)

(sometimes called co-spectrum) of the cross-spectral density sw(®). This new index

has the advantages that it is real, it takes values between -1 and 1 and depends on
the shift in the time process. Therefore, it can be interpreted as a meaningful index
of comovement between two processes.

as pw(w)and defined as pu(w)= with cw(w)being the real part

We can also extend the definition of the dynamic correlation from a particular
frequency wto a frequency band, (e.g. the typical business cycle frequency band).

Define the following bands: Q=Q.UQ - with Q+=[a)1,a)z) and Qf=[—a)1,—a)z)with
0<aon<w:<7m. Then, the dynamic correlation coefficient between x: and yr over
J- cow(w)dw
the frequency band Q-+ is defined by 4 (Q+)= . In the
\/ [ s(@)do- j s(@)do

special case that n=0and w2 =, then the dynamic correlation coeff|C|ent coincides
with the static correlation coefficient.

VAR Models

The transmission mechanism of stochastic shocks is discussed by means of a VAR
model in the context of cointegration analysis. The VAR model of order n is defined
as

= Ayt -1+ Aoyt -2+ ...+ Ayt — 0+ we,

where y:is a m x 1 vector of endogenous variables, Ai m x m coefficient matrices,

w: a m X lvector of stochastic disturbances, assumed to be white noise processes.
In our paper m = 2. After suitable rearrangements (see Favero, 2001; Enders,

1995) in order to achieve stationarity we end up with
n—1 n—1

Ay: = ZHiAthi—f—Hthn—f—Ut = ZHiAthi—f-Oéﬂ'thn—f—Ut.

i=1 i=1

_(I - : A/) ’

where

and Iis a m x m identity matrix.

This reparameterized form of the initial VAR is the Vector Error Correction Model
(VECM). The rank k of matrix II gives the statistical properties of the VAR. Full rank
k = m implies that VAR is stationary. £ = 0 implies that VAR is non-stationary but
with no cointegrating equations. Reduced rank k& < m means k cointegrating
equations. In this case II can be decomposed as II = af3'where ais m X k matrix

of weights and(3is a m x k matrix of parameters determining the cointegrating

22



relationships. The columns of § are interpreted as long-run equilibrium relationships

between the variables and matrix «adetermines the speed of adjustment towards
these equilibria. Values of the entries of aclose to unity imply high inertia and slow
convergence. The ('y:-1 term is the equilibrium error and is a measure of the

deviation from the long - run equilibrium. The A ’s are m x m parameters matrices,
corresponding to the lag structure of the model, determined, in practice, by an
information criterion. In this paper we have adopted (among other criteria) the SIC
(Schwartz Information Criterion, Schwartz, op.cit.) which is

SIC = =21/ T +qlog(T)/ T,

where ¢ = m(1 + pm) the total number of parameters in the VAR, m the number of
equations, p the number of parameters per equation, [ the log of the likelihood

function under the hypothesis of the multivariate normal distribution of the error
terms in the VAR and 7T the effective sample size. We select the lag which
corresponds to the minimum value of SIC. Johansen (op.cit.) have developed a
statistical procedure that allows the determination of the estimation of the VAR
model. This procedure is based on the fact that the rank of a matrix equals its
characteristic roots that differ from zero. Having obtained estimates for the II
matrix, we associate with them the estimates for the m roots of the characteristic
polynomial (the characteristic roots) of II and order them as follows:
A1 > X2 > ... \n. If the variables are not cointegrated, then the rank of Ilis zero and
all the characteristic roots are zero. If, instead, the rank of II is one and
0<h<l, then In(1— ) is negative and

In(1 —A2) = In(1 — A3)... = In(1 — Aw) = 0. Johansen (op.cit.) derives a test on the

number of characteristic roots that are different from zero by considering the trace
and the maximum eigenvalue statistics:

m

Arace(k) = =T 3" In(1 — A)and Awax(k,k +1) = —=TIn(l — A +1),

i=k+1

where T'is the number of effective observations used to estimate the VAR. The trace
statistic tests the null hypothesis that the number of distinct cointegrating vectors is
less than or equal to k£ against a general alternative. The trace statistic is zero when
all \i are zero. The further the estimated characteristic roots are from zero, the
larger the trace statistic. The maximum eigenvalue statistic tests that the number of
distinct cointegrating vectors is kagainst the alternative of k& + 1 cointegrating
vectors. Once again, the further the estimated characteristic roots are from zero, the
larger the maximum eigenvalue statistic. Both statistics are small under the null
hypothesis. Therefore, high values imply evidence in favour of the alternative
hypothesis. Critical values are tabulated by Johansen (op.cit.) and they depend on
the number of the non-stationary components under the null and on the specification
of the deterministic component of the VAR, both in the data and the cointegration
space. Given that, in the present analysis, we employ the cyclical components of
GDP and tourism income, it is expected that the VAR system is of full rank k = 2,
i.e. it is stationary. Once VAR is estimated, the transmission of stochastic shocks to
the system can be simulated by reparameterizing the VAR into a moving average

23



representation, i.e. y/,:,u-i—Zgby:aﬂ:, where , ¢: and e are (structural)
i=0

constants, coefficients and shocks, respectively. To achieve identification of the VAR
system (a one-to-one mapping between the structural and the reduced-form
parameters), we apply the Cholesky decomposition of the variance - covariance
residual matrix, with the GDP cyclical component to be ordered first. This implies
that structural shocks in GDP depend on the structural shocks of tourism income but
not vice-versa.
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