
[11:31 2/12/2010 Bioinformatics-btq627.tex] Page: 55 55–62

BIOINFORMATICS ORIGINAL PAPER Vol. 27 no. 1 2011, pages 55–62
doi:10.1093/bioinformatics/btq627

Structural bioinformatics Advance Access publication November 25, 2010

A dynamic data structure for flexible molecular maintenance and
informatics
Chandrajit Bajaj∗, Rezaul Alam Chowdhury and Muhibur Rasheed
Department of Computer Science, University of Texas at Austin, Austin, TX, USA
Associate Editor: Anna Tramontano

ABSTRACT

Motivation: We present the ‘Dynamic Packing Grid’ (DPG), a
neighborhood data structure for maintaining and manipulating
flexible molecules and assemblies, for efficient computation of
binding affinities in drug design or in molecular dynamics
calculations.
Results: DPG can efficiently maintain the molecular surface using
only linear space and supports quasi-constant time insertion,
deletion and movement (i.e. updates) of atoms or groups of
atoms. DPG also supports constant time neighborhood queries from
arbitrary points. Our results for maintenance of molecular surface
and polarization energy computations using DPG exhibit marked
improvement in time and space requirements.
Availability: http://www.cs.utexas.edu/~bajaj/cvc/software/DPG.shtml
Contact: bajaj@cs.utexas.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on August 2, 2010; revised on October 15, 2010; accepted
on October 30, 2010

1 INTRODUCTION
Many human functional processes are mediated through the
interactions among proteins, a major molecular constituent of
our anatomical makeup. A computational understanding of these
interactions provides important clues for developing therapeutic
interventions related to diseases such as cancer and metabolic
disorders. Computational methods such as automated docking
through shape and energetic complementarity scoring aim to
gain insight and predict such molecular interactions. Docking
(Bajaj et al., 2009b; Gilson and Zhou, 2007) involves induced
complementary fit between flexible protein interfaces. The flexible
docking solution space consisting of all relative positions,
orientations and conformations of the proteins is searched, and
each putative docking is evaluated using combinations of interface
complementarity scoring and atomic pairwise charged Coulombic
interactions. Also, since proteins function in predominantly watery
(solvent) environment, the protein solvation energy also plays
an important role in determining intermolecular binding affinities
‘in vivo’ for drug screening, as well as in molecular dynamics
simulations and in the study of hydrophobicity and protein folding.
When computing the solvation energy for molecules, it is crucial to
correctly model and sample the molecular surface.

The most common model for molecules is a collection of atoms
represented by spherical balls, with radii equal to their van der

∗To whom correspondence should be addressed.

Waals radii (Duncan and Olson, 1993; Mezey, 1993). The surface
of the union of these spheres is known as the van der Waals surface.
Accessibility to the solvent, namely the solvent accessible surface
(SAS), can be defined as the locus of the center of a ‘probe’ sphere
as it contacts the molecular surface. Usually, the ‘probe’ is a water
molecule modeled as a sphere with radius 1.4 Å. Another definition
for molecular surface is as a set of contact and reentrant patches
(Richards, 1977), commonly known as the solvent contact surface
(SCS), or solvent excluded surface (SES) or simply the molecular
surface.

While a number of techniques have been devised for the
static construction of molecular surfaces (see e.g. Bajaj et al.,
2009c for a brief review), not much work has been done on
neighborhood data structures for the dynamic maintenance of
molecular surfaces under conformational changes and domain
movements. Bajaj et al. considered limited dynamic maintenance
of molecular surfaces based on Non Uniform Rational BSplines
(NURBS) descriptions for the patches (Bajaj et al., 2003). Eyal
and Halperin presented an algorithm based on dynamic graph
connectivity that updates the union of balls molecular surface after
a conformational change in O (log2n) amortized time per affected
(by this change) atom (Eyal and Halperin, 2005a, b). In this article,
we present the Dynamic Packing Grid (DPG), a space and time
efficient neighborhood data structure that maintains a collection of
balls (atoms) in 3-space, allowing a range of spherical range queries
and updates for rapid scoring of flexible protein–protein interactions
(Bajaj et al., 2009a, 2010).

The efficiency of the data structure results from the assumption
that the centers of two different balls in the collection cannot
come arbitrarily close to each other, which is a natural property of
molecules. A consequence of this assumption is that any ball in the
collection can intersect at most a constant number of other balls. On
a RAM with w-bit words, our DPG data structure can report all balls
intersecting a given ball or within O (rmax) distance from a given
point in O (loglogw) time with high probability (w.h.p.), where rmax
is the radius of the largest ball in the collection. It can also answer
whether a given ball is exposed (i.e. lies on the union boundary) or
buried within the same time bound. At any time, the entire union
boundary can be extracted from the data structure in O (m) time in
the worst case, where m is the number of atoms on the boundary.
There are existing techniques like Weiser et al. (1998, 1999), which
can compute/approximate the exposed atoms and the surface area in
the same time bound, but do not allow dynamic updates. On the other
hand, DPG supports updates (i.e. insertion/deletion/movement of a
ball) in O (logw) time w.h.p.1 The data structure uses linear space.

1For an input of size n, an event E occurs w.h.p. (with high probability) if,
for any α≥1 and c independent of n, Pr(E)≤1− c

nα .

© The Author 2010. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 55

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/1/55/202396 by U
.S. D

epartm
ent of Justice user on 16 August 2022

http://www.cs.utexas.edu/~bajaj/cvc/software/DPG.shtml

[11:31 2/12/2010 Bioinformatics-btq627.tex] Page: 56 55–62

C.Bajaj et al.

As we show here, DPGs can be used to maintain both the van der
Waals surface and the SCS of a molecule within the performance
bounds mentioned above. DPGs can also be used to enable fast
energetics calculation by rapidly locating the atoms close to each
sampled integration point of the SCS.

Besides protein docking and molecular dynamics, the
neighborhood query and surface maintenance of DPG also
has potential applications in interactive computer-aided design
(CAD) tools developed for de novo drug design, protein folding,
n-body simulations, etc. All these applications often need to handle
extremely large number of atoms or points.

2 THE DYNAMIC PACKING GRID DATA
STRUCTURE

Let M ={B1,...,Bn} be a collection of n balls in 3-space with ci
and ri being the center and radius, respectively, of Bi, i∈[1,n]. Let
rmax =maxi {ri} and let dmin =mini,j

{
d(ci,cj)

}
, where d(ci,cj) is

the Euclidean distance between ci and cj .
We describe the packing grid data structure for maintaining M

efficiently under the following set of queries and updates.

Queries

(1) Intersect(c,r): Returns all balls intersecting B= (c,r).

(2) Range(p,δ): Returns all balls with centers within distance δ

of point p. We assume that δ=O(rmax).

(3) Exposed(c,r): Returns true if the ball B= (c,r)∈M
contributes to the boundary of the union of the balls in M.

(4) Surface(): Returns the outer boundary of the union of the
balls in M. If there are multiple disjoint outer boundaries
defined by M, the routine returns one of them.

Updates

(1) Add(c, r): Adds a new ball B= (c,r) to the set M.

(2) Remove(c, r): Removes the ball B= (c,r) from M.

(3) Move(c1, c2, r): Moves the ball with center c1 and radius
r to a new center c2.

We assume that the following holds at all times.

Assumption 2.1. If dmin is the minimum Euclidean distance between
the centers of any two balls in M, then rmax =O (dmin).

In general, a ball in a collection of n balls in 3-space can intersect
� (n) other balls in the worst case, and it has been shown by
Clarkson et al. (1990) that the boundary defined by the union of
these balls has a worst case combinatorial complexity of � (n2).
However, if M is a ‘union of balls’ representation of the atoms
in a molecule, then assumption 2.1 holds naturally (Halperin and
Overmars, 1994; Varshney et al., 1994), and as proved by Halperin
and Overmars (1994), both complexities improve by a factor of n.
The following theorem (see Bajaj et al., 2010 for a proof) states the
consequences of the assumption.

Theorem 2.1 [Theorem 2.1 in (Halperin and Overmars, 1994),
slightly modified]. Each ball in M intersects at most 216·(
rmax/dmin

)3 =O (1) other balls in M and the combinatorial

Table 1. Time complexities of the operations supported by the packing grid
data structure

Operations Time Complexity (w.h.p.)

Assuming Assuming
tq =O (loglogw) tq =O (loglogn)
tu =O (logw) tu =O (logn

loglogn)

Range, Intersect, O (loglogw) O (loglogn)
Exposed

Add, Remove, Move O (logw) O (logn
loglogn)

Surface O (#balls on surface) (worst case)

Assumptions: (i) RAM with w-bit Words,
(ii) Collection of n balls,
(iii) δ=O (rmax) and, (iv) rmax =O (minimum distance between two balls)

complexity of the boundary of the union of the balls is

O (
(
rmax/dmin

)3 ·n)=O (n).

Therefore, as Theorem 2.1 suggests, one should be able to handle
M more efficiently if assumption 2.1 holds. The efficiency of our data
structure, listed in Table 1, also depends partly on this assumption.

2.1 Preliminaries
Before we describe our data structure, we present some definitions
in order to simplify the exposition.

Definition 2.1 [r-grid, grid-cell, grid-line and grid-plane]. An r-
grid is an axis-parallel infinite grid structure in 3-space consisting
of cells of size r×r×r (r ∈R) with the root (i.e. the corner with
the smallest x, y, z coordinates) of one of the cells coinciding with
the origin of the Cartesian coordinate axes. The grid cell that has
its root at Cartesian coordinates (ar,br,cr) (where a,b,c∈Z) is
referred to as the (a,b,c,r)-cell or simply as the (a,b,c)-cell when
r is clear from the context. The (b,c,r)-line (where b,c∈Z) in an
r-grid consists of all (x,y,z,r)-cells with y and z fixed to b and c,
respectively. The (c,r)-plane (where c∈Z) in an r-grid consists of
all (x,y,z,r)-cells with z fixed to c.

The proof of the following lemma is straightforward.

Lemma 2.1. If M is stored in the 2rmax-grid G and if Assumption 2.1
holds, then

(i) Each grid-cell in G contains the centers of at most O (1) balls.
(ii) Each ball in M intersects at most eight grid-cells in G.

(iii) For a given ball B∈M with center in grid-cell C, the center
of each ball intersecting B lies either in C or in one of the 26
grid-cells adjacent to C.

(iv) The number of non-empty grid-cells in G is at most n, and the
same bound holds for grid-lines and grid-planes.

At the heart of our data structure is a fully dynamic one dimensional
integer range reporting data structure for word RAM described
by Mortensen et al. (2005). Their data structure maintains a set
S of integers under updates (i.e. insertions and deletions), and
answers queries of the form Query(l,h), which reports any or all
points in S in the interval [l,h]. The following theorem (proved in
Mortensen et al., 2005) summarizes the performance bounds of the
data structure which are of interest to us.

56

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/1/55/202396 by U
.S. D

epartm
ent of Justice user on 16 August 2022

[11:31 2/12/2010 Bioinformatics-btq627.tex] Page: 57 55–62

Dynamic packing grid data structure

Fig. 1. Hierarchical structure of DPG.

Theorem 2.2. On a RAM with w-bit words, the fully dynamic one
dimensional integer range reporting problem can be solved in linear
space, and w.h.p. bounds of O (tu) and O (tq +k) on update time
and query time, respectively, where k is the number of items reported,
and

(i) tu =O (logw) and tq =O (loglogw) using the data structure
in Mortensen et al. (2005); and

(ii) tu =O (logn/loglogn) and tq =O (loglogn) using the data
structure in (Mortensen et al., 2005) for small w and a fusion
tree (Fredman and Willard, 1993) for large w.

2.2 Description (layout) of the packing grid data
Structure

We are now in a position to present the DPG data structure. DPG
represents the entire 3-space as a 2rmax-grid, and maintains the
non-empty grid-planes, grid-lines and grid-cells. Note that a grid
component (i.e. cell, line or plane) is non-empty if it contains the
center of at least one ball in M. The data structure can be described
as a tree with five levels: 4 internal levels (levels 3, 2, 1 and 0) and
an external level of leaves (see Fig. 1). The description of each level
follows (further details are available in Bajaj et al., 2010).

2.2.1 The leaf level ‘Ball’ data structure (DPG−1) The data
structure stores the center c= (cx,cy,cz) and the radius r of the given
ball B. It also includes a Boolean flag exposed which is set to true if
B contributes to the outer boundary of the union of the balls in M,
and false otherwise. The 3D arrangement of the spheres B∪N (B),
where N (B) is the set of balls intersecting B, divides the boundary
of B into spherical patches, some of which are exposed, that is they
contribute to the union boundary. We store all exposed patches (if
any) of A in a set F of size O (1), and with each patch f ∈F we
store pointers to the data structures of O (1) other balls that share
edges with f and also the identifier of the corresponding patch on
each ball.

2.2.2 The level 0 ‘Grid-Cell’ data structure (DPG0) The ‘grid-
cell’ data structure stores the root (see Definition 2.1) (a,b,c) of the
grid-cell it corresponds to. A grid-cell maintains a list of pointers
to data structures of the O (1) balls whose centers lie inside the
cell. Since we create ‘grid-cell’ data structures only for non-empty
grid-cells, there will be at most n (and possibly �n) such data
structures.

2.2.3 The level 1 ‘Grid-Line’ data structure (DPG1) We create
a ‘grid-line’ data structure for a (b,c)-line provided it contains at

least one non-empty grid-cell. Each (a,b,c)-cell lying on this line is
identified with the unique integer a, and the identifier of each such
non-empty grid-cell is stored in an integer range search data structure
RR as described in Section 2.1 (see Theorem 2.2). We augment RR
to store the pointer to the corresponding ‘grid-cell’ data structure
with each identifier it stores.

2.2.4 The level 2 ‘Grid-Plane’ data structure (DPG2) A ‘grid-
plane’ data structure is created for a c-plane provided it contains
at least one non-empty grid-line. Similar to the ‘grid-line’ data
structure, it identifies each non-empty (b,c)-line lying on the c-plane
with the unique integer b, and stores the identifiers in a range
reporting data structure RR.

2.2.5 The level 3 ‘Grid’ data structure (DPG3) This data
structure maintains the non-empty grid-planes in an integer range
reporting data structure RR in a similar way where each c-plane
is identified by the unique integer c. The ‘grid’ data structure also
stores a surface-root pointer which points to the ‘ball’ data structure
of an arbitrary exposed ball in M.

We have the following lemma (proved in Bajaj et al., 2010) on
the space usage of the data structure.

Lemma 2.2. Let Assumption 2.1 hold. Then the packing grid data
structure storing M uses O (n) space.

2.3 Queries and updates
The queries and updates supported by the data structure are
implemented as follows.

2.3.1 Queries
(1) Range(p, δ): Let p= (px,py,pz). First we invoke the
function Query(l,h) of the range reporting data structure RR
under the level 3 grid data structure with l=�(pz −δ)/(2rmax)�
and h=�(pz +δ)/(2rmax)�. This query returns a set S2 of non-
empty c-planes represented as pointers to level 2 grid-plane data
structures. Then, for each c-plane, we perform similar queries under
the corresponding level 2 data structure to obtain the set S1 of non-
empty grid-lines. Again, querying under each grid-line data structure
produces the set S0 containing non-empty grid-cells. Finally, for
each cell in S0, we collect and return each ball whose center lies
within distance δ from p.

The correctness of the function follows trivially since it queries
a region in 3-space, which includes the region covered by a ball
of radius δ centered at p. Also, assuming rmax =O (dmin) (i.e.
Assumption 2.1) and δ=O (rmax), the complexity reduces to
O (tq). Details can be found in (Bajaj et al., 2010).

(2) Intersect(c, r): Let B= (c,r) be the given ball. First, we call
Range(c, r+rmax) and collect the output in set S. From S we
remove the data structure of each ball that does not intersect B, and
return the resulting (possibly reduced) set.

The correctness follows from basic geometry and the correctness
of Range. Under Assumption 2.1, this function runs in O (tq) time.

(3) Exposed(c, r): Let B= (c,r) be the given ball. We locate B’s
data structure by calling Range(c,0), and return the value stored in

its exposed field. Clearly, the function takes O (tq +(
rmax/dmin

)3)
time (w.h.p.), which reduces to O (tq) under Assumption 2.1.

57

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/1/55/202396 by U
.S. D

epartm
ent of Justice user on 16 August 2022

[11:31 2/12/2010 Bioinformatics-btq627.tex] Page: 58 55–62

C.Bajaj et al.

(4) Surface(): The surface-root pointer under the level 3 ‘grid’
data structure points to the ‘ball’ data structure of a ball B on the
union boundary of M. We scan the set F of exposed faces of B, and
using the pointers to other exposed balls stored in F we perform a
depth-first traversal of all exposed balls in M and return the exposed
faces on each such ball. Let m be the number of balls contributing
to the union boundary of M. Then according to Theorem 2.1, the

depth-first search takes O (
(
rmax/dmin

)3 ·m) time in the worst case,
which reduces to O (m) under Assumption 2.1.

2.3.2 Updates

(1) Add(c, r): Let c= (cx,cy,cz) and let c′
u =

⌊
cu

2rmax

⌋
, where u∈

{x,y,z}. Let G be the grid data structure. If G does not exist, then
create and initialize G. Then, first we create and initialize a data
structure B and add to M. Then, we query the range reporting data
structure G.RR to locate the data structure P for the c′

z-plane. If P
does not exist, create and initialize P, and insert c′

z along with a
pointer to P into G.RR. Similar steps are taken for the grid-line and
then the grid-cell data structures to identify the (c′

x,c
′
y,c

′
z)-cell C

and add B to C. We then use the Intersect query to identify N (B),
the set of balls intersecting B. Finally we update the arrangement
of each ball in B∪N (B), list exposed faces on each ball and update
the surface-root pointer if necessary.

Observe that the introduction of a new ball may affect the surface
exposure of only the balls it intersects (by burying some/all of
them partly or completely), and no other balls. Hence, updating
the arrangements of the balls in B∪N (B) (in addition to those in
earlier steps) are sufficient to maintain the correctness of the entire
data structure. The Add function terminates in O (tu) assuming
rmax =O (dmin). Detailed analysis is in (Bajaj et al., 2010).

(2) Remove(c, r): This function is symmetric to the Add function,
and has exactly the same asymptotic time complexity. Hence, we
do not describe it here.

(3) Move(c1, c2, r): This function is implemented in the obvious
way by calling Remove(c1, r) followed by Add(c2, r). It has the
same asymptotic complexity as the two functions above.
Therefore, we have the following theorem.

Theorem 2.3. Let M be a collection of n balls in 3-space as defined
in Theorem 2.1, and let Assumption 2.1 hold. Let tq and tu be as
defined in Theorem 2.2. Then the packing grid data structure storing
M on a word RAM:

(i) uses O (n) space;
(ii) supports updates (i.e. insertion/deletion/movement of a ball)

in O (tu) time w.h.p.;
(iii) reports all balls intersecting a given ball or within O (rmax)

distance from a given point in O (tq) time w.h.p., where rmax
is the radius of the largest ball in M; and

(iv) reports whether a given ball is exposed or buried in O (tq)
time w.h.p., and returns the entire outer union boundary of M
in O (m) worst-case time, where m is the number of balls on
the boundary.

2.4 Molecular surface maintenance using DPG
In this section, we briefly describe applications of the packing grid
data structure for efficient maintenance of molecular surfaces.

2.4.1 Maintaining van der Waals surface of molecules Each atom
is simply treated as a ball with a radius equal to the van der Waals
radius of the atom see (Batsanov, 2001) for a list of van der Waals
radius of different atoms).

2.4.2 Maintaining Lee-Richards (SCS/SES) surface For the
efficient maintenance of the Lee-Richards surface of a molecule
within the performance bounds given in Table 1, we maintain
two packing grid data structures: DPG and DPG′. The DPG data
structure keeps track of the patches on the Lee-Richards surface, and
DPG′ is used for detecting intersections among concave patches.

Before adding an atom to DPG, we increase its radius by rs, where
rs is the radius of the rolling solvent atom. The DPG data structure
keeps track of all solvent exposed atoms, i.e. all atoms that contribute
to the outer boundary of the union of these enlarged atoms. Theorem
2.1 implies that each atom in DPG contributes O (1) patches to the
Lee-Richards surface, and the insertion/deletion/movement of an
atom results in local changes of only O (1) patches. We can modify
DPG to always keep track of where two or three of the solvent
exposed atoms intersect, and once we know the atoms contributing
to a patch we can easily compute the patch in O (1) time (Bajaj
et al., 2003).

The Lee-Richards surface can self-intersect in two ways: (i) a
toroidal patch can intersect itself and (ii) two different concave
patches may intersect (Bajaj et al., 2003). The self-intersections of
toroidal patches can be easily detected from DPG. In order to detect
the intersections among concave patches, we maintain the centers of
all current concave patches in DPG′, and use the Intersect query
to find the concave patch (if any) that intersects a given concave
patch.

2.5 Energetics computation using DPG
Generally, the solvation energy Gsol of a molecule is decomposed
into three components, namely, Gcav (the energy to form cavity in the
solvent), Gvdw (the solute-solvent van der Waals interaction energy),
and Gpol (the polarization energy or the electrostatic potential energy
change due to the solvation). The first two terms Gcav and Gvdw are
linearly related to the solvent accessible surface area �SAS. The last
term, Gpol, can be approximated using the Generalized Born (GB)
theory as introduced by Still et al. (1990).

Gpol =− τ

2

∑
i,j

qiqj√
r2
ij +RiRje

−r2
ij/4RiRj

, (2.1)

where τ =1− 1
ε , and Ri is the effective Born radius of atom i (see

Fig. 2a). Either of Equations 2.2 or 2.3 can be used as discrete
approximation of R−1

i (Bajaj and Zhao, 2010).

R−1
i = 1

4π

N∑
k=1

wk
(rk −xi)·n(rk)

|rk −xi|4
, (2.2)

R−3
i = 1

4π

N∑
k=1

wk
(rk −xi)·n(rk)

|rk −xi|6
, (2.3)

where the rk’s are N carefully chosen integration points on the
boundary of the molecule, and wk is a weight assigned to rk to
ensure higher order of accuracy for small N (see Fig. 2b). Other
methods have used volume integrals (Tjong and Zhou, 2007) or

58

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/1/55/202396 by U
.S. D

epartm
ent of Justice user on 16 August 2022

[11:31 2/12/2010 Bioinformatics-btq627.tex] Page: 59 55–62

Dynamic packing grid data structure

Fig. 2. (a) Gpol is computed based on Born Radii and charges of each atom
pair, (b) Born Radii of an atom can be approximated based on integration
points, shown as red dots, sampled on the surface.

Fig. 3. Gaussian integration points (c) on the surface of nuclear transport
factor 2 (1A2K) computed after generating a smooth surface (b) from the
collection of balls model (a).

integrals over bonded and non-bonded atom pairs (Qiu et al., 1997)
to approximate Born Radii.

The non-polar terms Gcav and Gvdw can be computed directly
from the SAS area �SAS of the molecule. The SAS of the molecule
can be extracted in O (m̃logw) time and O (m̃) space using a DPG
data structure, where m̃ is the number of atoms in the molecule. The
DPG data structure outputs the SAS as a set of spherical and toroidal
patches, and we add up the area of each patch in order to calculate
�SAS.

2.5.1 Discrete approximation of Born Radii In order to
approximate the polar term Gpol, first we need to approximate
the Born radius Ri of each atom i. We compute the SES as A-
spline patches, produce a quality improved meshing of the surface
and sample integration points and their weights following (Bajaj
and Zhao, 2010) (see Figure 3) and then use Equation (2.2) to
approximate Ri. But observe that the direct computation of Ri
requires O(n2) time, where n is the number of atoms and assuming
that the number of sampled integration points is also O(n). However,
since the terms in the summation diminish very fast with the increase
of distance, distance cutoffs can be used to approximate it.

Given the set of atoms A, the set of integration points Q sampled
on the surface, and two user-defined parameters α,δ>0, for every
integration point q∈Q, we place each atom a∈A in one of the
following three categories based on the distance d between q and
the center of a: (i) near (d ≤δ), (ii) mid-way (δ<d ≤αδ) and (iii) far
(αδ<d). Figure 4 shows an example in 2D. For the near categories,
the computation is performed exactly. For the midway category,
clusters of atoms and integration points are viewed as pseudo-atoms
and pseudo-integration points, and hence a coarse computation is
performed. For the far category, a single average distance and a
single average weighted normal is used for all pairs of clusters.

Separate DPG data structures are used to store the atoms,
integration points, pseudo-atoms and pseudo-integration points.
DPG is used both for identifying the near, midway and far

Fig. 4. (a) A simple 2D example depicting definition of near, medium and
far atoms (centers shown as green dots) from a particular integration point
xi. In the example, two atoms are near, seven are medium and three are far.
(b) After clustering using hierarchical DPG, each cell contains a pseudoatom
(centers shown as blue circles). Now two atoms are near, three clusters are
medium and two clusters are far.

atoms/pseudoatoms as well as for clustering (see Bajaj et al., 2010
for details).

Assuming that m̃̃δ is an upper bound on the number of atoms
within distance δ̃ from any given point in space, the time spent
for computing all Ri’s is O (N loglogw+Nm̃̃δ), which reduces to
O (N loglogw) since m̃̃δ is a constant (though could be quite large)
for constant δ̃. Once all Ri’s are computed, Gpol can be computed

using Equation (2.1) in O (m̃2) time in the worst case. The space
usage is O (m̃+Nm̃̃δ) which is O (m̃+N) for constant δ̃.

2.6 Maintenance of flexible molecules
Suppose we are given a flexible molecule decomposed into several
(mostly) rigid domains which interact either through connected
chain segments or large interfaces. We refer to these chain segments
and interfaces as connectors. Domains may move with respect
to each other through motions applied to the connectors. Two
domains connected by at least one connector may undergo bending
motion applied to some hinge point around some hinge axis. If they
are connected by only one connector, a twisting motion can also
be applied to the connector by updating torsion angles along its
backbone. If two domains share a large interface area, they may
undergo a shearing motion with respect to each other. However,
though domains are mostly rigid they may have flexible loops and
side chains on their surfaces.

We maintain a separate packing grid data structure Pi for each
domain Di. If two domains Di and Dj are connected and i< j, the set
Sij of all connectors between these two domains are included in Pi,
and a transformation matrix Mij is kept with Pi that describes the
exact location and orientation of the grid structure of Pj with respect
to that of Pi. Whenever some motion is applied to the connectors in
Sij , we update Pi in order to reflect the changes in the locations of
the atoms in these connectors, and also update Mij in order to reflect
the new relative position and orientation of Pj with respect to Pi.
The complexities of these operations are presented in the following
lemma proved in (Bajaj et al., 2010).

Lemma 2.3. The surface of a flexible molecule decomposed into
(mostly) rigid domains can be maintained using packing grid data
structures so that

(i) updating for a bending/shearing/twisting motion applied
between two domains takes O (1+mlogw) time (w.h.p.),
where m is the number of atoms in the connectors between
the two domains;

59

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/1/55/202396 by U
.S. D

epartm
ent of Justice user on 16 August 2022

[11:31 2/12/2010 Bioinformatics-btq627.tex] Page: 60 55–62

C.Bajaj et al.

(ii) updating the conformation of a flexible loop or a side chain on
the surface of a domain takes O (m̃logw) time (w.h.p.), where
m̃ is the number of atoms affected by this change; and

(iii) generating the surface of the entire molecule requires
O (m̂logw) time (w.h.p.), where m̂ is the sum of the number of
atoms on the surface of each domain.

3 RESULTS AND DISCUSSIONS
The performance of the basic functions of DPG are reported
in Section 3.2. Sections 3.3 and 3.4, respectively, analyzes
performance of DPG in molecular surface maintenance and
energetics calculation.

3.1 Implementation details
In our current implementation, instead of the 1D integer range-
reporting data structure presented in (Mortensen et al., 2005), we
have implemented a much simpler data structure that supports
both updates and distance queries in expected O (logw) time and
uses linear space. Since w is usually not more than 64, for most
practical purposes a O (logw) query time should be almost as good
as O (loglogw) time. This data structure builds on binary search
trees, dynamic perfect hashing and y-fast trees. However, instead
of dynamic perfect hashing we used ‘cuckoo hashing’ (Rasmus and
Flemming, 2004) since it is much simpler, and still supports lookups
in O (1) worst case time, and updates in expected O (1) time.

3.2 Performance analysis of updates and queries
To measures the performance of the update and query functions
of DPG, we use more than 180k quadrature points, generated for
energetics computations by sampling uniformly at random on the
surface of PSTI (a variant of human pancreatic trypsin inhibitor:
1HPT.pdb) after protonation using PDB2PQR (Dolinsky et al.,
2004). Experiments are performed on a 3 GHz 2× dual core (only
one core was used) AMD Opteron 2222 processor with 4 GB RAM.
Please refer to (Bajaj et al., 2010) for details of the experiment.
Table 2 shows the results of this experiment. The time required is
O (logw+K) where K is the size of the output or in this case, the
number of points returned. The last column of the table shows that
as the point set becomes denser, the efficiency of the data structure
remains almost the same.

Table 3 reports the performance of update functions of DPG’s
range reporting data structure. Four different macromolecules were
used, and for each of them all atoms were first randomly inserted

Table 2. Performance of the Query function of packing grid

Quadr. Query Average Time Average number of
Points Distance (Å) (ms)/Query Points Returned (k/ms)

45654 2 | 4 | 8 0.31 | 0.57 | 1.42 0.38 | 1.37 | 3.14
91309 2 | 4 | 8 0.59 | 1.14 | 2.80 0.38 | 1.43 | 3.31

136963 2 | 4 | 8 0.97 | 1.85 | 4.44 0.34 | 1.32 | 3.27
182618 2 | 4 | 8 1.30 | 3,22 | 5.86 0.38 | 1.31 | 3.30

We randomly assign each of the 182 618 points to one of four groups and thus obtain
four approximately equal-sized groups. We then run queries from the atom centers (100
queries per atom) on group 1, merge groups 1 and 2 and run queries on this merged
group, and so on.

into the data structure followed by the random deletion of all atoms.
The reported insertion and deletion times are averages of four such
independent runs. The average time for a single insertion/deletion
was never more than 5 µs.

3.3 Performance of molecular surface maintenance
We compared the performance of DPG with the 3D hashing used
by (Eyal and Halperin, 2005a, b) in producing and maintaining
molecular surfaces. We used the same implementation of 3D
arrangement and surface generation (Eyal and Halperin, 2005b), but
switched between the two different range query data structures. We
measured the space and time requirements for generating the surface
of various macromolecules. To verify scalability, multiple chains of
the same protein were inserted. For virus capsids, as multiple chains
are inserted, not only the number of atoms increases but also the
overall structure becomes sparser. The results of this experiment are
reported in Table 4. It is clear that the space requirement of the DPG
is linear in the number of atoms. The difference in space requirement
becomes more pronounced for larger and sparser structures. Also, its
running times are comparable with that of 3D hash. Though 3D hash
performs insertions and queries in optimal constant time, using too
much memory can adversely affect its running time. For example, in
the case of RDV P3 with four chains, 3D hash operations run slower
than DPG range reporting operations. We believe that this slowdown
is due to page faults caused by excessive space requirement of 3D
hash.

3.4 Performance of Born Radii and polarization energy
calculation

A parallel implementation of the approximation scheme described
in Section 2.5.1 was applied to compute the Born Radii, which were
used to compute the polarization energy GPol . The experiments were
performed on the RANGER cluster, on a single node with 16 cores.

First, three different approximations were performed by varying
the δ parameter for the molecules in ZDock Benchmark 2.0
(Mintseris et al., 2005). We shall refer to these as DPG_GB_g_x,
where δ=xD,x∈0.5,0.75,1.0 and D is the dimension of a cell in
DPG, and it means that a g×g×g grid was used to generate the
surface and integration points on the surface. Both D and α are
automatically selected based on the size of the molecules. For each
atom i of a molecule, the approximation error is defined as εi =
|(Rexact

i −Rdpg
i)|∗100

Rexact
i

, where Rdpg
i and Rexact

i are the Born Radii of atom i

approximated using DPG-based scheme and by exact (full pairwise)
evaluation of Equation (2.2), respectively. The approximation error

Table 3. Insertion and deletion times of our current packing grid
implementation

Molecule Number Average Insert Average Delete
(PDB File) of Atoms Time (µs) Time (µs)

GroEL (1GRL) 29 274 3.3 4.0
RDV P8 (1UF2: P) 193 620 3.9 4.4
RDV P3 (1UF2: A) 459 180 3.9 4.6
Dengue (1K4R) 545 040 4.0 4.5

The results are averages of four runs. In each run, all atom centers are randomly inserted
into the data structure followed by random deletion of all atom centers.

60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/1/55/202396 by U
.S. D

epartm
ent of Justice user on 16 August 2022

[11:31 2/12/2010 Bioinformatics-btq627.tex] Page: 61 55–62

Dynamic packing grid data structure

Table 4. Comparison of the performance of the 3D range reporting data
structure used by DPG and the 3D hash table used in (Eyal and Halperin,
2005b).

Molecule (PDB
File)

Number of
Chains

Number of
Atoms

Number of Cells (k)Time (s)

DPG 3D hash DPG 3D hash

1I3Q 1 11 114 4.68 45.18 17.36 16.23

2GLS
1 3636 1.44 9.18 5.43 5.06
5 18 180 7.28 41.40 37.10 34.80

2BG9
1 2991 1.20 10.75 4.44 4.29
5 14 955 6.03 31.20 24.31 22.95

1UF2:
Chain P

(RDV P8)

1 3227 1.35 9.26 4.47 4.23
2 6454 2.74 1124.04 9.23 8.56
4 12 908 5.47 4426.11 19.36 18.14
8 25 816 10.98 6332.16 45.22 44.44

1UF2:
Chain A

(RDV P3)

1 7653 3.23 38.76 10.99 10.23
2 15 306 6.46 927.44 22.73 21.44
3 22 959 9.74 1992.75 40.48 39.62
4 30 612 12.99 2591.70 119.28 128.37

1K4R:
Chains A and B

2 6056 2.62 20.70 8.46 7.71
4 12 112 5.24 138.60 17.56 16.52
6 18 168 7.85 333.06 33.73 32.62

for a molecule is the average of the εi’s. Figure 5a reports the
approximation errors for each molecule. It is clear that a larger
‘near’ band results in lower error. On the other hand, Figure 5b
shows the speedup for each approximation, where speedup is defined
as (time taken by exact computation)/(time taken by DPG-based
computation). Though there is a clear speed/accuracy trade-off, it
only underscores the efficacy and flexibility of the scheme. For
example, DPG_GB_128_1.0 is almost 50 times faster than the naive
pairwise computation with only 2.41% error.

In Figure 6, we report the error of Gpol computation where,

for each molecule, the error is defined as |(Gexact−Gdpg)|∗100
Gexact , where

Gexact and Gdpg are, respectively, the Gpol computed using Rexact
i

and Rdpg
i for each atom i of the molecule. Gpol errors are much

lower than the Born Radii errors because the integral of the Gpol
formulation also falls off with distance and hence accuracy of Gpol
is more dependent on the accuracy of the Born radii of atoms near
the surface. In Table 5, the Born Radii of all atoms of all molecules
are grouped into five bins based on Rexact

i . It is easy to verify that
Born Radii computation errors for the atoms near the surface (having
lower values of Born Radii) are indeed much lower. Another notable
aspect from the results in Figure 6 is that some of the molecules,
specially 1PPE_l_b, the Gpol error is considerably higher. We found
that this tend to happen for molecules which are very small (for
example, 1PPE_l_b has only 436 atoms) or very flat, in other words
does not have much in the ‘far’ band. Our scheme for computing
partial sums for ‘far’ bands seem to overestimate in such cases.

We also computed the Born Radii and Gpol for the same set of

molecules using Amber (Case et al., 2005) and GBr6 (Tjong and
Zhou, 2007) on the same computing cluster using the same number
of nodes and cores. The results in Figure 7a show that DPG-based
implementations, are much faster than GBr6 and are comparable
to Amber. In Figure 7b, we report the ratio of the Born Radii

Fig. 5. (a) Comparison of the approximation errors for Born Radii
computation at various levels of approximation. Average percentage error
across all molecules for the schemes are 11.42,4.44,2.16,4.84 and 4.41 (in
the order shown in legend). (b) Comparison of the speedup (with respect to
the exact implementation) for Born Radii computation at various levels of
approximation. Average speedup across all molecules for the schemes are
47.96,37.71,30.63,59.97 and 47.51 (in the order shown in legend). Figures
appear in color in the online version of the paper.

Fig. 6. Approximation errors for Gpol computation. The average Gpol error
across all molecules are 0.09 and 0.1, respectively for DPG_GB_256_1.0
and DPG_GB_128_1.0. Note that Gpol errors are much lower than Born
Radii errors.

computation time of DPG and Amber, sorted in increasing size of
molecules. It is clear that DPG gets better as the size increases and
outperformsAmber in a few cases. So, we experimented withAmber,
GBr6 and DPG for a very large molecule, the Cucumber Mosaic
Virus (CMV) capsid, consisting 509K atoms. DPG completed in
only 22 s, while Amber needed 172 s and GBr6 needed about 3.6 h.

As Gpol obtained using different formulations often vary a lot,
we decided to compare the consistency instead of the exact values.

61

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/1/55/202396 by U
.S. D

epartm
ent of Justice user on 16 August 2022

[11:31 2/12/2010 Bioinformatics-btq627.tex] Page: 62 55–62

C.Bajaj et al.

Table 5. Distribution of errors for different ranges of Born Radii. Clearly,
error is lower for atoms near the surface (smaller Born Radii).

Range of Number of atoms Average % error
Born Radii in range

[0, 2] 17 580 0.83
(2, 4] 63 101 1.85
(4, 7] 61 640 3.82
(7, 10] 38 796 6.74
(10, ...] 112 765 10.16

Fig. 7. (a) Comparison of Born Radii computation speeds of Amber, GBr6

and DPG. DPG is almost as fast as Amber, which is the fastest. And
GBr6 is the slowest (some higher values are cropped). (b) Ratio of Born
radii computation times of DPG and Amber, sorted by increasing size of
molecules. DPG_GB_128_0.75 is the fastest, and DPG_GB_256_1.0 is the
slowest as expected. But the ratio of all five schemes improve as the size of
the molecules increase. (c) Scatter plot correlating the polarization energies
computed using DPG and GBr6 with Amber.

Figure 7c displays that DPG consistently produces Gpol values
similar to Amber’s. In fact, the average deviation of Gpol computed
by DPG-based scheme from Amber’s is less than 5%.

Funding: NIH contracts (R01-EB00487, R01-GM074258, R01-
GM073087, in part); a grant from the UT-Portugal CoLab project.

Conflict of Interest: none declared.

REFERENCES
Bajaj,C. and Zhao,W. (2010) Fast molecular solvation energetics and force

computation. SIAM J. Sci. Comput., 31, 4524–4552.
Bajaj,C. et al. (2003) Dynamic maintenance and visualization of molecular surfaces.

Dis. Appl. Math., 127, 23–51.
Bajaj,C. et al. (2009a) A dynamic data structure for flexible molecular maintenance

and informatics. In SPM ’09: 2009 SIAM/ACM Joint Conference on Geometric and
Physical Modeling, pp. 259–270.

Bajaj,C. et al. (2009b) F2Dock: fast fourier protein-protein docking. In IEEE/ACM
Transactions on Computational Biology and Bioinformatics [Epub ahead of print;
doi: 10.1109/TCBB.2009.57].

Bajaj,C. (2009c) Afast variational method for the construction of resolution adaptive c2-
smooth molecular surfaces. Comput. Methods Appl. Mech. Eng., 198, 1684–1690.

Bajaj,C. et al. (2010) A dynamic data structure for flexible molecular maintenance
and informatics. Technical Report TR-10-31, ICES, University of Texas at Austin,
Austin, TX, USA.

Batsanov,S.S. (2001) Van der Waals radii of elements. Inorg. Mater., 37, 871–885.
Case,D.A. et al. (2005) The Amber biomolecular simulation programs. J. Comput.

Chem., 26, 1668–1688.
Clarkson,K.L. et al. (1990) Combinatorial complexity bounds for arrangements of

curves and spheres. Dis. Comput. Geom., 5, 99–160.
Duncan,B. and Olson,A. (1993) Approximation and characterization of molecular

surfaces. Biopolymers, 33, 219–229.
Dolinsky,T.J. et al. (2004) Pdb2pqr: an automated pipeline for the setup, execution, and

analysis of poisson-boltzmann electrostatics calculations. Nucleic Acids Res., 32,
665–667

Eyal,E. and Halperin,D. (2005a) Dynamic maintenance of molecular surfaces under
conformational changes. In SCG ’05: Proceedings of the 21st Annual Symposium
on Computational Geometry, pp. 45–54.

Eyal,E. and Halperin,D. (2005b) Improved maintenance of molecular surfaces using
dynamic graph connectivity. Algorithms Bioinformatics, 401–413.

Fredman, M.L. and Willard, D.E. (1993) Surpassing the information theoretic bound
with fusion trees. J. Comput. Syst. Sci., 47, 424–436.

Gilson,M.K. and Zhou,H.X. (2007) Calculation of protein-ligand binding affinities.
Annu. Rev. Biophys. Biomol. Struct., 36, 21–42.

Halperin,D. and Overmars,M.H. (1994) Spheres, molecules, and hidden surface
removal. In SCG ’94: Proceedings of the 10th Annual Symposium on Computational
Geometry, pp. 113–122.

Mezey,P.G. (1993) Shape in Chemistry; An Introduction to Molecular Shape and
Topology. VCH Publishers, New York, USA.

Mintseris,J. et al. (2005) Protein-protein docking benchmark 2.0: an update. Proteins,
60, 214–216.

Mortensen,C.W. et al. (2005) On dynamic range reporting in one dimension. In STOC
’05: Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
pp. 104–111.

Qiu,D. et al. (1997) The GB/SA continuum model for solvation. a fast analytical method
for the calculation of approximate Born radii. J. Phys. Chem. A, 101 , 3005–3014.

Rasmus,P. and Flemming,R. (2004) Cuckoo hashing. J. Algorithms, 51, 122–144.
Richards,F. (1977) Areas, volumes, packing, and protein structure. Annu. Rev. Biophys.

Bioeng., 6, 151–176.
Still,W.C et al. (1990) Semianalytical treatment of solvation for molecular mechanics

and dynamics. J. Am. Chem. Soc., 112,6127–6129.
Tjong,H. and Zhou,H.X. (2007) GBr6: a parameterization-free, accurate, analytical

generalized born method. J. Phys. Chem. B, 111, 3055–3061.
Varshney,A. et al. (1994) Computing smooth molecular surfaces. IEEE Comput. Graph.

Appl., 14, 19–25.
Weiser,J. et al. (1998) Neighbor-list reduction: optimization for computation of

molecular van der Waals and solvent-accessible surface areas. J. Comput. Chem.,
19, 797–808.

Weiser,J. et al. (1999) Fast, approximate algorithm for detection of solvent-inaccessible
atoms. J. Comput. Chem., 20, 588–596.

62

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/27/1/55/202396 by U
.S. D

epartm
ent of Justice user on 16 August 2022

