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We present a dynamic density functional theory �dDFT� which takes into account the advection of
the particles by a flowing solvent. For potential flows, we can use the same closure as in the absence
of solvent flow. The structure of the resulting advected dDFT suggests that it could be used for
nonpotential flows as well. We apply this dDFT to Brownian particles �e.g., polymer coils� in a
solvent flowing around a spherical obstacle �e.g., a colloid� and compare the results with direct
simulations of the underlying Brownian dynamics. Although numerical limitations do not allow for
an accurate quantitative check of the advected dDFT both show the same qualitative features. In
contrast to previous works which neglected the deformation of the flow by the obstacle, we find that
the bow wave in the density distribution of particles in front of the obstacle as well as the wake
behind it are reduced dramatically. As a consequence, the friction force exerted by the �polymer�
particles on the colloid can be reduced drastically. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2806094�

I. INTRODUCTION

The generalization of classical density functional theory
�DFT� to nonequilibrium states has become a valuable tool to
study the dynamics of directly interacting Brownian par-
ticles. This dynamic DFT �dDFT� for the ensemble averaged
density was proposed in Refs. 1 and 2 and studied in a mean-
field model in Ref. 3. More recently, dDFT has been ex-
tended to mixtures4,5 and anisotropic particles.6 Hydrody-
namics is known to play a crucial role in the dynamics of
suspensions, but up to now, hydrodynamic interactions have
been treated only in a mean-field manner7 and the solvent
has been assumed to be at rest. dDFT has also been used to
investigate the distribution of solute particles around a
strongly repulsive potential moving through the suspension.8

The intention was to model a colloidal particle moving
through a polymer solution. A similar model has been used to
study the depletion interaction between two colloidal par-
ticles moving through a polymer solution.9,10 In all these
studies, the hydrodynamic flow of the solvent around the
colloid was neglected and the solvent effectively passed
through the colloid. A real colloid would displace the solvent
as it moves, as shown for the case of a small and a large
colloid in Fig. 1. For a spherical colloidal particle of radius R
dragged through an unbounded incompressible viscous New-

tonian solvent with velocity c at low Reynolds number, the
flow field u�r� �in a frame of reference comoving with the
colloid� is given by the solution of the Stokes equation,11

u�r� =
3R

4r
�1 +

R2

3r2�c +
3R

4r3r�r · c��1 −
R2

r2 � − c . �1�

For large distances from the colloid, r�R, the flow field is
well approximated by u�r�=−c. For solute particles �e.g.,
polymers or other colloids� which only feel this far field, the
model presented in Refs. 8–10 is a reasonable approxima-
tion. This is the case for large solute particles with a radius
d�R. Their centers can approach the dragged colloidal par-
ticle only up to a distance D=R+d�d, see Fig. 1�a�, and
thus will feel a flow field u�r��−c, if one neglects the ad-
ditional effect of the solute particles on the solvent flow; in
other words, the hydrodynamic interaction between the sol-
ute particle and the colloid is neglected. This is a reasonable
approximation for polymer coils but certainly a bad one for
solid solute particles. However, small solute particles of ra-
dius d�R can get much closer to the colloid and feel the
distortion of the solvent velocity field, as illustrated in Fig.
1�b�. The solute particles will be deviated from the colloid by
the flow field and this will reduce significantly the bow-wave
effect in front of the colloid presented in Ref. 8 and the
strength of the nonequilibrium depletion force discussed in
Refs. 9 and 10. Extremely small solute particles would nota�Electronic mail: rauscher@mf.mpg.de.
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show this effect at all since they would behave like solvent
molecules. In this limit, however, the basis of the theory
discussed here, i.e, the description of the solute particles as
overdamped Brownian particles, is no longer valid because it
is based on a separation of the length and time scales asso-
ciated with the solvent molecules and the solute particles.

In this paper, we present a generalization of the dDFT
derived in Refs. 1 and 2 to the case of Brownian solvent
particles advected by a flow, thereby incorporating some as-
pects of the hydrodynamics of the solvent into the theory.
However, we do not model hydrodynamic interactions be-
tween the solute particles as well as the back reaction of the
solute particles on the flow field, e.g., by a concentration
dependent viscosity, or by a reduced mobility of the solute
particles in the vicinity of the colloid. However, the latter can
be included in a straightforward manner as we discuss in the
conclusions in Sec. IV. In Sec. II, we derive the advected
dynamic density functional theory using the method de-
scribed in Refs. 12 and 13. In Sec. III, we discuss two sample
cases, namely, ideal solute particles and Gaussian solute par-
ticles which stress the importance of taking into account the
solvent flow.

II. ADVECTED dDFT

We start with the Langevin equation of an ensemble of N
advected interacting Brownian particles confined to a finite
volume V in the overdamped limit,

dri

dt
= u�ri� − ��i�U�ri� + 	

j=1

N

V�
ri − r j
�� + �i�t� , �2�

with the pair interaction potential between the particles V�r�
and an external potential U�r�. Both the flow field u�r� and
the external potential U�r� can depend on time. For example,
a time dependent potential has been used in Ref. 14 to model
the oscillating cavities containing soft particles. For clarity of
notation we will not make this dependence explicit in the
equations. The flow field is not necessarily divergence-free
�i.e., the solvent can be compressible�. �i denotes the gradi-

ent with respect to ri. We approximate the noise generated by
the thermal motion of the solvent particles by a Wiener pro-
cess,

��i�t� = 0 , �3�

��i
��s�� j

��t� = 2T��ij�����t − s� , �4�

with the temperature T measured in units of energy �setting
kB=1� and the mobility coefficient ��0. The mobility coef-
ficient has to appear in the correlation in Eq. �4� in order to
fulfill the fluctuation-dissipation theorem and to get the cor-
rect equilibrium distribution for u�r�=0. The boundaries of
V are impermeable for the particles or periodic �or a mixture
of both� and, therefore, the number of particles is conserved.

The Fokker-Planck equation corresponding to the
Langevin equation �2� gives the time evolution of the prob-
ability density W�r1 , . . . ,rN , t� for finding the particles at
time t at the positions r1 , . . . ,rN,15,16

�W

�t
= − 	

i=1

N

�i · ���u�ri�
�

− �iU�ri�

− 	
j=1

N

�iV�
ri − r j
� − T�i�W� . �5�

For a potential flow, the velocity field can be written as the
gradient of a scalar field, u�r�=−��	�r�,17 such that the
external potential and the effect of the flow field can be com-
bined into a modified external potential U*�r�=U�r�+	�r�.
If U* is time independent, one can find a stationary probabil-
ity density Weq

* �r1 , . . . ,rN� which fulfills the detailed balance
condition for Eq. �5�, i.e., the term in curly brackets is zero
for each i=1, . . . ,N,

��iU
*�ri� + 	

j=1

N

�iV�
ri − r j
� + T�i�Weq
* = 0. �6�

The solution is

Weq
* �r1, . . . ,rN� =

1

Z*e−�1/T�	i=1
N �U*�ri�+	j=1

N V�
ri−rj
�� , �7�

normalized with the sum of states Z* such that

� �
VN

d3r1, . . . ,d3rNWeq
* �r1, . . . ,rN� = 1. �8�

For such a situation, the whole apparatus of equilibrium sta-
tistical mechanics can be used in order to calculate expecta-
tion values and correlations in a stationary nonequilibrium
situation. However, this is restricted to cases when the de-
tailed balance condition holds, which implies necessarily a
potential flow. Even in the Stokes flow �1� or in a simple
shear flow �e.g., in Couette or Poiseuille flow� this is not true
because �
u�0. For flows with a finite vorticity, there
is no detailed balance in a strict sense, see �Ref. 15,
Eq. �5.3.4c��.

From Eq. �5�, we can calculate the time evolution of the
noise averaged particle density ��r , t�, namely, the expecta-
tion value of the density operator �̂�r , t�=	i=1

N ��r−ri�t��,

FIG. 1. �Color� Cross section of the flow field given in Eq. �1� in a plane
parallel to the direction of motion around �a� a small spherical colloid and
�b� a big one �full circles, radius R�. The dashed circles of radius D mark the
points of closest approach of solute’s centers �point in the center of open
circles� to the colloid. The solute’s diameter in its mutual interaction is �
and, for nonadditive mixtures, not necessarily equal to its diameter 2d
=2�D−R� �indicated by the dotted circle� in the interaction with the colloid.
The component of the flow field normal to the dashed circle is larger for the
small colloid �a� than for the large colloid �b�. � and d are the same in both
figures.
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��

�t
+ � · ��u�

= � · ��� � U + T � � + ��
V

d3r�V�
r − r�
���2�


�r,r�,t�� , �9�

with the mean density

��r,t� = N� �
VN−1

d3r2, . . . ,d3rNW�r,r2, . . . ,rN,t� , �10�

and the nonequilibrium density-density correlation function

��2��r,r�,t� = N�N − 1�


� �
VN−2

d3r3, . . . ,d3rNW�r,r�,r3, . . . ,rN,t� .

�11�

Equation �9� is the starting point of a hierarchy of N evolu-
tion equations which connect the time derivative of the
n-point density correlation function to the �n+1�-point den-
sity correlation function, similar to the BBGKY hierarchy for
deterministic systems with inertia or the BGY hierarchy for
equilibrium correlation functions.

In order to find a closed equation for the time evolution
of ��r , t�, we approximate the interaction term in Eq. �9� by
its value in an equilibrium system with the same interaction
potential V�r�. Let us first restrict our considerations to the
case that detailed balance holds �so that, in particular, u
=−��	�. We modify our system of Brownian particles by
applying an external potential �r� so as to create a system
whose equilibrium density distribution is �eq

�r�=��r , t�. This
new potential �r� depends on ��r , t� and will be different
for each t as long as ��r , t� is not stationary. The Fokker-
Planck equation for the modified system will be Eq. �5� but
with U�r� being replaced by U�r�+�r�. The equilibrium
probability density Weq

 of the modified system is given by
Eq. �7� but with U*�r� being replaced by U*�r�+�r�. If we
integrate the detailed balance condition �6� for Weq

 over N
−1 positions, we get

u�eq
 = ���eq

 � �U + � + T � �eq


+ ��
V

d3r�V�
r − r�
��
�2��r,r��� , �12�

with the equilibrium pair correlation function �
�2��r ,r�� for

the modified system in the external potential . From equi-
librium density functional theory, one knows that the equi-
librium density distribution in the grand canonical ensemble
is the minimum of the grand canonical functional

���� = Fex��� + �
V

d3r�T��ln���3� − 1� + �Uext − ���� ,

�13�

with the thermal wavelength �, the chemical potential �,
and the sum of all external potentials Uext=U+	+. The
excess free energy Fex��� summarizes the effect of the par-
ticle interactions and it is not known exactly in general. We
take the gradient of the Euler-Lagrange equation following
from the functional �13�: since in thermal equilibrium the
chemical potential is constant across the whole system, we
get

u

�
= ��U + � +

T

�eq
 � �eq

 + �� �Fex���
��

�
�eq


. �14�

If we compare Eq. �12� with Eq. �14� we can see that

��
V

d3r�V�
r − r�
��
�2��r,r�� = �eq

 � � �Fex���
��

�
�eq


. �15�

Note that the right hand side does not depend on the velocity
potential 	 while the dependence on  enters only through
�eq

 . We will use Eq. �15� as a closure to the hierarchy of
equations starting with Eq. �9�: Hereby we assume that the
density correlations at time t in the nonequilibrium system
with mean density ��r , t� are the same as those in an equi-
librium system with the additional potential  and with equi-
librium mean density �eq

�r�=��r , t�. We then get

��

�t
+ � · ��u� = � · ��� �

�F���
��

� , �16�

with the free energy functional

F��� = Fex��� + �
V

d3r�T��ln���3� − 1� + �U� . �17�

In thermodynamic equilibrium for u=0 and time inde-
pendent U, the equilibrium density distribution given by �
= 
�F��� /��
�eq

is a stationary solution of Eq. �16�. An
H-theorem,

�

�t
�

V
d3rF��� = − �

V
d3r����

�F���
��

�2

� 0, �18�

guarantees that the time evolution actually converges to the
equilibrium distribution. �The dynamics in Eq. �2� together
with the boundary conditions taken for V imply that the par-
ticle current through the system boundaries is zero and,
therefore, the surface terms from partial integration vanish.�
The final chemical potential is then determined by the con-
served number of particles in the system. As discussed
above, a system in a potential flow corresponds to an equi-
librium system with a modified external potential U*=U
+	. Equation �16� can then be written in the form

��

�t
= ���� �

�F*���
��

� , �19�

with the modified free energy functional F*���=F���
+�Vd3r	�. Thus, we have an H-theorem for F*��� instead of
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F��� and the “equilibrium state” is determined by
�F*��� /��=�*.

The right hand side of Eq. �15� is completely indepen-
dent of the flow field and one could be tempted to use it as a
closure to Eq. �9� for the most general case �i.e., nonpotential
flows�. However, this would mean approximating density
correlations in a driven nonequilibrium system where de-
tailed balance cannot be achieved by thermal equilibrium
correlations. While we could argue that close to equilibrium,
Eq. �15� may be a reasonable approximation if detailed bal-

ance still holds, there is no such argument for the most gen-
eral case that detailed balance is violated. The study in Ref. 8
addresses a situation where the approximation is found to be
good although there is no detailed balance since a net par-
ticle current is driven through the system. In the next section
we consider some examples with the purpose of assessing �i�
the effect of a more realistic Stokes flow as discussed in the
Introduction, and �ii� the validity of the approximate Eq. �16�
for a nonpotential flow.

III. EXAMPLES

As an example, we study a solution of polymers �radius
d, density �0� in an incompressible Newtonian solvent flow-
ing around a spherical colloidal particle �radius R� in a sta-
tionary situation. We model the polymer coils as pointlike
particles from the point of view of the solvent, but with a
finite interaction range � concerning other polymer coils and
D=d+R concerning the colloidal particle, the interaction
with the latter being of hard-wall type �see Fig. 1�. The ve-
locity field of the solvent is given by the Stokes flow
�Eq. �1�� and we choose c=cêz. Measuring lengths in terms
of D, the dimensionless parameters determining the system
are the Péclet number c*=cD / ��T�, the colloid radius R*

=R /D, and the polymer’s mutual interaction range � /D.

A. Ideal polymers

For ideal solute particles in an incompressible solvent
with U=0, the stationary condition �� /�t=0 from Eq. �16�
reads

u · �� = �T�� , �20�

where �T is the diffusion constant of the solute particles. The
hard interaction with the colloid is written as a boundary
condition for the current density of the solute particles j
=u�−�T�� at r /D=1,


�êr · j�
r/D=1 = 0. �21�

We expand the density field ��r� in spherical harmonics up
to an order N and obtain a system of N+1 ordinary differen-
tial equations for the 
r
-dependent coefficients which we
solve numerically with AUTO 2000.18

AUTO 2000 is a software
which solves autonomous boundary value problems for sys-
tems of ordinary differential equations by continuation, i.e.,
by starting from a known solution for a specific set of prob-
lem parameters �for c=0, we have �=�0� and changing pa-

FIG. 2. Contour plots of the density of ideal polymers for a flow velocity
c*=10. The white circle at the origin is the colloidal particle with radius R,
the black circle is the annulus of thickness d, and outer diameter D which is
unaccessible to the polymer centers due to the hard-wall interaction, see
Fig. 1. �a� corresponds to a uniform flow u�r�=−cêz �i.e., to R*=0�. The
maximum density in front of the colloid is ��r� /�0=6.31. �b� corresponds to
R*=0.9. The bow-wave effect is reduced drastically. The maximum density
in front of the colloid is ��r� /�0=1.05.

FIG. 3. Density of ideal polymers at the point x=y=0, z /D=1, i.e., right in
front of the forbidden zone around the colloid. �a� shows ��0,0 ,D� as a
function of the colloid size for c*=1 and c*=10. �b� shows ��0,0 ,D� as a
function of c* for different values of R*.
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rameters �in our case c� continuously until the desired value
is reached.

As demonstrated for R*=0 and R*=0.9 in Figs. 2�a� and
2�b�, respectively, the bow-wave effect is large when the
colloid is small compared to the polymers and does not dis-
tort the flow too much, reaching its maximum as R*→0.
This is the case investigated in Ref. 8. When the colloid is
large compared to the polymers, the bow-wave effect is
small. In the limit d /R→0, the effect vanishes completely
since the polymers behave like solvent molecules. Figures
3�a� and 3�b� show the density right in front of the colloid as
a function of R* and of c*, respectively. The density of ideal
solute particles scales almost linearly with the velocity c*.

B. Gaussian polymers

Here, we address the case of interacting polymers. We
consider the same polymer-polymer interaction potential
studied in Ref. 8, namely,

V�r� = T exp�− �r/��2� . �22�

The interaction of the polymers with the colloidal particle is
modeled as an external potential of the form

U�r� = 10T exp�− �r/a�6� . �23�

This potential rises steeply up to 10T, thus resembling a hard
wall. The length a must be related to the radius of the for-
bidden zone D around the colloidal particle. We convention-
ally set the value of a by the condition U�D�=2T, giving a
�0.924D. We take �=2d �i.e., additive mixture of polymers
and colloidal particle� and R=1.7�, leading to R*�0.77,
� /D�0.46. Finally, we also considered the choice R*=0,
� /D�0.46, which represents a hard particle that does not
distort the uniform flow �R=0 in Eq. �1�� in a nonadditive
mixture ���2d�: this was the model addressed in Ref. 8.

We ran Brownian dynamics �BD� simulations of this
system for two values of the flow velocity corresponding to
the polymer Péclet numbers �� /D�c*=1 and 10 studied in
Ref. 8 �i.e., c*�2.2 and 22�. We considered a colloidal par-
ticle at the center of a box of dimensions Lx=Ly =12� and
Lz=24� with periodic boundary conditions. The box con-
tained N=3456 polymers, corresponding to a mean polymer
number density �0�3=1. We took a time step of 0.003�2� /T
for the discretized Langevin dynamics. The system was al-
lowed to relax for 105 time steps, after which collection of
data was carried out during 106 time steps. Even though the
simulated system is finite, we used the analytically known
flow field around a sphere in an infinite medium �Eq. �1��.
The error due to the truncation of this flow by the boundary
of the simulation box is the largest �about 20%� at the mid-
plane of the colloid �z=0�. This introduces effectively a dis-
continuity in the flow velocity field at the boundary which
we discuss later.

We also solved numerically the dDFT in the random
phase approximation �a mean-field model�, i.e., with3,8,9

Fex��� =
1

2
� �

V2
d3rd3r�V�
r − r�
���r���r�� . �24�

The time evolution given in Eq. �16� of an initially homoge-
neous density was solved in cylindrical coordinates on a grid
spanning the domain −120�z /��24, 0�r� /��60, where
r�=�x2+y2. The grid constant was 0.0125� near the colloid,
i.e., for 
z
 ,r��6�, and 0.1� in the rest of the domain. For
details on the numerical procedure see Ref. 8. The boundary
condition at the domain border was �=�0, also in this case
we used the flow field given in Eq. �1�. The error introduced
here is smaller than that in the BD simulations since the
integration domain for the dDFT is larger than the BD simu-
lation box.

Figure 4 presents the density field �̄�z�, spatially aver-
aged over thin disks of radius � and thickness 2�z=0.05�
centered at the z axis, i.e.,

�̄�z� ª
1

�2�z
�

z−�z

z+�z

dz��
0

�

dr�r���r�,z�� . �25�

The results of both the BD simulations and the dDFT illus-
trate the dramatic effect of advection by the Stokes flow �1�.
In particular, at the higher velocity c*=22 and R*=0 �uni-
form flow� there is a marked accumulation of polymers in
front of the particle and a strong depletion behind it which
are hardly observable for R*=0.77. In general, the effect of
the Stokes flow is to weaken the influence of the colloid on

FIG. 4. Plots of �̄�z� defined in Eq. �25� as provided by the numerical
solution of dDFT �lines� and as measured in BD simulations �symbols�. �a�
corresponds to a velocity c*=2.2 and �b� to c*=22. In each plot the results
for both uniform flow �R*=0� and Stokes flow �R*=0.77� are presented.

244906-5 Dynamic density functional theory J. Chem. Phys. 127, 244906 �2007�



the density profile, as the polymers tend to be advected by
the stream and to travel around the particle. Actually, for
c*=2.2 �and smaller� the deformation by the Stokes flow is
so tiny that the dDFT profile �̄�z� in Fig. 4�a� is indistin-
guishable from the equilibrium profile �i.e., c*=0�.

We notice a discrepancy between the density profiles
measured in the BD simulation and those calculated numeri-
cally in the dDFT. We attribute this to two finite-size effects
in the simulation which have been confirmed by performing
BD simulations in a smaller box at the same polymer number
density �Lx=Ly =8�, Lz=16�, N=1024�. First, the numerical
solution of the dDFT for a Stokes flow with c*=22 exhibits
a long ��15�� tail of slight polymer depletion ���0.98�0�
behind the colloidal particle. The tail is longer than the
length of the BD simulation box in the z direction and, as a
consequence of the periodic boundary conditions, the inflow-
ing density far ahead of the particle is smaller than �0. This
screening effect is very noticeable when the flow is approxi-
mated as uniform because the depletion of polymers behind
the colloidal particle is very large �see Fig. 4�b��. However,
in the case of the Stokes flow, this effect seems to be less
important compared to the second effect: the discontinuity of
the normal component of the flow field at the lateral bound-
aries of the simulation box leads to a nonvanishing diver-
gence of the flow �we remind that the flow described by Eq.
�1� has � ·u=0�. Figure 5 represents the density profile av-
eraged over thin cylindrical shells of height � and radial
thickness �r=0.05� coaxial with the z axis, i.e.,

�̂�r�,zc� =
1

��r� +
�r

2
��r


�
zc−��/2�

zc+�/2

dz��
r�

r�+�r

dr�� r�� ��r�� ,z�� . �26�

The periodic boundary conditions imply that � ·u�0 effec-
tively at the side boundaries located upstream, where there-
fore the density is enhanced: Even though we expect the

density to decrease toward �0 as the radial distance r� to the
colloid increases, we find instead an increase of the density
at the boundary of the simulation box. At the side boundaries
located downstream, on the other hand, � ·u�0 and the re-
gion near the boundary of the simulation box becomes de-
pleted of polymers. As expected this effect is enhanced for
reduced box size �see the inset in Fig. 5�. The comparison of
the BD results with the dDFT calculation in Fig. 4 indicates
that the overall consequence of these effects is a density
enhancement near the colloidal particle. In view of these
important finite-size effects, we cannot quantify the validity
of the approximation given by Eq. �16� for a realistic flow.
When there is only uniform flow �R*=0�, however, the
finite-size effects are much less pronounced and we find a
good agreement between BD simulations and dDFT calcula-
tions, in concordance with Ref. 8.

C. Drag force on colloids

We have also measured the force in the z direction ex-
erted by the polymers on the particle. This force is additional
to the Stokes drag force FStokes exerted by the flowing sol-
vent. If � in Eq. �2� is assumed to be given by the Stokes-
Einstein relation for spherical polymers of diameter �, the
Stokes drag for a colloid of radius R in the same solvent is
given by FStokes=2c*�R /���T /D�. For example, for the col-
loid radius R*=0.77 considered in the BD simulations this
gives FStokes=3.4c*T /D.

In the BD simulations, the force excerted on the colloid
by the polymers can be measured directly. In the case of
ideal particles discussed in Sec. III A, we use the ideal gas
law p=T� in order to calculate the local pressure on the
colloid surface. Integrating the local pressure over the sur-
face yields the force on the colloid.

Table I collects the mean force for different types of flow
�R*=0 for uniform flow and R*=0.77 for Stokes flow� and
velocities. The results confirm the necessity to take into ac-
count the solvent flow: the mean force in the case of Stokes
flow is markedly smaller �at most of the order of FStokes� than
in the case of a homogeneous flow and the dependence on c*

is milder. This can be understood in terms of the reduction of
the bow-wave effect in the density profile around the particle
by the Stokes flow in the solvent which advects the poly-
mers. The forces in the BD simulations are of the same order
of magnitude as in the ideal case, but in the case of the
Stokes flow they have a weaker dependence on c*.

Because the sizes involved are of the order of the micro-

FIG. 5. The plot represents �̂�r� ,zc�, see Eq. �26�, in a Stokes flow �R*

=0.77� with c*=22 upstream �at zc=1.5�, triangles up� and downstream �at
zc=−1.5� triangles down� of the colloid, as measured in BD simulations.
The inset shows the results for a smaller simulation box.

TABLE I. Mean force exerted by the polymers measured in the BD simu-
lations for different types of flow �R*=0 for the uniform flow, and R*

=0.77 for the Stokes flow�, compared to the force exerted by ideal polymers
and to the Stokes friction of the colloid. The forces are given in units of
T /D.

Type of flow c* 
�Fz
 Ideal Fz FStokes

Uniform 2.2 42.5 41.9
Stokes 2.2 6.38 3.14 7.48
Uniform 22 215 290
Stokes 22 10.3 18.0 74.8
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scopic length D, the variance of the force measured in the
Brownian dynamics is relatively large. However, we find that
it is not affected by the flow type and velocity and it coin-
cides with the variance of Fz we have measured in the equi-
librium state �c*=0�. For comparison, Table II collects the
force measured in the BD simulation in the smaller box. The
increased force is consistent with the density enhancement
near the particle caused by the finite-size effects. We also
attribute the increase of the fluctuations to these effects.

IV. CONCLUSIONS

We have proposed a dDFT �Eq. �16�� for interacting
Brownian particles in a flowing solvent under the assumption
that detailed balance holds �which requires, in particular, a
curl-free flow�. We get the same equation as already derived
in Ref. 1, but with the partial time derivative replaced by the
total �material� time derivative. The whole effect of the flow
field can be summarized into a modified external potential,
allowing application of the whole machinery of equilibrium
statistical mechanics. Thus, we are able to find an H-theorem
for a modified free energy.

In this paper, we include the displacement of the solvent
by the colloid, but the hydrodynamic interactions, both,
among the solute particles and between these and the colloid,
were not taken into account. The treatment of the first kind of
interactions is a highly nontrivial and still open problem. The
equivalent of Eq. �9� including hydrodynamic interactions in
a pairwise approximation has been derived in Refs. 19 and
20 but it contains additional terms, one involving pair corre-
lations in a form such that the closure relation in Eq. �15�
cannot be used directly, and one containing the three-point
density-density correlation function. In the context of sedi-
mentation, this kind of hydrodynamic interactions has been
included in terms of a density-dependent mobility ����.7 The
hydrodynamic interactions of the solute particles with the
colloid, however, can be included in a straightforward man-
ner by replacing the mobility � by a space dependent and
symmetric mobility tensor ��ri� in Eqs. �2� and �4�. Thereby
the noise becomes multiplicative and the appropriate calcu-
lus has to be considered such that it leads to the Fokker-
Planck equation �5� with � replaced by ��ri�. Then the equi-
librium distribution is not changed. For spherical particles in
the vicinity of planar walls, the mobility tensor can be cal-
culated in the limit of large distances.21 This result has been
extended to surfaces with a partial slip boundary condition in
Ref. 22. Due to the translational symmetry of the system, �
is diagonal. While the mobility perpendicular to the wall
increases with distance, the distance dependence of the mo-

bility parallel to the wall depends on the slip condition. For
no-slip it increases while for total slip it decreases with the
distance to the wall. The hydrodynamic interaction between
two spheres has been calculated, e.g., in the Rotne-Prager
approximation.23,24 The derivation of Eq. �16� essentially
carries through with the only exception that the quotient
u�ri� /� in Eq. �5� has to be replaced by a field ũ�ri� with
��ri� · ũ�ri�=u�ri�. In order to absorb the flow field into a
modified external potential, ũ �and not only u�ri�� has to be
curl-free with ũ=−�	. Instead of Eq. �16� we then get

��

�t
+ � · ��u� = � · ����r� · �

�F���
��

� . �27�

Recently, dDFT has been used to describe the dynamics
of mixtures4,5 as well as anisotropic particles with orienta-
tional degrees of freedom.6 The derivation presented in this
paper can be generalized to mixtures in a straightforward
manner. For anisotropic particles, the coupling of the vortic-
ity of u�r ; t� to the orientational degrees of freedom has to be
taken into account. Nevertheless, we see no obvious reason
why it should not be possible to obtain a dDFT also in this
case.

In Ref. 8, the polymer distribution was studied in a poly-
mer solution flowing uniformly through a spherical particle
which is hard only for the polymers. In spite of the violation
of detailed balance by the boundary conditions, the compari-
son between simulations and the numerical solution of the
proposed dDFT was good. In this paper, we have considered
the more realistic case of a Stokes flow �1� around the par-
ticle. The exact solution of the ideal case �no polymer-
polymer interaction�, the numerical solution of the interact-
ing case as well as the corresponding Brownian dynamics
simulations evidence all the dramatic effect by advection on
the properties of the stationary solution. We conclude that the
approximation of uniform flow, as employed in Refs. 8–10,
is quantitatively bad. We have found discrepancies in the
density distribution of polymers as measured in the simula-
tions and as computed numerically in the framework of the
dDFT. However, the discrepancies could be rationalized in
terms of finite-size effects in the simulations due to the slow
decay of the Stokes flow far from the obstacle. Thus, al-
though a quantitative check of the validity of the approxima-
tions leading to the dDFT in Eq. �16� and of its validity for
nonpotential flows was not possible the results are encourag-
ing.
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