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Abstract  

This paper presents a new model for term risk, yield curve, and credit risk in spreads in a 

unified approach. The originality lies in the structuring of the Poisson stochastic of risk in a 

form suitable for finding the differential equation for the yield curve and its spreads as the 

Poisson Yield Spread Model (PYSM). A new ℙ to ℚ change in measure is found for the 

purpose of parameterizing the stochastic component of the yield curve, based on a frequency 

specified version of the single event Poisson process. The PYSM determines the behaviour of 

discount rates and yield spreads over EU debt risk extremes.  

Keywords: yield term structure, arbitrage-free Poisson, forwards-spread model, interest rate 

AR(1) theory. 

JEL Classification: C32, D53, E43, G13 

1. Introduction  

Recent financial crises have highlighted important challenges both theoretically and 

empirically in the modelling of prices in interest rate and swap markets, when models have 

generated much larger discrepancies than previously observed (Beirne, [12]; Acharya et al. 

[1]). Our current study of the reaction of the EU yield curves over the Lehman’s crash and the 

Greek crisis and beyond is one example of seeking new information on market dynamics, and 

a re-appraisal of an interest rate theoretical model more appropriate to extreme market 

movements.  

The main research question investigates the fundamental model of the term risk pricing 

kernel and how the formulation proposed here solves for the failure of the existing Wiener 

mean-reversion model (Barra et al., [9]). Based on the Wiener-Khintchine theorem for 

equilibrium correlation spectral dynamics (Khintchine; Champeney [45];[23]), we are able to 

add more theory on how to define the time dependence of the risk premium, or in scientific 

terms the phase delay in a term risk transform. This study explores how to specify a new 

martingale measure Radon Nikodym 𝑑ℚ 𝑑ℙ⁄  differential for AR(1) driven processes. 

Moreover, it draws attention on how the multi-pathway probabilities in martingale ℚ 

probability-space exist and how they normalise to probability 1, therefore to fulfil the 

uniqueness property of a new AR(1) based martingale.   

To quote an example of where development is needed, theory has now to interpret why 

important benchmark rates and systems are no longer simply correlated, as discussed by 
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Mercurio [51]. Moreover, it is important to establish why one factor versions of the yield curve 

in discount or forward rates are no longer as reliable for prediction as they were before the 

crash. Early literature found that the differing credit or liquidity premia are related to differing 

tenors and maturities if the yield curves are required to be fully quantified. (Crepey et al. 

[28][27]; Zopounidis, Doumpos & Kosmidou []; Moreni & Pallavicini [54]). On the empirical 

plane, interest rate markets have expanded rapidly in futures, forwards and interest rate swaps 

to exceed $400 trillion in open interest (ISDA Survey 2017) to put pressure on the adequacy 

of models to price instruments reliably and precisely. A mistake of a few basis points may 

translate to a very large value correction, or in wider perspective a market instability. Since the 

pricing of an interest rate derivative depends ultimately on the accuracy of the yield (or spread) 

the instrument underlying, this places increased importance on developing the required interest 

rate model. Many early literatures show that the discrepancies in pricing models for interest 

rates and derivatives encourage the greater use of no-arbitrage models, including the (Ho-Lee 

[42]; Hull-White, [43]; Black-Derman-Toy [14]; Black-Karasinski [15]). Furthermore, the 

discrepancies remaining seem fundamentally related to tail risk (Cont [24]), requiring 

asymmetric probability or jump risk types of movement (Wright & Zhou [68]. Most models 

accommodating these effects assume that the shocks due to jumps are so large that they are 

naturally non-systematic, as proposed in the classical model for jump-diffusion by Merton [53].  

The opposing argument to which we subscribe is that, no matter how disjointed the 

variations in markets, there should be a systematic risk behaviour behind them especially as 

they grow to current size. This suggest that existing models are anomalous, but in not having 

the correct martingale, rather than not fitting the Wiener Ito martingale. This study focuses on 

a Poisson event distribution, applied to the yield curve and its spreads. This new modelling 

system proposed here is called the Poisson Yield Spread Model (PYSM). This paper is 

organized as follows. In section 2, we provide a review of the theoretical literature on the 

analytical stochastic modelling of the yield and spreads in comparison with the exercise of a 

new distribution. In section 3, we derive the model and specify the data and methodology used 

to characterize the newly determined yield curve structure and its factors, to be revealed in the 

new PYS Model. Section 4 is devoted to econometrically testing the new model and its 

stochastic distribution meaning. Section 5 concludes and discusses implications.  
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2. Theoretical Literature- Issues and perspectives 

2-1 Limitations of current Yields Structures and Spread models 

Before embarking on the derivation of a new equilibrium model, we first review the 

limitations of existing equilibrium interest rate models to define the premium for term risk, and 

how existing theory seeks to remedy the lack of systematic term risk. Ideally, the preferred 

system of conditional pricing should entail an equilibrium model composed of the requisite 

probability distribution of the process, with factors added which are calibrated to the constraint 

conditions in a given contract. Existing equilibrium models follow a set of stochastic models 

which seek to describe the behaviour of the spot rate curves, e.g. the series of models starting 

with Vasicek [65], Cox, Ingersoll & Ross [26]. These comprise Wiener diffusion conditionality 

with a mean reversion to account for the pull to par. Forward rate models are then built-up by 

an expectation assumption from the spot rate dynamic. The adoption of these models for term 

structure of yields of greater accuracy has focused on multi-factor versions for example the 

Duffie, Pan & Singleton [37] affine term structure models, in which diffusion, jump and 

volatility processes have been nested and transform solutions developed. Although the affine 

dynamic term structure modelling through its high universality and mathematical integrity is 

considered strong enough to be canonical, this is difficult to confirm. It is nonetheless 

convenient to use this concept as a primary point of reference for existing models when 

comparing PYS Model performance with the existing model.   

Although extensive research has already been made on the causation of the term structure 

of yields (Dai and Singleton 2000 [30]; Duffee [34]; Duffee & Kan [36], a number of 

theoretical limitations are still recognized in existing models built on current Wiener dynamic 

principles and mean-reversion dynamics. The risk neutral dynamics of short-term interest rates 

when specified by particular functional forms in the above standard models underestimate the 

amounts investors expect for bearing interest rate risk. Assuming the state variables are 

independent and affine, the dynamic term structure models allow price estimates to be made 

reasonably simply in a multivariate framework, with the bond price yields responding linearly. 

Existing empirical results indicate a number of departures from the above modelling 

assumptions, which are too important to ignore. These have been reviewed in earlier literature 

founded by Dai & Singleton [30] that non-zero correlations may occur between the state 

variables. These authors seek to resolve this by allowing state variables to correlate to some 

extent. Furthermore, Duffee [34] finds that the standard market price of risk function 

underestimates the excess returns possible in bonds. Duffee [34] has allowed for a more general 
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form for the dynamics of the price of risk.  Duffie & Kan [36] further consolidate these models 

in the class of multi-factor affine term structure models. Such models are attractive not least 

since they are tractable and readily applied. However, though they include many of the features 

thought necessary of term structure of mean reversion, stochastic behaviour of the short rate, 

time dependence of the risk premia such models can still largely underestimate the amount and 

time dependence of risk.    

Hence, when the standard conventional interest rate fails, there are two possible routes. 

Either mechanisms are added which model behavioural theory of investor behaviour. Or the 

alternative is to use the technique of arbitrage-free pricing by the expedient of assuming the 

quoted prices already reflect true market prices of market risk (conditionally in the future), and 

then to use these to represent the market risk dynamic extended to more complex instruments. 

The continuing existence of gaps in time dependent risk premia behaviour has led to the search 

for models that should be able to explain structural biases in a more explicit agent behavioural 

fashion (Duarte [33]), for example for liquidity preference, habit preferences, or conditionality 

in biases. To these, the influence of exogenous variables and mechanisms may also be added 

to the actions of the above equilibrium stochastic models. To illustrate these mechanisms, 

Campbell & Cochrane [21] argue a consumption-based explanation, Wachter [66] develop a 

habit preference formation for time-varying premia due to intertemporal substitution, 

Rudebusch & Swanton [61] use the preferred habit formation to explain the bond premium 

within the DSGE modelling framework Rotemberg & Woodford [62]. Piazzesi & Scheinder 

[57] define a model of subjective expectations and adaptive learning with time-varying risk 

premia, which can partially explain the expected excess. 

 The value of the PYSM is that its Poisson Q distribution should be specified a priori in 

both its time t and maturity T dimensions as d𝐿(𝑡, 𝑇), over the yield curve as a whole. The 

shape changes in the yield curve determined in time t and over maturities in time T can then be 

distinctively identified. By varying time and keeping T effects constant at an instant in time, 

we can observe the movement of the whole of the yield curve due to the T correlations effects 

over current time t, as for example the credit environment changes. Varying maturity at a given 

instant in time measures the structure the yield curve, which parameterises the nature of 

maturity risk at a given instant. Assuming the PYSM fixes the maturity time behaviour in dL, 

T correlations variations should not interact by cross-correlation with any of the constant t 

effects. Once the structure of the yield curve and the change in spreads over time are 

determined, the market price of term risk 𝛾(𝑡, 𝑇) should be determined as independent effects 
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in t and T, according to the structures we later examine in section 3 on: PYSM, Empirical Data 

and Graphical Analysis. 

 

2.1 Market price of term risk in interest rate products 

The main purpose of this study is to combine the new term risk model of interest rates and 

spreads (in the PYSM) with the methodology for structuring the yield curve. Since we seek an 

equilibrium model not a market replication price solution, the methodology we adopt in this 

paper is to always to compute in the first instance the zero-discount curve, and then to obtain 

the forward rate curves for pricing instruments when needed. One reason we use this sequence 

stems from the greater reliability we believe the bootstrapped zero curve offers compared with 

bootstrapping the forward rate from swaps or LIBOR driven prices (Brigo, Mercurio & Morini 

[19]). There are arguments on whether zero or forward rates as starting point on both sides. 

The recent debate as to whether the basic interest rate should be changed e.g. LIBOR replaced 

say with overnight swaps rates, favours our approach to keep to the zero curves under 

fundamental modelling rules.   

Unlike in the Black Scholes Merton [16],[52] approach for stochastic pricing, the stochastic 

theory of interest rates cannot be derived by constructing a risk neutral portfolio of cash 

instruments. Interest rates are not physical entities. This presents the generic problem in interest 

rate theory that the market price of risk is not an observable but constructed quantity. The 

Wiener stochastic treatment in the Cox, Ingersoll & Ross [26] CIR model for interest rates as 

a square root mean reversion Wiener diffusion readily illustrates this effect, in the form: 

𝑑𝑟 = 𝜅(𝜃 − 𝑟)𝑑𝑡 + 𝜎√𝑟. 𝑑𝑊̃ 

A risk neutral solution can be obtained but only by introducing an explicit term for the market 

price of risk 𝛾(𝑡) to obtain risk neutral solution in the form: 

𝑑𝑟 = (𝜅(𝜃 − 𝑟) − 𝛾𝜎)𝑑𝑡 + 𝜎√𝑟. 𝑑𝑊̃ 

The purpose of 𝛾(𝑡) is then to measure the amount of real rate to neutral rate adjustment per 

unit of risk in equation 2.1  

                                      𝛾(𝑡) = (𝜇(𝑡, 𝑇) − 𝑟(𝑡)) 𝜎(𝑡)⁄         (2.1) 

where 𝜇(𝑡, 𝑇) is drift of the bond price, t is current time, T is maturity time, 𝜎  is the standard 

deviation of bond price as a Wiener diffusion 𝑑𝑊, and 𝑟(𝑡; 𝑇) is the spot rate in the discount 
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models, or the forward rate as a total yield curve in Heath, Harrow, Merton [39] HJM model. 

The Nikon-Radodym derivative 𝜉𝑡 =
𝑑ℚ

𝑑ℙ
 required to find the arbitrage free solution for the 

Wiener dynamic then applies to find the market pricing solution.  

      𝜉𝑡 = exp⁡(∫ [𝛾𝑢𝑑𝑊𝑢 −
1

2
𝛾𝑢
2]

𝑡

0
       (2.2) 

The market price of term risk 𝛾(𝑡, 𝑇), equation 2.2, of conventional theory in equation 2.1 

arises in all classical interest rate models, for zero or forward rate curves with the actual to risk 

neutral measures from ℙ to ℚ given by equation 2.2. Because we have no prior knowledge of 

the term risk process in this model, we are left with the problem of estimating its term risk 

premium by simulation from market quotes as evidence of arbitrage free prices, in totally ad 

hoc manner. Attempts have been made to obtain an appropriate equilibrium model by a long-

term factorization separating the martingale at the long-end from a short-end discount factor 

model, Qin & Linetsky [60]. In our case, we shall use the PYSM assuming its martingale as an 

a priori should cover the full yield curve. A real rate drift term 𝜇(𝑡) does not arise in the PYSM 

stochastic equation rate equation for example, so that the PYSM yield equation is not impeded 

from deriving from its term risk kernel. The market pricing logic is provided within the measure 

change from the data generating probability density 𝑑ℙ to its risk neutral density 𝑑ℚ, given by 

the Poisson ℚ Nikon-Radodym ratio, equation 3.12, p40.  The Wiener diffusion equation 2.2 

should play no further part in interest rate pricing unless diffusion dynamic has effect. Because 

diffusion and term risk martingales are orthogonal by definition, they have no stochastic link. 

2.2  Nonlinearity in Data Generating Function 

The lack of an a priori for the market price of risk for the term premia interest rates is just 

one of the main failings of current interest rate models. Another gap in existing models lies in 

their difficulty to account for the observed nonlinearities in the term structure curves. For 

example, observed term risk premia vary disproportionately with credit risk category or with 

maturity level. Such behaviour should drive further research for an appropriate term risk model, 

since in arbitrage-free theory a standard martingale-based dynamic must exist. A martingale is 

a necessary and sufficient condition for linearity. If model with that martingale confers a 

satisfactory representation of term risk in its⁡ℚ distribution, the nonlinearity in observed yield 

curves and spreads would then no longer be an obstacle in analysis. Once the correct ℚ 

distribution for term risk is identified, ℙ can always be from its dℚ /dℙ Radon Nikodym ratio 

analytically. 
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The fact that existing interest rate models clearly do not meet linear superposition 

conditions is commonly observed. The extensive literature on attempting to resolve this 

problem with existing models has focused on specifying asymmetric probability generating 

functions that can produce nonlinear dynamics for both physical drifts and the prices of risk, 

to compensate for the failings in affine equilibrium models. The models by early literatures 

follow in this vein (Longstaff [48]; Bernanke & Blinder [13]; Ahn, Dittmar & Gallant [3]; 

Leippold & Wu [46]; Wachter [66]; Rudebusch & Swanson [60]). However, none of these 

latter models necessarily explain the full extent of risk in spread analysis suggesting something 

fundamental is missing either in the dynamic as specified or in the choice of explanatory 

variables. A key difficulty is to envisage models which are asymmetric enough in their ℙ 

distribution and yet linearly tractable in their ℚ solution. Without any a priori to its structure, 

the choice of an asymmetric distribution which is extreme enough to provide the biased risk in 

ℙ  and yet a time dependence to give the ℚ  martingale distribution is intractable. The 

expectation integrals in the ℙ measure in the standard quasi-Gaussian HJM model are non-

integrable, as examined by Pirjol & Zhu [58]. No matter how asymmetric the existing models 

tried, the natural requirement that these be stationary in their ℙ  distributions (i.e. linear) 

unavoidably creates non-linearity in their ℚ  distributions unless a compensating time 

dependence can be correctly guessed. This defeats the risk-neutral condition required in ℚ.   

The advantage expected of the PYSM arises from its formalism. We adopt a theoretical 

approach to finding the density and the cumulative probability equations in ℚ, in section 3, 

p37, and we show why it must be found before we can justify the exact behaviour of the data 

generating function in ℙ that is, the observable yield and spread behaviours. The starting point 

in the Wiener Ito diffusion martingale of the famous Black Scholes Merton model is to deduce 

the ℚ distribution from its ℙ dynamic. This can be done in the BSM model since in its diffusion 

dynamic, the statistical behaviour in Wiener ℙ  probabilities allows for an equivalent risk 

neutral portfolio to be constructed and solved for its partial differential equation. The starting 

point for the PYSM logic has to be different since, unlike for diffusion, a risk neutral portfolio 

for the ℙ Poisson process in deconvoluted state cannot be readily found. The PYSM’s ℚ 

distribution, on the other hand, allows the deconvoluted Poisson distribution to be observed in 

linear form, from which its nonlinear ℙ form in dL becomes clear to see.   

2.3 Un-spanned Macro Variables within VAR Panel Testing 

Economic and associated econometric modelling continues to keep faith with the 

hypothesis that main macro-economic variables should play a major role in the forecasting of 
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risks, term risk premium included. The DGSE (dynamic stochastic general equilibrium) model 

is one case in point where a linkage between the diffusional and the time dependence of 

projections, including the effects of risk premium, is kept to the forefront of the model, 

Rotemberg & Woodford [62]. The tradition in stochastic derivatives modelling on the other 

hand downplays the role of exogenous variables in favour of endogenous variables explicit to 

the model. The nature of the PYSM that we are proposing follows similar logic since its object 

is to characterise term risk through a time series randomness. The constellation of main 

economic variables under diffusion dynamic and the cross-sectional paradigm should not 

influence the term dynamic very much, if at all. Tests on the applicability of the PYSM should 

then help determine this point.  

The search for macro-economic or market scale variables has strongly developed in this 

field, in Beaglehole & Tenney [11] and recently Bauer & Rudebusch [10]. Traditionally in the 

development of explanatory mechanisms, the term risk is taken as the long minus short term 

spread in yields, and a choice of macro variables is additionally tested and screened (Bernanke 

& Blinder [13]). The study of the expectations hypothesis bias has been modelled using vector 

autoregression (VAR) methods to provide the main means for searching for, and identifying, 

the state variables responsible. Examples of such studies are provided by Ang & Piazzesi [5], 

and Joslin, Priebsch & Singleton [44], with models in which both principal components of 

level, slope and curvature of the yield curve and macro-market and economic are evaluated as 

explanatory variables. The issue with this approach is that the regressions include many latent 

model variables. This may lead to a complexity in parameters, over-specification in models or 

lack of significance in interpreting results.   

Our testing of the PYS Model makes estimations over the model’s endogenous variables, 

to keep the focus on the ability of the model to determine the term risk component. In our 

studies by PYSM, the control for the macro variables is achieved by the appropriate selection 

and categorization of data, rather by an explicit econometric estimation over macro variables. 

To illustrate, the credit state of the economy, and to that effect its monetary state in liquidity, 

is measured from the variations of the yield spreads for each bond rating AAA, AA, A, BBB 

compared to the government bond curve. In the PYSM all exogenous macro variable effects 

are assumed captured therefore time series based. The spread regressions are then carried-out 

via the PYSM variables, very precisely without modelling the macro variables explicitly. The 

function of the Poisson Yield Structure Model is to replace the multi-lag autoregressions of 

VAR by a ℚ distribution that can attribute the autoregression risk to a conditional single-event 

distribution. 
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2.4  Nelson Siegel and other graphical non-parametric models  

Another genus of models has found particular success in the practical world of forecasting 

and central government bond analysis. The Nelson Siegel models [55] and its variants have 

provided a series of root solution models which have been found to advance major capabilities 

in yield curve interpretation, at both practitioner (De Rozende & Ferreira [31]) and government 

bond office (BIS [17]) levels. The limitation of such methods however exists in the absence of 

stochastic foundations in such models. Ideally, a linkage between the root solution of the 

Nelson Siegel model [55] and the dynamic term structure models on stochastic logic is 

required.   

The literature on the use of mathematical functions to fit the yield curves to their shapes 

and movements started with the use of polynomials fitting by McCulloch [49],[50] This has 

developed in sophistication and the trend to parsimonious versions of statistical fitting with the 

Nelson Siegel model [55]. Diebold & Li [32] have presented interpretation in terms of latent 

factors linked to the Principal Component analysis (PCA) factors: ‘level’, ‘slope’ and 

‘curvature’ of the shape variability over time. Variants on this theme are routinely used in 

practice, as main technique for analysing bond strategies, (Alves, et al. [4]).  

In a comparison study between the Diebold & Li [32] model and the PYS Model we suggest 

some parallels in possible theoretical connection. First, both models have shapes, and therefore 

factors, which appear to have meaning in their econometric estimation models. Other 

equilibrium models do not provide these indications. Second, each model is founded on the 

exponential functional, over 4 coefficients for Nelson Siegel type models and in its dynamic 

transform representation of the PYSM, over 2 coefficients. The Diebold & Li [32] approach 

refers to the importance of ‘slope’ and ‘curvature’ shapes of yields and their movements. The 

PYSM in fact shows a graphical interpretation of the yield curve in terms of its lower limit and 

an inflexion point, as shown in figure 2, to offer a connection between the pure stochastic 

element dL and the structure of yields.  

2.5 Tractability of Solution 

Inevitably, the trend of increased complexity in conventional interest rate models imposes 

additional difficulties when estimating or applying these models. If too simple, models may 

not include enough features or coefficients to cover the risk correctly. If too complex, they can 

over-specify results, offer lack of significance in interpretation, or contain specification, out-

of-sample or heteroskedasticity errors. One good test of the PYSM is to examine the extent to 

which its system of equations improves the tractability of analyse of yields and spreads 
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compared with existing models. Firstly, we examine the important results on accuracy and 

tractability in conventional models in the studies by Duffee [34] and Duffee & Stanton [35]. 

They show that many of the modelling attempts with panel testing using Efficient Method of 

Moments (EMM) may be less precise that simpler models such as Maximum Likelihood (ML) 

or the Linearized Kalman Filter estimation. In early studies, the modelling of the yield curve 

and its pricing may also have been unable to provide the asymptotic convergences normally 

expected for stable solutions.  

The structure of the PYSM offers two features which are very useful when either estimating 

the results for particular term risk functions or when pricing particular instruments for interest 

rate products. Firstly, for the PYSM ℚ pricing kernel dL we have is analytic which means that 

we have closed-form equation for the pricing of any term risk. It follows that we can always 

write the optimisation for estimation of term risk analytically, therefore use ML rather than 

GMM estimations. Duffee and Stanton [34] specify that this opportunity should improve the 

accuracy and reliability of pricing interest rate products. It also provides the linearity needed 

for portfolio pricing. Secondly, the simple structure of the ℚ pricing density dL allows for the 

easy development of partial differential equations required for pricing the various fixed income 

contingent claim contracts, in simple differential equations, which are easy to solve.   

3. Poisson Yield Spread Model (PYSM) Derivation  

This section introduces the formal derivation of the Poisson Yield Spread Model (PYSM). 

We recall that the distinction of the PYSM is in its new stochastic time dynamic. Access to the 

new stochastic term risk is sought assuming a different probability paradigm than is generally 

achieved in the current suit of interest rate models. The rationale of this new probability 

structure, which originates in the mathematics of phase-space, and its relationship with existing 

finance equations is best understood by defining the three conditions that have to apply if the 

new paradigm is to be effective.  

The first condition assumes that a new probability paradigm actually exists for the 

conditionality in time when events occur. Probability theory has developed to interpret the 

dynamics of the forward rate in the HJM model via stochastic evolution equations in the 

frequency space of the Fourier transform, for example in Brzezniak & Kok [49]. The 

conceptual restriction in these models however is the assumption of affine process elements 

for jumps and diffusion which seems to preclude the conditionality required of term risk. 

Instead, we might be able to use the representation of risk known in the sciences, where 
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behaviour of time-lagged risk as an auto-correlation of risk is accounted for within spectral 

analysis. Effectively, the pricing kernel is a spectral function. This simply means that we can 

apply the Wiener-Khintchine theorem (Strobl [63]) to solve for probability amplitude in 

frequency space, where frequency is defined as the reciprocal of time. It is interesting to note 

that models employing frequency transform have already been used extensively in finance. But 

their purpose has been limited to their particular mathematical advantages in solving the 

expectation integral more easily. Both the Heston [41] stochastic option pricing model, or the 

affine dynamic term structure models, see Duffie, Pan & Singleton [37] have used this device 

to this advantage. The full capabilities of Transform Analysis theory particularly in its special 

features that we find for term risk in the PYSM, have not however been developed in the Heston 

[41] or Duffie et al [37] modelling studies. The second and third conditions below as further 

conditions are also needed however if we are to complete the development of the term risk 

model though its spectral function.  

The second condition concerns the exact choice of underlying dynamic. Since the Gaussian 

type diffusion model contains no time conditionality element, we cannot rely on it for term 

risk. Instead, we seek the most obvious and simplest alternative displaying a time dependence 

for risk, which we find in the AR (1) process of a single lag event model. Furthermore, the 

AR(1) could be a good choice since, despite its structure as a discrete randomness element in 

econometric context, it also has a continuous time formulation as the Ornstein Uhlenbeck [64] 

(OU) process. It thus provides a well understood model for damped Gaussian (Wiener 

diffusion) motion. Indeed, the OU process used to create the mean reversion property in 

existing interest rate models. A limitation in such models however is that the OU damping rate 

to the Wiener diffusion occurs as a deterministic factor, whereas it should encompass the term 

risk conditionality. In our treatment, the alternative of replacing the Wiener pricing kernel with 

an entirely new distribution, is made possible if the mathematics of the PYSM transform on 

the OU is more fully taken into account.    

The third condition in the proposed PYSM is to recognise how the possible pathways of 

the AR(1) driven process should be defined in probability space, if the arbitrage risk free 

paradigm (martingale) is to allowed to apply as in our PYS Model. Essentially, there are 

multitude of pathways in the spectral function probability space which exist as possible 

pathways. Only when a pathway occurs will it be observed as a physical event and have a ℙ 

probability. By definition ℙ probabilities for jumps have ℙ = 0 or 1 as discrete processes. The 

probability however for systematically priced term risk is defined by expectation over all the 
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possible ℚ probability pathways, all of which have yet to occur. Just as in the Wiener Ito 

martingale a similar methodology can be used following the Harrison Krebs [38] methodology 

to find the Nikon Radodym differential relating d⁡ℙ with dℚ. From the representation theorem, 

a complete market martingale is the necessary and sufficient for an arbitrage free pricing where 

no other functional is required, Harrison & Krebs [38]. Both can then be defined and exploited 

to price an underlying. Correctly conditioned, the process of finding suitable pricing partial 

differential equations starting with a new probability paradigm term risk should occur. The 

model derivation in section 3.1 now follows this structure.  

3-1 Modelling the Pricing Equation from its Stochastic Process 

The proposition in this study is to model term risk using a new fundamental distribution. 

The analysis here involves four steps in sequence as follows: 

• Step 1, the choice of Ornstein Uhlenbeck distribution in its autocorrelation AR (1) form 

is made and developed.  

• Step 2, the objective probability for the single event AR(1) process is obtained by 

Fourier Analysis.  

• Step 3, the change in measure converting the frequency 𝑃𝐷𝐹ℙ  to its risk neutral 

measure ℚ  in log frequency is derived. The compliance with complete martingale 

conditions completes the proof.  

• Step 4, the Yield Equation and the Spread Equations are derived from the stochastic 

differential equations in d𝐿(𝜏), assuming the stochasticity is all ℚ Poisson term risk 

driven. 

These steps define the PYSM structural equations which provide the foundation for the 

econometric evaluation of the state variables affecting spreads, see sections 4 and 5. Derivation 

Steps 1 to 3, are dedicated to developing the Poisson ℚ as a pricing distribution kernel for the 

spot discount rate 𝑧(𝑡; 𝑇), denoted d𝐿̃. The mechanism assumed for this risk is solely the 

continuous time version of the AR(1) Ornstein Uhlenbeck process. For space and clarity, we 

show the full details of the term risk pricing kernel (d𝐿̃) derivation in the separate part at the 

end of this paper. This helps to show how the elements of the mathematical solution to the 

unique term risk martingale are introduced and justified. We consider this necessary since in 

the steps we take in the derivation, although they follow the same principles of current 

stochastic pricing theory, they also introduce extensions to theory which are innovative, being 

drawn from other disciplines in probability theory not so familiar in the financial field, certainly 
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not to the highly familiar mean-variance modelling. As precursor of the Appendices 1, we note 

the examples of key innovations: 

(1) The Ornstein Uhlenbeck is a common element in current rate models for the mean 

reversion property but current models treat this deterministically. Our innovation is to 

extend the OU to its conditional many pathways form in frequency space (it appears 

singular in time domain but is actually continuous in frequency domain). 

(2) The OU 𝑃𝐷𝐹ℙ is thus found by a Fourier transform (we note that though this technique 

has been applied very usefully to facilitate SDE integration calculation, its underlying 

meaning needs extending, see 3). The Wiener-Khintchine theorem is relevant for this 

purpose. 

(3) Using the standard theorem for finding the unique martingale via the Nikon-Radodym 

differential. Following the derivation Appendices 1 for the martingale pricing kernel, 

the density as ⁡𝑃𝐷𝐹ℚ = d𝐿̃   and the cumulative distribution function as 𝐶𝐷𝐹ℚ = 𝐿̃ we 

can complete partial differential equations suited to pricing the yield curve and spreads 

of forward rates. This derivation is completed in procedure 4 below. 

(4) The innovation here is to exploit the simplicity of the d𝐿̃  and 𝐿̃   functions which 

because they can be applied in simple differential equation form facilitate easy solution 

to analytic functions for a) the yield curve and b) the spreads in spot discount rates 

under defined boundary states. The parametric specification of these models is also 

analytic, readily facilitated by use of empirical zero rate curve data. Observables for 

driving the term risk in appropriate instruments is also facilitated. In procedure 4 we 

develop the Yield Curve and Yield Spread Equations as follows:  

First, we recall that the spot rate formula for interest rates as a square root mean reversion 

dynamic, typically the Cox, Ingersoll & Ross [26], CIR, model has the form  

𝑑𝑟 = 𝜅(𝜃 − 𝑟)𝑑𝑡 + 𝜎√𝑟. 𝑑𝑊̃ 

where 𝑟 is spot interest rate, 𝜅⁡is rate of return to mean rate (𝜃), and 𝜎 is standard deviation of 

the Wiener diffusion (d𝑊̃). Assuming that the yield curve is governed by the Poisson ℚ term 

distribution 𝐿⁡̃  above, then there can be considerable simplification in the nature of the 

differential equation for its forward interest rate. Under the Poisson ℚ dynamic, the whole of 

the variations in interest rates can be written in terms of the Poisson ℚ kernel d𝐿⁡̃𝜏 as  

𝑑ln𝑟(𝑡,𝜏) = 𝐼. 𝑑𝐿⁡̃𝜏 
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where 𝐼 is proportionality constant and r is a function of current time (t) and term risk time (𝜏). 

Firstly, the mean reversion term in the Wiener CIR model, is no longer required, i.e. 

𝜅(𝜃 − 𝑟)𝑑𝑡 → 0⁡. Also, the coefficient to the Gaussian process is replaced by one for the 

Poisson Q distribution 𝑑𝐿, i.e. 𝜎√𝑟 ⁡→ 𝐼. The removal of 𝜎 as volatility, as the risk term is 

highly significant. It has been replaced essentially by the coefficient of auto-correlation 𝜆 =

1/𝜏 which is the innovation given in the Poisson martingale.  Solving this equation as a definite 

integral within the boundary conditions shown, provides the equation 3.16 below, where the 

lower bound is defined as ln𝑟0 when⁡ln𝜏 → −∞ and the upper bound is ln𝑟1 when 𝑙𝑛𝑡 → ∞. 

       ∫ 𝑑𝑙𝑛𝑟
∞

−∞ 𝑡,𝜏
= ⁡ln𝑟⁡ = ln𝑟0 ⁡+ ⁡𝐼. 𝐿⁡̃       (3.16)                   

We can further simplify equation 3.16, knowing its structural features, by instituting an 

upper interest rate bound as ln𝑟1 = ⁡ln𝑟0 + 𝐼. Given that the Poisson ℚ has by definition a 

normalized event probability of one, then the cumulative transition probability must be 𝐿⁡̃ = 1 

at the upper rate. Substituting in equation 3.16 then obtains our final version of the term 

structure model, equation 3.17. 

       ln𝑧 = ln𝑟0⁡(1 −𝐿⁡̃) + ln𝑟1. 𝐿⁡̃          (3.17)                                 

Equation 3.17 is readily parametrized to empirical zero rate curves. The Levenberg-

Marquardt nonlinear curve fitting is used. We can later test and prove the PYSM on the EU 

debt yield curves for the period 2007 to 2014, in section 4. To determine the PYS Model’s 

factors of activation we examine whether we can factorize its stochastic equation into partial 

derivatives. Happily, this can be done with first order differentials on the Poisson ℚ SDE which 

simplifies analysis greatly. If PYSM parameters are mutually independent, then equation 3.17 

provides the following partial differential solution.  

∂ln𝑟(𝑡, 𝜏)

∂𝑡
⁡=

∂ln𝑟0
∂𝑡

(1 −𝐿⁡̃) − ln𝑟0.
∂𝐿̃

∂𝑡
+
∂ln𝑟1
∂𝑡

⁡ . 𝐿⁡̃ + ln𝑟1.
∂𝐿̃

∂𝑡
⁡ 

This equation confirms that   ∂ln𝑧(𝑡, 𝜏) = ƒ(∂ln𝑟0(𝑡), ∂𝐿̃(𝑡, 𝜏))⁡  

where ln𝑧 = ƒ (ln𝑟0⁡, ln⁡𝐿⁡̃) and 𝐿⁡̃= ƒ (ln𝑡⁡, ln⁡𝜏). In practice the spreads of yield curve between 

the risky bonds for each credit rating from the government ‘risk-free’ bond is justified as⁡∂𝑟𝑖𝑡, 

which it is driven from ln𝑟0 and ln 𝜏 independently.  This confirms equation (3.18) for spreads 

as: 

    spreadit =⁡∂𝑧𝑖𝑡 =⁡∝ +𝛽1ln𝑟0𝑖𝑡 + 𝛽2ln𝜏𝑖𝑡 + 𝑢𝑖𝑡       (3.18)                                 
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Equation 3.18 then determines the spreads capabilities of the Poisson Yield Spread PYSM, 

where index i indicates the different credit rating categories (AAA, AA, A, BBB). We later test 

and prove for the determination of this spread risk behaviour across the EU debt crisis. 

3-2 PYSM, Relevant Data and Graphical Analysis 

Here, we introduce the data and methodology required for testing the new PYSM, for its 

yields term structure and spreads extension formulations in equations 3.17 and 3.18. 

Acknowledging that most preferred interest rate and credit risk theory depends heavily on 

reduced form modelling, leaves the question of structural foundations of existing models 

unanswered. Here we can question whether the term risk component of the PYS Model might 

offer a solution to this dilemma. 

An advantage of this new Poisson model is in its capacity to evaluate interest rates both 

longitudinally and cross-sectionally when separating correlations, where longitudinality can be 

specified as long minus short maturities in the zero rate (Δz(𝑡,𝑇)), and cross-sectionality can 

refer to changes in zero rates over different credit rating between curves (Δz(𝑡,𝑇,credit−risk)) as 

a function of time. The purpose of this PYSM stems from its three time-factor (t, T,⁡𝜏) structure 

for determining zero rate effects, 𝑧, where t is calendar/current time, T is maturity period and 

𝜏 is term risk. Until we have proved their meaning experimentally, the factors of the PYSM 

might still be considered endogenous or latent in effect. But by linking the PYSM to the yield 

curves in Figure 2, we can already gain some preliminary meaning on the variables as follows. 

We have two types of factor in the PYS Model:  

• The first types of factor are the interest rates at the lower bound 𝑟0 and upper bound 𝑟1 of 

the yield curve (or the slope I of the yield curve). Economic theory already provides some 

meaning of these factors. The 𝑟0 is linked to the short rate as a key variable in monetary 

policy, and yield slope has been identified as an indicator of future growth rate in the 

economy. We should emphasize that at this stage these effects are identifiable 

suggestions rather than identities. Although our factors may align to some known 

indicators as proxies yet they may differ significantly in quantitative measure. The value 

of the model may then be to provide quantitative information on mechanisms, previously 

known only qualitatively.   

• Second, a time constant 𝜏 occurs, which has its origins in the intensity factor of the 

Poisson event risk exponential. 𝜏’s structural interpretation then depends on the meaning 

of the Poisson rate under a martingale change of measure. We can hazard a guess that 
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this must be some form of rate, or fear of a transition of an event occurring, but this 

becomes clearer in later analysis.  

Relying on the PYSM approach is distinctively different from the majority of yield and 

credit spread studies undertaken in recent literatures reviewed earlier. We test the extent of the 

uniqueness and value of this model’s factors in the next section. This might be the optimal test 

if it characterizes the risk premia responsible for spreads during highly stressed crisis 

conditions. Figure 2 provides an example of the set of curves consisting of the government 

‘riskless’ curve compared to the four corporate risky curves for the investment grade S&P 

ratings, AAA, AA, A, and BBB from the Merrill Lynch fixed income database and Thompson 

Reuters Eikon. From the equations 3.16 and 3.17 we can deduce that ln𝑟𝑖,𝑇 = f(⁡ln𝑟0, ln𝑟1⁡, 𝐿⁡̃⁡), 

where i represents credit rating and T is maturity time, also 𝐿⁡̃ = f(ln𝜏) and ln𝑟1 = f(ln𝑟0, 𝐼), 

this gives us the following equation for ln𝑟𝑖,𝑇. 

ln𝑟𝑖,𝑇 = f(⁡ln𝑟0, ln𝑟1⁡, 𝐼, ln𝜏) 

The Poisson Yield Spread Model results can be represented in graphical form: figure 2 for 

the yield curve, and figures 2 to 4 for the variations in its factors, in quarterly format from 2007 

to 2014. 

3.2.1 The PYSM yield Curve  

Figure 1 shows the term structure of yields treated by classic Cox, Ingersoll & Ross [26] 

CIR model which specifies the interest rate risk as a square root mean reversion dynamic. The 

CIR model fits this figure poorly due to, amongst others, the following two reasons: 

1) The mean reversion of the interest rate to account for the flattening of these curves at 

long times is found to be much larger in practice than theory.   

2) The market price of risk calibrated from the short end of the yield curves is always too 

high for the long end.  

The failure of models to fit at short times is well known for example in the quasi-

Gaussian HJM models, Cuchiero, Fontana & Gnoatto [29], with adverse effects to the pricing 

of zero-coupon bonds and Eurodollar futures.  
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Figure 1- The plot of EU Yield Curves using the Existing Cox, Ingersoll, Ross 

(1985) Model (CIRM) for 2013 Q3 

 

Note: Data are as described in Figure 2. The CIR curves are plotted assuming the following factors: mean 

reversion 60% (GOV), 40% (BBB), 𝜃 = 0.5%⁡(GOV), 2% (BBB), and for both (GOV, BBB) 𝑟0 = 0.3%, 𝜎 =
1%, market price of risk reversion 𝛾 = −1.2, the average by serial autocorrelation, Ahmad and Wilmott [2]. 

 

Furthermore, the next graph for the same yield curve data shows how the new PYS Model 

proposed here avoids the above problem. This is because the mean reversion effect and the 

market price of risk are automatically corrected for within the properties of the probability 

distribution to the Poisson ℚ pricing kernel. The graphs show that the PYSM provides a clearer 

picture of interest rate risk in the short interest rate zone. This we see later is key to 

interpretation of the driving factors of the whole yield curve, when revealed clearly and 

fundamentally by the log structure of the PYSM for these factors.  
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Figure 2- The plot of EU Yield Curves using the Proposed Poisson Yield Model (PYSM) 

for 2013 Q3 (𝐥𝐧𝒓𝒊,𝑻) 

 

Note: These curves are the daily average interest rates by maturity for Q3 2013 after the EU economic recovery 

plan in 2012. The government yields maturities are given at 1 m, 3m, 6m, 9m, 1, 2, 3, 4, 5, 6, 7, 8, 10, 15, and 25 

years, and risky debt corporate yields at 1, 2, 3, 4, 5, 6, 7, 10, and 20 years for the EU.  

Figure 2 shows the increase in interest rates over time. 𝑙𝑛𝑟0 is the asymptotic lower bound 

(at very short times) of the yield curves located at increasing interest rate levels with credit risk 

as a set. If each curve is settled by different credit risk which is an inter-temporal risk, then at 

zero time each curve in the set should be expected to share the same lower bound, 𝑙𝑛𝑟0. The 

slope is monitored by an intensity factor I interpreted also as the slope of the curves, and 𝜏 is 

the time at the inflexion point (i.e. the midpoint) for each curve. 𝑙𝑛𝑟1 is the upper bound of the 

set of yield curves. Experimentally it is found that each set of yield curves converges to a 

common factor at long times. Each of these PYSM factors is now evaluated in the following 

graphs, figures 3 to 5, for variation and meaning over the cycle. Here we note that each of these 

graphs, figures 3 to 5, show seven of the main shocks events by the number lined to help 

appreciate the triggers of high volatility in this analysis during the sample period.  

• Line 1 (Q1 2008): a peak impact moment when toxic assets effects, e.g. on mortgage 

backed derivatives, CDOs) first really registered in market prices.   

• Line 2 (Q4 2008): Lehman’s November bankruptcy crash. 

• Line 3 (Q2 2009): the EU crisis at the peak of the Greek debt crisis.  

• Line 4 (Q2 2010): the EU-IMF bail-out of €100 bn for the Greek crisis.  

• Line 5 (Q3 2011): the ECB injection of about €1tn in three-year loans into the EU 

financial system to correct for contagion fears.  
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• Line 6 (Q2 2012): Greek elections which challenged the austerity programme and EU 

economic recovery plan, followed shortly by the Mario Draghi’s statement to support 

the euro ‘whatever it takes’, Draghi [67].  

• Line 7 (Q4 2013): Negative reaction to the US Federal Reserve Board’s first suggestion 

for a QE taper policy, felt internationally. 

3.2.2 The PYSM lower bound 

Next, figure 4 indicates the variation of ln𝑟0, with the short rate proxied by the using the 

overnight rate also shown. The importance of ln𝑟0 is in its links to the theoretical constructs of 

the model rather than its justification as a policy rate. Nonetheless, the government policy rate 

𝑟𝑃𝑂𝐿might be guided by the price of money according to the risk-free market indications in the 

PYSM, therefore the model’s lower bound 𝑟0. In practice, a government will of course use its 

short rate 𝑟𝑃𝑂𝐿  as a lever of monetary policy. The extent to which 𝑟𝑃𝑂𝐿  exceeds 𝑟0  should 

indicate how much tightening (or if in reverse - loosening) is sought for a given monetary 

policy. Note that, in this way, inverse yield curves can occur even if on rare occasion. 

Furthermore, the medium-longer term yield curve, say further-out than 1 year, would be 

expected to be independent of these short rate variations. The PYSM should be reflective of 

this, and be stable in the medium term and beyond. 

Figure 3- The plot of 𝐥𝐧𝒓𝟎 and 𝐥𝐧𝒓𝟏 for PYS Model over the EU Financial Crisis (from 

Q3 2007 to Q2 2014) 

Note: The ln𝑟0 curves indicate the asymptotic lower bound (at very short times) of the yield curves for different 

credit rating, and the ln𝑟1 shows the upper bound of yield curves for government bond for each quarter from 2007 

to 2014. 
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The evolution of 𝑟0 with time is demonstrated in figure 3 which shows ln𝑟0⁡over time as 

economic circumstances change time. We compare the PYSM factor ln𝑟0with the variation of 

the short policy rate proxied by the overnight swap rate. In most of the plot we see how the 

nominal short rate drops to the PYSM lower bound as the stimulus is tried (it can go to negative 

values for certain regimes). Under tightening, we should have the short rate widening above 

the lower bound.  

3.2.3 The PYSM upper bound 

From Figure 3, we see that the PYSM possesses a well-defined upper bound ln𝑟1⁡as the 

yield curves progresses to long times. If the PYSM is a true model of the yield curve, then its 

upper bound⁡ln𝑟1 should be precisely defined by the PYSM’s equation (2) as ln𝑟1 = 𝐼 + ln𝑟0, 

since at the upper bound one event must have occurred with the upper bound defined when 

𝐿⁡̃ = 1. The interpretation of⁡ln𝑟1⁡is equivalent to a mean reversion steady state interest rate at 

very long times in our data of 30 years plus. We note that 𝑟1is much less sensitive to changes 

with time, therefore economic circumstances, than ln𝑟0. This is understandable since, because 

of the logarithmic scale in 𝑟, the changes in ∆𝑙𝑛𝑟1 are very much less than those in ∆𝑙𝑛𝑟0⁡as 

shown in the results, figure 3. We can later treat ln𝑟1 as sensibly constant compared with ln𝑟0 

which is important when defining the slope variation, I-Slope, in the next section.     

3.2.4 The PYSM I-Slope 

Next, figure 4 shows that the increase in the PYS model’s slope coefficient (𝐼) over time. 

The parallel for 𝐼 in the conventional interest rate dynamic (CIR model) is in the market price 

adjustment needed in Gaussian dynamic models (using a diffusion type variance term). 

Furthermore, the yield curve slope is linked to macro factors as economic indicator of growth 

or inflation rate in conventional theory. The evolution of the I-Slope is demonstrated in figure 

4. It is easy to see how the rise in 𝐼 over time mirrors almost exactly the downward pattern seen 

in ln𝑟0, in figure 4. This experimental result is consistent with the PYSM in its constructs, in 

the following way. PYSM’s equation 3.16, ln𝑟1 = 𝐼 + ln𝑟0, shows that if ln𝑟1 remains sensibly 

constant then, since 𝑑𝐼 + 𝑑ln𝑟0~0, relationship 𝑑ln𝑟0~ − ⁡𝑑𝐼 is confirmed This implies that 

the informational content for both ln𝑟0 and 𝐼 factors are equivalent in regards of their term risk 

effects. Since either can be used equally, from now on we keep to ln𝑟0 in our parametrization 

for simplicity.   
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Figure 4- The plot of slope coefficient (I) for PYS Model from 2007 to 2014 

Note: These curves show slope coefficients (I) for PYS model of different credit ratings (AAA, AA, A, BBB) and 

government bond in comparison with 10yr-3month yield curve slop, over the EU Financial Crisis. 

 

We note that in conventional analysis, yield slope is normally calculated as 10 years minus 

the 2 months rate. To compare the conventional and the PYSM, we plot the conventional 

formula in figure 4, plotted in logarithm of rates for the comparison. The log conventional slope 

and the I-Slope move in close parallel trend. This provides a level of support for the usual view 

of the using the yield slope as leading indicator e.g. of economic growth or inflation. The I-

Slope (or its complementary variable ln𝑟0) of the PYSM may further quantify relationships 

linked to slopes in term risk analysis and forecasting, previously known more arbitrarily.  

3.2.5 The PYSM Term Factor⁡𝐥𝐧𝝉 

 Ln𝜏 is the time related measure of term risk, only accessible when term risk is uniquely 

attributed to its no-arbitrage Poisson dynamic. The literal interpretation of 𝜏 (= 1/𝜆)⁡is the 

inverse of the Poisson intensity factor 𝜆 in original formulation of the Ornstein Uhlenbeck 

autocorrelation, equation 3.4.  
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Figure 5- The plot of term risk factor(𝐥𝐧𝝉) for PYS Model from 2007 to 2014 

Note: These curves show term risk factor(𝑙𝑛𝜏) for PYS model of different credit ratings (AAA, AA, A, BBB) and 

government bond over the EU financial crisis.  

The ln𝜏 curves defined at their individual credit risk levels AAA, AA, A, BBB as well as 

the Government curve (GOV) vary with time, therefore economic states of markets, as seen in 

figure 5. They follow in a parallel pattern of variations quite closely over the cycle. When 

events occur which accentuate credit crisis conditions, the tendency is for ln𝜏 levels to shorten 

considerably, across the board. To illustrate see the results for the AA bonds. For these, pre 

crisis 𝜏 moves from 3 years to a during-crisis 𝜏 of 7 months, then shorten to a 𝜏 of 3 months 

during the Greek debt crisis, before recovery to a 𝜏 of 1 year on implementation of QE properly 

in Europe, mid 2012. The difference in⁡ln𝜏 term risk is clear to see between each level of 

Rating, ranging from a 𝜏 of 5 years for the government bond to a 𝜏 of 7 months for BBB risky 

bonds, at the given point, 2011.  

There are some key theoretical features when using⁡ln𝜏 as the term risk measure.  The 

difference between risky and less risky bonds is measured systematically across Ratings with 

high risk in markets registered by a shortening in term risk constant 𝜏 . But in 𝑙𝑛𝜏 , the 

adjustments are equally dramatic for all categories of bond. The meaning of riskless interest 

rate as given by the government bond is given new meaning since at no point is interest rate 

seen to be free of a term risk. The PYSM allows this to be measured. To understand the meaning 

of ln𝜏  factor, it is useful to consider 𝜏  should afresh under its ⁡ℚ  measure as ⁡𝜏ℚ . In this 
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representation, 𝜏 has been converted to a new observational variable of term risk. It is now 

under a martingale measure ℚ , where the martingale is PYSM specific. Although ⁡𝜏ℚ  is 

equivalent to its original time 𝜏ℙ where ℙ denotes physical measure, it has been re-weighted in 

such a way as to guarantee risk-neutrality when used in pricing formulae. Employing the 

probability appropriate to 𝜏ℚ  removes the need for inputting an artificial term risk drift or 

market price term which would be necessary if a model on a Gaussian-dynamics were used. 

Quantitatively, the importance of using ⁡𝜏ℚ in ℚ⁡form is apparent in the above data of figure 5. 

It is clear that the values of ⁡𝜏ℚ factors in figure 4 occur in a given range of times i.e. 5⁡𝑦𝑟𝑠 >

𝜏ℚ > 3⁡𝑚𝑛𝑡ℎ𝑠. These times are easily those which we might contemplate as realistic payment 

terms for debt we might have to repay, for example.  

When measuring term risk from an exponential default rate literately, that is as  𝜏ℙ we 

would have very different results. Taking the Ornstein Uhlenbeck model 𝑒𝑥𝑝−𝑡/𝜏, which was 

our starting model equation 3 before its ℚ⁡transform, gives levels for 𝜏ℙ  in a range 50⁡𝑦𝑟𝑠 >

𝜏ℙ > 10⁡𝑦𝑟𝑠. That is, the physically observed levels of 𝜏, i.e. 𝜏ℙ, are an order of magnitude 

different from market delivered times. These results support the observation found in practice 

that the yield spreads are much greater than physical probabilities predict, with ⁡Δ𝑧ℚ ≫ Δ𝑧ℙ 

since 𝜏ℚ ≪ 𝜏ℙ, where Δ𝑧 is the discount spread to be explained. A further perspective can be 

obtained by assuming that a utility function 𝑈(𝑡) for term risk might be definable as a certainty 

equivalent given on the term risk auto-correlation 〈𝑋0, 𝑋𝑡〉. Assuming a simple proportionality 

then 𝑈(𝑡) = −𝑘〈𝑋0, 𝑋𝑡〉 = −𝑘𝑒−𝜆𝑡. Form the Arrow-Pratt formalism [6],[59]], the absolute 

rate of risk aversion 𝑅𝑎(𝑡) = −
𝑈′′

𝑈′
 is then obtained as 𝑅𝑎(𝑡) = 𝜆ℚ = 1/𝜏ℚ. The ℚ subscript 

on  𝜆ℚ and 𝜏ℚ signifies that these factors can come from a PYSM risk neutral parametrization 

on yield curves just as applied in our study. This provides a concept of utility of time consistent 

with at least one risk neutral stochastic measure. Future work applies to see whether this 

generalises to wider interpretation.  

3.2.6 The PYSM Credit Spread Factor 𝜟𝒛 

The PYSM spreads (𝛥𝑧), are measured as the difference between the yields curves for the 

risky bonds versus the government bond curve as ‘risk-free’ comparator for each rating, by 

quarter, (see equation 3.18).  
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Figure 6- the plot of Poisson Yield Structure Spreads from Q3- 2007 to Q2- 2014 

 

By calculating the spreads at the inflexion point, a number of control features are achieved. 

First, the spreads at the inflexion point occur when the probability distribution d𝐿̃ is maximum 

where at the midpoint of probabilities, the yield curves are most strongly affected by the term 

risk. Second, there is evidence that the most constant level of the spreads occurs at the inflexion 

point, see figure 2. Figure 6 shows the PYSM spread variations over time for different credit 

ratings over the EU financial crisis from 2007 to 2014. These show the extreme levels of risk 

achieved during the financial crises in 2008 and the intermittent stages of the recovery, 

including the aftermath of the Greek crisis in 2011. We can also conveniently define the market 

spread risk in the market dimension. The yield spread ∆𝑧ℚ is determined at the inflexion point 

⁡𝜏ℚ of the yield curve. Just as we can have ⁡𝜏ℙ matched and defined as ⁡𝜏ℚ, similarly the ∆𝑧ℙ is 

redefined for market price as⁡Δ𝑧ℚ. This then makes the yield spread meaningful since ∆𝑧ℚ 

relates to ⁡𝜏ℚ (not ⁡𝜏ℙ).  

Finally, for completeness we include a plot of the iTraxx investment grade 5-year credit 

derivative index, for comparison with the PYSM modelled spreads. We see that the CDX and 

PYSM modelled spreads move together but with quite a large approximation to give them 

equality. Although its reliability has now been questioned, the use of CDS and CDX as leading 

indicators of market risk was once very fashionable. The PYSM shows a number of legitimate 
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differences to pure credit swap indexes, which the Poisson Q allows us to calculate and 

measure.     

3.3 New PYS Model vs. Existing Yield Structure Models  

The new Poisson Yield Spread model proposed here suggest some advantages over existing 

equilibrium, VAR supported, or parametric yield curve models. Diagram 1 presents a typology 

in outline of how, from our derivation so far, the PYSM relates to competing models for yield 

structure, in the relationship of variables within and between models. 

Diagram 1. Typology of the constructive variables within the PYS Model and the 

volatility or empirical graphical models 
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Note: PCA3 is the Principal Component Analysis at the curvature of the yield curve. PCA2 is the Principal 

Component Analysis at the slope of the yield curve. PCA1 is the Principal Component Analysis at the level of the 

yield curve, descriptions given by Litterman & Scheinkman [47]).   

In existing models, the pricing kernel of the Gaussian process supplemented with the mean 

reversion static process of the Ornstein Uhlenbeck is replaced by the pricing kernel of the PYS 

Model. First, in terms of standard dynamic equilibrium approach, the fundamental difference 

of the PYS Model approach to conventional models is important. The structural features of the 

PYSM are attributed to its a priori treatment of process, i.e. specific to the Ornstein Uhlenbeck 

dynamic. This confers the use of deductively specified explanatory variables (i.e. the lower 

bound short rate 𝑟0 or equivalently I-Slope and the term risk time factor 𝜏) for pricing and 
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analysis. Finally, a martingale in analytic form allows an easier estimation in the PYSM 

framework, for example in regression analysis in respect of its endogenous variables.   

This is unlike the formulation in existing VAR models, which uses Gaussian diffusion 

distribution assumptions, state variables brought from outside, and a static mean reversion. The 

latter is a literal reversion which is naturally limited by nonlinear no-arbitrage restrictions yet 

unsolved in Gaussian diffusion. The uncertainty in outside variable VAR formulations, which 

can grow with number of potential explanatory variables and model structure complexity, 

limits regression precision. The PYSM may provide an easier modelling hypothesis, number 

of variables and simpler analytic, in remedy of these known existing problems. Second, the 

pricing kernel of the PYS Model is based on a martingale is orthogonal to the Gaussian Ito 

diffusion martingale. This justifies our exclusion of cross-sectional influences and allows more 

focus on the term structure variations only. Since cross-sectional correlations (e.g. over macro 

factors) are not therefore important to the dynamic of term risk, we can simplify the 

econometric analysis to many fewer modelling variables. Third, the diagram 1 above indicates 

the linkage of the variables between Poisson Yield Structure Model and Principal Component 

Analysis (PCA). The PCA determine the volatility structure using the eigenvalues and 

eigenvectors of the covariance matrix between interest rates co-movements at different 

maturity rates. According to Diebold and Li [32] there is empirical connection between three 

principle components (PCA1 (level), PCA2 (slope), PCA3 (curvature)) and important 

information of content which this could explain the structural changes of the yield curve. 

Whereas in the PYS Model, the two components of term risk, lnτ and lower bound of yield 

curve ln𝑟0 are associated empirically with PCA2 and PCA3 only.  

4. Empirical Analysis  

Here, for the further clarity and validation of the PYS Model we provide following 

empirical results using EU Yield and Spread data.  First provided the summary descriptive 

statistics of Poisson Yield Structure (PYS) spreads, 𝑟0, and 𝜏 applied in equations 3.18, using 

the EU yield curve data from 2007 to 2014 which covers the effect of the 2008 financial crisis 

on European yields. All data are quarterly from Q3- 2007 to Q2- 2014 collected from Thomson 

Reuters Eikon/DataStream (Credit Curves).  Furthermore, we examine the correlation 

descriptively in table 2.  

Table 1 goes here. 
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From table 1, the mean spreads increase as the standard of credit rating decreases. 

Similarly, the term risk (𝜏) worsens as the credit rating decreases since 𝜏 is a proxy for time to 

default.  

Table 2 goes here. 

From the table 2, ln𝑟0 is positively correlated with yield spread increasing from Spread 

(AAA) to Spread (BBB). Furthermore, the lnτ (GOV) increases as the credit rating rises. For 

all different level of credit rating there is inverse relationship between ln τ and yield spread. 

The coefficient of variation of all yield spreads are relatively low from 0.53 to 0.61, whereas 

the relative standard deviation of the term risk for all credit rating are high. This reflects the 

seriousness of financial crisis in market and economic conditions in Euro zone from 2007 to 

2014. Next, we review the data and estimate equations 3.18 over the EU financial crisis from 

2007 to 2014. Since in our framework not all variables are treated symmetrically and also they 

do not influence each other equally therefore we do not use the VAR structure to diagnose 

cause of the relationship in the underlying PYS model. Hence, we can first test the model under 

OLS estimation to confirm the validity of the new PYS model and evaluation of the likelihood 

function in closed form.  

Here, first the autocorrelation function (ACF) is applied to determine the appropriate lag 

order of the ADF tests and the lag truncation for the non-parametric methods. The lag orders 

are selected for all data with an overall rejection region of 5%. Hence including an appropriate 

lag order may improve the efficiency of the estimation and alter the subsequent results. The 

unit root tests applied with individually selected lag lengths on x(q) with (q) the lag order. Next, 

we examine the structure of the unit-root test as a technically efficient way of determining non-

spurious regression. Since the time series data particularly the data used here are highly time 

effected and might be non-stationary as a result of technological progress, economic evolution, 

crises, changes in the consumers’ preference and behaviour, policy or regime changes, and 

organizational or institutional improvement. This can cause significant problems in forecasting 

and inference; therefore, it is important to find a model that shows a relationship which remains 

long enough (Hendry & Juselius [40]).  

Table 3 goes here. 

The result of the stationarity test on PYSM Spread, ln𝑟0, ln τ are presented in table 3 and 

it confirms the stationarity of all data to permits further estimation for forecasting and long-

term analysis. Next, we estimate the PYS Model with different rated debt of AAA, AA, A, 
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BBB using linear regression. The relevant results are presented in Table 4, indicating that 

changes on lower bound (ln𝑟0) impact significantly on yield spread. Also, the changes in term 

risk (lnτ) impact significantly on yield spread in the case of BBB and A, that is where the credit 

risk is higher. Whereas, the impact of term risk on yield spread become less significant in the 

case of AAA and insignificant for credit rating AA. This implies that when the credit risk is 

highest then the dependence of spread on term risk become less significant.  

Table 4 goes here. 

To test for a more general relationship between the active variables and spread we plot the 

intercept and coefficients of the PYS Model to show the sensitivities of spread changes to ln𝑟0 

and ln𝜏 changes, figure 7. 

Figure 7- Plot of coefficients of PYSM estimation with Different Credit Ratings (AAA, 

AA, A, BBB) 

Note: The PYS Model is driven by equation 3.18, ∂𝑟𝑖𝑡 =⁡∝ +𝛽1ln𝑟0𝑖𝑡 + 𝛽2ln𝜏𝑖𝑡 + 𝑢𝑖𝑡.  

It is interesting to observe that the effect of ratings dependence appears to be approximately 

linear in risk model coefficients, though we have no precedence necessarily for this effect. The 

apparent difference in sensitivities 𝛽2 > 𝛽1  is however illusory. This can be confirmed by 

calculating the normalized coefficients of 𝛽1 and 𝛽2, i.e. when the coefficients are scaled to 

zero mean and divided by variance. We obtain the result when averaged over all Ratings AAA, 

AA, A, and BBB of: 

    by definition⁡∝⁡= 0,   𝛽1⁡⁡= 0.659 ± 0.15 SE    and  𝛽2⁡⁡= -0.734 ± 0.17 SE 
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This suggests that the ln𝑟0 and ln𝜏 effects on spread are approximately equal, with an 

increase in ln𝑟0 or a reduction in ln𝜏 causing an increase in spread, in approximately equal 

weights. Since on average the mechanism is the same for each Rating, this mechanism is 

universal. The regression significance tests confirm that we would expect ln𝑟0  and ln𝜏  to 

operate fully independently. Moreover, the high regression 𝑅2 strengths for spread risks with 

ln𝑟0 and ln𝜏 in regression equation 3.18, support the isolation of risk in spreads to the term risk 

mechanism of the PYSM. This dominance is consistent with the view that the effects of the 

macro variables on term risk should be exogenous to the model, being orthogonal (and cross-

sectional) in their effects. Moreover, the standard methodology of Granger causality is applied 

to evaluate the causation in PYSM model, in its capabilities to characterize risk over the yield 

curve. The results of Granger Causality test are presented in table 5 which justify that there is 

strong causation from ln𝑟0 to yield spread in the case of A, AA and AAA, and also there are 

significant causation from lnτ to yield spread in A and AA. In the case of BBB, it seems that 

some other factors may cause the changes in yield spread.  

Table 5 goes here. 

As would be expected, any ARCH/GARCH estimation over the cycle of our estimations, 

which covers the period of crisis recovery and further crises in the EU period, 2007Q3 to 

2014Q2, should reveal extensive heteroskedasticity. The very purpose of the PYSM is to 

capture these variations in a simple AR(1) dynamic. To see whether we are justified in this 

assumption, we test for the ARCH/GARCH in the residuals to the equation 3.18 regressions, 

using the lag structure of 3 or 4 as applied in these primary regressions, shown in table 5. With 

the results as shown table 6, we conclude that that the autocorrelations in residuals are 

accordingly very small, indicating that the PYS Model mechanism accurately describes the 

conditional means of spreads for the different credit ratings AAA, AA, A, and BBB for these 

data. 

5. Conclusion 

In this paper, a new system of equations was developed for the pricing of the term risk in 

yields and spreads in a unified approach. In effect there are three components to conclude:  

As the first component, an alternative model for term risk depending on a probability 

density as new paradigm was proposed. The underlying source of risk was derived as a new 

martingale for term risk on the Ornstein Uhlenbeck or AR(1) dynamic of damped Brownian 

motion. In essence, the single event Poisson exponential was found as a probability amplitude 
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optimized in the complex plane of the Fourier transform, with the risk neutral analytic then 

obtained by a discovered Nikon Radodym change in measure. Although, for reasons of space, 

the focus in this paper was on the meaning of the distribution in application, rather than in its 

origins as a probability amplitude in phase space. The mathematical effects of the latter are 

well worth examining and will be the subject of further research. In this study, analysis is 

focused on applying the probability density in its new form dL for generating the yield curve 

differential equations for the yield and spread equations, and for analysing of models for 

specific yield curve prices – specifically characterizing here the EU corporate bond. The second 

component was the performance of the PYSM on yield curves and spreads in comparison with 

classical interest rate modelling. This was done firstly by comparing the nature and rationality 

of the driving factors in the PYSM compared to the predominantly Gaussian diffusion-based 

models and multi-factor/multi-element extended versions; secondly, coupled to econometric 

analysis, how the PYSM’s parameters could be used in validation of the interest rate 

movements and their volatilities, to given shocks over the crisis years in the EU.  This gave 

proof to the following highlighted points:  

The PYSM distribution provided a One Factor model for the term risk in the spot rate yield 

curve and the spread at the probability density maximum. Classical models on the other hand, 

were characterized by greater complexity in parameters. Besides a major dependence on the 

stochastic diffusion of Gaussian dynamic models, classical models required a separate market 

price of risk as descriptor of the systematic interest rate drift, a separate deterministic mean 

reversion factor, several coefficients required when fitting to time the varying drift in interest 

rates with maturity, and indeed often a multiplicity of features (jump and stochastic volatility) 

difficult to fit with any significance. The PYSM kept the driving variables endogenous to the 

model. Importantly, the PYSM's parameters replaced those of the classical models in a 

meaningful way. The mean reversion was part of the PYSM density, dependent on the term 

risk factor (𝑙𝑛𝜏); further work will be to extend the concept introduced by 𝜏 from its connection 

with the absolute (local) risk averse factor for a term risk utility; the slope of the PYSM yield 

was directly related to lower bound of the yield curve (𝑙𝑛𝑟𝑜 = 1/𝐼). This gave meaning to 𝑟𝑜 

in comparison with the short rate as policy variable. Multi-factor and multi-process (combining 

disparate diffusion, jumps and stochastic volatility to get an answer) was avoided. The One 

Factor character of the PYSM nonetheless provided an analysis of the EU yield curves over 

their regime changes, the econometric estimations indicated that the PYSM could produce the 

yields and spreads as outputs to the model within acceptable levels of significance. This 
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compares starkly with the preferred method in LIBOR based modelling which relies on the use 

of the market curves, principally swap data, as inputs to the modelling of interest rate and 

spread pricing. The latter method might be more reassuring in being very precisely fitted to the 

forward data now, but be problematic to the accuracy of assumptions and conditions continuing 

if predictive powers are important. The dynamic equilibrium credentials of the PYSM might 

be favoured in the situation where volatility is high, recalibrations very likely and the 

uncertainty in markets paramount. Its one factor nature also helps in its initial fitting and 

verification to data in avoidance of overspecification or our-of sample errors. As 

recommendation, although the range of EU interest rate data we have tested from 2007 to 2014 

might be only a beginning in the journey of the model in range of applications. Further research 

with the PYSM readily centres on the characterization of policy and pricing performance of 

the yield curve and the variation in swap rates, and how to use futures, swaps and forward rates 

to manage investments and risks. The markets affected in this case are vast., with a rich source 

of futures and forwards, interest rate swaps and options data known to exist. Extended further, 

the PYSM kernel should apply in at least some of the components to the credit risk in CDS and 

CDX.  

The practical application of methods is the third component arising. Results suggested that 

the PYSM theoretical foundation characterises the term risk represented in the zero yield 

curves. In principle, the PYSM then provides an interest rate reference point for all positive 

times, ∀𝑡 > 0, which should help in interpreting the role of policy rates, including shocks, and 

also in the filling in of any missing data points. The forwards pricing in the vast and expanding 

markets for interest rate swaps and futures should then be properly derived rather than imputed 

from less than complete market data. The replacing of the LIBOR bootstrapping method, very 

commonly used but recently questioned, should be feasible. Finally, the PYSM parameters may 

add theoretical meaning to the Nelson Siegel level, slope, curvature graphical interpretations.   
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Appendices 1- MATHEMATICAL SOLUTION TO THE PYS MODEL  

STEP 1: Ornstein-Uhlenbeck Auto-Correlation 𝑪𝑫𝑭ℙ 

The Ornstein-Uhlenbeck (OU) model is founded on the concept of an underlying Gaussian 

Wiener diffusion, coupled to an exponentially damped auto-correlation decay process. As such 

it can be considered to be a paradigm for time dependence, as a frictionally restrictive effect 

on a Gaussian randomness. As a first step, we consider the solution assuming the OU is driven 

by a Levy2 process. 

   Autocorrelation⁡covariance(𝑋𝑡) = 〈𝑋0, 𝑋𝑡〉 = 𝜎2(𝑋0) exp(−𝜆𝑡𝑡)⁡⁡   (3.3) 

This is the randomness defined for the Ornstein Uhlenbeck random process, 𝑋𝑡 . This 

process has zero mean and the exponential correlation function for the time lag t. The constants 

𝜎2 and 𝜆 are respectively a variance and a rate of decay factor. Assuming a Levy process, Cont 

and Tankov [25] show that this equation 3.3 solves to an autocorrelation coefficient. 

    𝐴𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛⁡𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = ρ(𝑋𝑡) = exp(−𝜆𝑡𝑡)⁡⁡       (3.4)         

In this form, the OU is aligned to a model for a single jump rate AR(1) process. From the 

jump process analogy, it is readily seen that the cumulative probability of an event occurring 

is exp(−𝜆𝑡). Since in finance we should be interested in risks that could but have yet to happen, 

the antithesis cumulative probability (𝐶𝐷𝐹𝑡
ℙ = 1 − exp(−𝜆𝑡𝑡)) is the usual form needed. 

A number of routes have been taken to try to extend the basic OU in autocorrelation factor 

form, equation 3.4, to model the observed clustering patterns in term risk premia observed in 

practice. This might involve the jump-diffusion by adding proportional log normal jumps, 

Bates [7]. Alternatively, in the Barndorff-Nielsen & Shephard model [8], a positive OU process 

is used directly to represent the square of the volatility process. Another method is proposed 

by Carr, Geman, Madan [22] in which an exponential Levy model is used with time changes. 

Interestingly, the latter model uses Levy models without any Brownian component. One 

guiding feature of such methods is the search for tractable solutions and appropriate risk neutral 

(martingale) pricing. These models provide some of the asymmetry and the nonlinearity in 

distributions observed in practice, although not sufficiently for them yet to gain universal 

acceptance. 

Instead, this study uses an original approach which recognizes that the rate constant 𝜆𝑡 in 

equation 3.4 is adapted to a probability distribution not shown in the time dimension3. Although  

𝜆𝑡  is applied as a constant in equation 3.4, it consists of a continuous distribution infinite 

number of rate (or frequency) described pathways, but which need to be integrated for their 

expectations over all correlations. To find the rate or frequency version of the Poisson 

exponential the nonparametric solution is obtained by Fourier transform. The theorem for this 

conversion is the Wiener Khintchine theorem which is well known in the sciences for the 

analysis of dynamic mechanical molecular transitions, Strobl [63].  

Using the Poisson method proposed in this study, this simplifies the findings from the 

earlier non-Gaussian Ornstein Uhlenbeck literature by excluding the Wiener stochastic and 

also finding the single event jump transition martingale. This approach leaves an AR(1) 

                                                                 

2 A Levy process has increments that are stationary, independent and Markovian in their dynamics. Both 

Gaussian-wiener diffusion and infinitely divisible Poisson jump processes conform to Levy processes. 

3 A single valued intensity factor occurs in the Poisson exponential. 
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autocorrelation as stochastic differential equation which is a complete martingale4 for term risk 

price.   

STEP 2:  Form of the PDF/CDF in Frequency Measure  

The second step is to solve for the Fourier transform of the cumulative probability density 

of equation 3.3.  

As discussed by Strobl for linear and previsible systems, we may use the Weiner-

Khintchine theorem (to obtain the marginal probability density by Fourier analysis  

Rather than characterizing the dynamics of a fluctuating state variable by the time-dependent 

correlation function 〈⁡𝑋0⁡, 𝑋𝑡⁡〉 between the random variables of X0 and Xt , one can also describe 

it by the spectral density, 〈⁡𝑋0, 𝑋𝜔〉.  

The Wiener-Khintchine theorem, a fundamental theorem of statistical physics, states that 

these two functions represent a pair of Fourier transforms, i.e.  

    〈⁡𝑋0⁡, 𝑋𝑡〉 =
1

2𝜋
∫ 𝑒−𝑖𝜔𝑡. 〈⁡𝑋𝜔

2〉. 𝑑𝜔⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
∞

−∞
      (3.5) 

and  

     〈⁡𝑋0, 𝑋𝜔〉 = ∫ 𝑒𝑖𝜔𝑡. 〈⁡𝑋0⁡, 𝑋𝑡〉. 𝑑𝑡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
∞

−∞
   (3.6) 

where 𝜔 represents frequency, which is equal to 1/𝑡. The result of this conversion to a 

power spectrum finds a solution as integrand in a complex plane. It is convenient to define 𝑋𝜔 

over the stress factor to justify a response function 𝜙𝜔 over the full range of integration. This 

obtains: 

 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝜙𝜔 = 𝜙𝜔
′ − 𝑖⁡. 𝜙𝜔

′′ =
√2

𝜋
∫ 𝑒−𝑖𝜔𝑡⁡𝑃𝐷𝐹𝑡. 𝑑𝑡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
∞

−∞
        (3.7) 

The PDF is obtained from the Ornstein Uhlenbeck CDF above, as     

𝑃𝐷𝐹𝑡 = (−𝜆). e−λt 

Equation 8 obtains the solution with full range from −∞ to +∞ as:  

     ⁡𝜙𝜔 = 𝜙𝜔
′ − 𝑖⁡. 𝜙𝜔

′′ =
√2

𝜋
. ∫ (

1 𝜆⁄

1+(𝜔 𝜆)⁄ 2 − 𝑖.
√2

𝜋
.

𝜔 𝜆⁄

1+(𝜔 𝜆)⁄ 2) . 𝑑𝜔⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
∞

−∞
(3.8) 

We can solve for ⁡𝜙𝜔by setting the limits correctly. Firstly, we expect in finance that the 

probability density is a real valued function. Secondly, we can set the upper limit in time as the 

response function in time ⁡𝜙𝑡 , when in equilibrium as  

〈⁡𝑋0⁡, 𝑋𝑡〉 = ⁡∆𝜙𝑡(∞) − ⁡∆𝜙𝑡(t) 

This expresses the fluctuation-dissipation theorem first presented by Onsager [56] and 

Callen & Welton [20], which states that the return of the response function to equilibrium when 

disturbed by a small displacement from equilibrium, is determined by the equilibrium 

fluctuations themselves. The left-hand side represents the effects of spontaneous fluctuations 

in steady state randomness in prices. The right-hand side defines the reaction of the sample to 

the imposition of an external force or disturbance. The response of the system denoted by⁡∆𝜙𝑡 

is then linearly related to the forcing function.  

Using the boundary condition that the steady state (i.e. final state) of the response function, 

𝛼(𝑡 → ∞), must agree with the limiting value of the dynamic susceptibility at zero frequency, 

                                                                 

4 One jump ensures that the martingale is unique over all pathways since probability cumulates to1. Multiple 

jumps would destroy the complete market condition. 
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1

2𝜋
∫ 〈𝑋0, 𝑋𝜔〉. 𝑑𝜔 = 𝜙𝜔

′ (𝑎𝑡⁡𝜔 = 0)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡
∞

0
(3.9) 

Applying the Kramers-Kronig relationship this can be rewritten as:  

1

2𝜋
∫ 〈𝑋0, 𝑋𝜔〉. 𝑑𝜔 =

1

𝜋
∫

𝜙𝜔
′′

𝜔
. 𝑑𝜔⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

∞

0

∞

0

 

     ⁡𝑃𝐷𝐹𝜔
ℙ =

√2

𝜋
.

1 𝜆⁄

1+(𝜔 𝜆)⁄ 2⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡    (3.10) 

Equation 3.10 provides the pricing kernel for the variations in the Poisson single event 

process, in frequency measure. The traditional view of the Poisson process is that since each 

Poisson jump when observed is discrete, the risk neutral and physical probabilities must be the 

same, i.e. its ℙ and ℚ measures are equal. It is then assumed that the ℚ = ℙ law applies to all 

jumps, as in the discontinuous process jump-diffusion models of Merton [53], or Zhou [70]. 

The new feature of a distribution however when the single jump is expanded by frequency 

transform suggest that a reweighting martingale might be possible after all, which we now try.  

First, we notice that the real probability density function for term risk is represented by 

equation 3.10 as a Cauchy distribution. We cannot however use the Gaussian Ito (and Girsanov 

theorem) to find its ℚ measure martingale, as would be the case possible if term risk were a 

Gaussian diffusion. The fact that the Cauchy distribution is non-integrable5 also seems to rule-

out its applicability as a pricing distribution. The break through is to observe as we show below 

that equation 10 can be reweighted using the method in Step 3. A feasible new martingale for 

term risk, which is integrable by definition, may then be obtained.   

STEP 3: Form of ℚ risk neutral PDF in log scale frequency measure  

To find the correct unique martingale for term risk, we start with the formula under 

measure ℙ in equation 3.10. The method we use to explain the martingale employs the theory 

of Harrison and Kreps [38]. Applying Harrison-Kreps requires finding the Nikon-Radodym 

ratio, 𝑑ℚ 𝑑ℙ⁄ , which relates the literal ℙ and the risk-neutral ℚ measures, consistent with 

martingale conditions. If the complete martingale and its technical conditions hold, an implied 

asymmetric drift-less market pricing model then is obtained in equation 3.11. 

    ∫ 𝑃𝐷𝐹𝜔
ℙ⁡. 𝑑𝜔 =

√2

𝜋
∫

𝜔 𝜆⁄

1+(𝜔 𝜆)⁄ 2 .
1

ω
⁡ . 𝑑𝜔⁡⁡⁡

∞

−∞
⁡⁡⁡⁡⁡⁡⁡⁡

∞

−∞
    (3.11) 

To find the martingale measure, we examine how we might be able rewrite the integrand 

in equation 3.11 to obtain a valid Nikon Radodym martingale differential for equation (3.11) 

as pricing kernel 

𝐸ℚ(𝐴) = 𝐸𝑃[1𝐴𝜉] = 𝐸𝑃 [1𝐴
𝑑ℚ

𝑑ℙ
] 

For a martingale, the distribution 𝜉 = 𝑑ℚ 𝑑ℙ⁄ ⁡ must be positive and integrable. Here, we 

test for simplest solution when 𝜉 = 𝜔, 𝜔 > 0 and 𝐸[𝜔] = 1 since we have assumed at the 

outset the one-event Poisson process 𝑃 = 𝑒−𝜆𝑡 as our fundamental term risk process.6 Hence 

this motivates the rewriting of the integrand of equation 3.11 to equation below:  

                                                                 

5 As an unbounded therefore non-integrable expectation. 

6 The technical conditions for a complete martingale are satisfied when 𝜔 > 0⁡with ∫ 𝑑𝜔
∞

−∞
= 1 

 

 Electronic copy available at: https://ssrn.com/abstract=3378552 



40 

 

     ∫ 𝑃𝐷𝐹𝜔
ℙ⁡. 𝑑𝜔

∞

−∞
=⁡

√2

𝜋
∫ ⁡
∞

−∞

1 𝜆⁄

1+(𝜔 𝜆)⁄ 2 . 𝑑ℚ 𝑑ℙ⁄ .
𝑑𝜔

𝜔
        (3.12) 

A standard condition for a martingale, that the densities in ⁡ℙ  and ℚ  share identical 

pathways, is of course assumed. To obtain the ℚ PDF satisfying all the technical risk neutral 

conditions above, the integrand in equation 3.12 can be written to a new integration measure 

and limits, equation 3.13. This is the key step, when the integration measure frequency 𝜔 is 

replaced by ln𝜔 

    ∫ 𝑃𝐷𝐹𝜔⁡
ℙ ⁡. 𝜔. 𝑑ln𝜔

∞

−∞
=

√2

𝜋
∫ ⁡
∞

−∞

𝜔 𝜆⁄

1+(𝜔 𝜆)⁄ 2 . 𝑑ln𝜔                  (3.13) 

Equation 3.13 confirms that the probability density in 𝜔 measure 𝑃𝐷𝐹𝜔
ℙ (which is equal 

𝜙𝜔
′′ the ‘imaginary’ component of the complex response function, equation 3.8) should in its 

martingale be under ln𝜔⁡measure. A few algebraic steps now allow us to make this conversion, 

to obtain the martingale for term risk.   

𝑃𝐷𝐹𝜔⁡
ℙ = ⁡𝜙𝜔

′′ =
√2

𝜋
.

𝜔 𝜆⁄

1 + (𝜔 𝜆)⁄ 2 

Where the logarithmic form of the 𝜙𝜔
′′ gives: 

𝑃𝐷𝐹𝑙𝑛𝜔
ℚ = ⁡𝜙ln𝜔

′′ =
√2

𝜋
.

𝑒ln(𝜔 𝜆⁄ )

1 + 𝑒2ln(𝜔 𝜆)⁄
 

Substitute  𝑥  for  𝑙𝑛(𝜔 𝜆⁄ )  gives:   

𝜙ln𝜔
′′ =

√2

𝜋
.

𝑒x

1 + 𝑒2x
 

Multiply through by 𝑒−𝑥: 

𝜙ln𝜔
′′ =

√2

𝜋
.

𝑒x. 𝑒−𝑥

(1 + 𝑒2x). 𝑒−𝑥
=
√2

𝜋
.

1

𝑒−𝑥 + 𝑒𝑥
 

Expand 
xe−

and
xe :  

𝜙ln𝜔
′′ = 

√2

𝜋
.

1

1−(−𝑥)+
(−𝑥)2

2!
−
(−𝑥)3

3!
+𝑂.

(−𝑥)4

4!
−⁡…⁡⁡⁡⁡⁡⁡+1−𝑥+

𝑥2

2!
−
𝑥3

3!
+𝑂.

𝑥4

4!
+⁡…

 

Odd powers cancel leaving only even functions and the distribution becomes square 

integrable and symmetric in⁡𝑙𝑛(𝜔 𝜆⁄ ). It is found that 𝑃𝐷𝐹𝑙𝑛𝜔
ℚ = 𝜙ln𝜔

′′ ⁡equates to a Cauchy 

distribution in log frequency or log time (see below), for all values 𝑥 to leading order. As a 

means to calculate the expectation integral we now have a new structure 𝑃𝐷𝐹𝑙𝑛𝜔
ℚ

 in log 

frequency that is martingale to replace the objective probability density 𝑃𝐷𝐹𝜔⁡
ℙ ⁡. 𝜔 in equation 

3.13. This is then the appropriate distribution for the market pricing ℚ of term risk. It is the 

universal equation for term risk, which we normally identify as 𝑑𝐿⁡̃from now on. 𝐿⁡̃will register 

the cumulative distribution CDF of 𝑑𝐿⁡̃. 

𝑃𝐷𝐹ℚ(𝑡𝑒𝑟𝑚⁡𝑟𝑖𝑠𝑘) = 𝑑𝐿⁡̃ =
√2 𝜋⁄

2 + (ln𝜔 − ln⁡𝜆)2
⁡=

1 𝜋√2⁄

1 + ((ln𝜔 − ln⁡𝜆)/√2)
2 

Finally, we note that since the pricing kernel for term risk above has had to be developed in a 

spectral analysis, it occurs in terms of the frequency variable (~1/time). Clearly, frequency is 

not a well-versed term in the world of finance. If we could re-express the kernel to a function 
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of the time variable we should do so. Fortunately, the conversion for time to frequency and 

vices versa in the pricing kernel is a trivial matter, given their occurrence in log form. 

Replacement of ln 𝜔  with ln 𝑡 7  and also ln⁡𝜆  with its time factor ln 𝜏  leave the 𝐿⁡̃  and  

𝑑𝐿⁡̃equations unchanged, e.g. to obtain equations 3.14 and 3.15. 

      𝑃𝐷𝐹ℚ = 𝑑𝐿⁡̃ =
1 𝜋√2⁄

1+(ln(𝑡)−ln(𝜏))/√2)
2⁡⁡       (3.14) 

Since this equation is a Cauchy distribution, it also possesses the Cumulative Probability 

Distribution 𝐶𝐷𝐹ℚ(𝑡𝑒𝑟𝑚⁡𝑟𝑖𝑠𝑘) = 𝐿⁡̃ln𝑡 ,  in Cauchy analytic form. 

      𝐿⁡̃ln𝑡 = (. 5 + (1 𝜋). 𝑎𝑟𝑐𝑡𝑎𝑛((𝑙𝑛 𝑡 − 𝑙𝑛𝜏) √2⁡⁄⁄ )           (3.15)              

The availability of the term risk martingale PDF and CDFs in analytical forms 3.14 and 

3.15 simplifies the pricing of conditional prices in derivatives in general. We shall use these 

distributions as the pricing kernels for the spot discount rates and spreads extensively in this 

paper, sections 3 to 5. The problems with existing spot rate or forward rate theories, due to the 

intractability of models arising from complexity of structures, may also be avoided. The other 

important advantage is the greater intuition on cause and effect given by specific model factors 

once the pricing models are obtained, because of the transparency that analytical solutions give. 

For example, the PDF equations for yield curve and spreads are quite readily obtained in simple 

differential structures, see section 3.  

  

                                                                 

7 Since frequency = 1/time, ln𝜔 = −ln 𝑡. When squared, (ln𝜔)2 = (− ln 𝑡)2. 
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Appendices 2 

List of Tables: 

 

Table 1- Summary statistics of PYS spreads, 𝑳𝒏𝐑𝟎⁡𝒂𝒏𝒅⁡𝑳𝒏𝝉 from 2007 Q3 to 2014 Q2 

 
Mean SD Kurt Skew 

S(AAA) 53.9429 32.8654 2.3326 1.2176 

S(AA) 92.1000 55.6732 -0.2232 0.7603 

S(A) 109.1964 61.4097 0.8291 1.0179 

S(BBB) 143.4536 75.5336 1.9123 1.4047 

Ln(t-GOV) 1.3177 0.5421 -0.3957 0.7142 

Ln(t-AAA) 0.4626 0.4087 0.6748 0.6524 

Ln(t-AA) 0.0729 0.4616 2.0064 -0.5055 

Ln(t-A) -0.0271 0.5042 0.3081 0.3035 

Ln(t-BBB) -0.2383 0.5433 0.4499 0.5200 

Ln(R0) -2.2127 2.5643 -1.2856 -0.1553 

 

 

Table 2- The Correlation matrix between PYS spreads, 𝐋𝐧𝐑𝟎⁡𝒂𝒏𝒅⁡𝑳𝒏𝝉 used in equation (18) 

  S(AAA)       S(AA)       S(A)      S(BBB)      Ln(R0) 

S(AAA) 1 
    

S(AA) 0.934816 1 
   

S(A) 0.900015 0.974495 1 
  

S(BBB) 0.8151 0.915481 0.957856 1 
 

Ln(R0) 0.488727 0.595855 0.643766 0.609435 1 

Lnt-Gov -0.01365 0.173339 0.238015 0.344077 0.542176 

Lnt-AAA -0.19011 -0.07647 0.023293 0.111687 0.46276 

Lnt-AA -0.37076 -0.36873 -0.25814 -0.17269 0.299749 

Lnt-A -0.34025 -0.30702 -0.26588 -0.22511 0.431787 

Lnt-BBB -0.00508 0.049788 0.075394 -0.0089 0.66487 

 

 

Table 3- Summary of ADF test on SP, lnR0, Lnτ with different rated debt of AAA, AA, 

A, and BBB from 2007-Q3 to 2014-Q2 

 BBB A AA AAA 

SP(q ) q=3 

-3.7872 *** 

(0.04) 

q= 3 

-3.9347 *** 

(0.03) 

q=4 

-3.3414 * 

(0.08) 

q=3 

-3.2467 * 

(0.10) 

Ln τ(q) q=3 

-.4853** 

(0.02) 

q= 4 

-4.8616 *** 

(0.00) 

q=4 

-3.0313 ** 

(0.05) 

q=2 

-3.4765 * 

(0.02) 

 

Ln R0(3) -5.8034 *** 

(0.00) 

Note: Values without the bracket presents ADF t-statistic and the values with bracket denotes the P-values. *** 

Significant at the 99% confidence level, ** significant at the 95%, and * significant at 90% confidence level.   
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Table 4- Summary of Regression of Spread on LnR0 and Lnτ  (PYS Model) 

BBB A AA AAA 

α 194.72*** 

(13.78) 

[14.13] 

α  150.42*** 

(11.59) 

[12.98] 

α  143.93*** 

(14.77) 

[11.6836] 

α  96.27*** 

(8.93) 

[10.78] 

β1 (q=3) 32.32*** 

(6.90) 

[4.68] 

β1 (q=3) 18.52*** 

(5.21) 

[3.55] 

β1 (q=3) 20.40*** 

(7.04) 

[2.90] 

β1 (q=3) 10.99*** 

(4.90) 

[2.24] 

β2 (q=3) -93.68*** 

(-3.53) 

[26.52] 

β2 (q=4) -52.26** 

(-2.38) 

[21.92] 

β2 (q=4) -25.04 

(-1.45) 

[17.29] 

β2 (q=3) -28.77* 

(-1.99) 

[14.47] 

R2 

SE 

Durbin Watson 

P (F-statistics) 

0.68 

46.09 

1.51 

0.00 

R2 

SE 

D-W 

P (F-stat) 

0.65 

39.05 

1.67 

0.00 

R2 

SE 

D-W 

P (F-stats) 

0.74 

31.46 

1.9 

0.00 

R2 

SE 

D-W 

P (F-stats) 

0.52 

24.69 

1.61 

0.00 

Note: Estimation of equation 18, PYS Model: spreadit =⁡∂𝑅𝑖𝑡 =⁡∝ +𝛽1ln𝑅0𝑖𝑡
+ 𝛽2ln𝜏𝑖𝑡 + 𝑢𝑖𝑡                                  

Values with () presents t-statistic and the values with [] denotes the Standard Error. *** Significant at the 99% 

confidence level, and** Significant at the 95% confidence level. q is the optimal lag truncation.  

 

 

Table 5- Summary of Granger Causality Tests between Spread on LnR0 and Lnτ in PSY 

Mode 

 Spread causing LnR0 causing Lnτ causing  

BBB LnR 

(0.55) 

S 

(0.12) 

S 

(0.26) 

Lnτ 

(0.67) 

Lnτ 

(0.73) 

LnR0 

(0.53) 

A LnR0 

(0.36) 

S 

(0.02)** 

S 

(0.01)** 

Lnτ 

(0.71) 

Lnτ 

(0.19) 

LnR0 

(0.02)** 

AA LnR0 

(0.25) 

S 

(0.02)** 

S 

(0.02)** 

Lnτ 

(0.15) 

Lnτ 

(0.01)*** 

LnR0 

(0.03)** 

AAA LnR0 

(0.32) 

S 

(0.0.04)** 

S 

(0.20) 

Lnτ 

(0.04)** 

Lnτ 

(0.02)** 

LnR0 

(0.75) 
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Table 6- Summary of ARCH Estimation in PYS Model Residuals using different rated 

debt of AAA, AA, A, and BBB from 2007-Q3 to 2014-Q2 

BBB A AA AAA 

C 

 

935.26 

(0.56) 

[1681.25] 

C 

 

138.08 

(0.12) 

[1155.60] 

C 

 

553.44 

 (0.69) 

[806.69] 

C 

 

30.97 

(0.24) 

[128.95] 
(Resid(-1))2

 0.20 

(0.45) 

[0.44] 

(Resid(-1))2 0.40 

(0.82) 

[0.49] 

(Resid(-1))2
  0.07 

(0.18) 

[0.41] 

(Resid(-1))2
 1.18 

(1.837) 

[0.86] 
(Resid(-2))2

 0.05 

(0.16) 

[0.30] 

(Resid(-2))2 0.17 

(0.82) 

[0.49] 

(Resid(-1))2
  0.07 

(0.18) 

[0.41] 

(Resid(-1))2
 1.18 

(1.837) 

[0.86] 
(Resid(-3))2

 -0.24 

(-0.69) 

[0.35] 

(Resid(-3))2 -0.03 

(-0.02) 

[1.10] 

(Resid(-3))2
  -0.11 

(-0.69) 

[0.17] 

(Resid(-3))2
 -0.02 

(-0.02) 

[0.89] 
    (Resid(-4)2

  -0.16 

(-0.69) 

[0.20] 

  

GARCH(-1) 0.46 

(0.39) 

[1.17] 

GARCH(-1) 0.34 

(0.19) 

[1.75] 

GARCH(-1) 0.34 

(0.19) 

[1.75] 

GARCH(-1) 0.22 

(0.05) 

[4.21] 
GARCH(-2) 0.02 

(0.01) 

[1.49] 

GARCH(-2) -0.09 

(-0.01) 

[7.14] 

GARCH(-2) 0.02 

(0.05) 

[1.35] 

GARCH(-2) -0.10 

(-0.08) 

[1.22] 

GARCH(-3) 0.00 

(0.00) 

[1.04] 

GARCH(-3) -0.03 

(-0.02) 

[1.10] 

GARCH(-3) -0.02 

(0.01) 

[1.47] 

GARCH(-3) -0.02 

(-0.02) 

[0.89] 

    GARCH(-4) 0.02 

(0.25) 

[0.20] 

  

R2 

SE 

Durbin Watson 

 

0.66 

47.78 

1.62 

R2 

SE 

Durbin Watson 

0.65 

39.28 

1.58 

R2 

SE 

Durbin Watson 

 

0.74 

31.57 

1.94 

 

R2 

SE 

Durbin Watson 

 

0.49 

25.42 

1.53 

Note: Values with () presents z-statistic and the values with [] denotes the Standard Error. *** Significant at the 

99% confidence level, ** Significant at the 95% confidence level, and * significant at the 90% confident level.  
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