
Received January 10, 2021, accepted January 23, 2021, date of publication January 28, 2021, date of current version February 5, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3055231

A Dynamic Fusion Pathfinding Algorithm Using
Delaunay Triangulation and Improved
A-Star for Mobile Robots

ZHIHAI LIU 1, HANBIN LIU 1, ZHENGUO LU 1, AND QINGLIANG ZENG 2,3
1College of Transportation, Shandong University of Science and Technology, Qingdao 266590, China
2College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China
3College of Information Science and Engineering, Shandong Normal University, Jinan 250358, China

Corresponding author: Qingliang Zeng (qlzeng@sdust.edu.cn)

This work was supported in part by the Key Research and Development Plan of Shandong Province under Grant 2019GGX104048 and

Grant 2019SDZY01, in part by the Ministry of Education of China under Grant IRT_16R45, and in part by the National Natural Science

Foundation of China under Grant 51674155.

ABSTRACT Although many studies exist on mobile robot path planning, the disadvantages of complex

algorithms and many path nodes in logistics warehouses and manufacturing workshops are obvious, mainly

due to the inconsistency ofmap environment construction and pathfinding strategies. In this study, to improve

the efficiency of mobile robot path planning, the Delaunay triangulation algorithm was used to process

complex obstacles and generate Voronoi points as pathfinding priority nodes. The concept of the grid was

used to extract obstacle edges to provide obstacle avoidance strategies for robot pathfinding. Subsequently,

the search for priority and regular path nodes used the improved A-star (A∗) algorithm. The dynamic fusion

pathfinding algorithm (DFPA), based on Delaunay triangulation and improved A∗, was designed, which

realizes the path planning of mobile robots. MATLAB 2016a was used as the simulation software, to firstly

verify the correctness of the DFPA, and then to compare the algorithm with other methods. The results show

that under the experimental environment with the same start point, goal point, and number of obstacles,

the map construction method and pathfinding strategy proposed in this paper reduce the planned path length

of the mobile robot, the number of path nodes, and the cost of overall turn consumption, and increase the

success rate of obtaining a path. The new dynamic map construction method and pathfinding strategy have

important reference significance for processing chaotic maps, promoting intelligent navigation, and site

selection planning.

INDEX TERMS Delaunay triangulation, A-star algorithm, mobile robot, map modeling, path planning.

I. INTRODUCTION

The development of robotics and in-depth research of auto-

matic navigation technology have promoted the widespread

application of mobile robots in various fields. Map construc-

tion and path planning are the core and research focus of

mobile robot development and design. In a robot working

environment with static obstacles, mobile robots can avoid

obstacles and move from the start position to the target

position. The shortest path length and the minimum energy

consumption is the research goal. At present, most studies

are based on the detection of obstacles for multiple path plan-

ning [1]–[3], or local path correction in an unknown working

The associate editor coordinating the review of this manuscript and

approving it for publication was Baozhen Yao .

environment to avoid obstacles [4]–[8]. The overall process

is complicated, and dynamic integration of map construction

and path planning is rarely achieved. The dynamic combina-

tion of map modeling and path planning can accomplish the

collaborative goal of avoiding obstacles using path planning,

simplify algorithm complexity [6], reduce the detection of

path nodes, and improve the efficiency of path planning.

Mobile robots equipped with various types of sensors can

realize path planning, motion control, and data transmission.

The mobile robot converts the entire working environment

into a two-dimensional map based on sensor positioning.

According to the principle of geometry, the operating system

regards the mobile robot as a point and realizes the path

planning of the mobile robot from the start point to the

target point [9]. The most direct method is visibility-based

20602 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 9, 2021

https://orcid.org/0000-0003-0764-4282
https://orcid.org/0000-0002-4745-1832
https://orcid.org/0000-0003-4754-7313
https://orcid.org/0000-0002-3842-9107
https://orcid.org/0000-0003-2867-2549

Z. Liu et al.: DFPA Using Delaunay Triangulation and Improved A-Star for Mobile Robots

graphs, connect the vertices of obstacles to construct different

polygons [10]–[12], and then use path planning algorithms

to plan the path. The Dijkstra algorithm is a typical method

and realizes the shortest path search by accumulating the

path length. The Rapidly-exploring Random Tree algorithm

(RRT) adopts the concept of branches, extending from the

start point and continuously expanding the random tree with-

out encountering obstacles until it reaches the target point.

The RRT is suitable for complex obstacle environments,

but because the optimal solution cannot be quickly con-

verged [10], and the calculation time is long [11]. The Dijk-

stra and RRT approaches use obstacle information for direct

path planning. Artificial potential field algorithm (APF) no

longer uses obstacle information directly but introduces the

potential field concept to process obstacle information. The

APF was proposed to establish an attractive potential field

at the target point and a repulsive potential field around the

obstacle. Path planning was achieved through the control of

the total potential field [13]. The APF needs to define many

parameters of the potential field to ensure the performance of

the algorithm. Changes in the obstacle environmentwill cause

the parameters not always to be optimal, so the adaptability of

APF is insufficient [12]. Thus, improvements of the APF that

incorporate methods such as optimal trade-off functions have

been developed [13], [14]. Dijkstra, RRT, and APF are path

planning algorithms based on the environment. If no further

map processing takes place, problems arise such as a large

number of nodes, a long calculation iteration time, and poor

adaptability.

The common methods for processing maps are the grid

method and the Voronoi diagram. The grid method can grid

the working environment, and is a convenient and straight-

forward approach [2], [15]. The Voronoi diagram generated

by Delaunay triangulation [16]–[18] can order the complex

obstacle environment, and is widely used in the environment

modeling of mobile robots [19]–[21]. After the map is pro-

cessed, the common path planning algorithm includes the D∗

algorithm, Genetic Algorithm (GA), Ant Colony Optimiza-

tion Algorithm (ACO), and A∗. The D∗ algorithm can realize

path planning by judging different path points in the map

grid. D∗ has good adaptability and is often used for rapid

replanning [2]. The GA was first proposed in 1975, and is a

group search algorithm based on the principle of chromosome

evolution [22]. It is widely used in path planning, but has

the disadvantages of slow convergence and local inability to

reach optimality. The Bezier curve was introduced into the

GA to improve the path trajectory [6]. The main method to

improve the optimization and adaptability of the GA is to

improve the compilation operator and coding method [23].

The ACO is inspired by the ant foraging behavior in nature,

looking for the best path from the nest to the food. Ants

communicate with each other by placing pheromones in

the footprint. The ACO will set the parameters based on

the pheromone. The root cause of local stagnation lies in

the limitations of the algorithm search mechanism. The A∗

algorithm was first proposed in 1968 [24]. As a heuristic

algorithm, it can implement a global search. Related research

has resulted in theA∗ algorithm beingwidely used in different

environments [4], [8], [15], [19], [20], [25]–[27]. The combi-

nation of the A∗ algorithm and the grid method is the most

common method, which is likely to cause too many turns,

and the path is too tortuous, so improving the smoothness of

the path is the main research content. Song et al. [27] studied

the path planning of an unmanned boat in an outdoor envi-

ronment and improved the path node optimization of the A∗

algorithm, making the entire path smoother and the reducing

the overall energy consumption. Phan Gia Luan et al. used

a multi-level A∗ algorithm, adding the Bézier curve in the

first layer to achieve path smoothing, and using a weighted

model of dynamic obstacles in the second layer to achieve

obstacle avoidance [28]. Improving the path’s smoothness

will significantly reduce the number of turns and the robot’s

turning angle, thereby saving energy consumption. Since the

A∗ algorithm is a global search algorithm, A∗ will detect

all path nodes, which ensures the algorithm’s reliability, but

detecting too many path nodes also results in slow operation.

Kala et al. [8] combined the A∗ algorithm with the fuzzy

inference system to improve the accuracy of path selec-

tion. The fuzzy cost function was used to analyze obstacle

avoidance data to achieve optimal path selection. Yin and

Yang et al. [25] added a delete algorithm to the A∗ algorithm

path selection to improve the extent of the search of the

A∗ algorithm, reducing the negative impact of large-scale

networks and achieving control of traffic. Fu et al. [26]

simplified the A∗ algorithm and added a pre-processing stage

to achieve a path from the starting point to the end point;

using direct judgment in the post-processing stage, the path

length was reduced by optimizing the path node. Reducing

the useless path node detection in the A∗ pathfinding pro-

cess can effectively improve A∗ flexibility. Combining the

grid method and A∗ algorithm is challenging to reduce path

node detection, but the Voronoi diagram has a good effect.

The Voronoi diagram is a more complicated map processing

method than the grid method. Many scholars have done much

research on the application of the Voronoi diagram in mobile

robot path planning. Reducing the useless path node detec-

tion in the A∗ pathfinding process can effectively improve

A∗ flexibility. Combining the grid method and A∗ algorithm

is challenging to reduce path node detection, but the Voronoi

diagram has a good effect. The Voronoi diagram is a more

complicated map processing method than the grid method.

Many scholars have done much research on the application of

the Voronoi diagram in mobile robot path planning. In 2017,

Candeloro et al. [20] changed the map modeling method of

the A∗ algorithm, using the Voronoi diagram as the map of

A∗ path node selection, and realized the theoretical verifica-

tion of the A∗ algorithm in the Voronoi diagram. In 2019,

based on the Voronoi map modeling, Ayawli et al. [19] used

the A∗ algorithm for initial path planning, and then classified

the obstacles according to the dynamics and dynamic obsta-

cles of the mobile robot, and realized the obstacle avoidance

path optimization of the mobile robot. The improvement of

VOLUME 9, 2021 20603

Z. Liu et al.: DFPA Using Delaunay Triangulation and Improved A-Star for Mobile Robots

the map modeling method promotes the improvement of A∗.

The A∗ is often used in combination with other path planning

algorithms, and the fusion application of multi-path planning

algorithms is a research trend. In 2015, Zuo et al. [15] adopted

the hierarchical A∗, using the A∗ algorithm for the initial path

planning at the first layer, and using the approximate strat-

egy for local path correction at the second layer to achieve

obstacle avoidance and smoothing of the path. Many studies

have proved the combination of theA∗ algorithm, and the grid

method is a common method [29]. The main research content

is to improve the path’s smoothness and reduce the number

of path nodes [30]. The map has the feature of ordering. The

combination of the A∗ algorithm andVoronoi diagram greatly

improves the path’s quality, but the map modeling method

cannot recognize the shape of the obstacle, and the obstacle

avoidance strategy is very troublesome [31].

This study aimed to design a new map modeling and

improve the A∗ algorithm to improve the autonomous oper-

ation efficiency of mobile robots and provide a reference

for collaborative control of mobile robot systems. In this

paper, we propose the dynamic fusion pathfinding algorithm

(DFPA) based on Delaunay triangulation and an improved

A∗ algorithm. The newly designed map modeling method

combines the Voronoi diagram and the grid method. The

Delaunay triangulation algorithm is used to deal with obstacle

coordinates and generates an ordered Voronoi diagram. The

Voronoi point is generated as a preferred alternative path

node. At the same time, the obstacles are placed in the

grid according to the shape and location, and the edges of

the obstacles are extracted. To improve the A∗ algorithm,

we introduced direct judgment into A∗, and designed a

new pathfinding process to reduce the number of iterations.

Furthermore, we also designed a new obstacle avoidance

method using the obstacle side of the map modeling envi-

ronment, improved the obstacle avoidance and path optimiza-

tion. Finally, we introduced the Steiner point to optimize the

path in reducing the path turning consumption and length.

This paper is a path planning method after the Voronoi dia-

gram and grid method. Compared with the visibility-based

graphs [12], [13], it has more flexibility in environmental

recognition. The difference between the method proposed in

this paper and the common Voronoi diagram combined with

the A∗ algorithm [19], [20] is that we add a grid to extract

all obstacle edges based on the Voronoi diagram, which

can identify the shape of obstacles. Compared with other

improved A∗ algorithms [25], [27], [28], we draw on the idea

of path pre-judgment [26] and summarize the pre-judgment

and the Voronoi point as the priority pathfinding nodes into

the pathfinding process. In addition, compared to local path

correction [15] and classified obstacle avoidance [19], we use

the obstacle edges of map modeling as the basis for obstacle

avoidance. The new obstacle avoidance strategy uses map

modeling data.

The contributions and novelties of the paper are as follows:

1) One of this paper’s contributions is to design a map

modelingmethod that combines theVoronoi diagram and grid

method. Using the Voronoi diagram alone for map modeling

can reduce path node detection, but it is difficult to identify

the shape of obstacles, while the grid method alone can take

into account the area of obstacles but will cause too many

path nodes. The newly designed map modeling method fully

combines the advantages of the two methods. It introduces

the ordered Voronoi points into the path planning, avoids

excessive path node detection, and can use the grid to identify

the area of obstacles and extract obstacle edges.

2) Other contribution is the new pathfinding process and

obstacle avoidance strategy to improve the A∗ algorithm.

Introducing the directness judgment in advance into the A∗

algorithm can avoid many calculations to find the direct

path from the start point to the target point. In addition,

we combine the three methods of direct judgment, finding

the Voronoi point, and traditional A∗ finding the node into

a new pathfinding process, which reduces the complexity

of iteration. The obstacle avoidance strategy relies on the

obstacle edges generated by map modeling, which is simple.

3) The innovation of this paper is to design a new map

modelingmethod that can be integrated with the improved A∗

algorithm, which can avoid repeated calculations, maximize

the use of data resources generated in the map modeling

process, and improve the pathfinding process and simplify

iteration complexity.

The remainder of the paper is organized as follows.

Section II introduces the concepts of the A∗ and Delaunay

triangulation algorithms, the characteristics of the Voronoi

diagram, and the basic principles of mapmodeling and recog-

nition of obstacles. Section III introduces the flow and content

of the entire DFPA. Section IV simulates and verifies the

DFPA, and compares the experimental results of the DFPA

with A∗ and RRT under the same conditions. Section V

discusses the DFPA in depth. Finally, Section VI provides the

conclusions of the study.

II. DYNAMIC FUSION PATHFINDING ALGORITHM

METHOD

A. DELAUNAY TRIANGULATION AND A∗ ALGORITHM

The generation of triangular meshes is a key part of many

computational modeling and simulation tasks, such as com-

putational engineering, numerical simulation, and computer

graphics. Triangular meshes are essentially a combination of

different complex points. The Delaunay triangulation algo-

rithm is often used to regularize complex and irregular points.

Delaunay triangulation generates triangle meshes without

overlapping by connecting sampling points scattered in the

problem domain [16]. This method has been proved to be

effective in processing complex points. The Voronoi diagram

is generated on the basis of Delaunay triangulation, which

is often used for sensor placement in the field of geology

and surveying [17]. Delaunay triangulation theory has been

thoroughly studied [18], [32], [33].

The A∗ algorithm is a heuristic algorithm that searches for

the path with the lowest cost among all possible paths [8],

that searches for nodes in the graph from the start node to

20604 VOLUME 9, 2021

Z. Liu et al.: DFPA Using Delaunay Triangulation and Improved A-Star for Mobile Robots

the target node, and that uses heuristics related to informa-

tion about the problem features to guide its performance.

As a heuristic algorithm, the A∗ algorithm includes three

parts: OPEN LIST, CLOSED LIST, and heuristic function,

as shown in Equation (1):

F = G+ H (1)

where F is the overall consumption cost, G is the actual

consumption cost, and H is the heuristic cost. (1) is the core

of the A∗ algorithm. F is used to evaluate the current node

and offer a search order among candidate nodes for the next

search [26]. The heuristic function is the basis of the A∗

algorithm search path node. Often, the actual consumption

cost cannot be changed, and is difficult to improve. Generally,

the improvement of the A∗ algorithm is studied from the

heuristic cost H [15], and H is optimized and improved

according to different usage environments to improve the

A∗ algorithm. Since we take the Voronoi point as a priority

pathfinding node, and the mobile robot moves on the Voronoi

diagram, the path length is the main cost. We define the path

length from the start point to the current node as the actual

consumption, which can measure the current node’s actual

performance. We use the Euclidean distance from the current

node to the target point to define, which can reflect the current

node’s priority in the next search. In this way, the node with

the smallest will be selected next time.

The premise of mobile robot path planning is the construc-

tion of maps, that is, the analysis of the working environment

based on environmental perception. The most important issue

in the path planning process is real-time positioning, includ-

ing the positioning of mobile robots and obstacles. Delaunay

triangulation can be used to process complex data and obsta-

cle coordinate points, so that complex and disordered obstacle

coordinate points can be standardized for computer simu-

lation. As the main method of static map construction, the

number of grids will increase the number of calculations to be

performed by themobile robot. Accurate location and naviga-

tion is a challenge, and result in the robots’ moving path being

overly complicated and involving too many turns. A map

construction method based on Delaunay triangulation to deal

with obstacles can overcome the shortcomings of the grid

method. The A∗ algorithm has good pathfinding efficiency.

Thus, combining the approach of theA∗ algorithm’s pathfind-

ing with Delaunay triangulation for environment map con-

struction, we designed a new pathfinding strategy. In this

study, obstacle grid filling was used in map modeling, and A∗

was used in the pathfinding strategy to expand and find path

nodes. Furthermore, the obstacle coordinates were converted

into grid positions, and the grid positions were converted into

coordinates. This data conversion method makes it possible

to dynamically combine the two elements of map modeling

and pathfinding.

B. THE OPTIMAL POSITION OF THE VORONOI EDGES

Through the Delaunay triangulation algorithm, a set of points

can be generated into a unique map. Because this unique

map is composed of triangles, it is also called Delaunay

triangular grid map. The Delaunay triangle grid map satisfies

the following rules:

1) Any edge does not contain a point in the point set;

2) All edges have no intersecting edges.

The Delaunay triangle grid map is shown in Figure 1. The

black solid points are obstacles and the black dotted lines

form the Delaunay triangle grid. This kind of triangle mesh

map has a significant advantage: it integrates complex and

disordered point sets into regular edges. The prerequisite for a

mobile robot to realize path planning is to recognize complex

obstacles. The Delaunay triangular grid map can be used as a

method of map modeling for mobile robots.

FIGURE 1. Delaunay triangle grid map.

Although the Delaunay triangle grid map transforms the

complex points into regular edges, which is not suitable for

robot path movement, the Voronoi diagram on this basis does

have good characteristics. The Voronoi diagram includes

Voronoi points and Voronoi edges. The Voronoi point is the

center point of all Delaunay triangles that meet the require-

ments [34]:

1) Any two Delaunay triangles have a common side;

2) The center of the circumcircle of the two Delaunay

triangles conforming to 1) is the Voronoi point;

3) The centers of the circumcircles of the two Delaunay

triangles that conform to 1) are connected to form a Voronoi

edge.

The Voronoi diagram is shown in Figure 2.

FIGURE 2. The voronoi diagram.

VOLUME 9, 2021 20605

Z. Liu et al.: DFPA Using Delaunay Triangulation and Improved A-Star for Mobile Robots

The typical feature of the Voronoi diagram is that the sum

of the distances from all points on the Voronoi edge to all

vertices of two adjacent Delaunay triangles is the smallest,

as shown in Figure 3.

FIGURE 3. The distance from the point on the Voronoi edge to all vertices
of two adjacent Delaunay triangles is the smallest.

All obstacle coordinate points can be expressed as

Equation (2).

obs=
{(

s_x1, s_y1
)

,
(

s_x2, s_y2
)

, · · · · · · ,
(

s_xm−1, s_ym−1
)

,
(

s_xm, s_ym
)}

(2)

The Voronoi points can be expressed as Equation (3).

VP =
{(

v_x1, v_y1
)

,
(

v_x2, v_y2
)

, · · · · · · ,

(v_xn−1, v_ym−1),
(

v_xn, v_yn
)

,
}

(3)

As shown in Figure 4, the distance from V1 to three

obstacle points {obs3, obs2, obs4} is {dis1−3, dis1−2, dis1−4},

respectively, and the distance from V2 to three obstacle

points {obs4, obs7, obs3} is {dis2−4, dis2−7, dis2−3}, respec-

tively. Any point
{

point1, point2, · · · , point i, · · · · · ·
}

on the

Voronoi edge is composed of V1and V2, and the distance

between point i and the obstacle on both sides of the Voronoi

edge is equal, which means that the Voronoi edge is always in

the middle of the obstacle points. In Equation (4),disi−3 is the

distance from point i on the Voronoi edge to obs3, and disi−4
is the distance from point i on the Voronoi edge to obs4

disi−3 = disi−4 (4)

Not every obstacle point can generate a Delaunay triangle

and not every circumscribed circle center of each Delaunay

triangle (Voronoi point) can be connected to form a Voronoi

edge. According to the rules, n(n ≤ m) Delaunay triangles

can be generated, and n(n ≤ m) Voronoi points can be

generated simultaneously. We know that the Voronoi edges

and the obstacle points form a special topological relationship

graph, and the Voronoi edges divide the entire area into

multiple block structures. The Voronoi edge always occupies

the center of obstacles on both sides. The closed-loopVoronoi

edge contains only one obstacle point. The movement of the

mobile robot on the Voronoi edges ensures that it is always

FIGURE 4. Any point on the Voronoi edge is always in the middle.

in the middle of the obstacle. The Voronoi diagram integrates

disordered obstacle points into an ordered topological rela-

tionship diagram, as shown in Figure 5. Therefore, we use

the Voronoi diagram as a method for mobile robots to process

obstacle points.

FIGURE 5. A special topological relationship graph.

C. OBSTACLE COORDINATE VISUALIZATION

The Voronoi diagram can handle complex and disorderly

obstacles, and the Voronoi edge has the excellent charac-

teristic of always being in the middle of the obstacles on

both sides, so we use the Delaunay triangulation algorithm

to process obstacle coordinate points and generate a special

topological relationship graph that contains obstacle points,

Voronoi points, and Voronoi edges. However, the obstacle

is an irregular entity with an area instead of a point. In the

traditional mobile robot planning algorithm, the grid method

can clearly express the grid occupied by the obstacle. The

number and position of the grid represent the occupation of

the obstacle. Therefore, on the basis of generating a Voronoi

diagram according to the coordinates of obstacle points,

we introduce the concept of a grid to realize the performance

of the occupied area of obstacles, improve the construction of

the map, and make early preparations for obstacle avoidance.

The grid method has the characteristics of simple construc-

tion and easy and programming and can reflect the area of

20606 VOLUME 9, 2021

Z. Liu et al.: DFPA Using Delaunay Triangulation and Improved A-Star for Mobile Robots

obstacles. On the basis of the concept of the traditional grid

method, we combine the principle of the optimal position of

the Voronoi edge, the size of the mobile robot, and the actual

distribution of obstacles to achieve obstacle grid filling.

Suppose the boundary of the entire working area is:
{

Xmin; Xmax

Ymin; Ymax
(5)

and we randomly generate N points as obstacle

coordinates:

obs = rand(N , 2) (6)

According to the principle of Voronoi graph generation,

we can generate Voronoi points and Voronoi edges.

VP=











v_x1 v_y1
...

...

v_xn v_yn











(7)

Voronoiedgemat

=



















VP1(x) VP1(y) VP2(x) VP2(y)

VP3(x) VP3(y) VP4(x) VP4(y)
...

...
...

...

VPµ−1(x) VPµ−1(y) VPµ(x) VPµ(y)



















(8)

N obstacles generate n Voronoi points and µ Voronoi

edges.

The size of the mobile robot is L ∗W .

The traditional grid method is divided according to the

length and width of the mobile robots. We then select the

largest size of the mobile robot as the basic unit division of

the grid, and the number of grids is:

Numgrid={max(Xmax−Xmin,Ymax− Ymin)/[max(L,W)]}2

(9)

The Voronoi points have precise coordinates, which are

displayed in the grid graph and used as the background data.

Placing obstacles in a grid is the key element of using Voronoi

diagrams for map modeling, and also an important strategy

for mobile robots to avoid obstacles.

Although the shapes of obstacles are different (irregular),

the grid is square (regular). In the process of converting

obstacle coordinates into the gridmap, the area of the obstacle

is converted into the number and approximate location of

the grid. We use the geometric center of the obstacle as its

coordinate point, as shown in Figure 6.

According to the shape of the obstacle and the grid occu-

pation situation, all grids that contain obstacle edges and

points are obstacles, which enlarge the actual area occupied

by obstacles. It will not lead to inaccurate path planning,

but avoid excessively complicated calculations. After deter-

mining the coordinates of the geometric center point of the

obstacle and estimating the shape, we can determine the

number and position of the grid occupied by the obstacle,

and further clarify the obstacle edges. Fig.6 is taken as an

FIGURE 6. Obstacle coordinates and shape diagram.

example. The shapes of the three obstacles are different, and

the geometric center coordinate points are:

obsα =
(

s_xα, s_yα
)

obsβ =
(

s_xβ , s_yβ
)

obsγ =
(

s_xγ , s_yγ
)

(10)

According to the geometric center point and shape of the

obstacle, we can obtain the grid number and position occu-

pied by each obstacle and the edges of each obstacle. The

coordinates of the four vertices of the edges of the α obstacle

are:

obsxmina = ceil (obsα)− numla

obsxmaxa = ceil (obsα)+ numra

obsymina = ceil (obsα)− numda

obsymaxa = ceil (obsα)+ numua (11)

where ceil is a round-up function, numla is the number of

grids occupying the grid from the geometric center point

of the α obstacle to the left, numra is the number of grids

occupying the grid from the geometric center point of the α

obstacle to the right,numda is the number of grids occupying

the grid from the geometric center point of the α obstacle to

the down, and numua is the number of grids occupying the

grid from the geometric center point of the α obstacle to the

up.

The edges for the α obstacle are:

obsedgeα

=















obsxmina, obsymina, obsxmina, obsymaxa
obsxmina, obsymaxa, obsxmaxa, obsymaxa
obsxmaxa, obsymaxa, obsxmaxa, obsymina
obsxmaxa, obsymina, obsxmina, obsymina















(12)

According to (11) and (12), the obstacle edges of all obsta-

cles can be obtained in (13), as shown at the bottom of the

next page.

We map the geometric center point of the obstacle to the

grid map, and according to the actual shape of the obstacle,

we can obtain the position and number of the grid occupied

by the obstacle. Through the number and position of the occu-

pied grids and the coordinates of the geometric center point,

we further regularize the obstacles and obtain the obstacle

edges, which are used as an important reference standard for

VOLUME 9, 2021 20607

Z. Liu et al.: DFPA Using Delaunay Triangulation and Improved A-Star for Mobile Robots

FIGURE 7. α obstacle edges.

obstacle avoidance. We intersect the Voronoi edges and the

Voronoi points with the obstacle edges to determine the best

strategy without hitting the obstacle.

III. DYNAMIC FUSION PATHFINDING ALGORITHM

CONTENT

A. DYNAMIC FUSION PATHFINDING ALGORITHM FLOW

The DFPA contains two components: map modeling and

improved A∗ pathfinding. Map modeling and pathfinding

are carried out at the same time in the algorithm pro-

cess because the resources of the improved A∗ algorithm

come from the obstacle edges, Voronoi points, and Voronoi

edges of map modeling. The improved A∗ algorithm takes

Voronoi points as priority pathfinding points. In addition,

we added direct judgment and designed a pathfinding pro-

cess to improve the A∗ algorithm. The pathfinding process

includes direct pathfinding, Voronoi point pathfinding, and

traditional A∗ pathfinding. At the same time, the obstacle

edges are extracted as a strategy for avoiding obstacles.

We take the grid where the obstacle is located as the "wall"

of the traditional A∗ algorithm.

Map modeling provides two data sources for pathfinding,

namely, obstacles and Voronoi points. The Voronoi points

have both precise coordinate points and row and column

values of the grid. Obstacles have precise geometric center

coordinate points, grid index values, and obstacle edges.

FIGURE 8. Dynamic fusion pathfinding algorithm flow chart.

The path search from map modeling is mainly based on

the following principles: 1) avoiding obstacles and ensur-

ing that the moving path cannot intersect with the obstacle

edges; 2) preferentially finding the Voronoi points as the path

nodes, because the Voronoi edge has excellent characteristics,

according to (4); and 3) preferring to choose a straight path

instead of a polyline path to reduce energy consumption and

shorten walking time. Based on the principle of pathfinding

and the principle of early map modeling, we designed the

DFPA. The DFPA flow chart is shown in Figure 8.

It can be seen from Fig.8 that the map modeling uses

the Delaunay triangulation algorithm to generate the Delau-

nay triangle mesh map and the Voronoi diagram to identify

obsedgemat =



















































































obsxmin1, obsymin1, obsxmin1, obsymax1
...

obsxmina, obsymina, obsxmina, obsymaxa
obsxmina, obsymaxa, obsxmaxa, obsymaxa
obsxmaxa, obsymaxa, obsxmaxa, obsymina
obsxmaxa, obsymina, obsxmina, obsymina

...

...

obsxmaxN , obsymaxN , obsxmaxN , obsyminN
obsxmaxN , obsyminN , obsxminN , obsyminN
obsxminN , obsyminN , obsxminN , obsymaxN



















































































(13)

20608 VOLUME 9, 2021

Z. Liu et al.: DFPA Using Delaunay Triangulation and Improved A-Star for Mobile Robots

obstacles, but not all Voronoi diagrams can be used. The

Voronoi points beyond the boundary are unavailable and will

affect the later pathfinding, so map optimization is essential.

Simultaneously, the grid will also be divided, and obstacles

will be converted into obstacle edges. The Voronoi point and

obstacle edges are obtained as essential parameters of the

pathfinding strategy. The pathfinding strategy is based on

the improved A∗ algorithm. The main idea is to detect the

surrounding path nodes from the start point, find the best

path node, and then iterative calculations until the end point is

reached. The pathfinding strategy takes the Voronoi point as

the priority path node, which provides a way to directly reach

the destination, thereby avoiding complicated iterative calcu-

lations. The obstacle avoidance strategy determines whether

the next path node can be reached. The main idea is whether

the path is composed of the current node and the next node

intersects the obstacle edges. Later, we will introduce DFPA

in detail.

B. MAP OPTIMIZATION

A group of obstacles can generate different Delaunay triangle

grid graphs. Some of the Voronoi diagrams generated on this

basis may not be used for path planning. In the process of

map modeling, we use Delaunay triangulation to generate

Voronoi points andVoronoi edges that may exceed themotion

boundary, which should be removed in the initial optimization

stage.

According to (5), (7), and (8), the optimized Voronoi points

can be obtained:

VP = (Xmin < VPi (1) < Xmax ,Ymin < VPi (2) < Ymax)

(14)

At the same time, we delete the Voronoi edges that are

beyond the boundary.

According to the points and shapes of obstacles, we can

generate the number of rows and columns of the grid occupied

by the obstacles and the index value. On this basis, we can

generate the obstacle edges of all obstacles, as in (13). The

Voronoi points must be reflected in the grid for later cal-

culation of overall consumption cost. The rasterization of

Voronoi points adopts the principle of grid unification, that is,

all Voronoi points falling within the same grid are uniformly

expressed as the same grid. The conversion of Voronoi points

into index value of grids can be expressed as Equation (15):

VPindex = [ceil(VP)] (15)

The grid occupied by the Voronoi points—the number of

rows and columns and the index value—are not important

data in the algorithm process, but are used only to calculate

statistical movement costs after the algorithm is completed.

C. PATHFINDING STRATEGY

After the initialization phase of the map modeling is com-

pleted, we specify the start point and end point using precise

FIGURE 9. The deadlock state.

coordinates:

S = (xx , ys)

E = (xe, ye) (16)

The traditional A∗ algorithm detects the surrounding path

nodes from the start point until reaching the end point. This

algorithm has a large amount of calculation, which will

severely limit the performance of the algorithm. When the

number of obstacles is small, the A∗ algorithm still has to

perform tedious iterative calculations and is not flexible.

In order to improve these shortcomings, we use the Voronoi

points generated in the previous map modeling as the priority

pathfinding nodes. The start point is no longer looking for

the surrounding path nodes, but judging whether it can reach

the end point and finding the nearest Voronoi point. Judg-

ing whether it can directly reach the end point saves many

calculations. The Voronoi point’s priority can ensure that the

mobile robot moves in the best position, avoiding excessive

path node detection. Our main contribution is to provide a

correct and effective path planning method.

In the traditional A∗ algorithm, it is necessary to establish

a grid cost database to provide the consumption cost of each

grid; the grid cost consumption value occupied by obstacles

is infinite. In the pathfinding process of the algorithm, a dead-

lock phenomenon will occur during the process of finding a

new Voronoi point, and the current node can neither directly

reach the end point nor find a new Voronoi point, as shown

in Figure 9. Therefore, in the case of a deadlock, the cost

database of the four grids around the node must be set to use

the traditional A∗ algorithm to find new points to jump out of

the deadlock state. The grid cost data is:

Field=(Numgrid,Numgrid)+rand (Numgrid,Numgrid)

(17)

The pathfinding strategy is improved from that used in the

traditional A∗ algorithm, where we establish two sets, OPEN

SET and CLOSE SET:

Open = {S, · · · · · · · · · }

Close = { } (18)

The OPEN SET is put into the start point and other points

to be detected, and the CLOSE SET is put into the parent

VOLUME 9, 2021 20609

Z. Liu et al.: DFPA Using Delaunay Triangulation and Improved A-Star for Mobile Robots

node that has been detected as the mobile node of the robot.

According to the algorithm flowchart, we make a direct judg-

ment to connect the start point to the end point to detect

whether there is a collision with the obstacle edges. If no

collision occurs, it is directly connected and the algorithm

ends. Otherwise, the seek operation is performed, and all

points except the obstacle point and the obstacle grid are used

as alternative points. However, based on the particularity of

the Voronoi point, the Voronoi point is the preferred point.

Therefore, the parent node (start point) searches for the near-

est Voronoi point that can be connected and the connecting

line does not collide with the obstacle edges.

We determine the Manhattan distance between the current

parent node and all Voronoi points, where abs is the absolute

value function:

VPH i = abs (parentnode(1)− VPi(1))

+ abs (parentnode(2)− VPi(2)) (19)

NewVP = min (VPH i) (20)

We also put NewVP as the new parent node in the OPEN

SET and continue the pathfinding.

If the current parent node cannot find the nearest Voronoi

point without touching the obstacle grid, the current parent

node is put as the center point. According to the traditional

A∗ algorithm, the grids in the four directions of up, down,

left, and right are used to try to find the new path. The grid

occupied by obstacles is regarded as a wall and the cost as

infinite so that it is not considered. According to the grid

generation value of (17) and the Manhattan distance from the

try point to the end point, the center point of the grid with the

lowest cost can be found as the parent node and placed in the

CLOSE SET.

costs = min















Sofarcosts+ Field (1)+ H (1)

Sofarcosts+ Field (2)+ H (2)

Sofarcosts+ Field (3)+ H (3)

Sofarcosts+ Field (4)+ H (4)















(21)

We then loop through the entire pathfinding process until

the new parent node can be directly connected to the end

point without encountering obstacles. All parent nodes in the

CLOSE SET are connected in reverse order from the end

point to the start point, and the entire path of the robot can be

found. If theOPENSET is completely empty, and the CLOSE

SET still has no end point, it means that there is no solution

and no feasible path.

D. OBSTACLE AVOIDANCE

In the whole process of the DFPA, the most important issue

is to judge whether the parent node can be connected with

the new point without touching the obstacle. The obstacle

avoidance strategy determines the feasibility of the DFPA.

Avoiding obstacles is one of the main tasks for mobile

robot path planning. The typical way is to define a safe

distance, and then use sensors to detect the distance between

the obstacle and the robot [14]. Another method is to establish

a numerical matrix and set the value of the obstacle to infin-

ity, through continuous calculation, to avoid the maximum

amount of calculation [8]. The obstacle avoidance strategy

proposed in this paper is to record all obstacle edges after

the obstacle is identified, and then judge whether the detected

path and the obstacle edge intersect, to realize obstacle avoid-

ance. This obstacle avoidance strategy does not rely on sen-

sors, nor does it require many complex calculations using

numerical matrices. Obstacle avoidance strategies are more

uncomplicated and can be dynamically combined with map

modeling.

During the construction of the map, we generated the

obstacle edges according to the geometric center coordinate

point and shape of the obstacle. Without considering the size

of the mobile robot, it can be concluded that the connection

between the parent node and the try point does not have any

intersection with the obstacle edges, and the path from the

parent node to the try point can be realized.

The obstacle avoidance strategy is used to judge whether

the line segment formed by the coordinates of the known

point P and the try point T intersects the obstacle edges.

P =
(

xp, yp
)

T = (xt , yt)

Tryside = (P,T)

Result = sum
[

cross
(

Tryside, obsedgei
)]

(22)

where cross is a cross-product function. We combine the

current parent node and the try point into a new line segment

Tryside, and the cross-product operation of Tryside and each

of the obstacle edges. If the result is 0, they will not intersect;

and if the result is 1, they will intersect. The sum of the results

of each operation are summed:

Result =

{

0, Able to find a new point

ρ, Collision with obstacle ρ times
(23)

E. PATH OPTIMIZATION

Although the obtained path avoids obstacles, too many turns

result in too long path length, which is not the best path.

Therefore, we have added path optimization in the last step of

DFPA. Bhattacharya, Priyadarshi et al. introduced the Steiner

point into the Voronoi diagram path to reduce the turn and

path length [35] and achieved good results. We optimize the

path by the Steiner point.

Steiner points have high stability and are often used for

path planning and multi-node optimization. The Steiner point

is defined as follows:

S =
1

2π

∑f0

j=1
vjϕ

(

F0
j ,P

)

(24)

where, P is a set of points, vj is the coordinates of each ver-

tex F0
j (j = 1, · · · , f0), and ϕ

(

F0
j ,P

)

is the complementary

angle of vertex F0
j , which satisfies

∑f0
j=1 ϕ

(

F0
j ,P

)

= 2π ,

then S is the Steiner point of the P.

20610 VOLUME 9, 2021

Z. Liu et al.: DFPA Using Delaunay Triangulation and Improved A-Star for Mobile Robots

The final path is connected by many nodes, including the

center point of the grid and the Voronoi point. We treat these

nodes as a set of points and then calculate Steiner points (24).

Step 1:We set an interval value τ , set many Steiner points

on the path’s edge based on the interval. Find a path node V ,

add Steiner points on both sides of the path through V , add

the first Steiner point at τ distance away from V , and the

second Steiner point at 2τ distance away from V , and so

on. We connect the first Steiner points on the two sides.

If the connecting line cannot intersects the obstacle edges,

we try to connect the second Steiner points. Continue the

whole process until the Steiner points reach the turning point.

We replace the path node V with the connecting line of the

last Steiner points. If the Steiner points on both sides cannot

be connected, we retain V .

Step 2: If the shortest path cannot be achieved with the

interval value: τ , we shorten the interval value to half: τ
2
.

We add Steiner points again according to the new inter-

val value, and repeat the above steps to find new connect-

ing lines to replace the current path node. In the whole

process, the interval value changes dynamically, interval

value = τ
4
, τ
8
, τ
16
· · · · · · .

Repeat the Step 1 and Step 2 until the last interval value

reaches the predetermined minimum value, achieve the max-

imum resolution, then end the entire optimization process.

Finally, we delete unnecessary Steiner points to avoid

complicated calculations in the path optimization process:

1) Delete other unnecessary Steiner points to facilitate the

next step of Steiner point search once a feasible Steiner point

is found; 2) Delete all the previous Steiner points to ensure

the accuracy of the new path optimization after set the new

interval value; 3) Delete all unnecessary Steiner points to

ensure the smoothness of the path after completed the path

optimization.

The flow chart of path optimization is shown in Figure 10.

FIGURE 10. Fow chart of path optimization.

As shown in Figure 11, according to the rules of path

optimization, V1, V3 are replaced, V2, V4are reserved. Other

unnecessary Steiner points are deleted. The original path is

{S → V1→ V2→ V3→ V4→ E}, and the optimized path

is {S → S1→ V2→ S2→ V4→ E}, and the path length

has been significantly improved.

FIGURE 11. Path optimization.

IV. RESULT

A. EXPERIMENTAL CONDITION

To verify the rationality of the DFPA, we set up a 10 ×

10 mmobile robot working range and conducted 750 random

experiments.

The number of obstacles is 10, 10∗10 cells, 150 experi-

ments; the number of obstacles is 20, 10∗10 cells, 150 exper-

iments; the number of obstacles is 30, 10∗10 cells,

150 experiments; the number of obstacles is 40, 20∗20 cells,

150 experiments; the number of obstacles is 50,

20∗20 cells, 150 experiments.

The coordinates and shapes of the obstacles were randomly

generated, and the start and end points were the same.

The size of the mobile robot: L = 0.98m, W = 1 m.

The number of grids: Numgrid = 100.

The start point of the mobile robot was (0.5, 0.5) and the

end point was (9.5, 9.5).

The cost consumption of the grid where the Voronoi point

is absent was: field=ones (10,10) + rand (10,10)

The cost consumption of the grid where the Voronoi point

was located was set to 1, which ensured that the Voronoi point

was selected first. At the same time, the consumption values

of other grids are different.

We set the moving boundary range of the mobile robot:
{

Xmin = 0m; Xmax = 10m

Ymin = 0m; Ymax = 10m
(25)

We will discuss one of the 10 obstacle experiments. The

coordinate points of obstacles are shown in Table 1.

The schematic diagram of obstacles is shown in Figure 12

B. CODE PROGRAM

The whole DFPA program consists of three parts: 1) Voronoi

diagram generation, which generates Voronoi points accord-

ing to the coordinates of obstacles. 2) Obstacle grid place-

ment, which is divided by the main parameters of the mobile

VOLUME 9, 2021 20611

Z. Liu et al.: DFPA Using Delaunay Triangulation and Improved A-Star for Mobile Robots

TABLE 1. Obstacle coordinates.

FIGURE 12. Distribution of obstacles.

robot and the map boundary grid, and then generates the

obstacle grid according to the coordinates and shape of the

obstacle, and stores the obstacle edges. 3) Pathfinding from

the start point according to the algorithm rules; on the basis

of not touching the obstacles, the path node is continuously

searched until the end point is found, or if the end point cannot

be found, the algorithm ends.

Algorithm 1 is based on the coordinates of the obstacle

points to generate Delaunay triangles to further find all of the

Voronoi points, and remove the Voronoi points beyond the

boundary.

Generating the Voronoi points is the first step in map

modeling, and also a key step in finding nodes. In the follow-

ing program, the obstacle point coordinates also need to be

used as an important reference for the obstacle visualization

module.

Algorithm 1 generates usable Voronoi points. Algorithm 2

implements Obstacles grid placement. On the basis of early

analysis, Algorithm 2 divides the number of grids, reflects the

grid image occupied by obstacles, and expresses the Voronoi

points on the map.

To allow the operator to check and simplify the obstacle

edges, Algorithm 2 reflects all of the points and obstacle

blocks in the map. The process of obstacle placement intro-

duces the concept of the grid, which is equivalent to the

Algorithm 1 Voronoi Diagram Generation

1 Input:

2 Xdot←− obstacle coordinate points

3 Xmin←− Environmental boundary

4 Xmax←− Environmental boundary

5 Ymin←− Environmental boundary

6 Ymax←− Environmental boundary

7 Output:

8 VP←− Voronoi points within the boundary

9 Vpedge←− Voronoi edges within the boundary

10 For Xdot in every obstacle do

11 If obstacle is within the Delaunay triangle then

12 Trimat(i)←− Delaunay triangle

13 Else

14 Trimat(i)←− f (xdot) || Function connecting coordi-

nate points

15 Initialize juedge←− 0

16 For Every one of Trimat do

17 Juedge←− Intersect(Trimat (m), Trimat (m+ 1))

18 If Juedge >0 then

19 voronoiedge←−Maketricenter (Trimat, Juedge)

20 If Xmin < voronoiedge(1) < Xmax & Ymin <

voronoiedge(2) < Ymax then

21 VP←− Find(voronoiedge)

22 Vpedge←− [VP(i),VP(i+ 1)]

Algorithm End

Algorithm 2 Obstacles Grid Placement

1 Input:

2 Xdot←− obstacle coordinate points

3 obs_shape←− shape of the obstacle

4 Numgrid←− Number of grids

5 Output:

6 obsedge←− Edges of obstacles

7 Initialize Mumgrid

8 Initialize Field

9 If obs_shape =1 then

10 obsxmin←− ceil(Xdot) - numl

11 obsxmax←− ceil(Xdot) + numr

12 obsymin←− ceil(Xdot) - numd

13 obsymax←− ceil(Xdot) + numu

14 obsedge←− g(obsxmin, obsxmax, obsymin, obsymax)

15 || Function combined vertex coordinates

Algorithm End

introduction of the index value, and transforms coordinate

points to index values. This is a key connection between early

mapmodeling and subsequent pathfinding. In the pathfinding

process, we mainly perform pathfinding based on coordinate

points, but when the pathfinding enters a deadlock state,

we must expand the pathfinding according to the grid.

Algorithm 1 and Algorithm 2 belong to the process of map

modeling in the whole DFPA. After processing all elements,

20612 VOLUME 9, 2021

Z. Liu et al.: DFPA Using Delaunay Triangulation and Improved A-Star for Mobile Robots

the DFPA enters the pathfinding module of the algorithm,

which is also the core part of the overall algorithm.

Algorithm 3 Pathfinding

1 Input:

2 Xdot←− obstacle coordinate points

3 obsedge←− shape of the obstacle

4 Numgrid←− Number of grids

5 VP←− Voronoi points within the boundary

6 S←− Start point

7 E ←− End point

5 Output:

6 path

7 Initialize close←− []

8 Initialize open←− [S]

9 While E is not open && open is not empty do

10 P←− Find min(open)

11 If P cannot be directly connected to E then

12 NewVP←− FindRecnet(P,VP)

13 || Function find the nearest VP

14 If P can be directly connected to VP then

15 open←− NewVP

16 Else

17 Newpoint←− A-star(P)

18 || Function A-star extended pathfinding

19 open←− Newpoint

20 Else

21 open←− [P,E]

22 If open contains E then

23 Path←− close || Solution found

24 NewPath←− Optimization(Path) || Steiner point

25 Else

26 Path←− 0 || No solution

Algorithm End

C. DYNAMIC FUSION PATHFINDING ALGORITHM RESULT

Under the experimental conditions shown in Fig.12, the entire

process of a mobile robot using the DFPA for path planning,

which is shown in Figure 13

First, we determine the geometric center point of the obsta-

cles and use the Delaunay triangulation theory to generate

the Delaunay triangle grid and Voronoi diagram, as shown

in Fig.13-a.

Next, we divide the grid according to obstacles, place

the obstacles within the grid, and extract all obstacle edges,

as shown in Fig.13-b.

The third step is to determine the pathfinding of the start

and end points. It is judged whether the start point can be

directly connected to the end point without intersecting the

obstacle edges and whether it can be connected to the nearest

Voronoi point. If this is not possible, an extended road search

is required, as shown in Fig.13-c.

When the current path node cannot reach the end point and

the nearest Voronoi point directly, the mobile robot selects the

neighboring nodes with the least cost as the new path node; as

shown in Fig.13-d, the six purple nodes points are candidate

nodes for extended pathfinding, and yellow nodes are the least

costly nodes.

The new path node continues to be judged with the end

point, and the robot looks for the next path node, as shown in

Fig.13-e.

Finally, the entire path diagram is obtained, the optimized

path is shown in Fig.13-f.

Fig.13 clearly describes the steps of the entire method,

we found a feasible path based on DFPA under this exper-

imental condition. A total of nine usable Voronoi points

was generated during the map modeling process. During the

pathfinding process, although Voronoi points were consid-

ered as priority path nodes, only three Voronoi points were

used as path nodes. According to the pathfinding rules, the

improved A∗ algorithm was used to expand the search for

three nodes. The entire path had a total of six path nodes,

which realizes the path search of the mobile robot from the

start point to the end point.

However, this experimental condition is relatively simple

and cannot fully prove the feasibility of DPFA. Therefore,

we chose four complex experimental conditions for discus-

sion. The feasible paths of these four experiments are shown

in Figure 14.

We can see that all four experiments have obtained a

feasible path. The path nodes in Fig.14-a and Fig.14-b are

mainly Voronoi points. As the number of obstacles increases,

the path becomes more complicated. As shown in Fig.14-c,

it is impossible to find a feasible path in a more complex

environment using only the Voronoi point. Therefore, three

deadlocks occurred. It took three additional path nodes to

find the path. In the case of 50 obstacles, the end point

is almost surrounded by obstacles, as shown in Fig.14-d.

However, we can find that DFPA can still find a feasible path.

Expanding the search for path nodes makes the robot jump

out of the dire situation of being surrounded by obstacles.

Summarizing the results of these 750 experiments, we can

find some characteristics of DFPA. The results of all simula-

tion experiments are shown in Table 2.

where Exps is the number of experiments, Obs is the

number of obstacles, Atime is the average calculation time

of each experiment, Nos is the number of experiments where

no feasible solution could be obtained, Spath is the number

of feasible paths obtained by each group of experiments, and

Srate is the success rate of obtaining feasible paths.

When the number of obstacles was 10 or 20, the success

rate was 100%. As the number of obstacles increased, the

success rate decreased.When the number of obstacles was 30,

147 paths were obtained; when the number of obstacles was

40, 145 paths were obtained; when the number of obstacles

was 50, 144 paths were obtained. The algorithm operated

at high speed, but as the number of obstacles increased,

the calculation speed of the algorithm also increased.

As shown in Fig.15, when there were 10 obstacles, the

average algorithm time was 0.0132s. When there were

50 obstacles, the average algorithm time reached 0.1563s.

VOLUME 9, 2021 20613

Z. Liu et al.: DFPA Using Delaunay Triangulation and Improved A-Star for Mobile Robots

FIGURE 13. Process of the DFPA: (a) Delaunay triangle grid and Voronoi diagram; (b) all obstacle edges; (c) the judgment of whether the start
point can be directly connected to the end point; (d) extended search path node; (e) continue to find path nodes; (f) overall movement path.

FIGURE 14. Feasible paths obtained through the DPFA in different environments: (a) obstacle number=20; (b) obstacle number=30; (c) obstacle
number=40; (d) obstacle number=50.

TABLE 2. DFPA results for 750 MAPS with different environmental.

D. COMPARISON OF PATH PLANNING METHODS

To evaluate the performance of the DFPA, we com-

pared it with other related methods, i including the A∗,

RRT, GA and ACO algorithms. First, we must ensure

the consistency of a series of prerequisite elements such

as number and location of obstacles, start point, and end

point to ensure the credibility of the comparison experiment

results.

20614 VOLUME 9, 2021

Z. Liu et al.: DFPA Using Delaunay Triangulation and Improved A-Star for Mobile Robots

FIGURE 15. Average algorithm time and the number of paths obtained by
the DFPA.

In reality, each turning movement of the mobile robot takes

a certain amount of time. Therefore, the time for the mobile

robot to travel from the start point to the end point at the

same speed depends on both the length of the planned path

and the number of turns. The smaller the number of turns and

the smaller the turning angle, the more efficient the robot’s

operation. To this end, the turning angle and turning times

were introduced, and Equation (26) for defining the turning

consumption cost is given as follows.

Tconsum =
∑n

i=1
(θi) (26)

where n is the number of turns, θi is the radian of the i-th turn,

and the total consumption cost of the robot can be calculated

by the number of turns and the angle of each turn.

The simulation experiment was carried out in an environ-

ment where the map range was 10 × 10 m, and the number

of obstacles was 20, 50, 100, and 150. There are 200 maps

under each obstacle quantity and a total of 800 experimental

maps. We performed the simulation using MATLAB 2016a,

with computer memory of 8 GB. The final comparison results

are shown in Table 3:

where: Maps is the number of the experimental maps,

Alength is the average length of the path, and ATconsum is

the average turning cost of the path.

The comparing of the DFPA with the A∗ and RRT algo-

rithms used analysis of four aspects: success rate, algorithm

running time, path length, and turn consumption.

1) SUCCESS RATE

In the experimental environment of 20, 50, 100, and

150 obstacles, 800 experiments were carried out on DFPA,

A∗, RRT, GA and ACO, and the number of feasible paths and

success rate obtained is shown in Figure 16.

With the increase of obstacles, the number of valid paths

found by the five methods showed a downward trend, but it

can be seen from several comparative experiments that the

success rate of the A∗ is the highest. The A∗ can search

the entire map, the ability to find a path was the strongest.

FIGURE 16. The number of feasible paths with the number of obstacles is
20, 50, 100,150.

In an environment of 20 obstacles, the DFPA also obtained

200 feasible paths with a success rate of 100%. TheDFPA and

A∗ had the same success rate. However, in an environment

of 150 obstacles, the DFPA obtained 179 possible paths, and

the success rate dropped to 89.5%, which was less than 93%

of the A∗. As the number of obstacles increases, the DFPA

will no longer have the advantage, because DFPA used the

Voronoi point as the priority pathfinding node. The increase

in the number of obstacles will result in the reduction of the

available Voronoi points. In the case of a large number of

obstacles, the pathfinding ability of DFPA is not as good as

A∗, but it is far better than other methods.

2) ALGORITHM TIME

Algorithm running time is an important indicator to measure

the performance of the DFPA, and running time can measure

the implementation of path planning by the DFPA for mobile

robots. In each experiment, we obtained the running time of

each method, as shown in Figure 17; Fig. 17-a is a box-plot

of the A∗ algorithm running time, Fig.17-b is a box-plot of

the RRT algorithm running time, Fig.17-c is a box-plot of the

GA running time, Fig.17-d is a box-plot of theACO algorithm

running time, and Fig.17-e is a box-plot of the running time

of the DFPA algorithm.

In the environment with 20 obstacles, the average calcula-

tion time of the DFPAwas 0.02873 s, in the environment with

50 obstacles, the average calculation time of the DFPA was

0.17172 s, in the environment with 100 obstacles, the average

calculation time of the DFPA was 0.7359 s, and in the envi-

ronment with 150 obstacles, the average calculation time of

the DFPA was 1.75 s. As the number of obstacles increased,

the running time of the DFPA increased. The running times

of other algorithms showed a similar pattern. In the case

of 20 obstacles, the running time of DFPA was relatively

balanced. Furthermore, Figure 17-e shows the height of the

box plot is small, while the height of the A∗ and RRT time

box plots is large, the height of the GA and ACO time box

plots is larger, and the time dispersion is high, indicating that

VOLUME 9, 2021 20615

Z. Liu et al.: DFPA Using Delaunay Triangulation and Improved A-Star for Mobile Robots

TABLE 3. Comparison results.

FIGURE 17. Different algorithm running times under 20, 50, 100, and 150 obstacles: (a) A∗; (b) Rapidly-exploring Random
Tree (RRT); (c) GA; (d) ACO; (e) DFPA.

the DFPA in the case of 20 obstacles ran smoothly. However,

as the number of obstacles increased, the dispersion of DFPA

running time also increased, and the stability continued to

decline.

By simulating DFPA, A∗, RRT, GA and ACO in the same

environment with 0∼150 obstacles, the running time compar-

ison of the three methods under each obstacle environment

was obtained, as shown in Figure 18.

20616 VOLUME 9, 2021

Z. Liu et al.: DFPA Using Delaunay Triangulation and Improved A-Star for Mobile Robots

FIGURE 18. The running time of DFPA, A∗, RRT, GA, and ACO from 0 to
150 obstacles.

The running time of A∗ and RRT algorithms fluctuated

little and was less affected by the number of obstacles. How-

ever, the running time of GA and ACO algorithms fluctuated

greatly. The running time of DFPA increased as the number of

obstacles increased. When the number of obstacles was less

than 109, the running time of the DFPA was much shorter

than that of A∗, RRT, GA, and ACO. When the number of

obstacles was higher than 146, the running time of DFPA

was higher than those of A∗, RRT, GA, and ACO. The DFPA

is most affected by obstacles. As the number of obstacles

increases, the running time of DFPA will far exceed other

methods. The main reason is that DFPA generates Voronoi

points and obstacle edges based on obstacle coordinate points

when path planning. The increase in the number of obstacles

increases the processing time for the obstacles. However,

in the actual operating conditions of the mobile robot, due

to the large size of the mobile robot and the small distance

between obstacles, different obstacles that are closer together

will be placed in an obstacle grid so that the calculated

number of obstacles is often less than the actual number,

which does not affect the operating speed of the DFPA.

3) PATH LENGTH

The length of the path obtained in each experiment is shown

in Figure 19. Fig.19-a is a scatter plot of the A∗ path length,

Fig.19-b is a scatter plot of the path length of the RRT

algorithm, Fig.19- c is a scatter plot of the path length of

the GA, Fig.19-d is a scatter plot of the ACO path length,

Fig.19- e is a scatter plot of the path length of the DFPA.

In the environment of 20 obstacles, 200 experiments

were carried out, and DFPA obtained 200 possible paths.

Among these, paths with a length of 14.007 m were reached

153 times, which means that the mobile robot reached the

end point directly from the start point, and the shortest path

planning was realized. As the number of obstacles increased,

the path became more complicated, and the length increased,

but the path length of the DFPA was shorter than that of the

RRT, A∗, GA, and ACO under the same number of obstacles.

The length of the feasible path obtained by the five algorithms

in different obstacle environments is shown in Figure 20.

In the case of a small number of obstacles, the most path

length of the A∗ algorithm was 20m. When the number of

obstacles was large, the path of the A∗ algorithm will be

more complicated, and the path length will be longer. In the

FIGURE 19. Path length under 20, 50, 100, and 150 obstacles: (a) A∗; (b) RRT; (c) GA; (d) ACO; (e) DFPA.

VOLUME 9, 2021 20617

Z. Liu et al.: DFPA Using Delaunay Triangulation and Improved A-Star for Mobile Robots

FIGURE 20. The path length of DFPA, A∗, RRT, GA, and ACO from 0 to
150 obstacles.

same obstacle environment, the path length of the DFPA was

always lower than those of A∗, RRT, GA, and ACO.

4) TURNING COSTS

Turning cost is an essential reference for evaluating the path

of a mobile robot. In the actual working conditions of mobile

robots, the primary energy consumption is that of turning

consumption, especially in a complex obstacle environment.

An excessive number of turns and large-angle turns will

lead to low efficiency of the mobile robot. When the mobile

robot can reach the end point directly from the starting point,

without turning during this period, the cost of turning is 0.

The 200 turning cost data for four experimental environments

with 20, 50, 100, and 150 obstacles are plotted as a scatter

plot, as shown in Fig.21-a. In the case of 20 obstacles, the

turning cost distribution is shown in Fig.21-b.

In the case of 20 obstacles, most of the data is concen-

trated at 0, which means that most paths can reach the end

point without turning to avoid obstacles. As the number of

obstacles increases, the edges of obstacles increase, the path

becomes more complicated, and there are fewer cases of

reaching the end point from the start point without turning.

A comparison of the turning costs of DFPA, A∗, RRT, GA,

and ACO under different obstacles, is shown in Figure 22.

The turning cost of the RRT algorithm under differ-

ent obstacles was the highest. As the number of obstacles

increased, the turning cost of the A∗, GA, and ACO algorithm

increased. The DFPA was always at a low level, and far

lower than those of A∗, RRT, GA, and ACO. In the process

of path node selection, the DFPA can search the Voronoi

point first and determine whether it can reach the end point

directly, which achieves the least number of node selections

and enables the mobile robot to achieve the least number of

turns.

Through simulation experiments, we compared the DFPA

with A∗, RRT, GA, andACO. The results show that DFPA has

better performance in some aspects. The DFPA has a higher

success rate in obtaining a feasible path. In the case of fewer

obstacles, the algorithm running time is also lower than that

those of A∗, RRT, GA, and ACO. Under different obstacle

environments, path lengths, and turn consumption, the DFPA

has a significant advantage.

E. PERFORMANCE SUPERIORITY OF THE DFPA

We have compared DFPA with four methods. It can be con-

cluded that DFPA has advantages in success rate and turn

consumption, but the operating speed is insufficient. To find

out which obstacle type performs best for DFPA, we refer

to the existing instances in [36]and compare DFPA with the

other methods again to further verify the superiority of DFPA

and find the best environment for DFPA. The size of the entire

map is 10m∗10m, and is divided into 10∗10 cells. To ensure

the correctness of the path trajectory, the blue path of GA

in Fig.23-a is derived from Figure12-a of [36], and the yellow

path of A∗\ACO in Fig.23-a is derived from Figure12-c

of [36]. The blue path in Fig.23-b comes from Figure13-g

FIGURE 21. Turning cost of the DFPA: (a) the scatter plot of turning costunder 20, 50, 100, and 150 obstacles; (b) the turning
cost distribution under 20 obstacle.

20618 VOLUME 9, 2021

Z. Liu et al.: DFPA Using Delaunay Triangulation and Improved A-Star for Mobile Robots

FIGURE 22. Turning costs of DFPA, A∗, RRT, GA, and ACO from 0 to
150 obstacles.

in [36]. The red line is the path trajectory generated by the

DFPA. The comparison path trajectory is shown in Fig.23.

FIGURE 23. Path trajectory comparison of DFPA and [35].

Similarly, we compare the DFPA with the [37], the black

path of RRT∗ in Figure 24 is derived from Figure14-b of [37].

FIGURE 24. Path trajectory comparison of DFPA and [36].

The red line is the path trajectory generated by the DFPA. The

comparison path trajectory is shown in Fig. 24.

We summarized the length and turn consume of all paths

into Table 4.

TABLE 4. Comparison results.

In the N-type obstacle environment (Fig.23-a), the path

length of DFPA is 14.449m, the path length of GA is

14.366m, and the path length of A∗\ACO is 14.362m. DFPA

has no advantage. This is due to the N-shape Obstacles will

cause the Voronoi point to be in the N-shaped slot, which is

difficult to use as a priority pathfinding node. In Fig.23-b,

the path length of DFPA is 13.632m, which is significantly

better than the 14.451m of A∗\GA\ACO. However, the

turning consumption of DFPA is significantly smaller than

other methods. In Fig.24, DFPA shows good performance

in this environment without N-shaped obstacles. It can be

seen that the path of DFPA is very flexible, the regular

rectangular obstacles produce a sufficient number of Voronoi

points which provide flexible paths. DFPA performs poorly in

N-type obstacles, but has obvious advantages in rectangular

obstacle environments.

After experiments, we found that DFPA is significantly

improved compared to A∗, and is also better than RRT, GA,

and ACO in running time, path length, and turn consumption.

DFPA performs well in rectangular obstacle environments.

The DFPA adopts a priority to judge whether the destina-

tion can be reached directly, which can simplify the path

node search, realize the shortest path length, use the Voronoi

point as the priority pathfinding node, realize the minimum

turning cost, and dynamically combine obstacle edges and

pathfinding strategies. The performance of the DFPA was

significantly improved, and the experimental results proved

that the DFPA achieved better results.

V. DISCUSSION

Through algorithm comparison and experiments, it can be

seen that the DFPA can realize the map construction and

pathfinding of mobile robots. Compared with the A∗, RRT,

GA, and ACO algorithms, the DFPA algorithm obtains fewer

path nodes, significantly reduces path length and turning

consumption, has a high success rate in obtaining a possible

path, and has a short calculation time. The priority of the

Voronoi point realizes the path simplification of nodes and

grid filling reduces the number of obstacles gathered. Direct

judgment and new pathfinding processes reduce the number

VOLUME 9, 2021 20619

Z. Liu et al.: DFPA Using Delaunay Triangulation and Improved A-Star for Mobile Robots

of iterations. Obstacle edges are used as the basis for judging

intersections and collisions, simplifying the algorithm’s com-

plexity. Newmapmodeling methods and improved A∗ makes

the path more direct and reduces the number of turns, so the

path length and turn consumption costs were significantly

reduced. In a simple experimental environment, path length

and turning consumption are very low, which means that

the mobile robot directly reached the end point from the

start point. In a complex experimental environment, DFPA

has advantages in turning advantages and path length, which

showed good advantages. Our research results are consis-

tent with the related research on path planning of mobile

robots [15], [19], [26]. For example, Fu et al. [26] used

the A∗ algorithm to propose a pre-judgment from the start

point to the end point, which improved the path success rate

and shortened the path length by 20% to 66%;however, this

approach did not introduce a method of avoiding obstacles.

Ayawli et al. [19] used the Voronoi diagram to find the ini-

tial path, and then classify and place the obstacles. Replan-

ning the path allowed the robot to avoid obstacles flexibly,

thereby improving the path length and success rate. However,

repeated path planning leads to an increase of calculation

time. The method proposed in the current paper realizes

dynamic fusion map construction and pathfinding, provides

an effective path planning method for mobile robots.

The method proposed in this paper applies the Voronoi

diagram to the path planning of mobile robots, simplifies

the path node of the A∗ algorithm, and expands the use of

Voronoi diagrams. Furthermore, the pathfinding approach has

reference significance for the planning of large outdoor sites.

Obstacle placement and the approach of determining the side

of the obstacle provide the basis for the obstacle avoidance

method of automatic navigation. However, the DFPA also has

shortcomings. When there are many obstacles, this approach

takes more time to process obstacles and generate Voronoi

points. According to the distance between obstacles and the

size of the mobile robot, the number of obstacles can be com-

bined to obtain a minimum. The calculation complexity of

the Delaunay triangulation algorithm affects the calculation

time of the algorithm, and related improvement work needs

to be continued. The DFPA only considers static obstacles

during verification and does not consider moving obstacles.

Due to the influence of moving direction, speed, and floor

area, dynamic obstacles can bemeasured and judged bymany

sensors. Based on the research ideas in this paper, a reason-

able mathematical model can be established and added to

the overall algorithm process. The fast extraction of location

coordinate points and obstacle edges is the next research

direction.

VI. CONCLUSION

In this paper, the Delaunay triangulation algorithm is used

to integrate disordered obstacles into an ordered topological

regional relationship, and the grid is introduced to process

obstacles to identify obstacle shapes and extract obstacle

edges. Based on the A∗ algorithm, direct judgment, Voronoi

point priority pathfinding and traditional pathfinding are

combined to design a new pathfinding process. The obstacle

edges of the map modeling are integrated to achieve obstacle

avoidance and path planning for mobile robots.

The main findings are as follows:

1) The reduction of path nodes reduces the number of

turns and associated turn cost. As the number of obstacles

increases, the cost of turning is far less than those of the A∗,

RRT, GA, and ACO. The reduction of path nodes also makes

the path simpler, and the path length is greatly reduced. The

more direct path length increases the movement efficiency of

the mobile robot.

2) Obstacle placement can reduce the number of obstacles

and improves the algorithm speed in the case of a large

number of obstacles. Through the DFPA, the success rate of

pathfinding significantly improved; with less than 150 obsta-

cles, the success rate of pathfinding is above 90%.

3) The DFPA has good advantages for rectangular obstacle

environments, especially low turning consumption and path

length.

REFERENCES

[1] D. Connell and H. Manh La, ‘‘Extended rapidly exploring random tree–

based dynamic path planning and replanning for mobile robots,’’ Int. J.

Adv. Robotic Syst., vol. 15, no. 3, May 2018, Art. no. 172988141877387.

[2] M. Dakulović and I. Petrović, ‘‘Two-way D* algorithm for path plan-

ning and replanning,’’ Robot. Auton. Syst., vol. 59, no. 5, pp. 329–342,

May 2011.

[3] M. A. P. Garcia, O. Montiel, O. Castillo, R. Sepulveda, and P. Melin,

‘‘Path planning for autonomous mobile robot navigation with ant colony

optimization and fuzzy cost function evaluation,’’ Appl. Soft Comput.,

vol. 9, no. 3, pp. 1102–1110, Jun. 2009.

[4] F. H. Ajeil, I. K. Ibraheem, M. A. Sahib, and A. J. Humaidi, ‘‘Multi-

objective path planning of an autonomous mobile robot using hybrid PSO-

MFB optimization algorithm,’’ Appl. Soft Comput., vol. 89, Apr. 2020,

Art. no. 106076.

[5] D. Teso-Fz-Betoño, E. Zulueta, U. Fernandez-Gamiz,

I. Aramendia, and I. Uriarte, ‘‘A free navigation of an AGV to a

non-static target with obstacle avoidance,’’ Electronics, vol. 8, no. 2,

p. 159, 2019.

[6] M. Elhoseny, A. Tharwat, and A. E. Hassanien, ‘‘Bezier curve based path

planning in a dynamic field using modified genetic algorithm,’’ J. Comput.

Sci., vol. 25, pp. 339–350, Mar. 2018.

[7] Y. Rasekhipour, A. Khajepour, S.-K. Chen, and B. Litkouhi, ‘‘A potential

field-based model predictive path-planning controller for autonomous road

vehicles,’’ IEEE Trans. Intell. Transp. Syst., vol. 18, no. 5, pp. 1255–1267,

May 2017.

[8] R. Kala, A. Shukla, and R. Tiwari, ‘‘Fusion of probabilistic A* algorithm

and fuzzy inference system for robotic path planning,’’ Artif. Intell. Rev.,

vol. 33, no. 4, pp. 307–327, Apr. 2010.

[9] W.-B. Xu, X.-B. Chen, J. Zhao, and X.-P. Liu, ‘‘Function-segment artificial

moment method for sensor-based path planning of single robot in complex

environments,’’ Inf. Sci., vol. 280, pp. 64–81, Oct. 2014.

[10] Y. Li, W. Wei, Y. Gao, D. Wang, and Z. Fan, ‘‘PQ-RRT*: An improved

path planning algorithm for mobile robots,’’ Expert Syst. Appl., vol. 152,

Aug. 2020, Art. no. 113425.

[11] T. Gawron and M. Michałek, ‘‘A G3-continuous extend procedure for

path planning of mobile robots with limited motion curvature and state

constraints,’’ Appl. Sci., vol. 8, no. 11, p. 2127, Nov. 2018.

[12] U. Orozco-Rosas, O. Montiel, and R. Sepúlveda, ‘‘Mobile robot path

planning usingmembrane evolutionary artificial potential field,’’Appl. Soft

Comput., vol. 77, pp. 236–251, Apr. 2019.

[13] O. Montiel, U. Orozco-Rosas, and R. Sepúlveda, ‘‘Path planning for

mobile robots using bacterial potential field for avoiding static and

dynamic obstacles,’’ Expert Syst. Appl., vol. 42, no. 12, pp. 5177–5191,

2015.

20620 VOLUME 9, 2021

Z. Liu et al.: DFPA Using Delaunay Triangulation and Improved A-Star for Mobile Robots

[14] F. Bayat, S. Najafinia, andM. Aliyari, ‘‘Mobile robots path planning: Elec-

trostatic potential field approach,’’ Expert Syst. Appl., vol. 100, pp. 68–78,

Jun. 2018.

[15] L. Zuo, Q. Guo, X. Xu, and H. Fu, ‘‘A hierarchical path planning approach

based on A* and least-squares policy iteration for mobile robots,’’ Neuro-

computing, vol. 170, pp. 257–266, Dec. 2015.

[16] L. Perumal, ‘‘New approaches for delaunay triangulation and optimisa-

tion,’’ Heliyon, vol. 5, no. 8, Aug. 2019, Art. no. e02319.

[17] Z. Yeeh, Y. Song, J. Byun, S.-J. Seol, and K.-Y. Kim, ‘‘Regularization of

multidimensional sparse seismic data using delaunay tessellation,’’ J. Appl.

Geophys., vol. 174, Mar. 2020, Art. no. 103877.

[18] F. Yu, Y. Zeng, Z. Q. Guan, and S. H. Lo, ‘‘A robust delaunay-AFT based

parallel method for the generation of large-scale fully constrainedmeshes,’’

Comput. Struct., vol. 228, Feb. 2020, Art. no. 106170.

[19] B. B. K. Ayawli, X. Mei, M. Shen, A. Y. Appiah, and F. Kyeremeh,

‘‘Mobile robot path planning in dynamic environment using Voronoi

diagram and computation geometry technique,’’ IEEE Access, vol. 7,

pp. 86026–86040, 2019.

[20] M. Candeloro, A. M. Lekkas, and A. J. Sørensen, ‘‘A Voronoi-diagram-

based dynamic path-planning system for underactuated marine vessels,’’

Control Eng. Pract., vol. 61, pp. 41–54, Apr. 2017.

[21] Q. Wang, M. Langerwisch, and B. Wagner, ‘‘Wide range global path plan-

ning for a large number of networked mobile robots based on generalized

Voronoi diagrams,’’ IFAC Proc. Vols., vol. 46, no. 29, pp. 107–112, 2013.

[22] J. C. Mohanta, D. R. Parhi, and S. K. Patel, ‘‘Path planning strategy

for autonomous mobile robot navigation using Petri-GA optimisation,’’

Comput. Electr. Eng., vol. 37, no. 6, pp. 1058–1070, Nov. 2011.

[23] X. Zhang, Y. Zhao, N. Deng, and K. Guo, ‘‘Dynamic path planning algo-

rithm for a mobile robot based on visible space and an improved genetic

algorithm,’’ Int. J. Adv. Robotic Syst., vol. 13, no. 3, p. 91, Jun. 2016.

[24] P. Hart, N. Nilsson, and B. Raphael, ‘‘A formal basis for the heuristic

determination of minimum cost paths,’’ IEEE Trans. Syst. Sci. Cybern.,

vol. 4, no. 2, pp. 100–107, 1968.

[25] W. Yin and X. Yang, ‘‘A totally astar-based multi-path algorithm for

the recognition of reasonable route sets in vehicle navigation systems,’’

Procedia-Social Behav. Sci., vol. 96, pp. 1069–1078, Nov. 2013.

[26] B. Fu, L. Chen, Y. Zhou, D. Zheng, Z. Wei, J. Dai, and H. Pan, ‘‘An

improved A* algorithm for the industrial robot path planning with high

success rate and short length,’’ Robot. Auto. Syst., vol. 106, pp. 26–37,

Aug. 2018.

[27] R. Song, Y. Liu, and R. Bucknall, ‘‘Smoothed A* algorithm for practical

unmanned surface vehicle path planning,’’ Appl. Ocean Res., vol. 83,

pp. 9–20, Feb. 2019.

[28] P. G. Luan and N. T. Thinh, ‘‘Real-time hybrid navigation system-based

path planning and obstacle avoidance for mobile robots,’’ Appl. Sci.,

vol. 10, no. 10, p. 3355, 2020.

[29] B. K. Patle, A. Pandey, A. Jagadeesh, and D. R. Parhi, ‘‘Path planning

in uncertain environment by using firefly algorithm,’’ Defence Technol.,

vol. 14, no. 6, pp. 691–701, Dec. 2018.

[30] M. A. Hossain and I. Ferdous, ‘‘Autonomous robot path planning in

dynamic environment using a new optimization technique inspired by

bacterial foraging technique,’’ Robot. Auto. Syst., vol. 64, pp. 137–141,

Feb. 2015.

[31] C. Kim, Y. Kim, and H. Yi, ‘‘Fuzzy analytic hierarchy process-based

mobile robot path planning,’’ Electronics, vol. 9, no. 2, p. 290, Feb. 2020.

[32] M.-C. Rivara and J. Diaz, ‘‘Terminal triangles centroid algorithms for

quality delaunay triangulation,’’Comput.-Aided Des., vol. 125, Aug. 2020,

Art. no. 102870.

[33] D. Contreras and N. Hitschfeld-Kahler, ‘‘Generation of polyhedral delau-

nay meshes,’’ Procedia Eng., vol. 82, pp. 291–300, Jan. 2014.

[34] X. Li, A. Krishnamurthy, I. Hanniel, and S. Mcmains, ‘‘Edge topology

construction of Voronoi diagrams of spheres in non-general position,’’

Comput. Graph., vol. 82, pp. 332–342, Aug. 2019.

[35] P. Bhattacharya and M. Gavrilova, ‘‘Roadmap-based path planning–using

the Voronoi diagram for a clearance-based shortest path,’’ IEEE Robot.

Autom. Mag., vol. 15, no. 2, pp. 58–66, Jun. 2008.

[36] H. Shin and J. Chae, ‘‘A performance review of collision-free path planning

algorithms,’’ Electronics, vol. 9, no. 2, p. 316, 2020.

[37] S. Karaman and E. Frazzoli, ‘‘Sampling-based algorithms for optimal

motion planning,’’ Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894,

Jun. 2011.

ZHIHAI LIU received the B.E. degree in mechani-

cal and electronic engineering from the Shandong

Mining Institute, China, in 1997, and the M.E.

degree in mechanical design and theory and the

Ph.D. degree in mechanical and electronic engi-

neering from the Shandong University of Sci-

ence and Technology, China, in 2000 and 2015,

respectively. He is currently an Associate Profes-

sor with the College of Transportation, Shandong

University of Science and Technology. His cur-

rent research interests include condition monitoring of electrical machines,

automatic control, and robotics.

HANBIN LIU was born in 1996. He received

the B.E. degree in logistic engineering from the

Shandong University of Science and Technology,

China, in 2018. His research interests include

mobile robot path planning, intelligent logistics,

and industrial automation.

ZHENGUO LU received the Ph.D. degree in

machine design and theory from the Shandong

University of Science and Technology, in 2018.

He is currently an Associate Professor with the

Shandong University of Science and Technology

and alsowith ShandongNormal University. He has

published four articles, as a Principle Person. His

research interests include underground coal min-

ing and mine electromechanical. He has partic-

ipated in more than ten projects funded by the

Natural Science Foundation of China and the Natural Science Foundation

of Shandong Province, China.

QINGLIANG ZENG received the Ph.D. degree

in machine design and theory from the China

University of Mining and Technology, in 2000.

He is currently a Professor with the Shandong Uni-

versity of Science and Technology and also with

Shandong Normal University. He has published

more than 90 articles, as a Principle Person. His

research interests include electromechanical inte-

gration, condition monitoring and fault diagnosis,

and virtual prototype. He has participated in more

than 40 projects funded by the National Sci-Tech Support Plan, National

863 Program, and the Natural Science Foundation of China.

VOLUME 9, 2021 20621

