
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 48, NO. 9, SEPTEMBER 2018 1607

A Dynamic Logistic Dispatching System With
Set-Based Particle Swarm Optimization

Ya-Hui Jia, Student Member, IEEE, Wei-Neng Chen, Member, IEEE, Tianlong Gu, Huaxiang Zhang,
Huaqiang Yuan, Ying Lin, Member, IEEE, Wei-Jie Yu, Member, IEEE, and Jun Zhang, Fellow, IEEE

Abstract—With the rapid development of e-commerce, logistics
industry becomes a crucial component in the e-commercial
ecological chain. Impelled by both economical and environmen-
tal benefit, logistics companies demand automated tools more
urgently than ever. In this paper, a dynamic logistic dispatch-
ing system is proposed. The underlying model of the dispatching
system is the dynamic vehicle routing problem which allows new
orders being received as the working day progress. With this fea-
ture, the system becomes more practical than the systems with
traditional static vehicle routing models, but is also more chal-
lenging as the vehicles must be scheduled in a dynamic way.
The core of the system is a specially designed set-based particle
swarm optimization algorithm. According to the characteristic
of the problem, a new encoding scheme is defined by set and
possibility, and a local refinement method is designed to accel-
erate the convergence speed of the algorithm. In addition, two
more techniques: 1) region partition and 2) archive strategy are
incorporated in the dispatching system to reduce the complexity
of the problem and to facilitate the optimization process, helping
the dispatcher control the vehicles in real time. The proposed
system is tested on various benchmarks with different scales.
Experimental results show that the proposed dispatching system
is effective.

Index Terms—Capacitated vehicle routing problem (CVRP),
dynamic vehicle routing problem (DVRP), set-based particle
swarm optimization (S-PSO).

Manuscript received December 13, 2016; accepted March 2, 2017. Date of
publication April 7, 2017; date of current version August 16, 2018. This
work was supported in part by the National Natural Science Foundation
of China under Grant 61622206, Grant 61379061, and Grant 61332002,
in part by the Natural Science Foundation of Guangdong under Grant
2015A030306024, in part by the Guangdong Special Support Program under
Grant 2014TQ01X550, and in part by the Guangzhou Pearl River New
Star of Science and Technology under Grant 201506010002. This paper
was recommended by Associate Editor J.-H. Chou. (Corresponding authors:

Wei-Neng Chen; Jun Zhang).
Y.-H. Jia is with the School of Computer Science and Engineering, South

China University of Technology, Guangzhou 510006, China, and also with
Sun Yat-sen University, Guangzhou 510006, China.

W.-N. Chen and J. Zhang are with the School of Computer Science and
Engineering, South China University of Technology, Guangzhou 510006,
China (e-mail: cwnraul634@aliyun.com; junzhang@ieee.org).

T. Gu is with the School of Computer Science and Engineering, Guilin
University of Electronic Technology, Guilin 541004, China.

H. Zhang is with the School of Information Science and Engineering,
Shandong Normal University, Jinan 250014, China.

H. Yuan is with the School of Computer Science and Network Security,
Dongguan University of Technology, Dongguan 523808, China.

Y. Lin and W. Yu are with Sun Yat-sen University, Guangzhou 510006,
China.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMC.2017.2682264

I. INTRODUCTION

I
N RECENT years, the rapid development of e-commerce
has put forward higher requirement to conventional logis-

tics industry. According to the data obtained from the company
Alibaba, only in one day of the double-eleven shopping fes-
tival in China, the turnover reached almost 18 billion dollars,
which means over 600 million parcels need to be delivered
by logistics companies [1]. Facing such a big challenge to
deliver so many goods to different locations within a short
period, it is impossible for delivery companies to schedule
every route of every vehicle manually. Meanwhile, since the
concern of environment rises, logistics companies also need to
pay more attention on vehicle routing to achieve the goal of
environmental sustainability [2]. Thus developing automated
dispatching system to help tackle the logistics distribution
problem becomes more important and urgent than ever.

In essence, the logistics distribution problem can be seen as
a variant of vehicle routing problem (VRP) in which a fleet
of vehicles have to visit a set of customers at a minimum
cost [3], [4]. Considering different constraints in real-world
applications, researchers have proposed different VRP models,
such as the VRP with time windows (VRPTW) [5], [6], the
VRP with pickup and delivery [7], [8], the VRP with stochas-
tic demands [9], multitrip VRP [10], multidepot VRP [11],
etc. However for most VRP models, the information about
customers and orders is taken as a priori knowledge, which is
usually not the case happened in nowadays logistics scenarios.
Consider two typical situations.

1) Courier service (pickup problem), empty vehicles leave
the depot to collect parcels at customer locations in the
working day, and new customers call for service at the
meantime.

2) Consumable goods distribution (delivery problem), full-
loaded vehicles leave the depot to transfer consumable
goods, such as meat, cigarette, wine, and gasoline, to
retailers or customers, meanwhile new customers or
retailers submit their orders to suppliers.

In these cases, only a part of orders are known in advance
before vehicles or workers leaving the depot. The other orders
are revealed or received over time. Thus dynamism of the order
should be considered in the dispatching system.

How to plan the routes of vehicles to get a minimum
cost in such dynamic environment is known as the dynamic
VRP (DVRP) [12] or online VRP [13]. In the dispatch-
ing system for DVRP, real-time control is highlighted as a
crucial demand, because the environment of a DVRP is always

2168-2216 c© 2017 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/
redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:cwnraul634@aliyun.com
mailto:junzhang@ieee.org
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html


1608 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 48, NO. 9, SEPTEMBER 2018

changing. Dispatchers, i.e., headquarter of the company, must
react to the dynamic environment quickly as vehicles are
running when they wait for commands, and new orders are
also coming consecutively. If vehicles cannot be controlled
in real time, the command sent from the dispatcher will be
outdated. Thanks to the development of smart devices and
global positioning system (GPS), nowadays a dispatcher can
easily know where vehicles are and communicate with the
drivers, which makes it possible to navigate vehicles in real
time [12], [14]. However, how to plan the routes dynamically
is still a challenging problem.

For decades, various methods have been proposed
for different DVRPs [12], [13], and most of them are
meta-heuristic approaches. By extending VRPTW, sev-
eral dynamic VRPTW problems with different goals
were proposed [15]–[17], and many algorithms were
applied, such as parallel tabu search [15], genetic algo-
rithm (GA) [17]–[20], column generation [19], adaptive large
neighborhood search [16], etc. By extending capacitated
VRP (CVRP), the dynamic CVRP (DCVRP) was also con-
sidered by some researchers with different approaches, such
as ant colony system (ACS) [21], GA [22], adaptive particle
swarm optimization (PSO) [23], variable neighborhood
search [23], etc. In addition, some other dynamic scenes are
also studied by some researchers, such as the dynamic pickup
and delivery problem [24], the VRP with periodic changing
environment [25], [26], etc. Because of the emergence of
“bee box” (a free container for temporary storage), the time
to collect or deliver parcels is no longer a hard constraint in
many places. Even without the bee box, the time constraint
is usually taken as a soft constraint in many real logistics
applications where the service provider can negotiate with
consumers. However, the capacity of vehicle is definitely
a hard constraint that cannot be negotiated, because overload
is always forbidden. Thus we build the dispatching system
based on the DCVRP model. Moreover, theoretically speak-
ing, the CVRP is the fundamental version of all VRPs, thus
the CVRP with dynamism, i.e., DCVRP, can be taken as
the fundamental version of all DVRPs. Therefore, building
a system on DCVRP can help us explore the essence of
DVRP, and further facilitate extending its usage to other
situations.

Previous studies on DCVRP show that how to deal with
dynamism is still an open issue. Most of the existing methods
for this problem still have two common weaknesses. The
first one is that the historical optimization information can-
not be taken advantage effectively so that the algorithms are
not efficient enough to adapt to the dynamic environment.
The second weakness of the approaches is that their perfor-
mance decreases rapidly with the growing of the problem
scale. Considering these deficiencies, a dynamic dispatch-
ing system which applies a specially designed set-based
PSO algorithm (S-PSO-D) is proposed. PSO was first pro-
posed by Eberhart and Kennedy [27] to solve continuous
optimization problems. Recently, Chen et al. [28] redefined
the operators in PSO by set and possibility, generating
a new algorithm called set-based PSO (S-PSO). S-PSO was
proposed to cope with discrete combinatorial optimization

problems (COPs), and its performance has been proved in
several applications [6], [29], [30]. Compared with S-PSO,
the encoding scheme of the original algorithm is redesigned
in S-PSO-D to accommodate to the DCVRP. Furthermore, to
adapt to the dynamic environment, two auxiliary techniques
are proposed and incorporated in the dispatching system:
1) region partition and 2) archive strategy. Region partition
is used to cut a big problem into pieces thus to reduce the dif-
ficulty of the problem. Archive strategy is used to accelerate
the convergence speed of the algorithm so that the dispatcher
can navigate the vehicle fleet in real time. Meanwhile, due to
the introduction of archive, the velocity and position updating
rules used in S-PSO are updated. In addition, a local refine-
ment process is also designed for S-PSO-D to further improve
the quality of solution. The experimental results on abun-
dant benchmarks with different scales show that the proposed
S-PSO-D dispatching system is effective.

The rest of this paper is organized as follows. Section II
defines the model of the DCVRP. Section III presents a brief
description of the S-PSO algorithm. In Section IV, the whole
dispatching system which contains the S-PSO-D approach is
demonstrated. Experimental results are shown in Section V
and the conclusion is finally drawn in Section VI.

II. DYNAMIC CAPACITATED VEHICLE

ROUTING PROBLEM

The DCVRP is defined based on the CVRP. As the elemen-
tary version of all VRPs, the CVRP is defined on a complete
undirected graph G = (C, E). C = {c0, c1, . . . , cn} is the ver-
tex set which contains n+1 elements. c0 is the depot where all
homogeneous vehicles depart from and finally return to. All
vehicles have the same capacity Q>0, and operate at the same
costs. The other n elements in C, i.e., c1, . . . , cn, are n cus-
tomers. Each customer ci demands or has a certain quantity
of goods which is called an order, and represented by a scalar
qi > 0. E = {eij|eij = (ci, cj), ci, cj ∈ C, i < j} is the edge set.
Each edge eij is associated with a weight factor wij to repre-
sent the travel time or travel distance. Supposing there are v

vehicles, the CVRP can be formally stated as follows.
Define variable

xk
ij =

{

1, if vehicle k travels directly from i to j

0, otherwise

yk
i =

{

1, if order i is served by vehicle k

0, otherwise.

The goal is to minimize the total travel distance

min
n

∑

i=0

n
∑

j=0

v
∑

k=1

wij × xk
ij (1)

s.t.
n

∑

i=0

xk
ij = yk

j ∀k = 1, . . . , v, ∀j = 1, . . . , n

n
∑

j=0

xk
ij = yk

i ∀k = 1, . . . , v, ∀i = 1, . . . , n (2)

n
∑

i=0

yk
i × qi ≤ Q ∀k = 1, . . . , v (3)



JIA et al.: DYNAMIC LOGISTIC DISPATCHING SYSTEM WITH S-PSO 1609

v
∑

k=1

yk
i = 1 ∀i = 1, . . . , n (4)

v
∑

k=1

yk
0 = v. (5)

A solution to the CVRP is a set of routes that satisfies: 1) the
total demand of each route is no more than Q [constraint (3)];
2) each customer is visited once and only once by only one
vehicle [constraint (4)]; and 3) every route starts and ends at
c0 [constraint (5)] [31]–[34].

In the CVRP, all orders are received before the working
day. However, in the DCVRP, only a portion of orders are
known beforehand, called “static orders.” Some other orders
are revealed after vehicles leaving the depot, which are called
“dynamic orders.” Therefore, another attribute which needs to
be considered in the DCVRP is the disclosure time of the order
(the time when one order is received by the dispatcher). The
disclosure time of the order of ci is denoted as ti (1 ≤ i ≤ n).
All static orders have a disclosure time equal to 0.

Different DVRPs have different levels of dynamism. For the
DCVRP studied in this paper, there are usually two ways to
measure the degree of dynamism [35], [36]. One way is to
consider the ratio of dynamic orders, which is calculated by

δ =
nd

n
(6)

where nd is the number of dynamic orders and n is the total
number of orders [35]. The other considers the disclosure
time [36]

δ =
1

n

n
∑

i=1

ti

T
(7)

where T is the length of the planning horizon. It is worth
noting that in most cases, T only occupies a part of the
whole working day rather than equal to it. For example, some
e-commerce companies such as Amazon and JD.com, have
a delivery policy that orders submitted before a certain clock
should be delivered in the same day, but the orders submit-
ted after the clock can only be served in the next day. In this
situation, the planning horizon ends at the preset clock rather
than at the end of the working day. In this paper, we use (6)
to measure the dynamism. The objective is still measured as
the total travel distance of all vehicles in DCVRP.

To better understand the meaning of dynamic, an example
with only two vehicles is shown in Fig. 1. Before vehicles
leave the depot (time T0), there are seven orders known in
advance and the dispatcher has already planned two routes:
(Depot→ A → B → C → D → Depot) and (Depot→
E → F → G → Depot). At T1, two new orders, H and I,
are submitted to the system. Then the dispatcher checks the
GPS, finding that the two vehicles are on their way to B and
G now. It deletes the orders A, E, and F which have been
served, and reoptimizes the routes to incorporate these two
new orders. Two new routes are generated and sent to the
drivers as: (B → H → C → D → Depot) and (G → I →

Depot). Finally at Tf , seven static orders and two dynamic
orders are all served and the vehicles return to the depot. In
the problem studied in this paper, a necessary assumption is

Fig. 1. Example of DVRP with two vehicles.

that if a vehicle is on its way to serve a customer, it can-
not change direction to serve another one. This assumption is
made based on two practical reasons. First, calculating new
route for a constantly moving vehicle is difficult and time-
consuming. Second, a courier usually informs his customer
in advance when he is on the way to the customer. If such
informed messages change too often, it will result in bad user
experience.

III. SET-BASED PARTICLE SWARM OPTIMIZATION

Inspired by the behavior of bird flocking and fish schooling,
Eberhart and Kennedy [27] first proposed the PSO algorithm
in 1995. Since then, numbers of researches have been made
to develop and improve PSO [37], [38]. Also various variants
of PSO were proposed to solve different problems [39], [40].

A. Particle Swarm Optimization for

Continuous Optimization

PSO maintains a population of particles. These particles
are initialized randomly at different positions in the search
space. Each position in the search space represents one solu-
tion. During the process of the algorithm, each particle i keeps
track of a solution which is the best one it has achieved so
far, called personal best, denoted as pBesti. The whole swarm
also keeps track of a solution which is the overall best, called
global best, denoted as gBest. In each iteration, three steps are
executed to update particles.

1) Velocity Updating: Each particle updates its velocity
according to its own pBesti and the gBest

Vd
i = ω · Vd

i + c1 · randd
1 ·

(

pBestdi − Xd
i

)

+ c2 · randd
2 ·

(

gBestd − Xd
i

)

(8)

where ω is the inertia weight, c1 and c2 are the accelera-
tion coefficients which are used to balance the self-cognition
and the social influence; randd

1 and randd
2 are randomly gen-

erated within (0, 1), following the uniform distribution, and d

represents the dth dimension of the problem.
2) Position Updating: Particles update their position

according to their velocities

Xd
i = Xd

i + Vd
i . (9)

3) Fitness Evaluation: All particles are evaluated to update
their pBest values and the gBest value.



1610 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 48, NO. 9, SEPTEMBER 2018

To increase the exploration ability of PSO, Liang et al. [41]
proposed the comprehensive learning PSO (CLPSO) algo-
rithm. In CLPSO, the velocity updating formula is modified
as

Vd
i = ω · Vd

i + c · randd ·
(

pBestdfi(d) − Xd
i

)

(10)

where c is the acceleration coefficient; fi(d) ∈ {1, 2, . . . , M}

(M is the swarm size) represents the particle’s pBest of which
i should learn from for the dth dimension and it is decided by

fi(d) =

⎧

⎨

⎩

i, rand < Pci

j, rand ≥ Pci ∧ f
(

pBestj
)

< f
(

pBestk
)

k, rand ≥ Pci ∧ f
(

pBestj
)

≥ f
(

pBestk
)

(11)

where rand is a random number within (0, 1), f (X) represents
the objective function value of the solution X (in this paper,
all problems are assumed to be minimization problems), and
Pci is a parameter calculated by

Pci = 0.05 + 0.45 ·

(

exp
(

10(i−1)
M−1

)

− 1
)

exp(10) − 1
(12)

where M is the swarm size. When the random value is smaller
than Pci, particle i will learn from its own pBest for the dth
dimension. Otherwise, two candidates, j and k, will be selected
randomly and particle i learns from the one with better pBest
value.

B. Particle Swarm Optimization for Discrete Optimization

Originally, PSO is proposed to deal with continuous opti-
mization problems. To extend its usage on solving COPs,
Chen et al. [28] redefined the algorithm based on set, leading
a novel algorithm called set-based PSO.

Suppose we have a COP which is defined as (S, f, �),
where S is the search space of the problem, f is the objec-
tive function, and � is the set of constraints. According
to the definition of the problem, we can divide S into D

dimension. Each dimension is essentially a set Sd ⊆ S, where
S = S1

⋃

S2
⋃

. . .
⋃

SD. Each solution X is a combination of
elements from different dimensions, X = X1

⋃

X2
⋃

. . .
⋃

XD,
where Xd ⊆ Sd. If X satisfies all constraints in �, it is con-
sidered to be feasible. Then the objective of S-PSO is to
find a feasible solution X∗ (a subset of S) that minimizes the
objective function f.

The architecture of S-PSO is actually identical with those
PSO variants used for continuous optimization problems.
However in S-PSO, the particle’s position is represented by
set, and the velocity is represented by set with possibilities
instead of numerical digits. Thus, the operators in (8)–(10)
are also redefined on set and possibility. Details about how to
represent the solutions of VRP by sets and the definitions of
the operators used in S-PSO-D will be described in the next
section. In addition, in this paper, S-PSO-D uses the learning
strategy of CLPSO to prevent premature convergence.

IV. S-PSO-D-BASED DISPATCHING SYSTEM

In this paper, we build a dispatching system based on the
DCVRP model. The system framework is shown in Fig. 2,

Fig. 2. Architecture of the dispatching system.

where the system runs in a centralized way and consists of
four parts: 1) a manager; 2) a region partition component;
3) an optimizer which using the S-PSO-D algorithm; and 4) an
archive. The manager takes charge of collecting orders and
creating static CVRPs according to the information of cur-
rent orders and vehicle positions. Then these static CVRPs
are divided into smaller CVRPs by the component of region
partition. Afterward, the optimizer solves these small CVRPs
by taking advantage of the historical information stored in the
archive. Also it will update the archive using the latest solu-
tions it achieved. Finally routes will be sent from the archive
back to the manager and used to navigate vehicles.

A. Manager

The fundamental idea of the dispatching system is periodic
reoptimization. Before the beginning of the working day, the
optimizer makes the first optimization for all static orders to
get an initial solution which is a set of routes. Then, static
CVRPs are periodically generated by the manager according
to the status at that time, and solved by the optimizer. The pro-
cess each time the optimizer solving a static CVRP is actually
a reoptimization process for the whole DCVRP. Each reop-
timization process can be triggered by either event such as
a certain number of new orders coming which is known as
decision epochs [42], or fixed time interval which is known
as time slices [43]. For the manager in this paper, the method
of time slice is applied, which is illustrated in Fig. 3.

First, we divide the planning horizon T into p time slices
with equal length of T/p. Before T0, a static CVPR is cre-
ated for all static orders. This static problem will be solved
within the period ts. ts can be long, since vehicles have not
started working yet and there are enough time to find a good
solution originally. Then at the end point of each slice Ti

(i = 1, 2, . . . , p), the information about vehicles (including
their current locations, next customers, and remaining capaci-
ties) and orders (including the orders served in [Ti−1, Ti] and



JIA et al.: DYNAMIC LOGISTIC DISPATCHING SYSTEM WITH S-PSO 1611

Fig. 3. Periodic reoptimization through time slice method.

the orders revealed in [Ti−1, Ti]) is collected by the manager.
Accordingly, a special static VRP is created, where vehicles
are with heterogeneous capacities and locations. This problem
is time-dependent and needs to be solved within a relatively
short period td. If the optimizing procedure takes too much
time to obtain a result, the result would be outdated, such that
the manager cannot control the vehicles in real-time.

After the manager receives the result from the optimizer,
there are two methods to control the vehicles in real-time. The
first one is a passive method that each time a vehicle finishes
an order, it asks the manager for the location of the next order.
The second one is an active method that the manager broad-
casts the routes scheduled for all vehicles and each vehicle
serves the customers according to the latest routes assigned to
it. In our system, the passive method is recommended, because
whenever a vehicle calls for a new order, the system can know
that it has finished the last order without checking its position.
In addition, if a vehicle has served all the orders assigned to it,
it will stay at the location of the last order rather than return-
ing back. Only if the last order is the final order of the result
of the final optimization, it is allowed to return to the depot.

B. Region Partition

Region partition is used to divide a big static CVRP into sev-
eral small static CVRPs which are independent of each other.
This process is based on the map information and customers’
locations. As an NP-hard problem, the CVRP’s complexity
grows exponentially with its scale. Thus, dividing a big CVRP
into small ones can decrease the difficulty of the problem
effectively, and the small CVRPs can be optimized in par-
allel so that the computing time can be decreased. Besides, in
real applications, a big city or a big area is usually divided and
managed in different regions. Thus region partition is helpful
and applicable in both theory and practice.

Once the region partition component receives the static
CVRP with all static orders, the K-means algorithm [44] is
applied to group orders into different clusters and all centers
are recorded to group the following orders. A cluster repre-
sents a small CVRP. As for the number of clusters, if it is hard
to see how many clusters in the map clearly, it is suggested
to divide the orders into nc clusters according to load balance
that each cluster owns roughly three vehicles

nc =

(

ns
∑

i=0

qi

)

/Q/3 + 1 (13)

where ns is the number of static orders.
Except the first static CVRP, the other CVRPs contain not

only different kinds of orders but also vehicles with different

locations and capacities. Thus for the static problems generated
during the working day, region partition acts on both orders
(grouping the orders according to the known centers) and out-
side vehicles (assigning the outside vehicles to different small
problems).

C. S-PSO-D With Archive

The core of the system is the S-PSO-D algorithm which
is a variant of S-PSO designed for DCVRP. Meanwhile, in
order to gain a fast convergence speed to obtain a relatively
good solution within the limited time, an archive strategy
and a local refinement algorithm are incorporated. Archive
strategy is used in the process of velocity updating to make
full use of the evolution experience of the previous optimiza-
tions. Local refinement is used to modify solutions slightly
in order to make further improvement. Since these two tech-
niques directly affects the execution process of S-PSO-D, they
will be introduced along with the description of the S-PSO-D
algorithm.

Besides the basic four steps: 1) initialization; 2) velocity
updating; 3) position updating; and 4) fitness evaluation [28],
two more steps: 1) local refinement and 2) archive updat-
ing, are adopted in S-PSO-D. Following, we will demonstrate
the S-PSO-D from four aspects: 1) particle representation;
2) velocity updating; 3) position updating; and 4) local
refinement.

1) Particle Representation: The solution of a static CVRP
is a set of routes. For the first static CVRP which consists of all
static orders, each route starts and ends with the depot c0. For
the other CVPRs generated during the working day, routes may
start at different locations but still end with c0. Thus the first
CVRP can be seen as a special case of the CVRPs generated
during the day. We take a solution of a static CVRP which is
generated during the working day as an example to show the
encoding scheme in S-PSO-D. Suppose there are ten orders
{c1, c2, . . . , c10} unserved and two outside vehicles which are
now at the locations of c11 and c12 (or on their ways to c11
and c12), respectively. One hypothetical solution is shown in
Fig. 4. Besides the two outside vehicles, two more vehicles
will depart from the depot.

In S-PSO-D, the position of a particle is represented by

Xi =
[

X0
i , X1

i , . . . , Xn
i

]

(14)

Xd
i = {〈d, nb1〉, 〈d, nb2〉, . . . , 〈d, nbx〉}

nb1, . . . , nbx ∈ {0, 1, . . . , n} (15)

∀j ∀k ∈ {1, . . . , x}, if j = k, nbj = nbk

∀l ∈ {1, . . . , x}, nbl = d

where Xi is an arc set. Each dimension Xd
i of Xi represents

the set of arcs associated with the vertex cd, and x is the
number of arcs. n is the number of customers involved in
the problem which is equal to 12 in the example. For an
unserved order like c1, it has two neighbors, c12 and c8, thus
x = 2, X1

i = {〈1, 12〉, 〈1, 8〉}. For c0, usually it has more than
two neighbors, unless there is only one vehicle, in the example



1612 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 48, NO. 9, SEPTEMBER 2018

Fig. 4. Example of solution.

x = 6, X0
i = {〈0, 2〉, 〈0, 8〉, 〈0, 6〉, 〈0, 3〉, 〈0, 5〉, 〈0, 9〉}. For an

outside vehicle’s location like c11, it has only one neighbor c7,
thus x = 1, X11

i = {〈11, 7〉}. Through this encoding scheme,
any route can be built from the starting point step by step,
whether or not it begins with c0.

Accordingly, the velocity of a particle is represented by

Vi =
[

V0
i , V1

i , . . . , Vn
i

]

(16)

Vd
i = {〈d, u〉\p(d, u)|u = 0, 1, . . . , d − 1, d + 1, . . . , n} (17)

where Vi is an arc set with possibilities. The number of ele-
ments in each dimension Vd

i will not excess n. For each arc
〈d, u〉, p(d, u) is the corresponding possibility which will be
used for element selection in the process of position updat-
ing. Details about how it affects the selection operation will
be introduced in the following sections. In implementation, to
reduce the number of elements in velocity and improve exe-
cution efficiency, if p(d, u) < ε (ε is a very small value which
is set artificially), 〈d, u〉 will be omitted from Vd

i .
2) Archive-Based Velocity Updating: The solution archive

plays an important role in the process of velocity updating.
Since each static CVRP generated during the working day can
be seen as an extension of the previous one, the pBest solu-
tions of the last static CVRP are valuable to be learned from.
Thus all pBest solutions and their fitness generated during the
last optimization are stored in the archive, e.g., the archive
consists of solutions generated at Ti−1 when the optimizer
is currently working on the problem generated at Ti. We call
this learning strategy “inheritance” in this paper. Although new
orders received during [Ti−1, Ti] do not appear in the solutions
generated at Ti−1, learning from the archive can still rapidly
determine the sequence of previous orders, thus accelerating
the convergence speed of the algorithm.

Suppose there are M particles in the swarm for every opti-
mization and the solutions in archive are denoted as {aBest1,
aBest2, . . . , aBestM}. As we have mentioned earlier, CLPSO
uses a parameter Pci and the tournament selection strategy to
decide the particle to be learned from. In S-PSO-D, we employ
another parameter Pca to decide whether to learn from the
archive or not. The velocity updating rule is modified as

Vd
i = ω · Vd

i + c · randd ·
(

LFd
fi(d) − Xd

i

)

(18)

where LF means “learn from” and it is decided by both Pci
and Pca

LFd
fi(d) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

pBestdi , rand1 < Pci

pBestdj , rand1 ≥ Pci ∧ rand2 ≥ Pca ∧ f
(

pBestj
)

< f
(

pBestk
)

pBestdk , rand1 ≥ Pci ∧ rand2 ≥ Pca ∧ f
(

pBestj
)

≥ f
(

pBestk
)

aBestdj , rand1 ≥ Pci ∧ rand2 < Pca ∧ f
(

aBestj
)

< f (aBestk)
aBestdk , rand1 ≥ Pci ∧ rand2 < Pca ∧ f

(

aBestj
)

≥ f (aBestk)

(19)

where rand1 and rand2 are both random numbers within (0,1);
j and k are two candidates in the tournament selection.

Following, the operators used in (18) are defined
in (20)–(23), respectively. coefficient · velocity and velocity +

velocity are defined as the changing of the possibilities of arcs,
shown as (20) and (21). position − position is defined as the
subtraction of two arc sets (22). coefficient·(position−position)

is defined as turning an arc set into a set with possibilities

c · Vd
i =

{

〈d, u〉\p′(d, u)
∣

∣u = 0, 1, . . . , d − 1, d + 1, . . . , n
}

(20)

where p′(d, u) = c · p(d, u)

Vd
i + Vd

j =
{

〈d, u〉\p′(d, u)|u = 0, 1, . . . , d − 1, d + 1, . . . , n
}

(21)

where p′(d, u) = max(pi(d, u), pj(d, u))

Xd
i − Xd

j = Ud =
{

〈d, u〉|〈d, u〉 ∈ Xd
i ∧ 〈d, u〉 /∈ Xd

j

}

(22)

c · Ud =
{

〈d, u〉\p′(d, u)
∣

∣〈d, u〉 ∈ Ud
}

(23)

where p′(d, u) = c.

Reusing the example in Fig. 4, we already know X1
i =

{〈1, 12〉, 〈1, 8〉}. Suppose that V1
i = {〈1, 3〉\0.5, 〈1, 4〉\0.3},

LF1
fi (1)

= {〈1, 12〉, 〈1, 7〉}, ω = 0.9, c = 2.0, and rand1 =

0.4. Then we have ω · V1
i = {〈1, 3〉\0.45, 〈1, 4〉\0.27},

LF1
fi (1)

− X1
i = {〈1, 7〉}, and c · rand1 · (LF1

fi(1)
− X1

i ) =

2.0 · 0.4 · {〈1, 7〉} = {〈1, 7〉\0.8}. Finally we get V1
i =

{〈1, 3〉\0.45, 〈1, 4〉\0.27, 〈1, 7〉\0.8}. Through learning from
LF1

fi (1)
, a new arc 〈1, 7〉 is added to V1

i and the possibilities of
the original two arcs are decreased due to the inertia weight ω.

3) Position Updating: Positions are still updated according
to (9), yet the related operations are redefined. First, velocity
Vi is converted into a crisp set by

Cut
(

Vd
i

)

=
{

〈d, u〉|〈d, u〉\p(d, u) ∈ Vd
i ∧ p(d, u) ≥ rand

}

(24)

where rand is a random number within (0,1). In this way, arcs
with smaller possibilities are eliminated and those with larger
possibilities are more likely to be chosen.

Then, we build new particles in a constructive way where
the capacity constraint is taken into account, so that every par-
ticle is built to be legal. The flow chart of the position updating
process is shown in Fig. 5. To begin with, a new solution (Xi)’
is initialized with k routes, where k is the number of the out-
side vehicles. Each route begins with a vertex where an outside
vehicle is. Considering the example in Fig. 4, (Xi)

′ is initial-
ized with two routes, starting with c11 and c12, respectively.
Afterward, each route will be built by finding the next vertex



JIA et al.: DYNAMIC LOGISTIC DISPATCHING SYSTEM WITH S-PSO 1613

Fig. 5. Flow chart of position updating.

step by step. Suppose the algorithm is finding the next vertex
for cd. According to the construction rule of S-PSO, the next
vertex m may come from one of the following three crisp set.

1) Sd
V = {m|〈d, m〉 ∈ Cut (Vd

i )}, the subset of the velocity.
2) Sd

X = {m|〈d, m〉 ∈ Xd
i }, the set of original Xi.

3) C, the set of all vertices.
If there are vertices which satisfy the capacity constraint

available in SV , m is selected from SV . If we cannot find feasi-
ble vertex in SV , m is selected from SX . If SX does not contain
any feasible vertex either, m is finally selected in C. If the
selected vertex is not the depot, it will be inserted into the
current route. Otherwise, we start to build the next route. In
the example, after constructing the first route (11, 7, 4, 2, 0),
the second route is built form the starting vertex c12. If all
routes associated with outside vehicles are constructed suc-
cessfully and there are still unplanned orders, new route will
be built from the depot c0, as the third and the fourth route
shown in the example. If all orders are planned, the whole
solution is built successfully.

In canonical S-PSO, if several vertices are available, the
algorithm will randomly choose one. However, in S-PSO-D,
to accelerate the convergence speed, a pseudorandom selection
method is applied. When facing multiple choices {m1, m2,
. . . , mH}, the algorithm with a certain probability will directly
choose the nearest customer

m =

⎧

⎨

⎩

ma|a∀i ∈{1, . . . , H} s.t. dis(d, ma) ≤ dis(d, mi),

rand1 < Pcg

mb|b =⌈rand2 · H⌉, rand1 ≥ Pcg

(25)

where Pcg is the certain probability and rand1 and rand2 are
two random numbers within (0,1).

4) Local Refinement: A newborn solution before evaluated
will always be refined to make a further improvement. In
S-PSO-D, the local refinement process consists of two steps:
1) refinement among routes and 2) refinement among orders.
Refinement among routes is used to merge routes in order to
decrease the number of vehicles. Refinement among orders is

Algorithm 1 Local Refinement Among Routes
Input: original solution Xi, load of each route {l1, l2, . . . , ln},
number of outside vehicle k, capacity Q

Output: refined solution Xi

1 fr = 1, sr = k + 1, changed = true;
2 while (changed) do

3 for i = 2 to k do

4 if li < lfr then fr = i;
5 for i = k + 2 to n do

6 if li < lsr then sr = i;
7 if (lfr + lsr < Q)
8 combine the fr route with the sr route;
9 n = n – 1; lfr = lfr + lsr;
10 else changed = false;
11 fr = k + 1, sr = k + 2, changed = true;
12 if (lfr > lsr) then swap fr with sr;
13 while (changed) do

14 for i = k + 3 to n do

15 if (li < lsr)
16 sr = i;
17 if (lfr > lsr) then swap fr with sr;
18 if (lfr + lsr < Q)
19 combine the fr route with the sr route;
20 n = n – 1; lfr = lfr + lsr;
21 else changed = false;

used to adjust the sequence of customers within a route in
order to decrease the total travel distance of the route.

Pseudocode of the refinement among routes is shown in
Algorithm 1. First, we check whether there is a route starting
with c0 that can be merged into a route of an outside vehicle
while satisfying the capacity constraint. If there is a pair of
such routes, we merge them into a single route which still
starts with the outside vehicle’s position, by simply splicing
in line. This process is shown in lines 1–10. The sequence of
vertices in the new route is unconcerned since we have the
process of the refinement among orders which is responsible
for reordering the vertices. In Fig. 4, assume the third route
can be merged into the second route. We merge them into one
route which still starts with c12, and Fig. 6 shows how they
merge into one route. Second, we check whether there are two
routes both starting with c0 that can be merged. If so, merge
them using the same method in lines 11–21 and the sequence
of these two routes is also unconcerned.

For the refinement among orders, the two-opt method is
employed [45]. According to [46], for a route with 100 or
fewer vertices, the two-opt method has basically the same
performance with the three-opt method. Moreover, two-opt is
much faster than three-opt. Thus it is chosen as the refinement
tech among orders.

V. EXPERIMENTS

In this section, the proposed dispatching system is suffi-
ciently tested on the datasets with different scales. First, the
experimental data is generated and experimental settings are
introduced in detail. Then, effects of the region partition and



1614 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 48, NO. 9, SEPTEMBER 2018

Fig. 6. Merging two routes into one.

the archive strategy are discussed separately. Afterward, the
S-PSO-D approach is compared with another two approaches
to show its effectiveness. In the end, some specially designed
experiments are conducted to explore the essence of the
DCVRP and the innate character of the reoptimization frame-
work.

A. Benchmark Description and Parameter Settings

1) Benchmark Description: The experimental data consists
of two parts. The first part is generated based on two well-
known static CVRP benchmarks which were first used by
Taillard [47] and Fisher and Jaikumar [48]. As there is a big
gap in the scale of these two benchmarks, some other DCVRP
instances are generated with scales from 200 to 400, and both
randomly distributed locations and clustered locations are con-
sidered. To obtain dynamic problems, the following features
are added to the static benchmarks.

1) Level of Dynamism: Identical to [21], in this paper, the
level of dynamism considered is also 0.5, which means
for each static instance, half of the orders are randomly
chosen as dynamic orders. It should be noted that differ-
ent scenarios have different levels of dynamism. Setting
this value to 0.5 is just for the following experiments.

2) Length of the Working Day: As the level of dynamism
is set to 0.5, the length of the working day is set as
two times of the planning horizon, which means that all
dynamic orders planned in the same day are submitted
in the first half of the working day. In this paper, the
planning horizon T is set to 100, and the working day
is 200 (these two values are only used for calculation
which have no realistic meaning).

3) Disclosure Time of Orders: In real applications, orders
are not always coming uniformly. The case that lots
of orders are submitted within a very short period
occurs frequently. Thus, three different distributions of
disclosure time are considered in this paper, uniform
distribution, normal distribution, and half normal dis-
tribution. For the uniform distribution, each dynamic
order’s disclosure time ti is randomly generated within
(0, 100); for the normal distribution, ti is generated fol-
lowing the normal distribution N(50, 17.5) which is also
within (0, 100); for the half normal distribution, ti is first
generated according to N(100, 34). If it is bigger than
100, ti = 200 − ti.

TABLE I
DCVRP INSTANCES

4) Vehicle Speed: Before setting the vehicle speed, a greedy
method is applied on each static instance to get a solu-
tion. Then we calculate the vehicle speed according to
the length of the working day and the longest route in
the solution.

With the four new features, a DCVRP dataset with
48 instances are generated, which are shown in Table I. Based
on the aforementioned features, a nomenclature “name-size-
distribution” is used to identify each dynamic instance. For
example, F-72-U means the instance which is generated from
the Fisher’s dataset with 72 orders and with disclosure time
following the uniform distribution. Among the four datasets,
the clustered dataset and the random dataset are newly gener-
ated. The location distribution of customers of each instance
is shown in Fig. 7. As the instances in two new datasets are
generated in the same pattern, respectively, only one instance
for each dataset is illustrated. From Fig. 7, we can see that
the benchmark dataset has covered multiple types of location
distributions, including clustered distribution, random distribu-
tion, clustered-random-mixed distributions, and distributions
with strange shapes.

2) Parameter Settings: For all instances, the planning hori-
zon is divided into ten pieces. Here, we do not discuss
how much pieces is appropriate, because such a problem is
instance-dependent and several works have studied on it [21].
The number of the generation is set as three times of total
order quantity for the first optimization of all static orders and
set equal to the order amount for the other optimizations of
dynamic orders.

As mentioned before, the framework of S-PSO-D is
CLPSO. In the experiments, the inertia weight ω is initial-
ized as 0.9 and linearly decreased to 0.4 at the end of the
optimization. c in (10) is set to 2 and the refreshing gap in
CLPSO is set to 4. The population size is set to 20. ε is set to
0.001. These parameters are set according to [28]. Then Pca

is set to 0.5 initially and linearly decreased to 0 at the end of
the optimization, and Pcg is set to 0.9. Since some parts of the



JIA et al.: DYNAMIC LOGISTIC DISPATCHING SYSTEM WITH S-PSO 1615

Fig. 7. Distribution of customers’ locations. (a) F-72. (b) F-135. (c) T-75.
(d) T-100. (e) T-150. (f) T-385. (g) C-400. (h) R-400.

following experiment are specially designed, several parame-
ters may change. The changed parameters will be shown in
the corresponding sections.

To verify the effectiveness of the proposed S-PSO-D
approach completely, it is compared with the ACS
approach [21] and an insertion approach [14], [16] in
Section V-D. Like the S-PSO-D approach proposed in this
paper, the ACS approach also utilizes the periodic reoptimiza-
tion framework and metaheuristic algorithm. Moreover, the
ACS algorithm shares a nearly equal time complexity with
the S-PSO algorithm [28]. Thus it is chosen as the comparing
approach. To make a fair comparison, the local refinement pro-
cess is also added into the ACS approach. Parameters in the
ACS approaches are set according to [21]: q0 = 0.9, β = 1,
ρ = 0.1, γr = 0.3, and τ0 = 1/(n × Cost(PI)) is calcu-
lated based on the greedy method. The colony size is also
set to 20. In the insertion approach, the first static problem
which contains all static orders is solved by the ACS algo-
rithm to get an initial solution. Then, whenever a new order
comes, it will be inserted into the solution based on the nearest

Fig. 8. Results of region partition. n represents the order amount.
(a) and (c) C-n-U. (b) and (d) R-n-U.

insertion heuristic [45]. As a deterministic approach, its time
complexity is lower than the other two approaches. However,
its performance is much worse at the same time. Thus, it can
be taken as the baseline.

Thirty independent runs are executed for every tested
approaches to get statistic results such as mean value, median
value and value of Wilcoxon rank sum test.

B. Region Partition

To show that region partition is useful for a dispatching
system in handling large-scale problems, a special dispatching
system without region partition technique is created, which is
denoted as S-SPO-D-NP. The original dispatching system pro-
posed in this paper is still denoted as S-PSO-D. Ten instances
with medium or large scale are selected as the test cases, i.e.,
C-200-U, C-250-U, C-300-U, C-350-U, C-400-U, R-200-U,
R-250-U, R-300-U, R-350-U, and R-400-U.

Results are shown in Fig. 8. In addition, the yield rate
brought by the region partition technique is also shown in
Fig. 8, which is calculated by

yield =
fS−PSO−D−NP − fS−PSO−D

fS−PSO−D−NP
(26)

where fS−PSO−D−NP represents the mean value of the
S-PSO-D-NP approach and fS−PSO−D represents the mean
value of the S-PSO-D approach.

Seeing from Fig. 8(a) and (b), we can find that S-PSO-D
yielded better objective values than S-PSO-D-NP on all of
the tested instances, which implies that the region partition
technique used in the proposed dispatching system is really
effective. According to Fig. 8(c), it cuts down the total dis-
tance at most 10.5% for the C-300-U instance, and at least
4.5% for the C-200-U instance. According to Fig. 8(d), it
cuts down the total distance at most 11% for the R-400-U,
and at least 7.5% for the R-250-U. The numeric results show



1616 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 48, NO. 9, SEPTEMBER 2018

TABLE II
COMPARISON OF THE EFFECT OF THE ARCHIVE STRATEGY

that the region partition technique used in the proposed dis-
patching system is comprehensively useful for both randomly
distributed instances and clustered instances. But comparing
the curves shown in Fig. 8(c) and (d), we can see that its
effect still can be influenced by the location distribution.
For instances with randomly distributed locations, except the
R-200-U, the yield rate increases with the growing of the prob-
lem scale. For instances with clustered locations, the yield rate
first increases along with the scale, but after the scale reach-
ing 300, it stops to decline. Since the specific relationship
between the location distribution and the region partition tech-
nique is complicated to figure out, we take it as an open issue
and will study it in future works. Overall, experimental results
show that the region partition is useful in handling large-scale
DCVRPs.

C. Archive Strategy

To show the effect of the archive strategy, a special S-PSO-D
without archive-based velocity updating is designed to make
a comparison, which is denoted as S-PSO-D-NA. To avoid
the interference of the local refine and the region partition
techniques, they are removed from the dispatching system for
both S-PSO-D and S-PSO-D-NA. However without region par-
tition, the approaches’ performance varies so much each time
on large-scale problems that we cannot obtain stable results.
Thus four small instances which do not need to be partitioned
are taken for the test: 1) F-72-U; 2) F-135-U; 3) T-75-U; and
4) T-100-U.

First of all, the static optimization generated before T0 is
executed. Then, based on the same result of the first static opti-
mization, two algorithms are, respectively, applied to the first
dynamic problem, and their convergence rates are collected to
show the effect of the archive. Due to the way we design the
experiment, only instances with uniform-distributed disclosure
time are chosen. For the other two distributions, few dynamic
orders appear in [T0, T1], so the problem generated at T1 is
too similar to the static one generated before T0.

For both first optimization of all static orders and first opti-
mization of dynamic orders, the number of generations is set
as three times of total order quantity. Pcg is set to 0. The other
parameters are kept unchanged. The results about how many
times one approach beats the other among 30 runs are shown
in Table II.

According to the data form Table II, in most cases,
S-PSO-D-NA is better than S-PSO-D when they both executes

Fig. 9. Convergence rates of (red) S-PSO-D and (black) S-PSO-D-NA.
(a) F-72-U. (b) F-135-U. (c) T-75-U. (d) T-100-U.

3 · n generation, except for F-72-U. However, as we have men-
tioned earlier, in the dispatching system for DVRP, real-time
control is a crucial demand which means we do not have much
time to wait for a perfect solution in dynamic environment.
Decisions should be made in short time. In such situation, the
effect of the archive strategy shows up. We can find that before
n generations, the number of times where S-PSO-D obtains
better results is greater than or equal to the number of times
where S-PSO-D-NA obtains better results. The data about their
convergence rates displayed in Fig. 9 also show us the simi-
lar phenomenon. Due to the archive strategy, S-PSO-D gains
a faster convergence speed at the early stage of the optimiza-
tion. Every time it learns something helpful from the archive,
we can see a “jumpy decrease” on its fitness value. By con-
trast, the descent curve of S-PSO-D-NA appears smoother than
S-PSO-D. These results imply that though the archive strategy
may have negative effect during a long-term optimization, it
truly has accelerated the algorithm’s convergence speed in the
early stage. Considering the demand of real applications, we
think that the archive is effective and should be employed as
a component of the dispatching system.

D. S-PSO-D Performance

S-PSO-D is compared with ACS and the insertion method
on all instances. Besides the best value and the mean value,
a Wilcoxon rank sum test is also performed to check whether
the S-PSO-D approach is significantly better or worse than
the other two approaches. Numerical results are shown in
Table III.

First, we check the experimental results generally. Seeing
from the p-value of the Wilcoxon rank sum test, S-PSO-D
is significantly better than ACS on 29 instances, and ACS
performs significantly better than S-PSO-D on four instances.
On the rest of the instances these two approaches have simi-
lar performances. Observing the instances on which the ACS
approach surpasses the other two approaches, we find that their



JIA et al.: DYNAMIC LOGISTIC DISPATCHING SYSTEM WITH S-PSO 1617

TABLE III
COMPARISON OF THE TOTAL DISTANCE ON THE 48 INSTANCES

scales are relatively small, such as 72, 75, 100, 135, and 200.
In contrast, the S-PSO-D approach seems more capable than
ACS on large instances. However, an interesting phenomenon

is that on three T-150 instances, S-PSO-D yields better results.
Especially for T-150-U, S-PSO-D is significantly better than
ACS based on the p-value of the Wilcoxon rank sum test.



1618 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 48, NO. 9, SEPTEMBER 2018

(a) (b) (c)

(d) (e) (f)

Fig. 10. Optimizing processes of (black) S-PSO-D and (red) ACS. (a) F-72-N. (b) T-75-U. (c) T-100-H. (d) T-150-U. (e) C-250-U. (f) R-350-U.

Reviewing the location distribution map in Fig. 7(e), we can
see that customers in T-150 are somewhat clustered. Thus
a rational conjecture is that such location distribution may
be in favor of the region partition process in the dispatching
system.

Second, seeing the instances where ACS surpasses
S-PSO-D, we find that only on four instances, i.e., F-72-N,
F-135-N, T-75-U, and T-100-H, ACS is significantly better
than S-PSO-D. For the other small instances whose scales are
equal to or smaller than 200, in fact, the S-PSO-D approach
is competitive. Then, observing the results on the instances
which have more than 200 customers, we find that S-PSO-D
is significantly better than ACS on all of these instances. Thus
we can take the 200 scale as a watershed. Before the water-
shed, ACS is a little bit better. After the watershed, clearly the
S-PSO-D approach is more promising.

Third, we examine whether the closure time distribution has
influence on algorithm’s performance. Seeing the results on
the six Fisher instances, we can find that for the half normal
distribution and the uniform distribution, S-PSO-D can match
ACS. However, for the normal distribution, S-PSO-D is sig-
nificantly worse than ACS. Similar phenomenon also occurs
on T-75, T-100, T-150, and R-200 instances. For the three
T-75 instances, S-PSO-D lost on the uniform distribution; for
T-100, S-PSO-D lost on the half normal distribution; for T-150,
S-PSO-D is significantly better only for the uniform distribu-
tion; for R-200, S-PSO-D is significantly better only for the
normal distribution. Thus we think that the closure time dis-
tribution really can influence the algorithm’s performance, but
how it affects the algorithm’s performance is still a problem
to be studied.

E. Performance Analysis

In this section, we try to find the reason why S-PSO-D
outperforms ACS on some specific instances, while ACS sur-
passes S-PSO-D on some other instances. The optimizing
processes of S-PSO-D and ACS on six instances are shown

in Fig. 10. Among 30 independent runs, the once in which
the final objective value is close to the mean value is chosen,
and these six instances are F-72-N, T-75-U, T-100-H, T-150-
U, C-250-U, and R-350-U. On F-72-N, T-75-U, and T-100-N,
the ACS approach is significantly better than S-PSO-D; on
T-150-U, C-250-U, and R-350-U, the contrary is the case.

Observing Fig. 10, we can find that there three patterns for
one method to beat another method. The first one is shown
in Fig. 10(a) and (b), where both approaches perform simi-
larly before the first four optimizations. Starting from the 4th
optimization, ACS shows its advantage and keeps that to the
end. The second pattern is displayed in Fig. 10(c)–(e). Before
the eight optimization, two approaches tie with each other.
Finally during the last two or three optimizations, ACS sur-
passes S-PSO-D on T-100-H, while S-PSO-D beats ACS on
T-150-U and C-250-U. Fig. 10(f) shows the third pattern where
S-PSO-D builds the lead from the first optimization and keeps
the advantage to the end. In the experiment, the third pattern is
the most common one. Whenever the p-value of the Wilcoxon
rank sum test is smaller than 1e-4, S-PSO-D beats the other
two approaches by the third pattern.

Among these three patterns, the first pattern and the third
pattern are easy to understand. According to the greedy strat-
egy and the inheritance strategy, once an algorithm obtains
good results during one optimization, this goodness can
be passed to the following optimizations. That is the sit-
uation appeared in Fig. 10(a), (b), and (f). However, the
second pattern is really confusing. Considering the essence
of the reoptimization scheme and the experimental settings in
the experiment, we have come up with a bold conjecture that
the last two or three optimizations may play a decisive role
among all of the optimizations.

F. Discussion of the Periodic Reoptimization Framework

First, we give an explanation of the conjecture proposed
in the last section, then a specially designed experiment is
conducted to verify the conjecture.



JIA et al.: DYNAMIC LOGISTIC DISPATCHING SYSTEM WITH S-PSO 1619

TABLE IV
COMPARISON OF THE TOTAL DISTANCE

IN THE NEW EXPERIMENT

If we set the inheritance strategy aside, actually except
for the last optimization, the period of validity of each opti-
mization is only one time slice, which means that the ith
(i < p) optimization is only useful for the period [Ti, Ti+1].
Meanwhile, in the experiment, we have set the level of
dynamism to 0.5 which implies that the last optimization has
decided the routes for the last half day. Certainly, this is just the
extreme case, but the fact shown in Fig. 10(c)–(e) is closely
related to the explanation. With the inheritance strategy, an
optimization may has effect on more than one slice. Definite
number depends on the inheritance technique.

To testify the conjecture, we retest the aforementioned six
instances. In the new experiment, the number of iteration for
the first optimization is set equal to the scale of the problem,
and the iteration number for the last two optimizations is set
to two times of the customer number. Thus the total number of
iterations is unchanged. Other parameters are kept the same.
Numeric results are shown in Table IV where the original
results of the two algorithms are shown as O-S-PSO-D and O-
ACS. The new results are shown as N-S-PSO-D and N-ACS.

Focusing on the mean objective value, we can find that
for the two instances F-72-N and T-75-U which belong to
the first pattern, the results of the new experiment are worse
than the original results. However, observing the results on the
next four instances, we find that the new experiment indeed
increases the level of the performance of the two algorithms.
Such phenomenon proves that our conjecture really works for
some instances but not all of them. In the previous subsec-
tion, based on the results of the second pattern, we made
the conjecture that the last two or three optimizations play
a decisive role among all optimization procedures. Here, the
results in Table IV proves its correctness. However, this con-
jecture contradicts the truth revealed in the first pattern that
the early couple rounds may be more important for some other

instances. Thus, on the whole, we conclude that for differ-
ent kinds of instances, different rounds of optimizations have
different importance.

VI. CONCLUSION

In this paper, we have proposed a novel dispatching system
to handle the DCVRP by assembling the S-PSO-D algorithm
with the framework of periodic reoptimization. According to
the structure of the DCVRP solution, a new particle represen-
tation scheme is defined and new solution construction method
is designed in S-PSO-D. In addition, considering the essence
of the dynamic environment, two techniques are creatively pro-
posed in the dispatching system: region partition and archive
strategy. Moreover, a local refinement process is combined
with the S-PSO-D algorithm. These three techniques, make
the proposed dispatching system more effective and efficient.
In the experiment, not only the effectiveness of the system is
testified, but the intrinsic features of the periodic reoptimiza-
tion method are discussed. Experimental results show that our
approach performs obviously better on large-scale instances,
and is competitive on small-scale instances as well.

In future researches, besides designing more effective algo-
rithms, there are also some questions worth studying.

1) In the perspective of methodology, it is meaningful to
study the difference of the decision epoch method and
the time slice method, thus to explore which one is
more suitable for a specific algorithm under certain
circumstances.

2) In the experiments, we have mentioned that there are
different kinds of disclosure time distributions, and also
we found that these distributions can influence the algo-
rithm’s performance. However, the specific cause-effect
influence needs to be further studied to figure out what
the result would be if we combine them with different
methods.

3) The third question has been mentioned in the discus-
sion of the periodic reoptimization framework: what
the relationship between the instance and the number
of optimization is, and how to find which round of
optimization is more important.

Aiming at these three problems, the DVRP can be further
studied and more automated assistive tools can be made for
modern logistics industry.

REFERENCES

[1] Z. Wenqian, Traditional Shops Must Boost Their Online Links,
China Daily USA, Beijing, China, Nov. 2016. [Online]. Available:
http://usa.chinadaily.com.cn/epaper/2016-11/15/content_27397828.htm

[2] A. C. Mckinnon, M. Browne, A. E. Whiteing, and M. Piecyk, Green

Logistics: Improving the Environmental Sustainability of Logistics.
London, U.K.: Kogan Page, 2015.

[3] G. B. Dantzig and J. H. Ramser, “The truck dispatching problem,”
Manag. Sci., vol. 6, no. 1, pp. 80–91, 1959.

[4] W. Y. Szeto, Y. Wu, and S. C. Ho, “An artificial bee colony algorithm for
the capacitated vehicle routing problem,” Eur. J. Oper. Res., vol. 215,
no. 1, pp. 126–135, 2011.

[5] L. H. Lee, K. C. Tan, K. Ou, and Y. H. Chew, “Vehicle capacity planning
system: A case study on vehicle routing problem with time windows,”
IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 33, no. 2,
pp. 169–178, Mar. 2003.

http://usa.chinadaily.com.cn/epaper/2016-11/15/content_27397828.htm


1620 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 48, NO. 9, SEPTEMBER 2018

[6] Y.-J. Gong et al., “Optimizing the vehicle routing problem with time
windows: A discrete particle swarm optimization approach,” IEEE

Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 42, no. 2, pp. 254–267,
Mar. 2012.

[7] S. N. Parragh, K. F. Doerner, and R. F. Hartl, “A survey on pickup and
delivery problems,” J. für Betriebswirtschaft, vol. 58, no. 1, pp. 21–51,
2008.

[8] T. J. Ai and V. Kachitvichyanukul, “A particle swarm optimization for
the vehicle routing problem with simultaneous pickup and delivery,”
Comput. Oper. Res., vol. 36, no. 5, pp. 1693–1702, 2009.

[9] Y. Marinakis, G.-R. Iordanidou, and M. Marinaki, “Particle swarm opti-
mization for the vehicle routing problem with stochastic demands,” Appl.

Soft Comput., vol. 13, no. 4, pp. 1693–1704, 2013.
[10] K. Dorling, J. Heinrichs, G. G. Messier, and S. Magierowski, “Vehicle

routing problems for drone delivery,” IEEE Trans. Syst., Man, Cybern.,

Syst., vol. 47, no. 1, pp. 70–85, Jan. 2016.
[11] X. Wang, T.-M. Choi, H. Liu, and X. Yue, “A novel hybrid ant colony

optimization algorithm for emergency transportation problems during
post-disaster scenarios,” IEEE Trans. Syst., Man, Cybern., Syst., to be
published.

[12] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia, “A review of
dynamic vehicle routing problems,” Eur. J. Oper. Res., vol. 225, no. 1,
pp. 1–11, 2013.

[13] S. N. Kumar and R. Panneerselvam, “A survey on the vehicle routing
problem and its variants,” Intell. Inf. Manag., vol. 4, no. 3, pp. 66–74,
2012.

[14] B. K.-S. Cheung, K. L. Choy, C.-L. Li, W. Shi, and J. Tang, “Dynamic
routing model and solution methods for fleet management with mobile
technologies,” Int. J. Prod. Econ., vol. 113, no. 2, pp. 694–705, 2008.

[15] M. Gendreau, F. Guertin, J.-Y. Potvin, and E. Taillard, “Parallel tabu
search for real-time vehicle routing and dispatching,” Transp. Sci.,
vol. 33, no. 4, pp. 381–390, 1999.

[16] N. Azi, M. Gendreau, and J.-Y. Potvin, “A dynamic vehicle routing
problem with multiple delivery routes,” Ann. Oper. Res., vol. 199, no. 1,
pp. 103–112, 2012.

[17] S. F. Ghannadpour, S. Noori, and R. Tavakkoli-Moghaddam,
“Multiobjective dynamic vehicle routing problem with fuzzy travel times
and customers’ satisfaction in supply chain management,” IEEE Trans.

Eng. Manag., vol. 60, no. 4, pp. 777–790, Nov. 2013.
[18] H. Housroum, T. Hsu, R. Dupas, and G. Goncalves, “A hybrid

ga approach for solving the dynamic vehicle routing problem with time
windows,” in Proc. IEEE 2nd Int. Conf. Inf. Commun. Technol., vol. 1.
Damascus, Syria, 2006, pp. 787–792.

[19] G. B. Alvarenga, R. M. de Abreu Silva, and G. R. Mateus, “A hybrid
approach for the dynamic vehicle routing problem with time windows,”
in Proc. 5th Int. Conf. Hybrid Intell. Syst., Rio de Janeiro, Brazil, 2005,
p. 7.

[20] G. B. Alvarenga, G. R. Mateus, and G. De Tomi, “A genetic and set
partitioning two-phase approach for the vehicle routing problem with
time windows,” Comput. Oper. Res., vol. 34, no. 6, pp. 1561–1584, 2007.

[21] R. Montemanni, L. M. Gambardella, A. E. Rizzoli, and A. V. Donati,
“Ant colony system for a dynamic vehicle routing problem,” J. Comb.

Optim., vol. 10, no. 4, pp. 327–343, 2005.
[22] F. T. Hanshar and B. M. Ombuki-Berman, “Dynamic vehicle routing

using genetic algorithms,” Appl. Intell., vol. 27, no. 1, pp. 89–99, 2007.
[23] M. R. Khouadjia, B. Sarasola, E. Alba, L. Jourdan, and E.-G. Talbi,

“A comparative study between dynamic adapted PSO and VNS for the
vehicle routing problem with dynamic requests,” Appl. Soft Comput.,
vol. 12, no. 4, pp. 1426–1439, 2012.

[24] A. Núñez, C. E. Cortés, D. Sáez, B. De Schutter, and M. Gendreau,
“Multiobjective model predictive control for dynamic pickup and deliv-
ery problems,” Control Eng. Pract., vol. 32, pp. 73–86, Nov. 2014.

[25] M. Mavrovouniotis and S. Yang, “Ant colony optimization with memory-
based immigrants for the dynamic vehicle routing problem,” in Proc.

IEEE CEC, Brisbane, QLD, Australia, 2012, pp. 1–8.
[26] L. M. Hvattum, A. Løkketangen, and G. Laporte, “Solving a dynamic

and stochastic vehicle routing problem with a sample scenario hedging
heuristic,” Transp. Sci., vol. 40, no. 4, pp. 421–438, 2006.

[27] R. C. Eberhart and J. Kennedy, “A new optimizer using particle swarm
theory,” in Proc. 6th Int. Symp. Micro Mach. Human Sci., vol. 1. Nagoya,
Japan, 1995, no. 39–43.

[28] W.-N. Chen et al., “A novel set-based particle swarm optimization
method for discrete optimization problems,” IEEE Trans. Evol. Comput.,
vol. 14, no. 2, pp. 278–300, Apr. 2010.

[29] H. Wu, C. Nie, F.-C. Kuo, H. Leung, and C. J. Colbourn, “A discrete
particle swarm optimization for covering array generation,” IEEE Trans.

Evol. Comput., vol. 19, no. 4, pp. 575–591, Aug. 2015.

[30] Y.-H. Jia, W.-N. Chen, and X.-M. Hu, “A PSO approach for software
project planning,” in Proc. ACM GECCO, Vancouver, BC, Canada, 2014,
pp. 7–8.

[31] J. E. Bell and P. R. McMullen, “Ant colony optimization techniques for
the vehicle routing problem,” Adv. Eng. Inf., vol. 18, no. 1, pp. 41–48,
2004.

[32] Y. Marinakis, M. Marinaki, and G. Dounias, “A hybrid particle swarm
optimization algorithm for the vehicle routing problem,” Eng. Appl. Artif.

Intell., vol. 23, no. 4, pp. 463–472, 2010.
[33] C. Prins, “A simple and effective evolutionary algorithm for the vehicle

routing problem,” Comput. Oper. Res., vol. 31, no. 12, pp. 1985–2002,
2004.

[34] P. Toth and D. Vigo, Vehicle Routing: Problems, Methods, and

Applications. Philadelphia, PA, USA: SIAM, 2014.
[35] K. Lund, O. B. G. Madsen, and J. M. Rygaard, “Vehicle routing prob-

lems with varying degrees of dynamism,” IMM Inst. Math. Model., Tech.
Univ. Denmark, Lyngby, Denmark, Tech. Rep. IMM-REP-1996-1, 1996.

[36] A. Larsen, “The dynamic vehicle routing problem,” Ph.D. disserta-
tion, Dept. Comput. Inf. Sci., Tech. Univ. Denmark, Kongens Lyngby,
Denmark, 2001.

[37] Y. V. Pehlivanoglu, “A new particle swarm optimization method
enhanced with a periodic mutation strategy and neural networks,” IEEE

Trans. Evol. Comput., vol. 17, no. 3, pp. 436–452, Jun. 2013.
[38] C. Li, S. Yang, and T. T. Nguyen, “A self-learning particle swarm

optimizer for global optimization problems,” IEEE Trans. Syst., Man,

Cybern. B, Cybern., vol. 42, no. 3, pp. 627–646, Jun. 2012.
[39] Y. Wang and L. Li, “Heterogeneous redundancy allocation for series-

parallel multi-state systems using hybrid particle swarm optimization
and local search,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans,
vol. 42, no. 2, pp. 464–474, Mar. 2012.

[40] Y. Fu, M. Ding, C. Zhou, and H. Hu, “Route planning for unmanned
aerial vehicle (UAV) on the sea using hybrid differential evolution and
quantum-behaved particle swarm optimization,” IEEE Trans. Syst., Man,

Cybern., Syst., vol. 43, no. 6, pp. 1451–1465, Nov. 2013.
[41] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive

learning particle swarm optimizer for global optimization of multimodal
functions,” IEEE Trans. Evol. Comput., vol. 10, no. 3, pp. 281–295,
Jun. 2006.

[42] Z.-L. Chen and H. Xu, “Dynamic column generation for dynamic vehicle
routing with time windows,” Transp. Sci., vol. 40, no. 1, pp. 74–88,
2006.

[43] P. Kilby, P. Prosser, and P. Shaw, “Dynamic VRPs: A study of sce-
narios,” Dept. Comput. Inf. Sci., Univ. Strathclyde, Glasgow, U.K.,
Tech. Rep. APES-06-1998, 1998.

[44] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory,
vol. 28, no. 2, pp. 129–137, Mar. 1982.

[45] C. Nilsson, “Heuristics for the traveling salesman problem,” Dept.
Cybern. Artif. Intell., Linköping Univ., Linköping, Sweden, Tech. Rep.,
2003.

[46] B. I. Kim, J. I. Shim, and M. Zhang, “Comparison of TSP algorithms,”
Project for Models in Facilities Planning and Materials Handling, 1998.

[47] É. Taillard, “Parallel iterative search methods for vehicle routing prob-
lems,” Netw., vol. 23, no. 8, pp. 661–673, 1993.

[48] M. L. Fisher and R. Jaikumar, “A generalized assignment heuristic for
vehicle routing,” Netw., vol. 11, no. 2, pp. 109–124, 1981.

Ya-Hui Jia (S’14) received the bachelor’s degree
from Sun Yat-sen University, Guangzhou, China,
in 2013, where he is currently pursuing the Ph.D.
degree.

He is a Research Assistant with the School
of Computer Science and Engineering, South
China University of Technology, Guangzhou. His
current research interests include evolutionary com-
putation algorithms and their applications on soft-
ware engineering, cloud computing, and intelligent
transportation.



JIA et al.: DYNAMIC LOGISTIC DISPATCHING SYSTEM WITH S-PSO 1621

Wei-Neng Chen (S’07–M’12) received the bache-
lor’s and Ph.D. degrees from Sun Yat-sen University,
Guangzhou, China, in 2006 and 2012, respectively.

He is currently a Professor with the School
of Computer Science and Engineering, South
China University of Technology, Guangzhou. His
current research interests include swarm intelligence
algorithms and their applications on cloud comput-
ing, operations research, and software engineering.
He has published over 70 papers in international
journals and conferences.

Dr. Chen was a recipient of the IEEE Computational Intelligence Society
Outstanding Dissertation Award for his doctoral thesis in 2016, and the
National Science Fund for Excellent Young Scholars in 2016.

Tianlong Gu received the M.Eng. degree from
Xidian University, Xi’an, China, in 1987, and the
Ph.D. degree from Zhejiang University, Hangzhou,
China, in 1996.

From 1998 to 2002, he was a Research Fellow
with the School of Electrical and Computer
Engineering, Curtin University of Technology,
Bentley, WA, Australia, and a Post-Doctoral
Fellow with the School of Engineering, Murdoch
University, Perth, WA, Australia. He is currently
a Professor with the School of Computer Science

and Engineering, Guilin University of Electronic Technology, Guilin, China.
His current research interests include formal methods, data and knowledge
engineering, software engineering, and information security protocol.

Huaxiang Zhang received the Ph.D. degree from
Shanghai Jiao Tong University, Shanghai, China,
in 2004.

He is currently a Professor with the School
of Information Science and Engineering, Shandong
Normal University, Jinan, China, where he was
an Associate Professor with the Department of
Computer Science, from 2004 to 2005. He has
authored over 100 journal and conference papers and
holds eight invention patents. His current research
interests include machine learning, pattern recogni-

tion, evolutionary computation, and Web information processing.

Huaqiang Yuan received the Ph.D. degree from
Shanghai Jiao Tong University, Shanghai, China,
in 1996.

He is currently a Professor with the School of
Computer Science and Network Security, Dongguan
University of Technology, Dongguan, China. His
current research interests include computational
intelligence and cyberspace security.

Ying Lin (M’12) received the Ph.D. degree in
computer applied technology from Sun Yat-sen
University, Guangzhou, China, in 2012.

She is currently an Assistant Professor with the
Department of Psychology, Sun Yat-sen University.
Her current research interests include computational
intelligence and its applications in network analysis
and cognitive diagnosis.

Wei-Jie Yu (S’10–M’14) received the bache-
lor’s degree in network engineering and the
Ph.D. degree in computer application technology
from Sun Yat-sen University, Guangzhou, China,
in 2009 and 2014, respectively.

He is currently a Lecturer with the School of
Information Management, Sun Yat-sen University.
His current research interests include differential
evolution, artificial bee colony optimization, ant
colony optimization, particle swarm optimization,
and their applications in real-world problems.

Jun Zhang (M’02–SM’08–F’16) received the Ph.D.
degree in electrical engineering from the City
University of Hong Kong, Hong Kong, in 2002.

He is currently a Professor with the South
China University of Technology, Guangzhou, China.
His current research interests include computational
intelligence, cloud computing, wireless sensor net-
works, operations research, and power electronic
circuits. He has authored seven research books and
book chapters, and over 50 IEEE TRANSACTIONS

papers in the above areas.
Prof. Zhang was a recipient of the National Science Fund for Distinguished

Young Scholars in 2011, and the First-Grade Award in Natural Science
Research from the Ministry of Education, China, in 2009. He was also
appointed as the Changjiang Chair Professor in 2013. He is currently
an Associate Editor of the IEEE TRANSACTIONS ON EVOLUTIONARY

COMPUTATION, the IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS,
and the IEEE TRANSACTIONS ON CYBERNETICS. He is the Founding
and Current Chair of the IEEE Guangzhou Subsection, the IEEE
Beijing (Guangzhou) Section Computational Intelligence Society Chapters,
and the ACM Guangzhou Chapter.


