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This paper examines the continuous-time portfolio-consumption
problem of an agent with a recursive utility in the presence of nonlinear
constraints on the wealth. Using backward stochastic differential equa-
tions, we state a dynamic maximum principle which generalizes the char-
acterization of optimal policies obtained by Duffie and Skiadas [J. Math
Econ. 23, 107–131 (1994)] in the case of a linear wealth. From this prop-
erty, we derive a characterization of optimal wealth and utility processes as
the unique solution of a forward-backward system. Existence of an optimal
policy is also established via a penalization method.

0. Introduction. In this paper, we consider the continuous-time portfolio-
consumption problem of an agent with a recursive utility when the wealth is
supposed to satisfy a nonlinear equation. The case of the large investor or
the case of constraints such as taxes can be modeled as special cases of this
setting.

The optimization problem in the case of a standard utility and linear wealth
in a complete market has been largely studied in the literature. Originally
introduced by Merton (1971) in the context of constant coefficients and treated
by Markovian methods via the HJB equation, it was developed for general pro-
cesses by the martingale approach by Karatzas, Lehoczky and Shreve (1987)
and Cox and Huang (1989).

In the case of an incomplete market, Duffie, Fleming and Zariphopoulou
(1991), Duffie and Zariphopoulou (1993) have provided some existence results
and characterization of optimal policies in the Markovian case by consider-
ing the HJB equation. In the non-Markovian but still incomplete case, some
results of existence and characterization of optimal policies have been obtained
using martingale and duality techniques by He and Pearson (1991) and
Karatzas, Lehoczky, Shreve and Xu (1991). Similar results have been derived
by Cvitanic and Karatzas (1992), who consider the more general case of con-
straints on the portfolio weights. More recently, Cuoco (1997) considered the
optimal consumption problem in the presence of a stochastic endowment and
constraints on the portfolio choices. He stated a nice existence result under
fairly general assumptions using some fine techniques of analysis and gave
also a characterization of optimal consumption policies.
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Duffie and Skiadas (1994) have considered the optimization problem when
there are no constraints on the wealth and portfolios but when the util-
ity is nonlinear; the case of a recursive utility [as introduced by Duffie and
Epstein (1992)] was included. They presented a martingale version of the
Kuhn–Tucker condition for optimal policies (which gives a characterization of
optimality). To our knowledge, no existence result has been proved in this case.

In this paper, we consider the optimization problem when the utility is
recursive with constraints on the wealth, which include the case of a large
investor or the case of taxes. In other terms, the utility and the wealth pro-
cesses are supposed to satisfy nonlinear equations. In this work, we emphasize
the symmetry between utility and wealth and show that the formulation of
this problem using BSDEs (backward stochastic differential equations) is the
good one. Recall that these BSDEs have been introduced by Pardoux and Peng
(1990) and that their properties and their applications to finance have been
developed by El Karoui, Peng and Quenez (1997). As it has been noted in this
paper, a recursive utility process can be seen as the solution of a BSDE which
is not necessarily linear. Furthermore, the comparison theorem for BSDEs
gives quite easily that the positive constraint on the wealth process is equiv-
alent to the positivity of the terminal wealth only. Using this property, it is
possible to take the terminal wealth instead of the portfolio process as control.
Consequently, the problem can be written in a backward formulation which
emphasizes the symmetry between utility and wealth; more precisely, for a
given consumption process and a given positive terminal wealth, the utility
and wealth processes are both solutions of nonlinear BSDEs.

Using BSDE techniques, we generalize the characterization of optimality
obtained by Duffie and Skiadas (1994). To do this, we derive a maximum
principle which gives a necessary and sufficient condition of optimality. As in
Duffie and Skiadas (1994) and Schroder and Skiadas (1997), this character-
ization can be written in terms of the optimal utility and wealth processes
but also their associated optimal deflators. Furthermore, from the maximum
principle, we can derive a characterization of the optimal wealth and utility
and their associated deflators as the unique solution of a forward-backward
system.

Also, we state in this paper the existence and the uniqueness of an optimal
strategy. The method consists of approaching our problem by a sequence of
penalized optimization problems for which there is existence and uniqueness
of an optimal strategy. Then, by using the maximum principle applied to the
penalized problems, we show that this sequence is locally weakly compact and
we derive the existence of an optimal solution.

The outline of the paper is the following. In Sections 1 and 2, we present
the model of recursive utility and nonlinear wealth and give some examples.
The agent, endowed with initial wealth x, makes his choice among feasible
strategies, in order to maximize his recursive utility. The value function of
this optimization problem is called maximal reward. In Section 3, we state a
comparison theorem concerning maximal rewards, from which the finiteness
of the maximal reward is derived. Then, we give a backward formulation of
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our problem which emphasizes the symmetry between utility and wealth, both
satisfying non linear BSDEs.

In Section 4, using this backward formulation, we obtain a characterization
of optimality. First, we derive a maximum principle which gives a necessary
condition. Second, in the general case, using concavity properties and the com-
parison theorem, we state that this condition is sufficient.

In Section 5, we state the existence and the uniqueness of an optimal strat-
egy. We proceed by first approaching our problem by a sequence of penalized
optimization problems for which there is existence and uniqueness of an opti-
mal strategy. Then, by using the maximum principle applied to the penalized
problems, we show that this sequence is bounded in a space of positive and
square-integrable variables and processes. Consequently, there exists a sub-
sequence which converges in a weak sense; we then show that the limit is
optimal for our problem.

In Section 6, we derive a characterization of the optimal wealth and utility
as the solution of a forward-backward system. In the last section, we give some
examples which illustrate this characterization. First, we consider the exam-
ple of a recursive utility and a linear wealth [studied by Duffie and Skiadas
(1994) and also Schroder and Skiadas (1997)]. Second, we consider the case of
a generalized recursive utility and linear wealth. In these two examples, the
optimal utility process and its associated deflator satisfy a forward-backward
system. Third, we analyze the example of a large investor and a standard lin-
ear utility function. In this case, the optimal wealth process and its associated
deflator satisfy a forward-backward system.

1. The utility process. Recall that in the continuous case, under uncer-
tainty, the notion of recursive utility was first introduced by Duffie and Epstein
(1992) to allow a separation between risk aversion and intertemporal
substitution.

Let us consider a small agent who can consume between time 0 and time
T. Let ct be the (positive) consumption rate at time t. We suppose that there
exists a terminal reward Y at time T. The utility at time t is a function of
the instantaneous consumption rate ct and of the future utility (corresponding
to the future consumption). More precisely, the recursive utility at time t is
defined by

Yt = E

[
Y+

∫ T

t
f�s	 cs	Ys	Zs� ds ��t

]
	(1)

where �t denotes the natural filtration associated with the n-dimensional
Brownian motion W and where f is called a standard driver. Note that the
standard driver f can also depend on the “variability” process Zt (recall that
�Z��2 is the integrand of the quadratic variation of the process Y). As has been
noted by El Karoui, Peng and Quenez (1997), the utility process can be seen
as the solution of the BSDE given by

− dYt = f�t	 ct	Yt	Zt� dt−Z∗
t dWt	 YT = Y�(2)
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Recall that the recursive utility defined by Duffie and Epstein (1992) cor-
responds to the case where the driver f (called also the aggregator) does not
depend on Zt. For example, the standard utility corresponds to a driver of the
form

f�c	 y	 z� = u�c� − βy�

It is given by

Yt = E

[
Ye−β�T−t� +

∫ T

t
u�cs� e−β�s−t� ds ��t

]
�

Another example is given by the Uzawa utility for which the driver has the
same form as the additive utility, but the discounting rate β depends on the
consumption rate ct:

f�c	 y� = u�c� − β�c�y�
The additive utility (and also the Uzawa utility) can be generalized quite
naturally by considering a driver of the form (in the case of a one-dimensional
Brownian motion)

f�c	 y	 z� = u�c� − βy− γ�z�	
where γ is a positive constant which can be interpreted as a risk-aversion coef-
ficient or an ambiguity aversion coefficient [see Chen and Epstein (1999)]. In
the case of an n-dimensional Brownian motion, the model (called γ-ignorance)
becomes

f�c	 y	 z� = u�c� − βy− γ · �z�	
where γ = �γ1	 � � � 	 γn� and where �z� denotes the n-dimensional vector with
ith component �zi�.

We will now specify the notation. Given a probability space ��	� 	�� and
an �n-valued Brownian motionW, we denote by 	��t�
 t ∈ �0	T� the filtration
generated by the Brownian motion W and augmented, and by � the σ-field
of predictable sets of �×�0	T. Let �2T��d� be the space of all �T-measurable
random variables X:� �→ �d satisfying �X�2 = Ɛ��X�2� < +∞. Also, �2

T��d�
will denote the space of all predictable processes ϕ:�×�0	T �→ �d such that
�ϕ�2 = Ɛ

∫ T
0 �ϕt�2 dt < +∞� For notational simplicity, we will often write �2T

instead of �2T��d�	�2
T instead of �2

T��d�.
We make some classical assumptions which ensure that BSDE (2) has a

unique solution.

Assumption A1. f satisfies the assumptions of standard drivers. More pre-
cisely, it is a real process defined on �0	T×�×�×�×�n which is � ×���2�×
���n�-measurable. It is supposed to be uniformly Lipschitz with respect to y	 z;
that is, there exists a constant K > 0 such that

∀t	 c	ω	y1	 y2	 z1	 z2

�f�t	ω	 c	 y1	 z1� − f�t	ω	 c	 y2	 z2�� ≤K��y1 − y2� + �z1 − z2���
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Assumption A2. We suppose that there exist some constants k1, k2 such
that

∀c ∈ �+ �f�t	 c	0	0�� ≤ k1 + k2
cp

p
a.s. with 0 ≤ p < 1 and p �= 0�

Assumptions A1 and A2 ensure that, for each c ∈ �2 and each terminal
reward Y ∈ �2, BSDE (2) has a unique solution �Y	Z� in �2 ×�2.

We also make the following natural assumptions.

Assumption A3. f is strictly concave with respect to c	 y	 z and f is a
strictly nondecreasing function with respect to c.

Assumption A3 ensures, by the comparison theorem, the usual properties
of utility functions, that is, monotonicity with respect to the terminal value
and to the consumption and concavity with respect to the consumption.

In general, the terminal valueY will measure the utility of terminal wealth,
that is, Y�ω� = h�XT�ω�	ω�, where XT is the value of the agent’s wealth at
terminal time T and where h satisfies the following assumptions.

Assumption A4. h is a real function defined on �×� which is �T×����-
measurable. Furthermore, it is strictly concave and strictly nondecreasing with
respect to x and satisfies

∀x ∈ �+ �h�x�� ≤ k1 + k2
xp

p
a.s. with 0 < p < 1�

Assumption A4 ensures that, for eachXT ∈ �2, the variable h�XT� ∈ �2/p ⊂
�2, and that the recursive utility associated with this terminal value is increas-
ing and concave with respect to terminal wealth.

In the next section, we will specify the dynamics satisfied by the wealth
process.

2. The wealth process. The agent can also invest some of his wealth in
the market which contains n+ 1 assets. One of them is a nonrisky asset (the
money market instrument), with price per unit P0

t governed by the equation

dP0
t = P0

t rt dt	(3)

where rt is the short rate.
In addition to the bond, n risky securities (the stocks) are continuously

traded. The price process Pi
t for one share of ith stock is modeled by the

linear stochastic differential equation

dPi
t = Pi

t

[
bit dt+

n∑
j=1

σ
i	j
t dW

j
t

]
�(4)

The predictable volatility matrix σt = �σi	jt � is supposed to have full rank.
The small agent, whose actions cannot affect market prices, can decide

at time t ∈ �0	T what amount πi
t of the wealth Xt to invest in the ith
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stock, i = 1	 � � � 	 n. Of course, his decisions can only be based on the current
information ��t�, that is, πt = �π1

t 	 π
2
t 	 � � � 	 π

n
t �∗ and π0

t = Xt −
∑n

i=0 π
i
t are

predictable.
A general setting for the wealth equation can be given by

− dXt = b�t	 ct	Xt	 σ
∗
t πt� dt− π∗

t σt dWt�(5)

Here are some examples of some possible wealth equations.

The standard linear case. This corresponds to the following dynamics:

dXt = �rtXt + π∗
t σtθt − ct� dt+ π∗

t σt dWt	

where θt is the risk premium vector, such that bt − rt1 = σtθt � a.s where 1
is the vector whose every component is 1. The driver b is then given by

b�t	 ct	 x	 σ∗
t π� = −rtx− π∗σtθt + c�

Example of taxes. We suppose that there is a higher interest rate for
borrowing Rt ≥ rt and that there are some taxes which must be paid on the
gains made on the risky securities. In this case, the wealth processX satisfies

−dXt = b�t	 ct	Xt	 σ
∗
t πt� dt− π∗

t σt dWt	

where the driver b of this SDE is given by the convex process

b�t	 c	 x	 σ∗
t π� = −rtx− π∗σtθt + α�π∗σtθt�+ + �Rt − rt�

(
x−

n∑
i=1

πi

)−
+ c	

where α is a positive constant.

Example of the large investor. The example of the nonlinear portfolio-
dynamics large investor has been considered by Cuoco and Cvitanic (1995).
The prices of the nonrisky assets follow the dynamics

dP0
t = P0

t �rt + f0�Xt	πt� dt	

dPi
t = Pi

t

[
�bit + fi�Xt	πt��dt+

n∑
j=1

σ
i	j
t dW

j
t

]
�

(6)

Here, fi� �+ × �n → �	 0 ≤ i ≤ n, are some given functions which rep-
resent the effect of the strategies chosen by the investor on the prices. The
self-financing assumption gives that the dynamics of the total wealth Xt are
given by

−dXt = b�t	 ct	Xt	 σ
∗
t πt� dt− π∗

t σt dWt	

where

b�t	 c	 x	 σ∗
t π� = −rtx− �x− π∗1�f0�x	π� − π∗�bt − rt1 + f�x	π� + c	(7)

with f = �f1	 f2	 � � � 	 fn�∗.
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As seen in most of the examples, the driver b of the wealth process gen-
erally satisfies similar assumptions as the driver of the utility process. More
precisely,

Assumption A5. b satisfies the assumptions of a standard driver. In par-
ticular, it is Lipschitz with respect to x	π, uniformly with respect to �t	ω	 c�.

Assumption A6. There exists a positive constant k such that, ∀c ∈ �+

�b�t	 c	0	0�� ≤ kc a.s.

Assumption A7. The function b is nondecreasing with respect to c and
convex with respect to c	 x	π.

Assumption A8. ∀ c ∈ �+	 b�t	 c	0	0� ≥ 0 a.s.

The initial wealth X0 = x ≥ 0 is taken as a primitive. Let �Xx	c	π
t 	0 ≤

t ≤ T� be the wealth process associated with initial wealth x and strategy
�c	 π� ∈ �2��� ×�2��n�; that is, �Xx	c	π

t 	0 ≤ t ≤ T� is solution of the forward
equation (5) withXx	c	π

0 = x. Notice that, since b is Lipschitz, given an initial
investment x and a risky portfolio π, there exists a unique wealth process
solution. Assumption A7 ensures, by the forward comparison theorem, the
concavity of the wealth process Xx	c	π with respect to �c	 π�.

The investor, endowed with initial wealth x, has to choose a portfolio-
consumption strategy �c	 π� feasible for the initial wealth x; that is, �c	 π� ∈
�2��� ×�2��n�, with ct ≥ 0 and Xx	c	π

t ≥ 0d�⊗ dt a.s.
We denote by �	 �x� the set of consumption-portfolio strategies �c	 π� feasible

for the wealth x.
AssumptionA8 ensures, by the backward comparison theorem, that if the ter-

minal wealthXx	c	π
T is positive, thenXx	c	π

t is positive at each time t ∈ �0	T.
(Indeed, the pair �Xx	c	π	 π� satisfies (5) with terminal value Xx	c	π

T .) This
property will be exploited in the optimization problem to transform the posi-
tive constraint on the wealth process into a simple positive constraint on the
terminal wealth only.

3. Classical and backward formulations of the problem of
maximization of recursive utility.

3.1. Formulation of the problem. Let us consider a small investor, endowed
with initial wealth x > 0, who chooses at each time t his stock portfolio πt and
his consumption process ct. (Hereafter, to simplify notation, we shall suppose
that the invertible matrix σ is the identity matrix. It is not restrictive since,
in the general case, if we put q = σ∗π, we are led back to the case σ = I.)
Under this assumption, the market value Xx	c	π of the portfolio satisfies the
following equation:

− dXt = b �t	 ct	Xt	 πt�dt− π∗
t dWt�(8)
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The investor wants to choose a portfolio-consumption strategy belonging
to �	 �x� so that it optimizes the utility of consumption and terminal wealth,
X

x	c	π
T . Hence, the classical optimization problem can be written

sup
�c	 π�∈ �	 �x�

Y
�x	 c	 π�
0 	

where Y�x	c	π� is the recursive utility associated with driver f�t	 ct	 y	 z� and
terminal reward h�Xx	c	π

T �. Let us define the maximal reward by

V�x� = sup
�c	 π�∈ �	 �x�

Y
�x	 c	 π�
0 �

It seems natural that the investor prefers to start from a higher wealth than
from a smaller one. In other terms, V is nondecreasing with respect to initial
wealth x:

Proposition 3.1. The maximal reward is nondecreasing with respect to
initial wealth x. It follows that, for each x ≥ 0,

V�x� = sup
0≤y≤x

sup
�c	 π�∈ �	 �y�

Y
�y	 c	 π�
0 �

Proof. The proof is based on the classical comparison theorem for forward
SDEs [see, e.g., Karatzas and Shreve (1988), page 291] and the comparison
theorem for backward SDEs [see El Karoui, Peng and Quenez (1997), Theorem
2.5]. First, by the forward comparison theorem, the wealth is nondecreasing
with respect to the initial wealth; that is, for 0 ≤ y ≤ x and for each portfolio-
consumption strategy �c	 π� ∈ �	 �y�, we have X

�y	 c	 π�
t ≤ X

�x	 c	 π�
t 	0 ≤ t ≤

T a.s., and hence, �c	 π� ∈ �	 �x�. Since h is nondecreasing, it follows that
h�X�y	 c	 π�

T � ≤ h�X�x	 c	 π�
T �. Then, the backward comparison theorem gives that

Y
�y	 c	 π�
0 ≤ Y

�x	 c	 π�
0 and the result follows easily. ✷

3.2. Comparison theorem and finiteness of the maximal reward. We first
state a comparison theorem concerning these maximal rewards. If we con-
sider two optimization problems for which the first utility process (respectively
wealth process) is smaller (respectively greater) than the second one, then the
first maximal reward is smaller than the second one.

Theorem 3.2. Let �b1	 f1	 h1�	 �b2	 f2	 h2� be two standard parameters sat-
isfying the above assumptions with

h1�x� ≤ h2�x�

f1�t	 c	 y	 z� ≤ f2�t	 c	 y	 z�

b1�t	 c	 x	 π� ≥ b2�t	 c	 x	 π��

(9)
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Let V1�x� �respectively V2�x�� be the maximal reward associated with �b1	 f1	
h1� �respectively �b2	 f2	 h2��. Then

V1�x� ≤ V2�x��

Proof. The arguments are the same as those used in the proof of
Proposition 3.1. Let �	1�x� (respectively �	2�x�) be the set of feasible strate-
gies associated with V1�x� (respectively V2�x�). By the forward comparison
theorem, since −b1 ≤ −b2, for each portfolio-consumption strategy �c	 π� ∈
�	1�x�	 X1	 x	 c	 π ≤ X2	 x	 c	 π , and hence, �c	 π� ∈ �	2�x�. Also, since h is nonde-

creasing, h�X1	 x	 c	 π
T � ≤ h�X2	 x	 c	 π

T �, and by the backward comparison
theorem, Y1	 x	 c	 π

0 ≤ Y
2	 x	 c	 π
0 , and the result follows. ✷

Remark. Note that the same proof shows that, if in addition to the assump-
tions of Theorem 3.2, we have 0 ≤ x1 ≤ x2, then V1�x1� ≤ V2�x2�. This result
generalizes Proposition 3.1.

The finiteness of the maximal reward is usually taken as an assumption,
except in the case of a linear wealth and a standard additive HARA utility
function [see Karatzas (1989)] for which an explicit formula can be given.
The Comparison Theorem 3.2 will allow us to give a sufficient condition for
the maximal reward to be finite. First, by the results of Karatzas (1989), we
easily derive the following:

Proposition 3.3. Suppose that f�t	 c	 y	 z� = U�c�+Cy+ b2�t� · z	 h�x� =
xp/p and b�t	 c	 x	 π� = −rtx−b1�t�∗π+kc, whereU�c� = cp/pwith 0 < p < 1,
and C (respectively k) is a positive (respectively strictly positive) constant and
b1�t�	 b2�t� are predictable bounded coefficients. Then, V�x� = Kxp, where K
is a positive constant.

Proof. See the Appendix.

From this proposition and the comparison theorem, we derive a sufficient
condition for the utility function to be finite, by assuming:

Assumption A9. There exists a constant k > 0 such that

b�t	 c	0	0� ≥ kc	 c ≥ 0�

(Notice that this assumption is satisfied in all the examples.)

Theorem 3.4. Suppose that Assumptions A1 to A9 are satisfied. Then, the
maximum reward is finite and satisfies

V�x� ≤K�xp + 1�	 x ≥ 0�
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Proof. This theorem is based essentially on assumptions A2, A4 and A9.
The convexity and concavity of b and f and Assumptions A2 and A9 give

b�t	 c	 x	 π� ≥ b�t	 c	0	0� −Cx− b1�t�π ≥ kc−Cx− b1�t�π	

f�t	 c	 y	 z� ≤ f�t	 c	0	0� +Cy+ b2�t�∗z ≤ k1 + k2
cp

p
+Cy+ b2�t�∗z	

where C is the Lipschitz constant of b and f with respect to x and y, where
−b1�t� ∈ ∂πb�t	 c	0	0�	 the (bounded) subdifferential of b with respect to π,
and b2�t� ∈ ∂zf�t	 c	0	0�	 the (bounded) superdifferential of f with respect
to z. The Comparison Theorem 3.2 and Proposition 3.3 lead to the desired
result. ✷

3.3. Backward formulation of the problem. Recall that, by Assumption A8
and by the comparison theorem, the positive constraint on the wealth process
X

x	c	π
t ≥ 0	0 ≤ t ≤ T, is equivalent to the positivity constraint on the ter-

minal wealth X
x	c	π
T ≥ 0. Using this property, we will show that the set of

controls can be changed; more precisely, instead of taking the portfolio pro-
cess as control, it is possible to take the terminal wealth. According to Duffie
and Skiadas’s (1994) paper, we take as primitive a consumption space 
 , the
subset of predictable measurable positive processes ct which belong to �2 (i.e,
such that E

[∫ T
0 c2t dt

]
< +∞), and a terminal value space � , the set of square-

integrable �T measurable positive random variable ξ �� = ��2�+).

Definition 3.5. A couple �ξ	 c� ∈ � × 
 is called a consumption plan.
�X�ξ	 c�

t 	 π
�c	 ξ�
t � denotes the wealth and the portfolio associated with a given

consumption plan �ξ	 c�, solution of the BSDE

−dXt = b�t	 ct	Xt	 πt�dt− π∗
t dWt	

XT = ξ�
(10)

�Y�ξ	 c�	Z�ξ	 c�� denotes the utility of a consumption plan �ξ	 c�, solution of the
BSDE

−dYt = f�t	 ct	Yt	Zt�dt−Z∗
t dWt	

YT = h�ξ��
(11)

The coefficients b	 f and h are supposed to satisfy Assumptions A1 to A9.
In the context of consumption plans, the initial wealth x cannot be taken as

a primitive but it could naturally be considered as a constraint by considering
only consumption plans �ξ	 c� such that X�ξ	 c�

0 = x. But the set of such con-
sumption plans is not convex since b is nonlinear. Thus, the nonlinearity leads
us to impose a milder constraint: Xξ	c

0 ≤ x, so that we obtain a convex set.

Definition 3.6. A consumption plan �ξ	 c� ∈ � × 
 is called feasible for
the initial wealth x if and only if X�ξ	 c�

0 ≤ x. We will denote by 	 �x� the set
of consumption plans feasible for the initial wealth x.
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From Proposition 3.1, it follows that the optimization problem can be writ-
ten in the following backward formulation:

V�x� = sup
�ξ	 c�∈	 �x�

Y
�ξ	 c�
0 �(12)

Thus, the small investor has to choose a consumption plan �ξ	 c� belonging to
	 �x� so that it optimizes the recursive utility function given by Y�ξ	 c�

0 .

Remark 1. It should be noted that this backward formulation emphasizes
the symmetry between utility and wealth processes, which are both solutions
of non linear BSDEs.

Remark 2. Notice that if there exists an optimal consumption plan �ξ∗	 c∗�
for (12), then it is unique. Indeed, by the strict backward comparison theorem,

the functional �ξ	 c� �−→ Y
�ξ	 c�
0 is strictly concave because h and f are strictly

concave (by Assumptions A3 and A4).

4. Maximum principle. This section is devoted to the characterization
of optimal consumption plans. As in Duffie and Skiadas’s (1994) paper, we will
first use a theorem of convex analysis to show that this optimization problem is
equivalent to another optimization problem without constraint, with Lagrange
multiplier. Recall that the assumption of concavity (respectively convexity)
made on f and h (respectively b) ensure that the �-valued functionals defined
on � ×
 by

�ξ	 c� �−→ x−X
�ξ	 c�
0 	

�ξ	 c� �−→ Y
�ξ	 c�
0 	

are concave. Thus, we can apply classical results of convex analysis [see, e.g.,
Luenberger (1969), Corollary 8.31 and Theorem 8.4.2 and also the Appendix
for details].

Proposition 4.1. There exists a constant ν∗ > 0 �which depends on x�
such that

V�x� = sup
�ξ	 c�∈� ×


{
Y

�ξ	 c�
0 + ν∗

(
x−X

�ξ	 c�
0

)}
�(13)

Also, if the maximum is attained in �12� by �ξ∗	 c∗�, then it is attained

in �13� by �ξ∗	 c∗� with X
�ξ∗	 c∗�
0 = x. Conversely, if there exists ν0 > 0 and

�ξ0	 c0� ∈ 
 ×� such that the maximum is attained in

sup
�ξ	 c�∈� ×


{
Y

�ξ	 c�
0 + ν0

(
x−X

�ξ	 c�
0

)}
	(14)

with X
�ξ0	 c0�
0 = x, then the maximum is attained in �12� by �ξ0	 c0�.



MAXIMUM PRINCIPLE FOR RECURSIVE UTILITY 675

Remark. We will give in Section 5 another sufficient condition of optimal-
ity for (12) whichholdsundersomeadditionalassumptions (seeProposition5.4).

We now study, for a fixed constant ν > 0, the following optimization problem:

sup
�ξ	 c�∈� ×


J�ξ	 c�	(15)

where the functional J is defined on � ×
 by

J�ξ	 c� = Y
�ξ	 c�
0 − νX

�ξ	 c�
0 �

Our aim is now to derive a characterization of optimality for (15).

4.1. Maximum principle, a necessary condition for optimality. In this sec-
tion, by using some regularity properties of BSDEs, we derive a maximum
principle and thus, we obtain a necessary condition of optimality for (15),
under differentiability assumptions on f	 b and h. Thus, in this section, we
impose some smoothness conditions:

Assumption A10. h is supposed to be continuously differentiable and b
�respectively f� is continuously differentiable with respect to �c	 x	π� �respec-
tively �c	 y	 z��. Also, the functions h

′
	 fc and bc �the partial differentials of f

and b with respect to c� are supposed to be bounded.

Remark. Notice that the Lipschitz property of f and b with respect to
�y	 z�	 �x	π� involve the boundedness of fy	 fz	 bx	 bπ . Moreover, concerning
the derivative of h and the derivative with respect to c of f, instead of the
boundedness assumption, which is quite strong, it is possible to suppose only
that

fc�t	 c	 y	 z� ≤ C��c� + �y� + �z��	 hx�x� ≤ C�x��(16)

Let �ξ0	 c0� be an optimal consumption plan for (15), i.e., such that

sup
�ξ	 c�

J�ξ	 c� = J�ξ0	 c0��

Let �Y0	 z0� and �X0	 π0� be the utility and the wealth processes associated
with �ξ0	 c0�. Let �ξ	 c� be a consumption plan such that ξ − ξ0 and c − c0
are uniformly bounded (by a constant K). Then, for each 0 ≤ α ≤ 1, the pair
�ξ0 + α�ξ − ξ0�	 c0 + α�c− c0�� is a consumption-plan.

Let �Yα	Zα� and �Xα	πα� be the utility and the wealth processes associated
with �ξ0 + α�ξ − ξ0�	 c0 + α�c − c0��. Recall that by the results on BSDEs,
depending on parameters [see El Karoui, Peng and Quenez (1997)], the pair
�Yα	Zα� �respectively �Xα	πα� is right-differentiable at 0 with respect to α
in �2 ×�2, and the derivative �∂αY0	 ∂αZ

0� is solution of the following linear
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BSDE:

−d∂αY0
t = �f0

c�t��ct − c0t � + f0
y�t�∂αY0

t + f0
z�t�∂αZ0

t �dt
−�∂αZ0

t �∗ dWt	

∂αY
0
T = h

′ �ξ0��ξ − ξ0�	
(17)

where f0
c�t� = fc�t	 c0t 	Y0

t 	Z
0
t �	 f0

y�t� = fy�t	 c0t 	Y0
t 	Z

0
t �	 f0

z�t� = fz�t	 c0t 	
Y0
t 	Z

0
t �. Also, �Xα	πα� is right-differentiable at 0 with respect to α and the

derivative �∂αX0	 ∂απ
0� is solution of the following linear BSDE:

−d∂αX0
t = �b0c�t��ct − c0t � + b0x�t�∂αX0

t + b0π�t�∂απ0
t �dt

−�∂απ0
t �∗ dWt	

∂αX
0
T = �ξ − ξ0�	

(18)

where b0c�t� = bc�t	 c0t 	X0
t 	 π

0
t �, b0x�t� = bx�t	 c0t 	X0

t 	 π
0
t �, b0π�t� = bπ�t	 c0t 	

X0
t 	 π

0
t �.

Since �ξ0	 c0� is an optimal consumption plan, then for each α ∈ �0	1,
Yα

0 − νXα
0 ≤ Y0

0 − νX0
0�

By dividing the inequality by α and by letting α tend to 0, we obtain

∂αY
0
0 − ν∂αX

0
0 ≤ 0	(19)

where ∂αY
0
0	 ∂αX

0
0 denote the right-derivatives of Yα

0 and Xα
0 at α = 0.

To derive the maximum principle, we introduce the adjoint process associ-
ated with ∂αY0 and ∂αX0. The adjoint process of ∂αY0 is given by the process

3
�f0

y	 f
0
z�

t , solution of the following BDSE

d3t = 3t

(
f0
y�t�dt+ �f0

z�t��∗ dWt

)
	

30 = 1�

Also, the adjoint process of ∂αX0 is given by the process H�b0x	 b0π�
t , solution of

the following BSDE

dHt =Ht

(
b0x�t�dt+ �b0π�t��∗ dWt

)
	

H0 = 1�

Notice that the processH�b0x	 b0π�
t (respectively 3

�f0
y	 f

0
z�

t ) can also be interpreted
as a change of numeraire relative to the wealth and corresponding to the
coefficients �b0x	 b0π� (respectively a change of numeraire relative to the utility
and corresponding to the coefficients �f0

y	 f
0
z�). To simplify notation, hereafter,

we will denote H�b0x	 b0π�
t (respectively 3

�f0
y	 f

0
z�

t ) by H0
t (respectively by 30t ).

Before giving the maximum principle, we introduce a new assumption usu-
ally called the Inada condition, that is,
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Assumption A11. h �respectively f� satisfies h
′ �0� = +∞ �respectively

fc�t	0	 y	 z� = +∞ for each y	 z�.

Theorem 4.2. Suppose that Assumptions A1 to A11 are satisfied. Let
�ξ0	 c0� be an optimal consumption plan for �15�. Let �Y0	Z0� and �X0	 π0� be
the utility and the wealth processes associated with �ξ0	 c0�. Then, the following
maximum principle can be written:

30Th
′�ξ0� = νH0

T a�s�	(20)

30t fc�t	 c0t 	 y0
t 	 z

0
t � = νH0

t bc�t	 c0t 	 y0
t 	 z

0
t �	0 ≤ t ≤ T	 dt⊗ d� -a�s�(21)

Proof. By classical results on linear BSDEs, we have

∂αY
0
0 − ν∂αX

0
0 = E�30Th′�ξ0� − νH0

T��ξ − ξ0�

+E
∫ T

0

(
30t f

0
c�t� − νH0

t b
0
c�t�

)
�ct − c0t �dt�

(22)

This equality with (19) implies

E
[(
30Th

′�ξ0� − νH0
T

)(
ξ − ξ0

)] ≤ 0	(23)

for each ξ ∈ � s.t. ξ − ξ0 is bounded and

E
∫ T

0

(
30t f

0
c�t� − νH0

t b
0
c�t�

)
�ct − c0t �dt ≤ 0

for each c ∈ 
 s.t c− c0 is bounded.
Put A = {

30Th
′�ξ0�− νH0

T > 0
}
. Then, inequality (23) applied to ξ = ξ0+1A

leads to P�A� = 0. It follows that

30Th
′�ξ0� − νH0

T ≤ 0 a�s�(24)

Also, one can show easily that, on 	ξ0 > 0�, (20) is satisfied a.s. by considering,
for each ε > 0, the set B = 	30Th′�ξ0� − νH0

T < 0	 ξ0 ≥ ε�; indeed, inequality
(23) applied to ξ = ξ0 − ε1B implies that P�B� = 0.

To derive the desired result, it remains to show that if the Inada condition
is satisfied, then ξ0 > 0 a.s. Now, by inequality (23), on ξ0 = 0,

30Th
′�ξ0� ≤ νH0

T < +∞ a�s�	

which leads to a contradiction if h
′ �0� = +∞.

The same arguments hold for the consumption process. ✷

Remark. Note that if the Inada condition Assumption A11 is not satisfied,
then equality (20) (resp. (21)) is only satisfied on 	ξ0 > 0� (resp. 	c0t > 0�).
Furthermore, on 	ξ0 = 0�,

30Th
′�ξ0� − νH0

T ≤ 0	 a�s�	(25)

and on 	c0t = 0�,
30t fc�t	 c0t 	 y0

t 	 z
0
t � − νH0

t bc�t	 c0t 	 y0
t 	 z

0
t � ≤ 0	 dt⊗ d�-a.s.(26)



678 N. EL KAROUI, S. PENG AND M. C. QUENEZ

4.2. A sufficient condition for optimality. In this section, our aim is to
obtain that the necessary condition given by the maximum principle is also a
sufficient condition for a control �ξ0	 c0� to be optimal for (15). Recall that if,

in addition to this condition, �ξ0	 c0� satisfies also X�ξ0	c0�
0 = x, then �ξ0	 c0� is

an optimal solution for (12).
In the following, the notation and the assumptions are the same as in the

maximum principle (Theorem 4.2).

Theorem 4.3. Suppose that Assumptions A1 to A11 are satisfied. Let
�ξ0	 c0� be a consumption plan. Let �Y0	Z0� and �X0	 π0� be the utility and
the wealth processes associated with �ξ0	 c0�. Suppose that conditions �20� and
�21� are satisfied. Then, �ξ0	 c0� is optimal.

Remark. Actually, the boundedness assumption made on fc and h
′
is not

necessary for Theorem 4.3. It is sufficient to suppose that h
′ �ξ0� is square-

integrable and that the process f0
c�t� = fc�t	 c0t 	Y0

t 	Z
0
t � is square-integrable,

that is, E
∫ T
0 �f0

c�t��2 dt < +∞.

Proof of Theorem 4.3. The proof is based on the concavity and the con-
vexity properties of f and b and on the comparison theorem for BSDEs. (See
the Appendix for details.) ✷

Thus, Theorems 4.2 and 4.3 give that the maximum principle corresponds
to a necessary and sufficient condition of optimality. Let now t be a fixed time
between 0 and T. One can wonder what happens if we start from t. It can be
derived quite easily that the following holds.

Corollary 4.4. Let �ξ0	 c0� be a consumption plan satisfying conditions
�20� and �21�. Then, for each time t, it is optimal for the following dynamic
control problem:

ess sup
�ξ	 c�

{
Y

�ξ	 c�
t − νt X

�ξ	 c�
t

}
	

where the Lagrange multiplier at time t is given by

νt = νH0
t �30t �−1�

5. Existence of an optimal consumption plan. This section is devoted
to the proof of the existence. First, we will prove the existence of an optimal
consumption plan for the optimization problem (15) for each fixed ν > 0. Then,
we will derive an existence result for the problem (12). First, notice that the
functional J satisfies the following property.

Lemma 5.1. Suppose that Assumptions A1 to A10 are satisfied. Then, the
functional �ξ	 c� → J�ξ	 c�
� ×
 → � is strictly concave, strongly continuous
and weakly upper-semicontinuous.
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Proof. First, the strict concavity of J�ξ	 c� is involved by the strict con-
cavity of f and convexity of b by applying the strict comparison theorem for
BSDEs. Let us show that �ξ	 c� → Y

ξ	c
0 is continuous. Let �ξn	 cn� be a sequence

of consumption plans which converge (strongly in �2 × �2) to �ξ	 c�. By the
a priori estimates for BSDEs [see El Karoui, Peng and Quenez (1997)], we
have

�Y�ξn	 cn�
0 −Y

�ξ	 c�
0 � ≤K��h�ξn� − h�ξ��2 + �f��	 c�n	Y�	Z�� − f��	 c�	Y�	Z���2�	

where Y� = Y��ξ	 c� and Z� = Z��ξ	 c�. By Assumption A10, h (respectively f) is
Lipschitz with respect to x (respectively with respect to c), and it follows easily
that Y�ξn	 cn�

0 converges to Y
�ξ	 c�
0 . The same argument holds for the wealth.

Thus, the continuity of J follows. Since J is concave and strongly upper-
semicontinuous, it follows by classical convex analysis results that J is also
upper-semicontinuous for the weak convergence [see Brezis (1983), Corollary
3.8]. ✷

First, the uniqueness follows from the strict concavity of J�ξ	 c�. To prove
the existence, we introduce a penalty function:

Jε�ξ	 c� = J�ξ	 c� − ε

2

{
E
∫ T

0
�ct�2dt+ E�ξ�2

}
�

For fixed ε > 0, it is clear that, for each constant C, the set given by
{�ξ	 c� ∈

� × 
 
Jε�ξ	 c� ≥ C
}
is bounded (closed, convex and hence weakly compact).

By classical results of convex analysis [see Brezis (1983), Corollaire 3.20], this,
with the upper continuity and strict concavity of Jε, yields that the maximum
is uniquely attained; that is, there exists a unique pair �ξε	 cε� ∈ 	 �x� such
that

Jε�ξε	 cε� = sup
�ξ	 c�∈	 �x�

Jε�ξ	 c��

In the following, we assume the following condition:

Assumption A12. There exists α0 > 0 such that

fc�t	 c	 y	 z� ≤ C�c�−q ∀c ≥ α0	(27)

bc�t	 c	 x	 π� ≤ c1 > 0	

hx�x� ≤ C�x�−q ∀x ≥ α0	(28)

where q = 1− p ∈0	1�.

We now prove the following:

Lemma 5.2. Suppose that Assumptions A1 to A12 are satisfied. Then, the
set of consumption plans

{�ξε	 cε�}
ε>0 is uniformly bounded in � ×
 .
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Proof. Let �Xε	πε� (respectively �Yε	Zε�) be the wealth-portfolio process
(respectively the utility process) associated with the consumption plan �ξε	 cε�.
Let Hε be the wealth adjoint process, solution of

dHε
t =Hε

t �bεx�t�dt+ bεπ�t�dWt	 Hε
0 = 1	

and let 3ε be the utility adjoint process, solution of

d3εt = 3εt �fεy�t�dt+ fεz�t�dWt	 3ε0 = 1	

where the processes given by

bεx�t� = bx�t	 cεt 	Xε
t 	 π

ε
t �	 bεπ�t� = bπ�t	 cεt 	Xε

t 	 π
ε
t �	

fεy�t� = fy�t	 cεt 	Yε
t 	Z

ε
t �	 fεz�t� = fz�t	 cεt 	Yε

t 	Z
ε
t �	

are uniformly bounded by the Lipschitz constants of b and f.
The maximum principle (Theorem 4.2) applied to the penalty functions

gives that
on 	ξε > 0�,

3εThx�ξε� − νHε
T − εξε = 0 a�s�

on 	cεt > 0�,
3εtfc�t	 cεt 	Yε

t 	Z
ε
t � − νHε

t bc�t	 cεt 	Xε
t 	 π

ε
t � − εcεt = 0	 dt⊗ d	�-a.s.

Now, by Assumption A12 [(27) and (28)], it follows that on 	ξε ≥ α0�,
�ξε�q + εν−1�Hε

T�−1�ξε�1+q ≤ C3εTν
−1�Hε

T�−1 a�s�

and on 	cεt ≥ α0�,
�cεt �q + εν−1�Hε

t �−1C−1
1 �cεt �1+q ≤ CC−1

1 3εt ν
−1�Hε

t �−1	 dt⊗ d�-a.s.

Hence,

ξε ≤
[
C3εTν

−1�Hε
T�−1

]1/q
∨ α0	(29)

cεt ≤
[
CC−1

1 3εt ν
−1�Hε

t �−1
]1/q

∨ α0�(30)

Now, the following estimates hold:

E
[
sup
t∈�0	T

[
�Hε

t �l + �Hε
t �−l + �3εt �l + �3εt �−l

]]
≤ Cl ∀l > 0	

where the constant Cl depends only on l. The result easily follows. ✷

This lemma will allow us to derive the existence of an optimal consump-
tion plan.

Theorem 5.3. Suppose that Assumptions A1 to A12 are satisfied. There
exists a unique �ξ0	 c0� ∈ � ×
 that attains the maximum of the problem �15�.
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Proof. As seen above, the uniqueness is due to the strict concavity of
J�ξ	 c�. We proceed to prove the existence. Since the above introduced seq-
uence

{�ξε	 cε�} is bounded in � × 
 , there exists a subsequence which con-
verges weakly to �ξ0	 c0� in � × 
 . From the upper continuity (strong and
weak by concavity) of J�ξ	 c�, it follows that

lim
i→∞

J�ξεi	 cεi� ≤ J�ξ0	 c0��

But according to the definition of Jε and the boundedness of 	�ξε	 cε��, there
exists a C > 0 such that, for each ε,

sup
�ξ	 c�∈� ×


J�ξ	 c� ≤ J�ξε	 cε� +Cε�

Thus �ξ0	 c0� must be the optimal feasible plan. The proof is complete. ✷

From this result, we will derive the existence of an optimal consumption
plan for our primal problem (12). First, we state the following property which
gives a sufficient condition of optimality for (12).

Proposition 5.4. Suppose that Assumptions A1 to A12 are satisfied. Let ν∗

be such that equality �13� is satisfied. Suppose that the maximum is attained in

sup
�ξ	 c�∈
×�

{
Y

�ξ	 c�
0 − ν∗X�ξ	 c�

0

}
(31)

by �ξ∗	 c∗�. Then, �ξ∗	 c∗� is optimal for �12�.

Theorem 5.3 and Proposition 5.4 give the following existence result:

Theorem 5.5. Suppose that Assumptions A1 to A12 are satisfied. There
exists a unique �ξ∗	 c∗� ∈ � × 
 that attains the maximum of the problem
�12�.

Remark. Note that the Inada condition (A11) is not necessary for Lemma
5.2, Proposition 5.4 and Theorem 5.5.

Proof of Proposition 5.4. We introduce the dual (convex) functional Ṽ
defined on �∗

+ by

Ṽ�ν� = sup
�ξ	 c�∈
×�

{
Y

�ξ	 c�
0 − νX

�ξ	 c�
0

}
�

Note that by Theorem 5.3, Ṽ is finite on �∗
+. By Luenberger [(1969), Theorem

8.6.1], we have

V�x� = min
ν>0

{
Ṽ�ν� + νx

}
	(32)

and the minimum on the right is achieved by ν∗. Now, by the envelope theorem
[see Aubin (1984), page 52], the following lemma holds:
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Lemma 5.6. Ṽ is differentiable at ν∗ and Ṽ
′ �ν∗� = −X�ξ∗	c∗�

0 .

Since the minimum in (32) is achieved at ν∗, it implies that Ṽ
′ �ν∗� = −x

and hence X�ξ∗	 c∗�
0 = x. By Proposition 4.1, �ξ∗	 c∗� is optimal for (12). ✷

Proof of Lemma 5.6. The differentiability of Ṽ at ν∗ is based on the enve-
lope theorem applied to the family of convex functions

ν → Y
�ξ	 c�
0 − νX

�ξ	 c�
0 	

where �ξ	 c� belongs to a well-chosen subset of � ×
 which will be specified.
By Theorem 5.3, the function �ξ	 c� → Y

�ξ	 c�
0 − νX

�ξ	 c�
0 , defined on � × 
 ,

attains its maximum at a unique point denoted by �ξν	 cν�; the same arguments
as those used in the proof of Lemma 5.2 show that the set of consumption
plans

{�ξν	 cν�}
ν∈ν∗/2	+∞� is uniformly bounded in � ×
 . Hence, there exists

a bounded closed convex (and hence weakly compact) subset � of � ×
 such
that, for each ν ∈ν∗/2	+∞�,

Ṽ�ν� = sup
�ξ	 c�∈�

{
Y

�ξ	 c�
0 − νX

�ξ	 c�
0

}
�

Recall that, by Lemma 5.1, for each ν > 0, the function �ξ	 c� → Y
�ξ	 c�
0 −νX�ξ	 c�

0
is weakly upper-semicontinuous. Thus, the envelope theorem can be applied
and gives the desired result. ✷

Remark 1. Recall that Cuoco (1997) has given a proof of existence directly
on the primal problem (12) given by

V�x� = sup
�ξ	 c�∈	 �x�

Y
�ξ	 c�
0

in the case of a classical utility function of consumption Y
�ξ	 c�
0 = E�ξp/p +∫ T

0 �cpt /p�dt� and constraints on the wealth. If the feasible set 	 �x� was
weakly-compact, then, by classical results, the maximum would be achieved
in (12). But, in any case, 	 �x� is not weakly compact in �2 × �2 since it is
not even bounded. The issue is then to see in what sense 	 �x� is compact.
There is no simple answer to this problem. Cuoco proposes a very nice solution
by using some techniques of analysis: the problem is relaxed by extending it
on the closure of 	 �x� in a well-chosen space. Since this set is compact in
a weak sense for a well-chosen topology, standard arguments yield that the
maximum of the concave and upper-semicontinuous (in the topology of con-
vergence in measure) functional �ξ	 c� → Y

�ξ	 c�
0 is achieved. It can then be

proved that the projection of the above maximizer solves the original prob-
lem. In our context of recursive utilities, this approach could be adapted, but
it would involve quite a lot of additional work. [In particular, it is not clear
that the functional �ξ	 c� → Y

�ξ	 c�
0 is upper-semicontinuous in the topology of

convergence in measure.]
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Remark 2. One can wonder if our method can be applied to the case of
constraints on the wealth [El Karoui et al. (1997)] or on the portfolio weights
[El Karoui and Quenez (1995), Cvitanic and Karatzas (1993), Cuoco (1997)]. In
fact, our approach using classical BSDEs cannot be applied directly. However,
these problems can be obtained as the limit of constrained penalized problems
such as those considered in this paper.

6. Forward-Backward system. In this section, a characterization of the
optimum in terms of a backward-forward system is derived from the maximum
principle. Suppose that Assumptions A1 to A12 are satisfied. To simplify nota-
tion, let us denote �30	H0� and �Y0	Z0� by �3	H� and �Y	Z�.

Notice that the maximum principle gives that the optimal terminal wealth
ξ0 satisfies h

′ �ξ0� = νHT3
−1
T a.s. and hence,

ξ0 = J�νHT3
−1
T � a�s� 	(33)

where the function J is equal to �h′ �−1, the inverse of h
′
.

Furthermore, we will make the following assumption (which is always sat-
isfied in the examples):

Assumption A13. The driver of the wealth can be written as b�t	 c	 x	 π� =
b̄�t	 x	 π� + c	∀�t	 c	 x	 π� ∈ �0	T × �+ × �× �n�

In this case, the wealth driver b satisfies bc = 1 and it follows that the
optimal consumption c0t is simply given by

c0t = I�t	 νHt3
−1
t 	Yt	Zt�	 0 ≤ t ≤ T	 d�⊗ dt-a.s.	(34)

where, for each �t	 y	 z�, the function I is equal to �fc�−1�t	 �	 y	 z�, the inverse
of c→ fc�t	 c	 y	 z�.

In the following, we suppose that Assumptions A1 to A13 are satisfied. The
maximum principle (i.e., Theorems 4.2 and 4.3) gives

Theorem 6.1. Let �Y	Z�	 �X	π� and 3	H be predictable square-
integrable processes. They coincide with the optimal utility and wealth pro-
cesses and their associated deflators if and only if they are the unique solution
of the following forward-backward system:

−dXt = b �t	 I�t	 νHt3
−1
t 	Yt	Zt�	Xt	 πt�dt− π∗

t dWt	

XT = J�νHT3
−1
T �	

(35)

−dYt = f�t	 I�t	 νHt3
−1
t 	Yt	Zt�	Yt	Zt�dt−Z∗

t dWt	

YT = h�J�νHT3
−1
T ��	

(36)
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d3t = 3t

[
fy�t	 I�t	 νHt3

−1
t 	Yt	Zt�	Yt	Zt�dt

+ fz�t	 I�t	 νHt3
−1
t 	Yt	Zt�	Yt	Zt�∗ dWt

]
	

30 = 1	

dHt =Ht

[
bx

(
t	 I�t	 νHt3

−1
t 	Yt	Zt�	Xt	 πt

)
dt

+ bπ�t	 I�t	 νHt3
−1
t 	Yt	Zt�	Xt	 πt�∗ dWt

]
	

H0 = 1�

In this case, the optimal wealth ξ0 and consumption c0 are then given by �33�
and �34�.

Recall that the process �νt	0 ≤ t ≤ T� given for each t by νt = νHt3
−1
t

corresponds to the Lagrange multiplier process (see Corollary 4.4). By making
the change of variable At = Log�νt� = Log�νHt3

−1
t �, we derive easily the

following corollary.

Corollary 6.2. Let �Y	Z�	 �X	π� be some predictable square-integrable
processes; that is, they belong to �2���×�2��n�. They coincide with the optimal
utility and wealth processes if and only if there exists a process A ∈ �2��� such
that �Y	Z�	 �X	π� and A are the unique solution of the following forward-
backward system:

−dXt = b �t	 I�t	 eAt	Yt	Zt�	Xt	 πt�dt− π∗
t dWt	

XT = J�eAT�	
(37)

−dYt = f�t	 I�t	 eAt	Yt	Zt�	Yt	Zt�dt−Z∗
t dWt	

YT = h�J�eAT��	
(38)

dAt = φ�t	At	Xt	Yt	 πt	Zt�dt+ ψ�t	At	Xt	Yt	 πt	Zt�∗ dWt	

A0 = Log�ν�	
where

φ�t	 a	 x	 y	π	 z� = bx�t	 I�t	 ea	 y	 z�	 x	 π� − fy�t	 I�t	 ea	 y	 z�	 y	 z�
− 1

2 �bπ�t	 I�t	 ea	 y	 z�	 x	 π��2

+ 1
2 �fz�t	 I�t	 ea	 y	 z�	 y	 z��2

and

ψ�t	 a	 x	 y	π	 z� = bπ
(
t	 I�t	 ea	 y	 z�	 x	 π)− fz

(
t	 I�t	 ea	 y	 z�	 y	 z)�

In this case, the optimal wealth ξ0 and consumption c0 are then given by
ξ0 = J�eAT� and ct = I�t	 eAt	Yt	Zt�.
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Remark. Recall that there are some existence and uniqueness results con-
cerning the forward-backward systems. One has been obtained by Ma, Protter
and Yong (1994) in the Markovian case and another one has been obtained
by Hu and Peng (1995) in a non-Markovian case. Hence, if we are under the
assumptions corresponding to one of these two cases, then the solution of the
above forward-backward system satisfies the sufficient conditions (20), (21)
of Theorem 4.3 and hence corresponds to the optimal utility and wealth pro-
cesses. Thus, Theorem 6.1 can give in certain cases a method to derive the
existence.

7. Examples. In this section, we give some examples which illustrate the
characterization of the optimal utility and wealth process as the solution of a
forward-backward system.

7.1. Example of a recursive utility and a linear wealth. In this example
[see Duffie and Skiadas (1994) and Schroder and Skiadas (1997)], the driver of
the recursive utility function does not depend on Z, and hence, the dynamics
of the utility function are given by

−dYt = f�ct	Yt�dt−Z∗
t dWt	 YT = h�ξ�	

with f and h satisfying Assumptions A1 to A11. The wealth process satisfies
the classical linear dynamics:

−dXt = �−rtXt − π∗
t θt + ct�dt− π∗

t dWt�

Then, by Theorem 6.1, the optimal utility �Y	Z� and its associated deflator 3
are the unique solution of the forward-backward system

d3t = 3tfy
(
I�ν3−1

t Ht	 Yt�	 Yt

)
dt	

30 = 1	

−dYt = f
(
I�ν3−1

t Ht	Yt�	 Yt

)
dt−Z∗

t dWt	

YT = h
(
J�ν3−1

T HT�
)
	

with Ht = exp	− ∫ t
0 rs ds−

∫ t
0 θ

∗
s dWs− 1

2

∫ t
0 �θs�2 ds� and where I = �fc�−1 and

J = �h′ �−1 .
The wealth process is then given as the solution of the following BSDE:

−dXt = �I�ν3−1
t Ht	 Yt� − rtXt − θ∗tπt�dt− π∗

t dWt	

XT = J�ν3−1
T HT��

Let us make the change of variable At = Log�ν3−1
t Ht�	 0 ≤ t ≤ T. Then,

the processes �Y	Z� and A are the unique solution of the forward-backward
system

dAt =
(−rt − fy

(
I�eAt	Yt�	 Yt

)− 1
2 �θt�2

)
dt− θ∗t dWt	

A0 = Log ν	
(39)

−dYt = f
(
I�eAt	Yt�	 Yt

)
dt−Zt dWt	

YT = h
(
J�eAT�)�(40)
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Suppose now that the coefficients θt and rt are deterministic and that the util-
ity functions h�x� and f�c	 y� are deterministic. Since we are in a Markovian
case, the solution of the forward-backward system (39), (40) can be computed
(under some smoothness conditions on the coefficients) by using the four-step
scheme resolution method of Ma, Protter and Yong (1994).

Suppose that the functions B and F, defined by B�a	y� = fy�I�ea	 y�	 y�
and F�a	y� = f�I�ea	 y�	 y�, are �∞, with first-order derivatives with respect
to a	y being uniformly bounded. Furthermore, suppose that there exist a
continuous function µ, a constant L > 0 and α ∈0	1� such that ?�a� =
h�J�ea�� is a � 2+α���, and for all �a	y� ∈ �× �,

�B�a	y�� ≤ µ��y��	 F�a	y�∗a ≤ L�1+ �y�2��
Then, the utility process Y is equal to a deterministic function of t and At;
that is, Yt = φ�t	At�, where φ is solution of the following PDE:

∂tφ�t	 x� +�tφ�t	 x� + f�I�ex	φ�t	 x��	 φ�t	 x�� = 0	

φ�T	x� = h�J�ex��	
where ��t	 x� is the generator associated with process A given by

��t	 x�φ�t	 x� = 1
2 �θt�2 ∂2x2φ�t	 x�
+ �−r− 1

2 �θt�2 − fy
(
I�ex	φ�t	 x��	 φ�t	 x�)∂xφ�t	 x��

Then, the process A is solution of the following classical forward SDE:

dAt = �−rt − fy
(
I�eAt	φ�t	At��	 φ�t	At�

)− 1
2 �θt�2�dt− θ∗t dWt	

A0 = Log ν�

Notice that in the Markovian case, Ma, Protter and Yong methodology gives
a proof of the existence (without necessarily the boundedness assumption of
fc). Indeed, by Theorem 6.1, the solution Y	A constructed by the four-step
scheme corresponds to the optimal utility and its associated deflator (given by
3t = νHte

−At).

7.2. Example of a generalized recursive utility function. In this example,
the recursive utility function satisfies the following dynamics:

−dYt = �−βYt − g�Zt� + u�ct��dt−Z∗
t dWt	 YT = h�ξ�	

where u and h are utility functions and where the function g is a differentiable
function. Note that the coefficient g�z� (if it is positive) can be interpreted as
a risk-aversion coefficient since it penalizes variability of the utility process.

The wealth process satisfies the classical linear dynamics:

−dXt = �−rtXt − π∗
t θt + ct�dt− π∗

t dWt�
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Then, by Theorem 6.1, the optimal utility �Y	Z� and its associated deflator 3
are the unique-solution forward-backward system:

d3t = 3t�−βdt− g′�Zt�dWt�	
30 = 1	

−dYt = −βYt − g�Zt� + u
(
�u′�−1�ν3−1

t Ht�
)
dt−Zt dWt	

YT = h
(
�h′�−1�ν3−1

T HT�
)
	

where Ht = exp	− ∫ t
0 rs ds −

∫ t
0 θs dWs − 1

2

∫ t
0 �θs�2 ds� is the classical deflator

associated to the wealth. Notice that the process −g′ �Zt� which appears in
the dynamics of the deflator 3 can be interpreted as the optimal risk premium
associated with the utility process. Unfortunately, the four-step scheme reso-
lution method of Ma, Protter and Yong cannot be applied in this case since, in
the forward equation, the diffusion term −g′�Zt� depends on Z.

The optimal wealth and the optimal consumption are then simply given by

ξ0 = �h′�−1�ν3−1
T HT�	 c0t = �u′�−1�ν3−1

t Ht�	 0 ≤ t ≤ T�

Moreover, the optimal wealth-portfolio process �Xt	πt� is then solution of the
classical BSDE:

−dXt = �−rtXt − π∗
t θt + �u′�−1�ν3−1

t Ht��dt− π∗
t dWt	

XT = �h′�−1�ν3−1
T HT��

7.3. Example of the large investor. Recall that in this case, the driver of
the wealth is given by (7), that is,

b�t	 c	 x	 σ∗
t π� = −rtx− �x− π∗1�f0�x	π�(41)

−π∗�bt − rt1 + f�x	π� + c�

The utility function is standard and its driver is given by

f�t	 c	 y� = u�c� − βy	

where β is a positive constant and u is a utility function. The drivers f
and b are supposed to satisfy Assumptions A1 to A11. Then, by the previ-
ous result, the optimal wealth �X	π� and its associated deflator H are the
unique-solution forward-backward system:

dHt =Ht

[
bx

(
t	 I

(
νHte

βt
)
	Xt	 πt

)
dt+ bπ

(
t	 I

(
νHte

βt
)
	Xt	 πt

)∗
	 dWt

]
	

H0 = 1	

−dXt = b
(
t	 I

(
νHte

βt
)
	Xt	 πt

)
dt− �πt�∗ dWt	

XT = J
(
νHTe

βT
)
�
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Let us make the simple change of variable At = Log�νeβtHt�. Then, the pro-
cesses �X	π� and A are the unique solution of the forward-backward system:

dAt = φ�t	At	Xt	 πt�dt+ bπ
(
t	 I�eAt�	 Xt	 πt

)∗
dWt	

A0 = Log ν	

−dXt = b
(
t	 I�eAt�	Xt	 πt

)
dt− �πt�∗ dWt	

XT = J�eAT�	
where

φ�t	 a	 x	π� = β+ bx�t	 I�ea�	 x	 π� − 1
2 �bπ�t	 I�ea�	 x	 π��2�

Suppose now that the coefficients bt and rt are deterministic and that the
functions fi, for 0 ≤ i ≤ n, are deterministic. Suppose furthermore that the
function bπ does not depend on π . Then, under some smoothness assumptions,
the solution of the forward-backward system can be computed by using the
four step scheme resolution method of Ma, Protter and Yong (1994).

First, the wealth processX coincides with a deterministic function of t and
At; that is, Xt = ϕ�t	At�, where ϕ is solution of the following PDE:

∂tϕ�t	 a� +�tϕ�t	 a� + b�t	 I�ea�	 ϕ�t	 a�	 ∂aϕ�t	 a�� = 0	

ϕ�T	a� = J�ea�	
(42)

where ��t	 a� is the generator associated with process A given by

��t	a�ϕ�t	 a� = φ
(
t	 a	 ϕ�t	 a�	 ∂aϕ�t	 a�

)
∂aϕ�t	 a�

+ 1
2 �bπ

(
t	 I�ea�	 ϕ�t	 a�)�2 ∂2a2ϕ�t	 a��

Then, the process A is solution of the following classical forward SDE:

dAt = φ
(
t	At	 ϕ�t	At�	 ∂aϕ�t	At�

)
dt

+ bπ

(
t	 I�eAt�	 ϕ�t	At�	 ∂aϕ�t	At�

)∗
dWt	

A0 = Log ν�

Remark. Note that, in general, bπ depends on π and hence, the four-step
scheme resolution method of Ma, Protter and Yong (1994) cannot be applied.

APPENDIX

Proof of Proposition 3.3. First, recall the classical case corresponding
to a linear wealth and a standard additive HARA utility function [see, e.g.,
Karatzas, Lehoczky and Shreve (1987)].
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Lemma A.1. Suppose that f�t	 c	 y	 z� = cp/p and h�x� = xp/p with 0 <
p < 1, and b�t	 c	 x	 π� = −rtx− θ∗tπ + c. Then

V�x� = 1
p
�χ�1��1−pxp	 0 < x < +∞	

where χ�y� = y1/�p−1�Ɛ
∫ T
0 H

p/�p−1�
t dt + H

p/�p−1�
T and where the change of

numeraire Ht is defined by dHt =Ht �−rt dt− θ∗t dWt� with H0 = 1.

The result of Proposition 3.3 (which is an extension to the case of a utility
driver f linear with respect to y	 z) can be derived easily from Lemma A.1 by
using a change of probability and a discounted factor.

First, note that by considering eCtYt instead of Yt and eCtZt instead of Zt,
it is clear that this differential utility is equivalent to

−dYt =
[
eCtU�ct� + b2�t� ·Zt

]
dt−Zt dWt	

YT = eCTh�XT��
We now introduce a probability measure PQ on ��	�T� by

dPQ

dP

∣∣∣∣
�t

= exp
[∫ T

0
b2�t�dWt −

1
2

∫ T

0
�b2�t��2 dt

]
�

By Girsanov’s theorem, it follows that, under this new probability space ��	� 	

PQ�, the process Ŵt = − ∫ t
0 b2�s�ds+Wt is a Wiener process. Thus, the above

system is equivalent to the following classical maximization of utility where
the dynamics of the wealth satisfy

−dXt = �kct − rtXt − �b1�t� + b2�t�� · πtdt− πtdŴt

The maximal reward is given by

V0�x� = sup
�c	 π�∈ �	 �x�

EPQ

[∫ T

0
eCtU�ct�dt+ eCTh�Xx	c	π

T �
]
�

Then, the desired result is a direct consequence of Lemma A.1. ✷

Comments on Proposition 4.1. In order to be able to apply the theorem
of convex analysis, we have to note that:

Lemma A.2. The Slater condition for �12� is satisfied; that is, there exists
a consumption plan �ξ	 c� ∈ � ×
 such that X

�ξ	 c�
0 < x.

Proof of Lemma A.2. The assumptions made on b imply

b�t	 c	 x	 π� ≤ C�x+ �π�� + kc�
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We now choose ξ = x
2e

−CT and c = 0. Then, by the comparison theorem,
the associated wealth is smaller than the solution X̃t of the deterministic
backward equation

−dX̃t = CX̃t dt	 X̃T = x

2
e−CT	

which satisfies X̃0 = x
2 < x. ✷

Then, the result of Proposition 4.1 follows easily from Luenberger (1969),
Corollary 8.31.

Note that ν∗ cannot be equal to zero since if ν∗ = 0, then

V�x� = sup
�ξ	 c�∈
×�

Y
�ξ	 c�
0

would be attained for an infinite consumption plan (since the functional �ξ	 c�
→ Y

�ξ	 c�
0 is strictly nondecreasing by the backward comparison theorem),

which would yield to an infinite optimal wealth, which is impossible.
The second part of Proposition 4.1 follows from Luenberger (1969), Theorem

8.4.2. [Recall that the triple �ν0	 �ξ0	 c0�� corresponds to a saddle point for the
Lagrangian L�ν	 �ξ	 c�� = Y

�ξ	 c�
0 + ν�x−X

�ξ	 c�
0 �, i.e.,

L�ν0	 �ξ	 c�� ≤ L�ν0	 �ξ0	 c0�� ≤ L�ν	 �ξ0	 c0��
for all ν ≥ 0 and �ξ	 c� ∈ � ×
 .]

Proof of Theorem 4.3. Let �ξ	 c� be a consumption plan. We denote by
�Y	Z�	 �X	π� the associated trajectory. We denote by CX (respectively CY)
the variation of the wealth (respectively of the utility) associated with �ξ	 c�:

CXt =Xt −X0
t 	

Cπt = πt − π0
t 	

CYt = Yt −Y0
t 	

CZt = Zt −Z0
t �

Thus, the problem is to show that the assumption made on �ξ0	 c0� gives that
CY0 − νCX0 ≤ 0 ∀�ξ	 c� ∈ 
 ×� �

Now, the following lemma will allow us to conclude.

Lemma A.3. The following inequalities are satisfied:

CYt ≤ ∂αY
0
t 	 P-a�s	 0 ≤ t ≤ T	

CXt ≥ ∂αX
0
t 	 P-a�s	 0 ≤ t ≤ T�

End of the proof of the theorem. It follows from this lemma that

CY
�c	 ξ�
0 − νCX

�c	 ξ�
0 ≤ �∂αY0

0��c	 ξ� − ν�∂αX0
0��c	 ξ� ∀�c	 ξ� ∈ 
 ×� �
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Now, equality (22) and the assumption made on �ξ0	 c0� imply

�∂αY0
0��c	 ξ� − ν�∂αX0

0��c	 ξ� ≤ 0 ∀�c	 ξ� ∈ 
 ×� 	

and the desired result follows. ✷

Proof of Lemma A.3. Those inequalities are consequences of the concav-
ity inequalities and the comparison theorem. Indeed, the pair �CY	Cz� is solu-
tion of the following BSDE:

−d�CY�t = f1�t	 CYt	 Czt�dt− Cz∗t dWt	

CYT = h�ξ� − h�ξ0�	
where f1�t	 y	 z� = f�ct	Y0

t + y	 z0t + z� − f�c0t 	Y0
t 	 z

0
t �. Also, the pair �∂αY0	

∂αZ
0� is the solution of the following BSDE:

−d∂αY0
t = f2�t	 ∂αY0

t 	 ∂αZ
0
t �dt− �∂αZ0

t �∗ dWt	

∂αY
0
T = h′�ξ0��ξ − ξ0�	

where f2�t	 y	 z� = f0
c�t��ct − c0t � + f0

y�t�y+ f0
z�t�z.

Now, the following concavity inequalities hold:

h�ξ� − h�ξ0� ≤ h′�ξ0��ξ − ξ0�	 P-a�s	

f1�t	 y	 z� ≤ f2�t	 y	 z� ∀y	 z	 dP⊗ dt-a�s�

Hence, by the comparison theorem, we have CYt ≤ ∂αY
0
t 	 ∀t P-a�s. Using the

same arguments, we obtain the second inequality CX ≥ ∂αX
0. ✷

Remark 1. If the Inada condition Assumption A11 is not satisfied, then
the same arguments give the following result. Suppose that conditions (20)
and (21) are satisfied respectively on 	ξ0 > 0� and 	c0t > 0� and suppose that
conditions (25) and (26) are satisfied respectively on 	ξ0 = 0� and 	c0t = 0�.
Then, �ξ0	 c0� is optimal.

Remark 2. In fact, the result of Theorem 4.3 still remains without the
additional smoothness conditions Assumption A10 . It suffices to use the con-
cavity and convexity properties of f and b and to consider sub- and superdiffer-
entials instead of differentials. More precisely, the result and the above proof
of Theorem 4.3 still hold in this case with the following notation: h′�ξ0� denotes
in this case a square-integrable �T-measurable variable belonging to ∂h�ξ0�,
where ∂h is the superdifferential of h. The vector �f0

c�t�	 f0
y�t�	 f0

z�t�� denotes
a three-dimensional predictable vector-process with E

∫ T
0 �f0

c�t��2 dt < +∞
belonging dP⊗dt almost surely to ∂f�t	 c0t 	Y0

t 	 z
0
t �, where ∂f is the superdif-

ferential of f with respect to c	 y	 z. Also, �b0c�t�	 b0x�t�	 b0π�t�� denotes a pre-
dictable process with E

[∫ T
0 �b0c�t��2 dt

]
< +∞ belonging to ∂b�t	 c0t 	X0

t 	 π
0
t �

(subdifferential of b).
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