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Abstract. The selection of robot manipulator architecture, i.e. the determination of link lengths,
their relative orientations, types of joints, e.g. revolute or prismatic, etc., has been largely done
so far by experience, intuition and at most based on the kinematic considerations like workspace,
manipulability, etc. Dynamics is generally ignored at this stage even though it is widely used for
control and simulation. This paper attempts to introduce a criterion based on the dynamics of a
robot manipulator, namely, simplicity of the associated generalized inertia matrix (GIM). Since the
GIM influences both the control and simulation algorithms significantly, its fast computation and / or
making its shape diagonal will certainly enhance the speed, precision, and stability of the robots. Two
measures of simplicity, the computation complexity of the GIM in terms of floating point operations
and the computer CPU time of an algorithm where the GIM appears, e.g., the inverse dynamics
algorithm, are used here to evaluate a robot arm. The proposed criterion is illustrated with two -link
robot arms with revolute and prismatic joints and compared with the two commonly used criteria,
namely, the workspace, and manipulability. Finally, an example is taken to select an arm from the two
spatial robot architectures, RTX and Stanford.

Keywords: manipulator, architecture selection, DeNOC, GIM, computational complexity, computa-
tion time

1. Introduction

A robot is characterized by its degree of freedom, number of joints, type of joints,
joint placement and their orientation, link lengths and shapes, which influence its
performances, namely, the workspace, manipulability, speed of operation, etc. The
speed of operation significantly depends on the complexities of the kinematic and
dynamic equations and their computations. The robots with different architectures
will have different kinematic and dynamic equations with varying computational
complexities. Hence, in order to select a suitable robot, both aspects i.e. kinematics
as well as dynamics should be looked into. Generally, kinematic characteristics like
workspace [1–3], manipulability [4–6], etc. are considered for the selection of a
robot. Dynamics is generally neglected at this stage, even though it is widely used
for control [7–12] and simulation of robots [12–17]. In this paper, simplicity of
dynamic model and its computations are emphasized, particularly, with respect to
the generalized inertia matrix (GIM), which has been proposed as a criterion for
robot architecture selection. The simplicity of the GIM is emphasized here because,
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for example, if it is diagonal, control becomes decoupled, i.e. each joint motion
servo control is not influenced by the servo gains of the other joints. This improves
overall robot performance, namely, speed and precision. Besides, the simulation,
in which the inversion of the GIM is required, becomes straight forward, as the
inversion of a diagonal matrix is just another diagonal matrix whose non-zero
elements are the reciprocals of the corresponding non-zero elements of the original
matrix.

In order to decide whether the GIM of robot architecture is simple or not, it is
essential to have the expressions of each elements of GIM as descriptive as possi-
ble. Thus, the concept of the decoupled natural orthogonal compliment (DeNOC)
introduced in Saha [18] is used here to derive the dynamic equations of motion. The
DeNOC concept allows one not only to write the elements of the GIM in explicit
analytical forms, but also for the elements of the matrix of convective inertia (MCI).
These forms led to the development of recursive dynamics algorithms for both the
inverse and forward dynamics of serial [17, 18], and parallel [19] robotic systems.
Using the analytical expressions, one can estimate the computational complexities
of the GIM and MCI in terms of floating point operations, which will have bearing
on the overall computer CPU time of an algorithm where GIM and MCI appear,
e.g., in the inverse dynamics algorithm.

This paper is organized as follows: Section 2 provides an outline of the dy-
namic modelling using the decoupled natural orthogonal compliment (DeNOC);
Section 3 introduces the proposed criteria for robot selection; Section 4 illustrates
the selection criterion using 2-link arms; Section 5 considers an example of an arm
selection from RTX and Stanford architectures. Finally, conclusions are given in
Section 6.

2. Dynamic Modelling Using the DeNOC

For an n-degree of freedom open-loop serial-robot, as shown in Figure 1, if mi is
the mass of the i th link and Ii denotes the 3 × 3 inertia tensor of the i th link about
its origin point, Oi , then the uncoupled Newton–Euler equations (NE) governing
the motion of the ith link can be written as

Mi ti + Wi Mi Ei ti = wi (1)

where the 6 × 6 mass matrix, Mi, the 6 × 6 angular velocity matrix, Wi, and the 6
× 6 coupling matrix, Ei, for the ith link are given as [19]

Mi ≡
[

Ii

−mi di × 1
mi di × 1

mi 1

]
Wi ≡

[
ωi × 1

O
O

ωi × 1

]

Ei ≡
[

1
O

O
O

]
(2)



A DYNAMIC MODEL BASED ROBOT ARM SELECTION CRITERION 97

Figure 1. An n-link manipulator.

Figure 2. A coupled system of three bodies.

in which Ii ≡ Ic
i −di × (mi di × 1) – Ic

i being the 3 × 3 inertia tensor about the mass
centre of the i th body, Ci , di × 1 and ωi × 1 are the 3 × 3 cross-product tensors
associated with the vector di shown in Figure 2, and the angular velocity vector,
ωi respectively. Note that 1 and O in Equation (2) are the 3 × 3 identity and zero
matrices, respectively. The twist and wrench vectors, ti and wi, are then defined as

ti ≡
[
ωi

vi

]
and wi ≡

[
ni

fi

]
(3)
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where ωi and vi are the three-dimensional vectors of angular velocity and the linear
velocity of the origin point Oi , of the i th body, where it is coupled with its previous
body in the chain, i.e., the jth body, respectively, Figure 2. Moreover, ni and fi

are the three-dimensional vectors denoting the resultant moment about Oi , and the
resultant forces acting at Oi , respectively. Note that ṫi of Equation (1) is the time
derivative of the twist vector or twist-rate vector. Equation (1) when written for all
‘n’ links, i.e., i = 1, . . . , n, it can be expressed in a compact form as

Mṫ + WMEt = w (4)

where M and W are the 6n × 6n generalized mass matrix and the generalized
matrix of the angular velocities, respectively, whereas E is the 6n × 6n generalized
coupling matrix. They are defined as follows:

M ≡




M1 O . . . O

O M2 . . .
...

...
...

. . .
...

O . . . . . . Mn


 ; W ≡




W1 O . . . O

O W2 . . .
...

...
...

. . .
...

O . . . . . . Wn


 ;

E ≡




E1 O . . . O

O E2 . . .
...

...
...

. . .
...

O . . . . . . En


 (5)

Moreover, the 6n-dimensional vectors of generalized twist and wrench are defined
as

t ≡ [
tT
1 , tT

2 , . . . , tT
n

]T
w ≡ [

wT
1 , wT

2 , . . . , wT
n

]T
(6)

It is pointed out here that the generalized twist, t, can be expressed as a linear
transformation of the n independent joint rates, θ̇ ≡ [θ̇1, . . . , θ̇n]T—θi being the
i th joint displacement shown in Figure 2, i.e.,

t = Tθ̇, where T ≡ TITd (7)

T being the 6n × n natural orthogonal complement (NOC) matrix [7], whereas
the 6n × 6n and 6n × n matrices, Tl and Td, respectively, are the decoupled NOC
(DeNOC) matrices [18].

Premultiplying Equation (4) with the transpose of the NOC matrix, i.e., TT,
one gets n independent dynamic equations of motion of the coupled system,
namely,

TT(Mṫ + WMEt) = TT (wE + wC) (8)
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where w is substituted by w ≡ wE + wC, wE and wC being the 6n-dimensional vec-
tors of external and constraint wrenches, respectively. The term TTwC in Equation
(8) vanishes, as the constraint wrench produces no work. Substitution of the ex-
pression of T ≡ TlTd from Equation (7) and its time derivative, Ṫ = TlṪd + ṪlTd,

into Equation (8), results in the following form of the dynamic equations of motion:

I θ̈ + C θ̇ = τ (9)

which is nothing but the Euler–Lagrange equations of motion [7]. In Equation (9),
I ≡ TTMT ≡ Td

TM̃Td: the n × n generalized inertia matrix (GIM);
C ≡ TT(MṪ + WMET) ≡ TT

d (TT
1 MṪl + M̃W + ˜̇M)Td : the n × n matrix of

convective inertia (MCI);
τ ≡ TTwE ≡ TT

d w̃E: the n-dimensional vector of generalized forces due to
driving forces / torques and those resulting from the gravity and dissipation.

The 6n × 6n matrices, M̃, ˜̇M and the 6n-dimensional vector w̃E are
given by

M̃ ≡ TT
l MTl

˜̇M ≡ TT
l WMETl and w̃E ≡ TT

l wE.

3. Dynamics Simplicity Based Selection Criterion

In this section, explicit expressions for the elements of the GIM and MCI, i.e., I and
C of Equation (9), respectively, are derived first. Next, their simplicity is proposed
to be measured in terms of their computational complexity and the computer CPU
time of the algorithm where they appear.

3.1. EXPLICIT EXPRESSIONS FOR THE ELEMENTS OF THE GIM AND MCI

Using the expressions for the n × n GIM, I and, MCI, C, as appearing after Equation
(9), each element of I, ii j , and C, cij, are written as

iij ≡ pT
i M̃i Aij pj

ci j ≡ pT
i

(
AT

ji M̃j Wj + AT
j+1,i H̃j+1,j + AT

j i
˜̇Mj

)
pj if i ≤ j (10)

ci j ≡ pT
i (M̃i Aij Wj + H̃ij + ˜̇Mi Aij)pj otherwise

where, the 6 × 6 matrix Aij and the six-dimensional vector, pi, are the block elements
of the DeNOC matrices, Tl and Td, respectively, i.e.,

Tl ≡




1 O . . . O
A21 1 . . . O

...
...

. . .
...

An,1 An,2 . . . 1


 and Td ≡




p1 0 . . . 0
0 p2 . . . 0
...

...
. . .

...
0 0 . . . pn


 (11)
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In Equation (11), O and 0 are the 6 × 6 zero matrix and six-dimensional zero vector,
whereas the matrix, H̃ij, in the expression of cij, is given by

H̃ij ≡ M̃i Ȧij + AT
i+1,i H̃i+1,i Aij (12)

in which Ȧij is the time derivative of the 6 × 6 matrix, Aij. Note that the 6 × 6
matrix, M̃i, has the following features:

i. Matrix M̃i can be recursively computed as

M̃i ≡ Mi + AT
i+1,i M̃i1Ai+1,i for i = n, n − 1, . . . , 1 (13)

where M̃n ≡ Mn since there is no (n + 1)st link, i.e., M̃n+1 ≡ O, and

M̃n−1 ≡ Mn−1 + AT
n,n−1 M̃n An,n−1

ii. Matrix M̃i has a physical interpretation. It represents the mass matrix of the
“composite body i,” formed by rigidly joining the bodies, i, . . . , n, as indicated
in Figure 1.

3.2. COMPUTATIONAL COMPLEXITY OF GIM AND MCI

One of the ways to simplify the GIM and MCI is to make some of the elements
vanish, or constant with suitable choice of the link masses and geometries. For
example, if any two successive, say, i th and (i +1)st joints are prismatic, orthogonal
and intersecting, the corresponding off-diagonal inertia element, namely, ii+1,i ≡
Pi+1

TM̃i+1 Ai+1,i pi, can be proven to be zero. In case the elements do not vanish,
their computational complexity in terms of the floating point operations, namely,
the number of multiplications/divisions (M) and additions/subtractions (A) are
counted. For the GIM and MCI, the complexities are obtained for the following
input: For i = 1, . . . , n,

i. Constant Denavit–Hartenberg (D-H) parameters [20] of the system under study,
i.e., αi , ai , and bi (for revolute joints) or θi (for prismatic joints). They are also
defined in Appendix A.

ii. Time history of variable D–H parameter, i.e., θi , for a revolute pair, and bi , for
a prismatic joint, and their first and second time derivatives.

iii. Mass of each body, mi .
iv. Vector denoting the distance of the (i + 1)st joint from the i th mass centre, Ci ,

in the (i + 1)st frame, i.e., [r1]i+1, as shown in Figure 2.
v. Inertia tensor of the i th link about its mass centre, Ci , in the (i + 1)st

frame.
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Note here that [−]i+1 will represent the argument “−” in the (i + 1)st coordinate
frame which is rigidly attached to the i th link. Thus, the quantities, [Ii]i+1 and
[ri]i+1 are constant and supplied as input. Moreover, the complexity count is given
inside { } at the right of each step and substep, which is based on the assumption
that all joints of the robot are revolute with arbitrary orientation.

1. Calculate [ai ]i (Angeles, 1997)21: {2M(n)}
For i = 1, . . . , n,

[ai ]i = [ai cos θi ai sin θi bi ]
T :2M

Note that, for each [ai ]i , 2M computations are required. Hence, for all n links,
2M(n) computations will be required to find [ai ]i , for i = 1, . . . , n, that appears
above within the braces, {2M(n)}.

2. Calculate [ri ]i : {8M 4A(n)}
For i = 1, . . . , n,

[ri ]i = Qi [ri ]i+1: 8M4A

where Qi is given as

Qi =

cos θi − sin θi cos αi sin θi sin αi

sin θi cos θi cos αi − cos θi sin αi

0 sin αi cos αi




Note above that the multiplication of the 3 × 3 matrix, Qi or QT
i with a three-

dimensional vector is obtained efficiently with only 8M 4A, instead of 9M 6A
required to multiply a 3 × 3 matrix with a three-dimensional vector, as shown
in Appendix B.1.

3. Calculate [di ]i : {3A(n)}
For i = 1,. . . , n,

[di ]i = [ai ]i − [ri ]i :3A

4. Calculate [mi di ]i : {3M(n)}
For i = 1, . . . , n,

[mi di ]i = mi [di ]i :3M

5. a) Calculate [Mi ]i , for i = n: {22M 26A(n)}

[Mi ]i =
[

Ic
i − di × (midi × 1) midi × 1

−midi × 1 mi1

]
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[Ic
i ]i = Qi[Ic

i ]i+1QT
i :16M17A

[di × (mi di × 1)]i :6M3A

[m idi × 1]i :nil

[Ic
i − di × (midi × 1)]i :6A

Like in item 2 above, two multiplications of an orthogonal matrix, Qi , with
a symmetric matrix, [Ic

i ]i+1 and another orthogonal matrix, namely, QT
i , can

be computed with 16M 17A instead of two matrix multiplications requiring
54M 36A, as explained in Appendix B.2.
b) [M̃i]i for i = n −1, . . ., 1 {18M18A(n − 1)}

M̃i ≡ Mi + AT
i+1,iM̃i+1Ai+1,i :18M18A

6. a) Calculate iii :
For i = n, . . . , 1 {nil}

iii ≡ pT
i M̃i pi :nil

For a revolute joint,

iii = [
eT

i 0T]
i
[M̃i]i

[
ei

0

]
i

Since [ei]i = [0 0 1]T, the calculation of iii is simply the 3,3 element of the (1,1)
block matrix of [M̃i], which do not require any computation.
b) Calculate i i j : {22M14A(n2 − n)/2}
For i = n,. . . ,1; j = i − 1,. . . ,1

ii j = pT
i M̃iAijpj : 22M14A

So the total number of multiplications/divisions and additions/subtractions are
computed by adding the values inside the symbols, { and }, as shown in Table 1.

The computation complexity to find the GIM is

(11n2 + 42n − 18)M(7n2 + 44n − 18)A. (14)

For six revolute jointed robot (n = 6), the complexity for the GIM is 630M
498 A. Note that the complexity of Equation (14) is less than that reported earlier
in [14], which is

(12n2 + 56n − 27)M(7n2 + 67n − 53)A. (15)
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Table I. The GIM computational complexity for spatial robots.

Steps Variables Multiplications Additions

1 [ai ]i , i = 1, . . . , n 2n –

2 [ri ]i , i = 1, . . . , n 8n 4n

3 [di ]i , i = 1, . . . , n – 3n

4 [mi di ]i , i = 1, . . . , n 3n –

5(a) [Mi]I, i = n, . . . , 1 22n 26n

5(b) [M̃i ]i , for i = n − 1,. . . , 1 18(n − 1) 18(n − 1)

6(a) iii , i = n, . . . , 1 – –

6(b) ii j , i = n, . . . 1; j = i − 1, . . . , 1 22(n2 − n)/2 14(n2 − n)/2

Total 11n2 + 42n − 18 7n2 + 44n − 18

For n = 6, Equation (15) gives 741M 601A. Thus an efficient algorithm
for the GIM calculations is proposed in this paper. Similarly, the computational
complexity for the matrix of convective inertia (MCI) terms is also found out,
which is

(14n2 + 22n + 4)M(13.5n2 + 55.5n − 65.5)A. (16)

Again, for n = 6 with all revolute joints, the MCI complexity is 640M 753.5A,
which could not be compared due to non-availability of such results.

3.2.1. Planar GIM and MCI Complexity

For planar robots, for example, as shown in Figure 3, the computational complex-
ity counts in Equations (14) and (15) resulting in very high values as many zero
components of the two-dimensional vector and matrix elements will be processed
/ counted. Hence, an alternative simplified algorithm is proposed.

Figure 3. Two link planar arms.
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1. Calculate 2-dimensional [ai ]i : {2M(n)}
For i = 1, . . . , n,

[ai ]i = [ai cos θi ai sin θi ]
T :2M

2. Calculate 2-dimensional [ri ]i : {4M 2A(n)}
For i = 1, . . . , n,

[ri ]i = Qi [ri ]i+1 :4M2A

where Qi is given as

Qi ≡
[

cos θi − sin θi

sin θi Cos θi

]

3. Calculate 2-dimensional [di ]i : {2A(n)}
For i = 1, . . . , n,

[di ]i = [ai ]i − [ri ]i :2A

4. Calculate 2-dimensional [mi di ]i : {2M(n)}
For i = 1, . . . , n,

[mi di ]i = mi [di ]i : 2M

5. a) Calculate 3 × 3 matrix, [Mi ]i , for i = n : {nil (n)}

[Mi ]i ≡
[

iczz midT
i R

miRdi mi1

]

where the scalar, iczz , is the (3,3) element of Ic
i that only contribute to the planar

motion, which do not require any computation as it is one of the inputs item
(v) of Section 3.2. Moreover, for planar motion mi di × 1 can be shown to be
equivalent to mi dT

i R [22]. The 2 × 2 matrix R is defined as R ≡ [ 0
1

−1
0

]
. Note,

mi dT
i R is known from the observations. Hence, no computation will be required

for [Mi ]i .
b) The 3 × 3 matrix [M̃i]i for i = n − 1, . . . , 1 {7M7A(n − 1)}

M̃i ≡ Mi + AT
i+1,i M̃i+1Ai+1,i :7M7A

6. a) Calculate iii : {nil}
For i = 1, . . . , n,

iii ≡ pT
i M̃ipi : nil
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Table II. The GIM computational complexity in planar robots.

Steps Variables Multiplications Additions

1 [ai ]i , i = 1, . . . , n 2n –

2 [ri ]i , i = 1, . . . , n 4n 2n

3 [di ]i , i = 1, . . . , n – 2n

4 [mi di ]i , i = 1, . . . , n 2n –

5(a) [Mi ]i , i = n, . . . , 1 – –

5(b) [M̃i ]i , i = n − 1, . . . , 1 7(n − 1) 7(n − 1)

6(a) ii i , i = 1, . . . , n – –

6(b) ii j , i = n, . . . 1; j = i − 1, . . . , 1 7(n2 − n)/2 4(n2 − n)/2

Total 3.5n2 + 11.5n − 7 2n2 + 9n − 7

7. Calculate ii j : {7M4A(n2 − n)/2}
For i = n,. . . 1; j = i − 1, . . ., 1

ii j ≡ pT
i M̃iAijpj : 7M4A

The total computational complexities in the planar case can be obtained by adding
the above values inside and, as given in Table II.

The computation complexity to find GIM for planar robot is

GIM : (3.5n2 + 11.5n − 7)M(2n2 + 9n − 7)A (17)

whereas the complexity for MCI can be obtained as

MCI : (7n2 + 13n + 4)M(4n2 + 13n + 2)A. (18)

For n = 3 with all revolute joints, 59M 38A computations are required for the
GIM, and 106M 77A are required for the MCI, whereas if the spatial algorithm
of Equations (14) and (16) are used, for n = 3, then 207M 177A, and 196M
222.5A are required for the GIM and MCI, respectively, which are high and not
recommended for planar robots.

3.3. COMPUTATIONAL TIME FOR INVERSE DYNAMICS

The computational time is the time taken by the computer of the robot controller
to evaluate or solve the equations of motions, which depends on the computational
complexity of the associated equations. If the computational complexities of the
GIM and MCI vary for different robots, they should reflect in the computational
times of the algorithm where they are used. As a test, inverse dynamics algorithms
based on the GIM and MCI elements obtained in Section 3.1 are developed for
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different architectures. Computer CPU times are recorded along with the compu-
tational complexities of GIM and MCI. Here, the CPU time is basically the time
taken to compute the controlling joint torques/forces from the inverse dynamics
algorithms. The computer CPU will take comparatively less time to solve the in-
verse dynamics equations if they are simpler. Less computation time implies that
the maximum speed of a robot arm can be high. Thus the manipulator with least
computation time is preferable over others.

Though the CPU time difference for various architectures will look miniscule
here, there will be significant difference when the algorithms run on robot controllers
with processing speeds 30 to 60 times slower than the computer (Pentium III, 1Ghz
with 256 Mb memory) used here.

4. Illustration with Planar 2 -Link Robots

A planar two-degree of freedom (DOF) robot which has two links and two joints, is
suitable for planar positioning purposes. There are three options for such robot arm,
namely, two links are connected by 1) two prismatic joints; 2) two revolute joints;
and 3) one revolute and the other one prismatic joint. On the basis of proposed
criterion, i.e., simplicity, option 1 is best as its GIM can be easily shown to be
the 2 × 2 diagonal matrix with constant elements, whereas its MCI elements are
zeros. Even though this architecture is simplest from the control point of view, it is
not preferred from the physical realization angle. Prismatic joints can be realized
using nut and lead screw, which are expensive for higher accuracy and difficult to
maintain as dust can accumulate if proper bellows, etc. are not fitted. To overcome
the above drawbacks, revolute joints are used where the rotary actuators can be
coupled directly to the links without any nut, ball screw and bellows. This is option
2 which is economic from physical realization point of view but computationally,
i.e., in terms of the GIM complexity etc., it is most expensive. What left is option 3,
which is a kind of tradeoff between options 1 and 2. The criterion proposed in this
paper is effective for such situation when one has to choose the first joint as revolute
and the second one as prismatic (RP), Figure 3(a), or vice-versa, i.e., PR type,
Figure 3(b).

4.1. GIM AND MCI COMPLEXITY

On the basis of the planar computational complexities, Equations (17) and (18),
a planar robot with both revolute joints would require 88M, 63A (with n = 2).
However, if one of the joint is prismatic further simplification is expected. The
degree of the simplification would depend on the location of prismatic joint. The
results are tabulated in Table III.

4.2. COMPUTATIONAL TIME FOR INVERSE DYNAMICS

As explained in Section 3.3, inverse dynamics algorithms for RP and PR archi-
tectures shown in Figures 3(a), and 3(b), respectively using pre-determined joint
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Table III. Comparison of 2-link robot arms.

Type RP Robot [Figure 3(b)] PR Robot [Figure 3(b)]

GIM 12M 6A 21M 6A

CC MCI 26M 14A 28M 18A

CT∗ (sec) 0.651 0.761

Workspace π (2a1b2 + b2
2) πa2

2 + 2a2b1

area ‘A’ ai = bi = a 4πa2 (π + 2)a2

Manipulability a1 + b2 a2| cos θ2|
‘w’ ai = bi = a Max. a Max. a

∗All computations are done on a Pentium-III PC with processor speed of 1GHz with
memory size 256Mb.
M : Multiplication/division; A: Addition/subtraction. CC: Computational complexity;
CT: Computation time; : Better value of the two.

trajectory values, i.e., joint position, velocity, and acceleration, are implemented in
MATLAB. The time taken to compute the joint torques/forces are obtained using
‘tic’ and ‘toc’ commands of MATLAB at the beginning and end of an algorithm,
respectively. The joint trajectories and other parameters for inverse dynamics are
taken as:

For RP type:

1st link length, a1 = 0; 1st link mass, m1 = 12.25 kg;

2nd link mass, m2 = 2.45 kg; (19)

1st joint trajectory, θ1 = (π t/T ) − 0.5 sin (2π t/T ) rad;

2nd joint trajectory, b2 = (π t/T ) − 0.5 sin(2π t/T ) m

where T and t are the total time of traverse and the time instant at which the results
are desired.

For PR type:

1st link mass, m1 = 12.25 kg; 2nd link length, a2 = 0.8584 m;

2nd link mass,m2 = 2.45 kg; (20)

1st joint trajectory, b1 = (π t/T ) − 0.5 sin (2π t/T ) m;

2nd joint trajectory, θ2 = (π t/T ) − 0.5 sin(2π t/T ) rad

Computation times to obtain the necessary joint torques and forces using Equa-
tion (9) are reported in Table I, where no gravity is considered as for the motion on
a horizontal plane gravity does not have any effect.
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Figure 4. The workspace of 2-link PR-robot arm.

4.3. WORKSPACE AND MANIPULABILITY

Workspace and manipulability are two kinematics based criteria often used for
robot architecture selection. Here, they are included to show whether an architec-
ture would differ, if proposed dynamics model based selection criterion is used.
Workspace or work envelope is defined as the set of points representing the max-
imum and minimum extent or reach of the manipulator in all directions. It can
be calculated by visualizing the possible motion of the robot in all directions and
finding the area, in the case of planar, and volume, in the case of spatial [3, 11].
The workspace area for the PR type robot arm can be obtained from the motion
range of the robot, as shown in Figure 4. If no limit on the joints are assumed the
workspace area of PR arm in Figure 4 can be calculated as, A = pa2

2 + 2a2b1.
Similarly, for the RP type the workspace area is, A = π (2a1b2 + b2

2).
The values are tabulated in Table I and compared considering ai = bi = a
for i = 1, 2.

Manipulability is defined as the ease with which a manipulator operates in its
workspace. There are many ways to quantify the manipulability. For example,
condition number of the velocity Jacobian matrix, minimum or maximum singular
value of the Jacobian, etc. The one proposed by Yoshikawa [4] is used here. This
is called manipulability measure, w, and defined as

w = |[det{J(θ)JT(θ)}]1/2| (21)

where J(θ) is the Jacobian matrix, which is a function of joint positions, θ. For any
robot, w ≥ 0. However, the value of w = 0 is undesirable as it implies that the
robot arm is in the singular configuration, i.e., the arm cannot reach the instructed
position. When an arm is in singular configuration, it loses one or more degree of
freedom and becomes difficult to control.

Manipulability measure ‘w’ for the RP and PR arms are calculated, which are
tabulated in Table III. As an illustration, ‘w’ for the PR robot is computed as,
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Figure 5. Three link spatial robot arms.

w = a2|cosθ2| where the J(θ ) of the PR arm is given below:

J(θ) =
[

1 −a2 sin θ2

0 a2 cos θ2

]
(22)

As θ2 varies, w changes from 0 to a2.
On the basis of the proposed criterion, i.e., the simplicity of dynamics model

that has been evaluated in terms of computation complexity (CC) and compu-
tation time (CT), the RP type is found better. The choice which is in line with
kinematics based workspace criterion when ai = bi = a, as in Table III. How-
ever, there may be cases when the workspace of PR may be larger, for exam-
ple, if ai = 2b; bi = b, then the workspaces of RP and PR robots are, 5πb2

and 4(π + 1)b2, respectively. In such situations, proposed dynamic based choice
will provide a robot selection that will allow faster robot motion, as explained in
Section 3.3.

5. Example: Selection Between RTX and Stanford Arms

In this section, assume a situation where selection has to be made between two
standard robot architectures, namely, RTX, Figure 5(a), and Stanford, (Figure 5(b)
arms, whose DH parameters along with the mass and inertia parameters are shown
in Tables IV(a) and (b) respectively.

The following joint motions are considered for the inverse dynamics calcula-
tions:

θi = π t/T − 0.5 sin(2π t/T ) for revolute joints, and

bi = π t/T − 0.5 sin(2π t/T ) for prismatic joints (23)
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Table IV. D-H, mass and Inertia parameters of spatial robot arms.

Link ai bi αi θi mi rx ry rz Ixx Iyy Izz

(m) (m) (rad) (rad) (kg) (m) (kg-m2)

(a) D-H Parameters for RTX robot arm

1 0 b1 0 0 9 0 0 0.054 0.1 0.02 0.1

2 0.432 0.01 0 θ2 6 0.292 0 0 0.5 0.6 0.01

3 0.2 0.01 0 θ3 4 −0.02 0 0 0.4 0.4 0.1

(b) D-H Parameters for Stanford robot arm

1 0 0.1 −π /2 θ1 9 −0.1 0 0.1 0.1 0.02 0.1

2 0 0.1 −π /2 θ2 6 0 0 0.5 0.5 0.6 0.01

3 0 b3 0 0 4 0 0 0.4 0.4 0.4 0.1

Table V. Comparison of 3-link spatial structures.

Type RTX Robot Stanford Robot

GIM 142M ; 138A 170M ; 154A

CC MCI 389M ; 317A 522M ; 352A

CT∗ (sec) 9.443 11.166

Workspace 4πb1a2a3 4πa3
3/3

Volume ‘V’ ai = bi = a 4πa3 4πa3/3

Manipulability a2a3| sin θ3| b2
3| cos θ2|

‘w’ ai = bi = a a2 a2

∗ All computations are done on a Pentium-III PC with processor speed of
1GHz with memory size 256Mb.
M : Multiplication/division; A: Addition/subtraction. CC: Computational
complexity; CT: Computation time; : Better value of the two.

where θi (0) = 0 and bi (0) = 0, while T = 10 sec with step size, t = 0.01 sec. Note
here that unlike the planar robot arm motion in horizontal plane, Figures 3(a)–(b),
gravity plays an important role, which are taken into account.

For the above spatial arm configurations, proposed ‘dynamics model simplicity’
based criterion has been evaluated, along with the kinematics criteria. The results
are tabulated in Table V. Based on the results, RTX robot is found suitable and,
hence, should be selected. The better values are highlighted with underlines in the
table.

6. Conclusions

A robot arm selection methodology based on the simplicity of dynamics model of a
robot arm is proposed. The concept is illustrated with the help of 2-link planar robots.
Then a selection is made from two 3-link spatial robot arms. The proposed criterion
can be used when kinematic criteria are not sufficient or contradict, as explained



A DYNAMIC MODEL BASED ROBOT ARM SELECTION CRITERION 111

with respect to the 2-link example, after Equation (22). Also, in Table V, both RTX
and Stanford arms have same maximum manipulability, which is not a clear indica-
tion for the selection if the manipulability is the main criterion. The present criterion
is then also provides a way. The proposed criterion also allows to choose the best
physical parameters for good dynamic performances. For example, one can make
the generalized inertia matrix (GIM), Equations (9) and (10), well-conditioned,
as reported in Bhangale et al. [23], by suitably choosing the link masses and
lengths.

The contributions of this paper are highlighted as

1. Introduction of a new selection criterion, namely, the simplicity of the dynamics
model of a robot arm, which are evaluated in terms of computation complexity
of the associated matrices, i.e., GIM and the matrix of convective inertia (MCI)
terms of Equation (10), and the CPU time, of an algorithm, say, the inverse
dynamics algorithm that is essential for control purposes.

2. Computation complexity analysis of GIM and MCI for the all revolute n-
degree of freedom robot. For the GIM, the proposed algorithm is efficient,
as indicated after Equation (14), whereas MCI calculation is never reported
earlier.

3. Modular inverse dynamics algorithms development, i.e., GIM and MCI, are
computed separately and the joint torques and forces are computed using Equa-
tion (9). This way, any robot architecture can be tested by just replacing the
blocks of GIM and MCI calculations.

4. Evaluation of total four criteria of two planar and two spatial robot arms for
comprehensive understanding and selection of robot arm architecture.

Appendix A: Denavit–Hartenberg (D-H) Parameters

D-H-parameter is a systematic, general method to define the relative position and
orientation of the consecutive link. This definition helps in computing the coordinate
transformation between them. D-H-parameters can be assigned differently to the
same system, the Figure 7 shows one of the popular method to define the parameters,
where Zi denotes the axis of joints and Oi and Xi forms the coordinate
system.

Appendix B: Computational Complexities

B.1 TO FIND Qi [ri ]i+1

The mass centre location vector ri is known in (i + 1)st frame and to convert it into
ith frame, we need to pre-multiply it with the rotation matrix, Qi , i.e.,

[ri ]i = Qi [ri ]i+1
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Figure 6. Required torques and force at joints of RTX and Stanford arms.

where Qi is given as

Qi ≡

cos θi − sin θi cos αi sin θi sin αi

sin θi cos θi cos αi − cos θi sin αi

0 sin αi cos αi


 and [ri ]i+1 ≡


rx

ry

rz




(A.1)
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Figure 7. Transformation from frame i to i x + 1.

Hence

[ri ]i ≡

rx cos θi − rc sin θi

rx sin θi + rc cos θi

ry sin αi − rz cos αi


 : 6M 3A

where rc is given as

rc ≡ ry cos αi − rz sin αi : 2M1A

Thus, the total computations required to find the multiplication of a 3 × 3
rotation matrix with a 3-dimensional vector are 8M4A(i.e. 8 multiplications and 4
additions/subtractions).

B.2 TO FIND [Mi]i

The mass matrix Mi is required to be found in the i th frame, i.e., [Mi]i from
the known elements of [Ic

i ]i+1, Qi , [di ]i , [mi di ]i , whose computational steps are
explained below:

[Mi ]i ≡
[

Ic
i − di × (midi × 1) midi × 1

−midi × 1 mi1

]

Where [Ic
i ]i ≡ Qi [I

c
i ]i+1, QT

i , and Qi is defined as Equation (A.1). Now,
Qi [I

c
i ]i+1, QT

i can be computed as

[I c
i ]i ≡




i11 − β5 · · · Sym

β2 sin αi − β3 cos αi i22 − β5 − β8
...

β2 cos αi + β3 sin αi β4 − β7 cos αi β8 + i33


 : 5M 7A
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where ii j are the elements of [Ic
i ]i+1 and

β0 = i12 cos θi : 1M
β1 = (i11 − i12) sin θi − (β0 + β0) : 1M3A
β2 = i13 cos θi + i23 sin θi : 2M1A
β3 = β1 cos θi + i12 :1M1A
β4 = i13 sin θi − i23 cos θi : 2M1A
β5 = β1 sin θi : 1M
β6 = β4 cos αi : 1M
β7 = [(i22 − i33) + β5] sin αi + (β6 + β6) : 1M 4A
β8 = β7 sin αi : 1M

So the total computations required are 16M 17A. Next, note that [midi×1]i does
not require any computation as midi is already obtained in item 4 of Section 3.2, i.e.,

[mi di × 1]i : nil

Now to compute [di × (mi di × 1]i , following steps are followed: Let us define

[di ]i ≡

dx

dy

dz


 and [mi di]i ≡


δx

δy

δz


 ,

where [di]i and [mi di ]i are computed in items 3 and 4 of Section 3.2. Then

[di × (m idi × 1)]i =

−δzdz − δydy Sym

δx dy −δzdz − δx dx

δx dz δydz δydy − δx dx


 : 6M 3A

which will require only 6M 3A. Finally the 3 × 3 upper left block matrix of [Mi]i ,
i.e., [Ic

i − di × (m idi × 1)]i , can be obtained with additional 6A computations. Thus
total computations required to compute [Mi ]i is now summarized as:

[Ic
i ]i = Qi [Ic

i ]i+1QT
i :16M 17A

[midi × 1]i :nil
[di × (midi × 1)]i :6M 3A
[Ic

i − di × (midi × 1)]i :6A
Total :22M 26A

Thus, computation complexity for [Mi]i is 22M 26A, which is used in item 5(a) in
Section 3.2.
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