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Abstract

Functional mapping is a statistical method for mapping quantitative trait loci (QTLs) that regulate
the dynamic pattern of a biological trait. This method integrates mathematical aspects of biological
complexity into a mixture model for genetic mapping and tests the genetic effects of QTLs by
comparing genotype-specific curve parameters. As a way of quantitatively specifying the dynamic
behavior of a system, differential equations have proven to be powerful for modeling and
unraveling the biochemical, molecular, and cellular mechanisms of a biological process, such as
biological rhythms. The equipment of functional mapping with biologically meaningful
differential equations provides new insights into the genetic control of any dynamic processes. We
formulate a new functional mapping framework for a dynamic biological rhythm by incorporating
a group of ordinary differential equations (ODE). The Runge-Kutta fourth order algorithm was
implemented to estimate the parameters that define the system of ODE. The new model will find
its implications for understanding the interplay between gene interactions and developmental
pathways in complex biological rhythms.
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INTRODUCTION

Rhythmic phenomena that result from the planet’s rotation around the sun represent one of
the most striking manifestations of dynamic behavior in biological systems. Operating at all
levels of organization, from molecular to ecosystem, rhythms equip organisms with a
regulatory mechanism that allows them to adapt to environmental factors and evolve into a
higher level of fitness (Webb 2003; Tauber et al. 2004). Also, physiological rhythms and
oscillations in living cells have been thought to play a central role in regulating sleep-wake
cycles, glucose, lipid, and drug metabolism, heart rate, stress and growth hormones, and
immunity (Lowrey and Takahashi 2004; Turek et al. 2005; Gallego et al. 2006). Therefore,
understanding the molecular and cellular mechanisms responsible for biological rhythms is
crucial not only for unraveling the origin and dynamics of life, but also for designing
efficient drug doses and schedules to prevent and control human diseases (Wijnen and
Young 2006; Levi and Schibler 2007).
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The past decades have witnessed a growing interest in developing quantitative models to
estimate and test the pattern and inherent periodicity of rhythmic processes from a
mechanistic perspective (Goldbeter 1996, 2002; Leloup et al. 2006). For example,
differential equations of increasing complexity for the regulatory network producing
circadian rhythms in the fly Drosophila predict the occurrence of sustained circadian
oscillations of the limit cycle type (Leloup et al. 1999). When incorporating the effect of
light, the models account for phase shifting of the rhythm by light pulses and for
entrainment by light-dark cycles. The models also provide an explanation for the long-term
suppression of circadian rhythms by a single pulse of light. Stochastic simulations were
developed to test the robustness of circadian oscillations with respect to molecular noise
(Gonze et al. 2002, 2003; Stelling et al. 2004a,b). The merits of mathematical and
computational models are derived from their capacity to capture the most important
information from chaotic systems and make a quantitative prediction and test of the behavior
of the dynamic systems. By estimating key mathematical parameters that define biological
rhythms, the origin, properties, and functions of the system can be well addressed.

It has been widely recognized that the normal function of biological rhythms is strongly
correlated with the coordinated interactions between genes and their products at the
molecular level. Several studies have identified several so-called clock genes and clock-
controlled transcription factors through gene mutants in animal models (Takahashi 1993;
Reppert and Weaver 2002). The expression of these clock genes and their interactive
behavior in a rhythmic system may be different between individuals, although it is still not
clear how much genetics contributes to these differences (Levi and Schibler 2007). With the
advent of new technologies for genotyping single nucleotide polymorphisms (SNPs) that
permit the rapid establishment of high-resolution haplotype maps (The International
HapMap Consortium 2003, 2005, 2007), genome-wide quantitative trait loci (QTLs)
responsible for individual differences in circadian biology can be identified and the detailed
genetic mechanisms by which circadian behavior is originated and mediated can be well
understood.

The dynamic characteristic of circadian rhythm will make it difficult to map its underlying
QTLs. This difficulty arises from the fact that continuous time-dependent changes of the
rhythm can only be observed at discrete time points. Part of this difficulty has now been
solved by a dynamic mapping model, called functional mapping. This model was recently
developed, aimed to map dynamic QTLs that control the pattern and rate of biological
trajectories measured at a number of time points (Ma et al. 2002; Wu and Lin 2006).
Functional mapping has emerged as a powerful statistical tool for detecting and mapping
dynamic QTLs for stem growth and root growth in forest trees (Wu et al. 2003; Zhang et al.
2009), plant height in rice (Zhao et al. 2004a), tiller number increase in rice (Cui et al.
2006), biomass growth in soybeans (Li et al. 07), body mass growth in mice (Zhao et al.
2004b; Wu et al. 2005), and drug response (Lin et al. 2005). In this article, we will
incorporate the principle of functional mapping to map genetic regulatory networks of
biological rhythms with SNP markers. Specific purposes of this article are to integrate
ordinary differential equations (ODE) into a mixture-based likelihood framework for
functional mapping to study the genetic architecture and network of biological rhythms,
explore the statistical properties of genotype-specific parameter estimates from
observational dynamic and longitudinal data, and construct a quantitative platform for
testing biologically meaningful hypotheses at the interplay among genetics, development,
and oscillation. All these will make this research qualitatively beyond existing functional
mapping in its mathematical and computational complexity as well as its potential
application.
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ODE FOR CIRCADIAN OSCILLATIONS

The molecular bases of circadian rhythms have been clarified during the past decade by
experimental advances, first in Drosophila and Neurospora, and more recently in
cyanobacteria, plants and mammals (Reppert and Weaver 2002; Dunlap 1999; Young and
Kay 2001). All these studies conducted so far suggest that circadian rhythms originate from
the negative feedback exerted by a protein on the expression of its gene (Hardin et al. 1990;
Goldbeter 2002). In view of the large number of variables involved and of the complexity of
feedback processes that generate oscillations, mathematical models are necessary to
comprehend the transition from simple to complex oscillatory behavior and to delineate the
conditions under which they arise (Goldbeter 2002). The first theoretical models for
investigating the dynamic properties of circadian rhythms were borrowed from physics, such
as the Van der Pol equations, derived for an electrical oscillator (Kronauer et al. 1982).
Molecular models that incorporate the oscillatory mechanisms of circadian rhythms were
initially proposed for circadian oscillations of the period (PER) protein and its mRNA in
Drosophila. The PER protein behaves as a transcriptional regulator capable of influencing
the expression of a variety of genes besides its own gene, per.

Based on the negative control exerted by the PER protein on the expression of per, a
molecular model governed by a set of five ordinary differential equations was derived
(Goldbeter 1995). In the model (Fig. 1), the per gene is first expressed in the nucleus and
transcribed into per mRNA. The latter is transported into the cytosol, where it is translated
into the PER protein, P0. The PER protein undergoes multiple phosphorylation, from P0 into
P1 and from P1 into P2. These modifications, catalyzed by a protein kinase, are reverted by a
phosphatase. The fully phosphorylated form of the protein is marked up for degradation and
transported into the nucleus in a reversible manner. The nuclear form of the protein (PN)
represses the transcription of the gene. In the model, the temporal variation of the
concentrations of mRNA (R) and of the various forms of the regulatory protein – cytosolic
(P0, P1, P2) or nuclear (PN) – is governed by the following system of kinetic equations

(1)

The model assumes that per mRNA is synthesized in the nucleus and transfers to the
cytosol, where it accumulates at a maximum rate vs and is degraded by an enzyme at
maximum rate vm and Michael constant Km. The rate of synthesis of the PER protein,
proportional to R, is characterized by an apparent first-order rate constant ks. Parameters V1,
…, V4 and K1, …, K4 are the maximum rate and Michaelis constant of the kinase(s) and
phosphatase(s) involved in the reversible phosphorylation of P0 into P1 and P1 into P2,
respectively. The fully phosphorylated form (P2) is degraded by an enzyme at maximum
rate vd and Michaelis constant Kd, and transported into the nucleus at a rate characterized by
the apparent first-order rate constant k1. Transport of the nuclear, bisphosphorylated form of
PER (PN) into the cytosol is characterized by the apparent first-order rate constant k2. The
negative feedback exerted by nuclear PER on per transcription is described by an equation
of the Hill type, in which n denotes the degree of cooperativity, and KI denotes the threshold
constant for repression.
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STRUCTURE OF FUNCTIONAL MAPPING

Genetic Design

Suppose there is a sample of N subjects drawn randomly from a natural population in Hardy-
Weinberg equilibrium (HWE). In this sample, genome-wide SNP markers are genotyped,
aimed to identify QTLs affecting biological rhythms. Consider a particular SNP marker,
with two alleles M (with a probability of p) and m (with a probability of 1 − p). Let M1, M2,
and M3 denote the observations of three marker genotypes MM, Mm, and mm, respectively.
We assume that this marker is associated with a QTL with two alleles A (with a probability
of q) and a (with a probability of 1 − q) through the linkage disequilibrium of D. The marker
and QTL form four haplotypes MA, Ma, mA, and ma, with the frequencies denoted as p11,
p10, p01, and p00, respectively. It is shown that p11 = pq + D, p10 = p(1 − q) − D, p01 = (1 −
p)q − D, p00 = (1 − p)(1 − q) + D where max(−pq, −(1 − p)(1 − q)) ≤ D ≤ min(p(1 − q), (1
− p)q). By testing the significance of D and estimating its value, we can determine the
probabilities of each of the QTL genotypes, AA (denoted as 1), Aa (denoted as 2), and aa

(denoted 3), given a particular marker genotype.

For each subject, the relative concentrations of mRNA (R) and four different forms of the
regulatory protein, cytosolic (P0, P1, P2) or nuclear (PN), are measured at a series of time
points during a daily light-dark cycle. Assuming that different subjects use different
measurement schedules, we have ti = (ti1, …, tiTi

) for subject i. Thus, five sets of serial
measurements for mRNA and protein variables are expressed as

where

We use  to denote all the five variables.

Likelihood

For simplicity, we neglect covariate effects, although they can be incorporated into the
model. The trait phenotypes of subject i measured at time tiτ can be expressed by a five-
variate linear model, i.e.,

(2)

where ξij is an indicator variable describing a possible QTL genotype j for subject i (j = 1 for
AA, 2 for Aa, and 3 for aa) which is defined as 1 if a particular genotype is observed and 0
otherwise; ukj(tiτ) is the genotypic mean of variable k for QTL genotype j at time tiτ; and
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eki(tiτ) and εki(tiτ) are the permanent and random error for variable k, respectively, which
together follow a multivariate normal distribution with mean 0 and covariance matrix Σki.

The likelihood of N subjects can be formulated as

(3)

where Δ is the unknown vector specifying the likelihood, which will be defined below, πj|i is
the conditional probability of QTL genotype j given the marker genotype of subject i, and
fj(zi) is a multivariate normal distribution with mean vector

(4)

and covariance matrix

(5)

The unknown Δ contains three components: the mixture proportion (πj|i) which is subject-
dependent; the parameters (Ψu) that model the mean vector (4); and the parameters (Ψv) that
model the covariance (5).

Modeling Mixture Proportions

In a natural population at HWE, the frequency of a joint marker and QTL diplotype can be
expressed as the product of the frequencies of the two haplotypes derived from different
parents that constitute the diplotype. For the genotypes which are homozygous at one or two
loci, the diplotype frequency is the same as the genotype frequency (Table 1). The double
heterozygote AaBb contains two possible diplotypes AB|ab and Ab|aB, where the haplotypes
derived from maternal and paternal parents are separated by the vertical lines. Thus, the total
frequency of genotype AaBb is the sum of the frequencies of these two diplotypes. Since
unobservable QTL genotypes can be inferred from observed marker genotypes due to the
marker-QTL association, we will derive the the conditional probability of a QTL genotype
given a marker genotype using the joint genotype frequencies from Table 1. For subject i
carrying a particular marker genotype, its conditional probability is denoted by πj|i, which is
the mixture proportion of the likelihood (3).

Modeling the Covariance Structure

To well focus on the integration of ODE into functional mapping, we will use a simple
approach to model the covariance matrix. As shown by equation (1), the interrelationships
among five different variables have been specified by ODE. For this reason, we can
reasonably assume that the residual errors in equation (2) are independent among five
variables, in which case a subject-specific covariance matrix is expressed as
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where Σki (k = 1, 2, 3, 4, 5) is a (Ti × Ti) matrix.

Equation (2) contain two types of errors, permanent and random. It is possible that these two
types of errors make a different contribution to the overall variances and covariances. Let ηk

and 1 − ηk denote the relative contributions of the permanent and random errors for variance
k, respectively. Thus, a subject-specific residual covariance matrix for variable k can be
partitioned into the two parts as follows:

(6)

Since random errors arise stochastically at individual time points, they can be assumed to be
independent among different times. Further, the random variances are assumed to be time-

invariant, denoted by  for variable k. The covariance matrix due to the permanent errors
may show an autocorrelation (Zimmerman and Nunez-Anton 2001). The permanent

covariance ( ) structure can be modeled by many structural approaches including
parametric stationary autoregressive (AR) model (Diggle et al. 2002), parametric non-
stationary structured antedependence (SAD) model (Gabriel 1962; Zimmerman and Nunez-
Anton 2001), parametric Ornstein-Uhlenbeck (OU) process (Gillespie 1996), nonparametric
model (Yap et al. 2008), and semiparametric model (Fan et al. 2007).

For each of these approaches, covariance matrix  is structured by a limited number of

parameters. The closed forms for the determinant and inverse of  if it is modeled by a
parametric approach, such as AR or SAD, can be derived (Ma et al. 2002; Zhao et al. 2005),
facilitating the computation of the model. In this study, we will use a simple AR approach to
model the covariance matrix because our focus is on the implementation of ODE into

functional mapping. For each variable, the AR model uses two parameters, variance  and
correlation ρk. Thus, all the parameters that model the residual covariance are arrayed in

. Note that ηk describes the relative size of the variances due to eki and
εki. Note that the AR model assumes the stationarity of variances and covariances. If these
two assumptions are violated, other approaches should be used (see above for a discussion
of this issue).

Modeling the Mean Vector

Modeling the mean vector (4) for the dynamic changes of the concentrations of mRNA and
various forms of protein for different QTL genotypes by differential equations (1) is the
most innovative and difficult part of this study. A clear understanding of the mathematical
properties of these differential equations will provide a prerequisite for estimating genotype-
specific parameters that define biological rhythms from observational data.
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For a rhythmic system governed by ODE (1), we use

 to
define QTL genotype-specific differences in the dynamics of the system. Some of these
parameters describe the oscillation behavior of the system, whereas the others determine the
phase response curves under outside stimuli. These parameters have no analytical solution.
We implemented a numerical approach for estimating parameters that define QTL genotype-
specific differential equations based on the Runge-Kutta fourth algorithm (Press et al. 1992).

Let  denote the vector of five time-dependent variables (R, P0, P1, P2, PN)
for subject i who carries QTL genotype j. Rewrite the differential equation for variable k in
the ODE system (1) as

We define the zk(j|i) value in iterative step l by . Based on the Runge-Kutta scheme, we
have

(7)

where , and

 and

The Runge-Kutta fourth order algorithm with step size h = 0.1 is used to approximate the
solution in high accuracy given a trial set of parameter values and initial conditions.

Estimation

The parameters that define the likelihood (3) are obtained by differentiating the likelihood
with respect to each parameter, letting the derivative equal to zero, and then solving the log-
likelihood equations. We implemented the EM algorithm to estimate the parameters. The E
step is designed to calculate the posterior probability with which subject i has QTL genotype
j given its marker and phenotypic information, expressed as

(8)
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Using the calculated posterior probabilities, the M step is derived to solve the haplotype
frequencies expressed as

(9)

where θ = p11p00/(p11p00 + p10p01). The iteration including the E (8) and M steps (9) are
repeated until the estimates converge to stable values. These stables values are the maximum
likelihood estimates (MLEs) of parameters.

In the M step, the mean vector in fj(zi) is modeled by the ODE (1) with parameters Ψu

solved with the Runge-Kutta fourth order algorithm. The AR(1)-structured covariance in
fj(zi) is specified by parameters Ψv estimated by the simplex algorithm. Both Runge-Kutta
fourth order and simplex algorithms are embedded within the EM algorithm described
above.

Hypothesis Tests

Whether there is a significant QTL that controls circadian rhythms can be tested. The
hypotheses for this test are formulated as

where the H0 corresponds to the reduced model, in which the data can be fit by a single
oscillation, and the H1 corresponds to the full model, in which there exist three QTL
genotype-specific oscillations to fit these data. The test statistics for testing the hypothesis
above is calculated as the log-likelihood ratio (LR) of the reduced to the full model.

where the tildes and hats denote the MLEs of the unknown parameters under the H0 and H1,
respectively. An empirical approach for determining the critical threshold is based on
permutation test, as advocated by Churchill and Doerge (1994).

We can also test the significance of the genetic effect of a QTL on individual parameters
defining the ODE (1) individually or jointly, depending on the purpose of the study. For
example, if we are interested in testing how the QTL affects the capacity of a rhythmic
system to yield the limit cycle, we can formulate the following hypotheses about the Hill
coefficient n:
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This test can determine how a gene controls the oscillation behavior of the system.
Furthermore, the period, amplitude, and phase of the oscillation can all be tested
accordingly.

NUMERICAL RESULTS FROM COMPUTER SIMULATION

The aim of our simulation experiment is to estimate all the unknown parameters using the
simulated data and then compare the estimated parameters with the true ones that were used
to generate the data. Thus, computer simulation will permit us to verify the proposed model.
The study design for computer simulation includes a sample size of N = 400 subjects
randomly derived from an HWE human population. A segregating QTL for circadian
rhythms has three genotypes, AA (1), Aa (2), and aa (3), each with a different set of
rhythmic curves derived from the biochemical mechanism shown in Fig. 1. A few empirical
studies with Drosophila (Goldbeter 1995) reported estimated values for a total of 18
parameters that define a system of ODE (1). We choose the ODE-parameter values within
the ranges of these estimates. For three different QTL genotypes, the following sets of
parameter values are used:

The additional rules for choosing these parameters include: first, they should assure the three
QTL genotypes different from each other; second, for each set of parameters, the system
generates the stable oscillation solutions; and third, the period of each oscillation (i.e. the
limit cycle) is close to 24h. Figure 2 shows the appropriateness of the set of parameter
values for three different QTL genotypes chosen above, with which a system constructed by
a five-variable ODE (1) has sustained oscillations. When plotting the time evolution of per
mRNA as a function of different types of PER protein, these oscillations evolve toward a
limit cycle (i.e., a closed curve) (Fig. 2).

The above genotype-specific ODE parameter values were used to simulate time-specific
phenotypic values for each variable by assuming that five variables follow a multivariate
normal distribution with mean vector specified by the ODE (1) and covariance specified by
an AR(1) model. Assume that residual errors are purely due to permanent errors. Four
different schemes are used with different heritabilities (0.1 and 0.4) and different numbers of
time points (5 and 25). We assume that all subjects have the same measure schedules in
terms of the length of time intervals and the number of time points although the model
allows subject-specific measure schedules. In each simulation scheme, different variables
have the same heritability defined at a middle time point.

We simulated a marker associated with the QTL through a gametic linkage disequilibrium.
The allele frequencies at the marker were used to simulate the distribution of three marker
genotypes in the sampled population. Within each marker genotype, QTL genotypes are
distributed following the conditional probabilities calculated from Table 1 which are
expressed in terms of haplotype frequencies.
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The simulated data were analyzed by the model proposed, with results shown in Tables 2 to
5. For each scheme, the same simulation was repeated 200 times, allowing the calculation of
the means and standard errors of parameter estimates. In general, all the 18 parameters that
define a 5-dimensional system of ODE (1) can well be estimated with reasonable accuracy
and precision even when the rhythm has a modest heritability (0.1) and is measured at a
modest number of time points (5) (Table 2). Figure 3 compares the ODE curves estimated
from the model with the true curves, suggesting that they are broadly consistent even when
the number of time points and heritability are modest. The estimation precision of all these
parameters can be improved quickly with increasing heritability and increasing time points
(Tables 3–5; Fig. 4). The general guidance obtained from simulation results is that, if the
rhythm has a small heritability, more time points should be used. On the other hand, for a
highly heritable rhythm, a small number of time points could be sufficient. The model also
shows reasonable power to detect a significant rhythm QTL when the heritability and the
number of time points are both modest. As expected, the power increases exponentially with
increasing heritability and time points. In practice, adequate power can be obtained by either
increasing the heritability to 0.4 for the study in which only fewer time points (say 5) can be
available, or increasing the number of time points to 25 for a less heritable rhythm trait (say
0.1).

The estimates of covariance-structuring parameters will affect the inference of ODE
parameters. It is shown that the AR(1) parameters can be precisely estimated (Tables 2–5).
Increasing heritability and time points can improve the estimates of these parameters. The
estimates of the allele frequencies at the putative QTL and its gametic linkage
disequilibrium can well be estimated in all the simulation schemes (Tables 2–5). This is
partly due to the use of a closed form derived to estimate haplotype frequencies (equation 9).

DISCUSSION

Although there is a widely accepted view that the normal function of biological rhythms is
strongly correlated with the genes that control them, the detailed genetic mechanisms by
which circadian behavior is originated and mediated are poorly understood (Takahashi
2004). Several studies have identified so-called clock genes and clock-controlled
transcription factors through gene mutants in animal models (Reppert and Weaver 2002;
Takahashi 2004). The implications of these detected genes in clinical trials will hold a great
promise for the determination of an individualized optimal body time for drug
administration based on an patient’s genetic makeup. It has been suggested that drug
administration at the appropriate body time can improve the outcome of pharmacotherapy
by maximizing potency and minimizing the toxicity of the drug (Levi et al. 1997), whereas
drug administration at an inappropriate body time can induce severe side effects (Ohdo et al.
2001). In practice, body time-dependent therapy, termed “chronotherapy” (Labrecque and
Belanger 1991), can be optimized by implementing the patient’s genes that control
expression levels of his/her physiological variables during the course of a day.

With the completion of the Human Genome Project, it has been possible to draw a
comprehensive picture of genetic control for the functions of the biological clock and, in the
ultimate, integrate genetic information into routine clinical therapies for disease treatment
and prevention. To achieve this goal, there is a pressing need to develop powerful statistical
and computational algorithms for detecting genes or quantitative trait loci (QTLs) that
determine circadian rhythms. In this article, we present such a statistical model for mapping
specific rhythm QTLs. This model integrates two recent developments from different fields.
One is the mathematical formulation of circadian rhythms by a system of differential
equations which allow the quantitative investigation and prediction of the behavior of
rhythmic oscillations (Goldbeter 1996, 2002; Leloup et al. 2006). Because they are derived
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directly from molecular mechanisms for biological clocks, these equations have proven to
show robust capacity to explore the origin and cause of an oscillatory system. The second is
the statistical derivation of functional mapping aimed to detect the dynamic expression of a
QTL in developmental courses (Ma et al. 2002; Wu and Lin 2006). Although the role of
functional mapping in detecting rhythm QTLs has been recognized in our previous
publication (Liu et al. 2007), we only used a moment approach to solve differential
equations, thus affecting many mathematical inferences from differential equations. The
new model proposed in this article has fully capitalized on the mathematical properties of
differential equations and can be used to map the QTLs responsible for rhythmic oscillations
that are generated by complex cellular feedback processes composed of a large number of
variables.

The new model integrates biological mechanisms into a statistical framework for genetic
mapping, allowing a number of hypothesis tests to be made at the interplay between genetics
and developmental disorders. Through simulation studies under different schemes, the
model was found to perform reasonably well even when the level of heritability for
biological rhythms is modest. Numerical simulations also provide a practical guidance about
the design of genetic studies used to test molecular control of rhythmic oscillations. When
the rhythm has a moderately large heritability, the number of time points can be as less as
five, to characterize specific QTLs for the trait. Although we have no real data available, it is
anticipated that the model will find an immediate application to solving practical problems.
In deed, given the growing availability of gene expression and proteomic profile data, the
model will help to stimulate an insightful understanding of the genetic cause and origin of
rhythmic oscillations.

The new model can further be integrated with two areas to attract more complicated and
more realistic genetic problems. First, the model can be extended to consider a higher
dimension of biological systems. By accounting for the effect of light on the circadian
system induced by the degradation of the timeless (or TIM) protein, an extended, ten-
variable model was proposed in which the negative regulation is exerted by a complex of
proteins formed by PER and TIM (Leloup et al. 1999). In mammals, the role of TIM as a
partner for PER is played by the cryptochrorne (CRY) protein, and light operates by
inducing gene expression rather than protein degradation as in Drosophila (Reppert and
Weaver 2002). An extended model governed by a system of 16 kinetic equations was
constructed by Leloup and Goldbeter (2003). The integration of these high-dimensional
problems with our model will make it possible to elucidate a detailed picture of genetic
regulatory network for biological rhythms.

Second, to clearly explain the idea, the current model was derived for a single marker
analysis. However, complex biological traits may be controlled by a web of genes each
interacting with others and environmental factors in a coordinated manner. Genome-wide
association studies (GWAS) provide a powerful tool for unraveling the genetic network of
trait control. Also, genes may affect a trait through the combination of their alleles on the
same chromosome (i.e., the haplotype) (Judson et al. 2000; Bader 2001; Rha et al. 2007; Wu
and Lin 2008). The incorporation of our model into GWAS and haplotype analysis will
provide an unprecedented opportunity to study the genetic atlas of biological rhythms.
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Figure 1.
A molecular model for explaining circadian oscillations in Drosophila based on negative
autoregulation of the per gene by its protein product PER. Adapted from Goldbeter (1995).
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Figure 2.
Limit cycles generated by sustained oscillations of per mRNA R and PER protein P0 (A), P1

(B), P2 (C), PN (D), and the total amount of PER protein (E), respectively, for different QTL
genotypes, AA in green, Aa in blue, and aa in red, according to ODE (1).
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Figure 3.
True curves (solid) of different QTL genotypes, AA in green, Aa in blue, and aa in red, for
the time evolution of per mRNA R (A), PER protein P0 (B), P1 (C), P2 (D), and PN (E),
respectively, in a comparison with the corresponding curves (broken) estimated from 5 time
points and 0.1 heritability.
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Figure 4.
True curves (solid) of different QTL genotypes, AA in green, Aa in blue, and aa in red, for
the time evolution of per mRNA R (A), PER protein P0 (B), P1 (C), P2 (D), and PN (E),
respectively, in a comparison with the corresponding curves (broken) estimated from 25
time points and 0.4 heritability.
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