
Applied Soft Computing 12 (2012) 2550–2565

Contents lists available at SciVerse ScienceDirect

Applied Soft Computing

j ourna l ho me p age: www.elsev ier .com/ l ocate /asoc

A dynamic model selection strategy for support vector machine classifiers

Marcelo N. Kapp a,∗, Robert Sabourin a, Patrick Maupinb

a École de technologie supérieure, Université du Québec, Canada
b Defense Research and Development Canada - Valcartier (DRDC Valcartier), Canada

a r t i c l e i n f o

Article history:
Received 6 October 2010

Received in revised form 22 February 2011

Accepted 7 March 2011

Available online 16 April 2012

Keywords:
Support Vector Machines

Model selection

Particle Swarm Optimization

Dynamic optimization

a b s t r a c t

The Support Vector Machine (SVM) is a very powerful technique for general pattern recognition purposes

but its efficiency in practice relies on the optimal selection of hyper-parameters. A naïve or ad hoc choice

of values for these can lead to poor performance in terms of generalization error and high complexity

of the parameterized models obtained in terms of the number of support vectors identified. The task of

searching for optimal hyper-parameters with respect to the aforementioned performance measures is

the so-called SVM model selection problem. In this paper we propose a strategy to select optimal SVM

models in a dynamic fashion in order to address this problem when knowledge about the environment

is updated with new observations and previously parameterized models need to be re-evaluated, and

in some cases discarded in favor of revised models. This strategy combines the power of swarm intelli-

gence theory with the conventional grid search method in order to progressively identify and sort out

potential solutions using dynamically updated training datasets. Experimental results demonstrate that

the proposed method outperforms the traditional approaches tested against it, while saving considerable

computational time.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction1

Support Vector Machines (SVMs) are very powerful classifiers in

theory, but their efficiency in practice relies on the optimal selec-

tion of hyper-parameters. A naïve or ad hoc choice of values for

hyper-parameters can lead to poor performance in terms of gener-

alization error and high complexity of the parameterized models

obtained in terms of the number of support vectors identified. The

task of searching for optimal hyper-parameters with respect to the

aforementioned performance measures is the so-called SVM model

selection problem.

Over the last years, many model selection approaches have

been proposed in the literature. They differ basically in two

aspects: the selection criterion and the searching methods used.

The selection criterion, i.e. the objective function, is a measure

that guides the search. Some of them are specifically related to the

SVM formulation, such as: radius margin bound [2], span bound

[3], and support vector count [4]. Others are classical ones, such

as the well-known cross-validation and hold-out estimations. On

the other hand, the most common searching methods applied are:

∗ Corresponding author.

E-mail addresses: kapp@livia.etsmtl.ca (M.N. Kapp), robert.sabourin@etsmtl.ca

(R. Sabourin), Patrick.Maupin@drdc-rddc.gc.ca (P. Maupin).
1 This paper is an extension in terms of experimental results, analysis depth and

explanations of our first study introduced in [1].

gradient descent [5–7], grid-search [8–10], or evolutionary tech-

niques, such as genetic algorithms (GA) [11–14], covariance matrix

adaptation evolution strategy (CMA-ES) [15], and more recently,

Particle Swarm Optimization (PSO) [16,17]. Although some of these

methods have practical implementations, e.g. gradient descent,

their application is usually limited by hurdles in the model selec-

tion process. For instance, the gradient descent methods require

a differentiable objective function with respect to the hyper-

parameters and the kernel, which needs to be differentiable as

well. In this same vein, multiple local minima in objective functions

also represent a nightmare for gradient descent based methods.

To overcome this, the application of grid-search or evolutionary

techniques is a very attractive option. Unfortunately, concerning

the grid-search method, a good discretization of the search space

in fixed values is crucial to reach high performances. So, the choice

of objective function, the presence of local minima in the search

space, and the computational time required for model selection

task have been considered the main challenges in the field.

In addition to the typical parameter estimation difficulties

briefly mentioned above, the availability of updates on the knowl-

edge related to the pattern recognition problem to be solved

represents a challenge too. These updates typically take the form

of data arriving in batches which become available for updating

the classification system. In fact, the quality and dynamics of train-

ing data can affect the general model selection process in different

ways. For example, if knowledge on the problem is limited, or

the data are noisy or are arriving in batches over time, the model

1568-4946/$ – see front matter © 2012 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.asoc.2012.04.001

dx.doi.org/10.1016/j.asoc.2012.04.001
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:kapp@livia.etsmtl.ca
mailto:robert.sabourin@etsmtl.ca
mailto:Patrick.Maupin@drdc-rddc.gc.ca
dx.doi.org/10.1016/j.asoc.2012.04.001

M.N. Kapp et al. / Applied Soft Computing 12 (2012) 2550–2565 2551

selection task and its performance can progressively degrade. In

order to avoid the negative effects of uncertainties associated with

either the training data or the updates, we believe that an efficient

option is to allow on-line re-estimation of the current model’s fit-

ness and if required to allow the production of a new classification

model more suitable to both historical and new data. This is impor-

tant because, if the goal is to obtain a performing single classifier,

the model selection process must be able to select dynamically

optimal hyper-parameters and train new models from new sam-

ples added to existing batches. In this work, we propose to study

the general SVM model selection task as a dynamic optimization

problem in a gradual learning context, where solution revisions are

required online to either improve existing models or re-adapted

hyper-parameters to train new classifiers from incoming data.

These considerations are especially pertinent in applications for

which the acquisition of labeled data is expensive, e.g. cancer diag-

nosis, signature verification, etc., in which case the data available

may initially not be available in sufficient quantity to perform an

efficient model selection. However, more data may become avail-

able over time, and new models can gradually be generated to

improve performance. In contrast, as previously mentioned, not

only is the optimality of the models estimated a relevant factor,

but also the computational time spent to search for their param-

eter values. Most of related work in the literature has considered

cases involving only a fixed amount of data in systems aimed at

producing a single best solution. In these approaches whenever

the training set is updated with more samples, the entire search

process must be restarted from scratch.

In this paper we present a Particle Swarm Optimization (PSO)

based framework to select optimal models in a dynamic fashion.

The general concept underlying this approach is to treat the SVM

model selection process as a dynamic optimization problem, which

can have multiple solutions, since its optimal hyper-parameter

values can shift or not over the search space depending on the

data available on the classification problem at a given instant. This

means that the proposed method can also be useful for real-world

applications requiring the generation of new classifiers dynami-

cally in a serial way, e.g. those involving streaming data. The key

idea is to obtain solutions dynamically over training datasets via

three levels: re-evaluations of previous solutions, dynamic opti-

mization processes, or even by keeping the previous best solution

found so far. In this way, by shifting among these three levels, the

method is able to provide systematically adapted solutions. We

implement the proposed method based on three main principles:

change detection, adapted grid-search, and swarm intelligence the-

ory (for self-organization capability), where the goal is to solve

the model selection by overcoming the constraints of the methods

described above.

In addition, we try to answer the following questions: Is PSO

really efficient to select optimal SVM models? Can the proposed

method be more efficient than the traditional grid-search or even

a PSO based strategy? Is it possible to obtain satisfactory results

by spending less computational time than is required for the

application of PSO for each set of data? What is the impact in

terms of classification errors, model complexities, and computa-

tional time for the most promising strategies? Experimental results

demonstrate that our method can outperform the model selection

approaches tested. Moreover, we show that for datasets with a fair

number of samples, the gradual application of the proposed method

over sets of data can achieve results similar to those obtained by

optimization processes with PSO over all data, but with a consid-

erable saving of computational time.

This paper is organized as follows. In Section 2 we briefly

describe the support vector machine classifier method. In Sec-

tion 3 we explain the relation between the model selection problem

and dynamic optimization problems. Our proposed method is

introduced in Section 4. Finally, the experimental protocol and

results are described in Section 5 and our conclusions in Section 6.

2. Support Vector Machines

The Support Vector Machine (SVM) classifier is a machine learn-

ing approach based on the structural risk theory introduced by

Vapnik in [4]. In particular, an SVM classifier is capable of finding

the optimal hyperplane that separates two classes. This optimal

hyperplane is a linear decision boundary which separates the two

classes and leaves the largest margin between the samples of the

two classes. Moreover, unlike most learning algorithms based on

empirical risk, the SVM does not depend on probability estimation.

This characteristic makes it more robust against the well known

curse of dimensionality, mainly for small data sets, since classifi-

cation success does not depend on the dimensions of the input

space.

We can summarize the construction of a SVM classifier as fol-

lows. Consider a set of training labeled samples represented by

D=(x1, y1), . . ., (xn, yn), where xi ∈ dR denotes a d-dimensional vec-

tor in a space and yi ∈ { − 1, + 1} is the label associated with it. The

SVM training process, which produces a linear decision boundary

(optimal hyperplane) that separates the two classes (−1 and +1),

can be formulated by minimizing the training error:

min
1

2
‖w‖2 + C

n∑

i=1

�i,

subject to yi((w
T xi) + b) ≥ 1 − �i, �i ≥ 0, i = 1, . . . , n

(1)

while maximizing the margin separating the samples of the two

classes. w is a weight vector orthogonal to the optimal hyperplane, b
is the bias term, C is a tradeoff parameter between error and margin,

�i is a non-negative slack variable for xi. The optimization problem

in Eq. (1) is usually solved by obtaining the Lagrange dual, which

can be reformulated as:

max
1

2

n∑

i

˛i − 1

2

∑

i,j

˛i˛jyiyjxixj,

subject to 0 ≤ ˛i ≤ C,

n∑

i

˛iyi = 0

(2)

where (˛i)i∈n are Lagrangian multipliers computed during the opti-

mization for each training sample. This process selects a fraction l of

training samples with ˛i > 0. These samples are called support vec-

tors and are used to define the decision boundary. In extreme case,

the number of support vectors will be the same that in the train-

ing set. As a result, the w vector can be denoted as
∑n

i
˛iyixi. This

SVM formulation only works for linearly separable classes. How-

ever, since real-world classification problems are hardly solved

with a linear classifier, an extension is needed to nonlinear deci-

sion surfaces. To solve this problem, the dot products (xi . xj) in

the linear algorithm are replaced by a non-linear kernel function

K(.), where K(xi, xj) = �(xi) . �(xj) and � is a mapping function

� : dR �→ H. Such a replacement is the so-called kernel trick. In

order to work, the kernel function K(xi, xj) must satisfy the Mercer

condition [4]. In particular, the kernel trick enables the linear algo-

rithm to map the data from the original input space dR to some

different space H (possibly infinite dimensional) called the feature

space. In the feature space, non-linear SVMs can be generated since

linear operations in that space are equivalent to non-linear opera-

tions in the input space. The most common kernels used for this task

and their parameters (, r, u and �) are listed in Table 1. The decision

2552 M.N. Kapp et al. / Applied Soft Computing 12 (2012) 2550–2565

Table 1

Compilation of the most common kernels.

Kernel Inner product kernel

Linear K(xi, xj) = xT
i
xj

Polynomial K(xi, xj) = (xT
i
xj + r)

u
, u > 0

Radial Basis Function (RBF) K(xi , xj) = exp(− ‖ xi − xj ‖ 2), > 0

Sigmoid K(xi, xj) = tanh(xT
i
xj + �)

function derived by the SVM classifier for a test sample x and train-

ing samples xi can be computed as follows for a two-class problem:

sign(f (x)) with f (x) =
l∑

i

˛iyiK(xi, x) + b (3)

In the same way that this extension deals with non-linear

problems, the primary SVM formulation requires additional mod-

ifications to solve multi-classes problems (c > 2). There are three

approaches for handling this: the one-against-one, one-against-

others, and all-together. The one-against-one strategy arranges

pairs of classifiers to separate classes into an also called pairwise

scheme, where the total number of classifiers is c(c − 1)/2. Given a

test sample, the classification result is obtained by comparing the

pairs and assigning to it the class with the maximum number of

votes. In contrast, the one-against-others strategy yields one clas-

sifier for each class c that separates that class from all the other

classes. The final decision is made by the winner takes-all method,

in which the classifier with the highest output function designates

the class. Finally, the all-together strategy attempts to solve one

single optimization problem which takes all classes into consider-

ation. In this work, we use the one-against-one strategy, since it

has been demonstrated to be faster to train and uses fewer support

vectors than the one against all approach [9].

Overall, the SVM is a powerful classifier with strong theoreti-

cal foundations and good generalization performance. However, as

well as it occurs in most machine learning algorithms, training it

requires a fine tuning of its hyper-parameter set (i.e. kernel param-

eters and regularization parameter C). For instance, C is a penalty

parameter of the error term, e.g. a high value punishes the errors too

much and the SVMs can either over fit the training data or under

fit them. Besides, kernel parameters that are not well tuned can

also lead to under fitting or over fitting of the data. In our case of

interest, if the RBF kernel parameter is improperly set the SVMs

easily over or underfit the training data, while a bad setting for

C can cause an explosion in the number of support vectors identi-

fied, thereby augmenting the complexity of the classifiers obtained.

Thus, the tuning of SVM hyper-parameters controls the classifier’s

power of generalization. Therefore, the problem now is how to find

their best values, which is a non trivial task (the so-called model

selection problem). In the next section, we explain this problem

and relate it to dynamic optimization problems.

3. SVM model selection and dynamic optimization

problems

In order to generate high performing SVM classifiers capable

of dealing with continuously updated training data an efficient

model selection method is required. The model selection task can

be divided into two main phases: the searching phase and the

final training/test phase. The searching phase involves solving an

optimization problem whose goal is to find optimal values for the

SVM hyper-parameters considered in this paper (C and) with

respect to some preference, or selection criterion. In our case this

criterion is expressed as an objective function F evaluated over

a training dataset D, in terms of the cross-validation error �. So,

our model parameter selection problem takes the following form

min(�((C,), D)), or for simplification purposes here, min(�(s, D)).

The final training/test phase in concerned with the production and

evaluation on a test set of the final SVM model created based on

the optimal hyper-parameter set found so far in the searching

phase. On the other hand, the final training and test phase con-

cerns the production and evaluation of the final SVM model M

created based on the optimal hyper-parameter set found so far in

the searching phase. In other words, the common process related

to these two phases can be summarized in five steps: (1) Collect

training data; (2) Start the search for solutions; (3) Find the hyper-

parameters that perform best; (4) Train the final model with the

best hyper-parameters; and lastly (5) Assess the performance of the

final model using the test set. In Table 2 we summarize examples

of SVM model selection methods found in the literature organized

according to the type of kernel, search methods, and objective func-

tions employed. We note that the RBF kernel has been investigated

the most, perhaps due to the fact that the kernel matrix using sig-

moid function may not be positive defined. Besides, even though

the polynomial kernel may be an attractive alternative, but numer-

ical difficulties tend to arise if a high degree is used, for example, a

power of some minor value that 1 tends to 0 and of a major one that

tends to infinity. Furthermore, the RBF kernel has often achieved a

superior power of generalization with lower complexity than the

polynomial kernel [18]. Because of this, the RBF kernel is considered

in this study.

Most of effort associated with the approaches listed in Table 2

concentrated on solving the complex SVM model selection prob-

lem from one static training dataset available at time k. In this case,

it should be convenient to use perfect, i.e. noise-free, data and in

a fair amount in order to reach high performances. However, data

from real-world applications are usually far from perfect, which

Table 2

Compilation of some related works on SVM model hyper-parameters selection in terms of the type of kernel used, the search method, and the objective function.

Ref. Kernela Search method Objective function

[19] RBF Grid-search (GS) �-Cross-validation

[6] RBF Gradient descent (GD) Radius-margin, Span bounds, Leave-one-out

[8,9] RBF Grid-search (GS) �-Cross-validation error (CV)

[11] RBF Genetic algorithm (GA) Radius-margin bound

[12] RBF Genetic algorithm (GA) �-Cross-validation error (CV)

[7] RBF Gradient descent (GD) Hold out error, radius-margin, Generalized Approximate CV error (GACV)

[20] RBF Gradient descent (GD) Leave-one-out (LOO), span bound

[21] RBF,POL Grid-search (GS) �-Cross-validation

[22] POL Gradient descent (GD) Generalization error estimation bound

[13] RBF Multi-objective GA (MOGA) Modified radius-margin bounds

[16] RBF Particle Swarm Optimization (PSO), GS Hold out error, �˛-estimator

[10] RBF Uniform design (UD), Grid-search (GS) �-Cross-validation

[17] RBF Particle Swarm Optimization (PSO) False Acceptance (FA)

a RBF: Radial Basis Function kernel whose hyper-parameter is . POL: polynomial kernel which hyper-parameters are the degree u and coefficient r. Kernel hyper-parameters

and the regularization parameter C are optimized simultaneously.

M.N. Kapp et al. / Applied Soft Computing 12 (2012) 2550–2565 2553

Fig. 1. Illustration of changes in the objective function. In a first moment (k), solu-

tions are approximated for a parameter . Next, due to some unexpected change,

e.g. new data, noisy, etc., the objective function changes and the solutions (gray cir-

cles) stay trapped in a local minimum, what requires some kind of reaction to adapt

the solutions to the new function and optimal (dark point) in k + 1.

gives the model selection process itself the potential for many

types of uncertainty. In general, uncertainty is a multifaceted con-

cept which usually involves vagueness, incompleteness, missing

values, or inconsistency. Here, we assert that some uncertainties

related to the machine learning area, such as missing features, ran-

dom noise, or data insufficiency, generate uncertainties that can

disturb the optimization process responsible for model selection.

This is because uncertainties may produce some dynamism in the

objective function, and so it is important to understand SVM model

selection as a dynamic optimization problem.

Dynamic optimization problems are complex in that the optimal

solution can change overtime in different ways [23]. The changes

can result from variations in the objective function, which implies

in fitness dynamism. Fig. 1 depicts a conceptual example of fitness

dynamism, and its consequences, and shows why dynamic opti-

mization techniques are claimed. One can see that in a first moment

(k), the optimization process approximates some solutions for a

parameter . Then, due to some unexpected change related to the

optimization task, e.g. new data, noise, etc., the objective function

changes, and the solutions become outdated and trapped into a

local minimum in the future (e.g. in k + 1). This requires that the

optimization algorithm be capable of re-adapting the solutions to

new functions.

To demonstrate this fact, we depict a case study in Fig. 2 regard-

ing the min(�(s, D(k))) mentioned above. First, in Fig. 2(a) we can

see an SVM hyper-parameter search space and optimal solutions

obtained with a certain number of data samples from a classi-

fication problem. Then, the entire search space was recomputed

with the same objective function (five-fold cross-validation aver-

age error), but this time from more data. The resulting search space

is shown in Fig. 2(b). It can be seen that the search space and

the optimal points may actually change depending on the amount

of knowledge available about the problem. This applies to both

objective function values, since the new objective values of pre-

vious optimal solutions s* have worsened from � = 10% (e.g. s1 and

s3) or improved (to s2, for example), once a new optimal solution

emerged, that is, s4 = (6.93,6.23). The classification problem used

for this case study is called P2 and is introduced with other datasets

in Section 5.3. Through this example, it is easy to see that the search

space and optimal points may change in terms of both fitness values

and positions.

In order to show the effect that these hyperparameters changes

produce in obtaining a final SVM model, we depict in Fig. 3, for

this same example, the input spaces and the respective decision

boundaries produced by SVM models trained with different hyper-

parameters values and number of samples. From these results, we

can see that despite of s2 adequately separates the classes given

a certain knowledge about the problem (Fig. 3(a)), it is not capa-

ble of producing the same satisfactory results (Fig. 3(b)) that a new

best evaluated solution (i.e. s4) can achieve (Fig. 3(c)) if more sam-

ples are considered. Moreover, regarding the real-world situations

addressed in this paper, the model selection process must also be

designed to perform over time, i.e. for many datasets or incoming

data. This is another reason why the SVM model selection problem

can be seen as a dynamic optimization problem, in which solutions

(i.e. hyper-parameters) must be checked and selected over time,

since optimal hyper-parameter values can change dynamically

depending on the incoming data at different times k. Thus, in addi-

tion to the approaches mentioned above which may only partially

solve the problem and in order to attend to real-world applications

needs, especially for updating and/or generating new models, this

problem claims for more sophisticated methods capable of adapt-

ing new solutions and saving computational time, rather than for

example, starting search processes from scratch every time.

4. The proposed dynamic SVM model selection strategy

The goal of the proposed method is to point out dynamically

optimum solutions for sequences of datasets D(k) by switching

Fig. 2. Hyper-parameter search space for P2 problem with different number of samples. (a) 40 samples and (b) 922 samples.

2554 M.N. Kapp et al. / Applied Soft Computing 12 (2012) 2550–2565

Fig. 3. Input spaces and resulting decision boundaries produced by training SVM models with different hyperparameters values and number of samples for the P2 problem.

(a) Decision boundaries obtained after training with the solution s2 and 40 samples, � = 10%. (b) Decision boundaries obtained for the same optimum solution s2 for 40

samples, but now training over 922 samples, � = 7.81%. (c) Final result achieved for the best solution s4 regarding 922 samples, � = 3.90%.

among three levels: (1) use the best solution s*(k − 1) found so far,

(2) search for a new solution over an adapted grid composed of a

set of solutions S(k − 1), or (3) start a dynamic optimization pro-

cess. In this paper, each solution s will represent a PSO particle,

which codifies an SVM hyper-parameter set, e.g. (C,). The switch-

ing among the levels is governed by change detection mechanisms

which monitor novelties in the objective function F. Such changes

correspond to degradation of performance or no improvement at

all (stability) with respect to new data, which will indicate whether

or not the system must act. Fig. 4 depicts an overview of the general

concept proposed. First, a population of solutions (swarm) S(0) is

initialized by the optimization algorithm to search for solutions for

the dataset D(1), after which the optimization process finishes and,

a set of optimized solutions S(1) is stored for future use. Based on

fitness re-estimation or according to some other criterion related to

the problem, the current status of the best solution (dark circle) will

be examined on new data. Following the example, we suppose that

the fitness re-estimated from the previous best solution s*(1) for

the dataset D(2) is still satisfactory, and apply the same solution to

train a new classifier. However, more data can be available and the

goodness of the best solution s*(1) may no longer be guaranteed,

e.g. between datasets D(3) and D(4). To solve this, we suggest per-

forming a fine search over the set of optimized solutions S(1). We

call this process an adapted grid-search, since it applies solutions

already optimized, which are probably located over a good deal of

the search space, and are not guessed values as occurs in the tradi-

tional grid-search. The advantage is that, in the most of the time, the

adapted grid-search can indeed gain in performance if compared

with traditional grid methods and also save computational time

if compared with full optimization processes. However, when it is

not possible to identify a satisfactory solution even after an adapted

grid search, the method starts a dynamic optimization process, as

M.N. Kapp et al. / Applied Soft Computing 12 (2012) 2550–2565 2555

Fig. 4. Overview of the proposed model selection strategy (conceptual idea). Optimum solutions for a current dataset D(k) are pointed out by switching among three search

strategies: (1) use the best solution s*(k − 1) found so far, (2) search for a new solution over an adapted grid composed of a set of solutions S(k − 1), or (3) start a dynamic

optimization process. The symbols represent different solutions from a swarm. The best solution selected for a dataset lies above the dashed line. The white circles in S(0)

denote randomly initialized solutions. Dark and white symbols indicate solutions from different swarms.

denoted for the dataset D(7). As a result, a new population of solu-

tions, surely better adapted to the problem, will be available for

the future. We introduce the framework of the proposed method

below.

4.1. Framework

As we mentioned previously, the ideal method of creation of

an SVM classifier is composed of two phases: model selection and

training/test phases. The first is responsible for searching for the

best SVM hyper-parameters and the second phase uses the best

hyper-parameters found to train and test a final SVM model M.

In this work, based on the conceptual idea depicted in Fig. 4 and

also by concepts of dynamic optimization problems introduced in

Section 3, we propose a framework for the dynamic selection of

SVM models composed of three main modules, as shown in Fig. 5

and listed in Algorithm 1: change detection, adapted grid-search,

and dynamic Particle Swarm Optimization (DPSO). We detail these

below. The upgrade stm and recall stm functions are respectively

responsible for storing and retrieving optimized solutions from the

system’s Short Term Memory (STM).

Algorithm 1. Dynamic SVM Model Selection
1: Input: A training set of data D(k).

2: Output: Optimized SVM classifier.

3: recall stm(s∗(k − 1),S(k − 1))

4: if there is a S(k − 1) then

5: Check the preceding best solution s∗(k − 1) regarding the

dataset D(k)

6: if Change Detection(s∗(k − 1),D(k)) then

7: Activate the adapted grid-search module and get solution

s′(k)

8: if Change Detection(s′(k),D(k)) then

9: Activate the DPSO module

10: end if

11: end if

12: else

13: Activate the DPSO module

14: end if

15: upgrade stm(s∗(·),S(·))

16: Train the final SVM classifier from D(k) by using the optimum

solution found so far by the modules.

Fig. 5. General framework of the proposed method for the dynamic SVM model selection.

2556 M.N. Kapp et al. / Applied Soft Computing 12 (2012) 2550–2565

Fig. 6. Illustration of the change detection mechanism. In this case, as the new fit-

ness is situated outside the expected region, a new optimization is carried out in

order to find a new better solution.

4.1.1. Change detection module
The change detection module controls the intensity of the search

process by pointing out how the solutions are found thereby the

levels of the framework. In particular, it is responsible for simul-

taneously monitoring the quality of the model selection process

and avoiding “unnecessary” searching processes. We implement

it by monitoring differences in the objective function values, in

this case error estimations � obtained for a best solution s* on

the datasets D(k − 1) and D(k), for example. We denote this fact

as �(s∗, D(k − 1)) and �(s∗, D(k)), respectively. If the solution found

is not to be satisfactory for the process, then a further searching

level is activated. The adequacy of a solution can be measured in

several ways. In this work, as we are interested in finding per-

forming solutions, we consider that further searches are needed.

If the objective function value computed does not lie in a “stable”

region.

The stable region is computed through the maximum expected

difference ımax between the objective function values at the 90%

confidence level using a normal approximation to the binomial

distribution (see Eqs. (4) and (5)) [24]. In this setting, if there is

a degradation of performance (�(s∗, D(k − 1)) < �(s∗, D(k))) or sig-

nificant variation in the objective function (i.e. | �(s∗, D(k − 1)) −
�(s∗, D(k)) |≥ ımax), then other levels are activated for additional

searches. Fig. 6 depicts an illustration of the ımax stable region idea.

In order to make this criterion more robust when small datasets are

used, we combine it with a rule related to the compression capabil-

ity of the classifier. The compression capability is calculated as the

proportion of support vectors over the number of training samples.

If the ımax rule and a minimal compression required are attained,

the situation is characterized as stable and no further searches are

computed. Otherwise, the model selection process continues by

activating the other modules.

ımax = z0.9 ×
√

� = 1.282 ×
√

� (4)

where � is computed by Eq. (5), where W(·) is the dataset size:

� = �(s∗, D(k − 1)) × (1 − �(s∗, D(k − 1)))

W(D(k − 1))

+ �(s∗, D(k)) × (1 − �(s∗, D(k)))

W(D(k))
(5)

So, the change detection module may sometimes denote a trade-

off controller between computational time spent and the quality

of solutions. For instance, if we ignore this module, then dynamic

re-optimization processes will be always conducted, which can

produce indeed good results but to be unnecessarily time consum-

ing for stable cases.

4.1.2. Adapted grid-search
The adapted grid search module provides optimum solutions by

re-evaluating the knowledge acquired from previous optimizations

performed by the DPSO module. This knowledge is represented by

a set S(k − 1) of optimized solutions which are stored in the short
term memory. Usually, this method finds better solutions than the

traditional grid-search method.

Unlike the traditional grid-method, which depends on the

discretization of values and requires the evaluation of several com-

binations (see Fig. 7 for two hyper-parameters (C and)), the

adapted grid-search module reduces the number of trials by focus-

ing the search in an optimal region. As a result, this module can

save a considerable computational time.

Basically, this module uses the best positions of preceding opti-

mized solutions as a grid of new possible candidate solutions to be

evaluated over the current data D(k). At the end of the process,

the best candidate is selected. Although we employ this imple-

mentation, we can suggest other modifications, such as moving the

particles by using a complete iteration of PSO. Such a process seems

interesting, but costs more in terms of processing time than simply

re-evaluating the best particles’ positions, which in most of cases

may be enough.

Nevertheless, it is important to note that the module’s results are

related to the quality of the previous optimizations. Therefore, it is

efficient when the current population of solutions is positioned on

optimal regions. Otherwise, it may produce sub-optimum solutions

that will be not satisfactory for final learning purposes. In light of

this, we apply the change detection a second time in order to ensure

the quality of the solution obtained at the end of this process, as

indicated in the framework in Fig. 5. If the current solution is still

not considered satisfactory, the dynamic optimization module is

activated.

4.1.3. Dynamic Particle Swarm Optimization-DPSO
The DPSO module is responsible for finding new solutions by

means of re-optimization processes. We implement it based on

the Particle Swarm Optimization (PSO) algorithm combined with

dynamic optimization techniques.

The Particle Swarm Optimization (PSO) method was firstly

introduced by Kennedy and Eberhart in 1995 [25]. Briefly, it is a

population-based optimization technique inspired by the social

behavior of flocks of birds or schools of fishes. It is applied in

this work because it has many advantages that make it very

interesting when compared with other population-based opti-

mization techniques, e.g. genetic algorithms (GA). For instance,

PSO belongs to the class of evolutionary algorithms that does

not use the “survival of the fittest” concept. It does not utilize

a direct selection function, and so, particles with lower fitness

can survive during the optimization and potentially visit any

point in the search space. Furthermore, the population size usu-

ally employed in PSO gives it another advantage over GA, since

the lower population size in PSO favors this algorithm regarding

the computational time cost factor [26]. Nonetheless, two main

additional characteristics give us further motivation for using it.

First, PSO has a continuous codification, which makes it ideal for

the search of optimal SVM hyper-parameters. Second, the poten-

tial for adaptive control and flexibility (e.g. self-organization and

division of labor) provided by the swarm intelligence makes PSO

very interesting to be explored for solving dynamic optimization

problems.

In this section, we simplify the index notation (e.g. for time

or datasets) and use only those needed to understand the PSO

technique well. In particular, the standard PSO involves a set

M.N. Kapp et al. / Applied Soft Computing 12 (2012) 2550–2565 2557

Fig. 7. The traditional grid must try a higher number of combinations than the adapted grid, which profits from the already optimized solutions S(k) provided by DPSO. s*(k)

denotes the best solution.

S = {si, ṡi, s′
i
}P
i=1

2 of particles that fly in the search space look-

ing for an optimal point in a given d-dimensional solution space.

The si = (s1
i
, s2

i
, . . . , sd

i
) which is a vector that contains the set of

values of the current hypothesis. It represents the current loca-

tion of the particle in the solution space, where the number of

dimensions is problem dependent. The vector ṡi = (ṡ1
i
, ṡ2

i
, . . . , ṡd

i
)

which stores the velocities for each dimension of the vector si.

The velocities are responsible for changing the direction of the

particle. The vector s′
i = (s′1

i , s′2
i , . . . , s′d

i) is a copy of the vector

si which produced the particle’s individual best fitness. Together,

s′
i and si represent the particles’ memories. Regarding the model

selection problem, the vector positions si encode the SVM hyper-

parameter set to be optimized and s* denotes the best solution

found.

PSO starts the search process by initializing the particles’ posi-

tions randomly over the search space. Then, it searches for optimal

solutions iteratively by updating them to fly through a mul-

tidimensional search space by following the current optimum

particles. The direction of the particle’s movement is governed

by the velocity vector ṡi, which is denoted by the sum of the

information from the best particle’s informant found in its neigh-

borhood � (e.g. s′
net(i,�)

(q)) and the particle’s own experience s′
i
. For

a new iteration q + 1 and dimension d, the update is computed as

follows:

ṡd
i (q + 1) = �(ṡd

i (q) + �r1(s′d
i (q) − sd

i (q))+�r2(s′d
net(i,�)(q) − sd

i (q)))(6)

where � is the constriction coefficient introduced by Clerc and

Kennedy [27], and r1 and r2 are random values. Constriction coef-

ficient values of � = 0.7298 and � = 2.05 are recommended [26].

Eventually the trajectory of a particle is updated by the sum of its

updated velocity vector ṡi(q + 1) to its current position vector si(q)

to obtain a new location, as depicted in Eq. (7). Fig. 8 depicts an

illustration of particle’s trajectory during position updating. There-

fore, each velocity dimension ṡd
i

is updated in order to guide the

particles’ positions sd
i

to search across the most promising areas of

the search space. In Algorithm 2 we summarize the standard PSO

method.

sd
i (q + 1) = sd

i (q) + ṡd
i (q + 1) (7)

2 We use this functional notation for sake of generality. The equivalent to tradi-

tional PSO would be: S = {xi, vi, pi}P
i=1

.

Algorithm 2. Standard PSO Algorithm
1: Input: PSO parameters.

2: Output: Optimized solutions.

3: Randomly initialize the particles

4: q ← 0;

5: repeat

6: for all particles i such that 1 ≤ i ≤ P do

7: Compute fitness value for the current position si(q)

8: Update s′
i
(q) if position si(q) is better (s′

i
(q) ← si(q))

9: end for

10: Select the best fitness s′
i
(q)

11: for all particles i such that 1 ≤ i ≤ P do

12: Update velocity ṡi(q) (Eq. (6)) and current position si(q) (Eq. (7))

13: end for

14: q = q + 1

15: until maximum iterations or another stop criteria be attained

In the canonical PSO formulation, an entire swarm is considered

as a single neighborhood where particles share the best information

discovered by any member of the swarm, the so-called gbest topol-

ogy. The main disadvantage is that it forces the particles towards a

single best solution, which causes the swarm to lose the ability to

explore the search space in parallel more locally. Moreover, it has a

premature convergence tendency [26]. Because of this, we imple-

ment this module based on PSO with a more sophisticated topology

called local best (lbest) [26]. This topology creates a neighborhood

for each individual containing itself and its � nearest neighbors in

the swarm. The neighborhoods can overlap and every particle can

be in multiple neighborhoods. As a result, it allows interactions

among the neighborhoods and eventually more series of events

may be discovered. With this characteristic, this module is capable

of exploring multiple regions in parallel and therefore fits better for

Fig. 8. Example of particle’s trajectory during position updating.

2558 M.N. Kapp et al. / Applied Soft Computing 12 (2012) 2550–2565

functions with possible multiple local optima. Such a parallelism

allows distant neighborhoods to be explored more independently,

which is important for multi-modal problems. Moreover, the par-

ticles are placed in potentially more promising regions, which can

allow faster recovery from variations between searching processes

and also allow them to be used by the adapted grid search module.

Nevertheless, even though PSO is a powerful optimization

method, if the optimization problem suffers some change in the

objective function, for example between blocks of data, the par-

ticles can get stuck in local minima (see Fig. 2). To avoid this,

an alternative should be to start a full PSO optimization process

from scratch each time that the module is activated. However, it

would be very time consuming and even at times unnecessary if the

changes occur around the preceding optimum region. Taking this

into account, we enable the module to restart optimization pro-

cesses from preceding results in order to save computational time.

To implement this mechanism, we combine two dynamic optimiza-

tion techniques: re-randomization and re-evaluation of solutions,

and apply them into our PSO based module. In fact, both techniques

were already applied in the PSO literature [28,29] to solve dynamic

optimization problems, but separately and using the gbest topol-

ogy. In particular, these PSO variants are commonly called DPSO

(Dynamic PSO), so for the sake of simplicity, we name this module

as DPSO to refer such a combination of approaches. Nevertheless,

it is important to distinguish that existing dynamic PSO algorithms

apply such techniques and change detection mechanisms in each

iteration, since they suppose that objective function changes can

happen during the optimization. In here, as the optimization over

a dataset D(k) at a given instant k is indeed static, we apply these

dynamic techniques to prepare the optimization module for tran-

sitions from preceding optimizations knowledge to launch new

ones. As a result, we take advantage of these techniques to pro-

vide diversity in the solutions and clues on optimal starting points

before the optimization. Thus, unlike actual dynamic PSO versions,

no extra computational effort is added at each iteration. In light

of this, in Fig. 5 and in the rest of this paper, our DPSO module

represents the application of these dynamic techniques to cooper-

ate with the optimization algorithm, but not in its interior in each

iteration.

The focus now shifts to the whole implementation, which

involves two main steps related to the way that the optimization

process restarts. The main steps are listed in Algorithm 3. First of

all, once the DPSO module is activated, which uses information

from the system’s memory (STM) as well, every fitness is updated

from the re-evaluation of the current position si and best position

s′
i

of each particle si in the swarm S(k) (steps: 3 to 6). This is done

to prevent the particle’s memory from becoming obsolete [28]. In

fact, the fitness of the best positions �pi can be profited from the

preceding level (adapted grid-search), what dispenses a second

evaluation. Thereafter, a re-optimization process is launched by

keeping �% of the best particles positions from the swarm S(k − 1),

which was computed in the previous optimization, and by ran-

domly creating new particles over the search space [29]. Some of

these particles located near to the previous optimum region. In this

manner, we guarantee that fine searches are realized based on pre-

vious information, which can adapt more quickly to new data than

full optimization processes (steps 7 and 8). At the same time, we add

more diversity to the algorithm for searching new solutions, which

enable us to avoid situations in which the whole swarm has already

converged to a specific area. Finally, steps 9 to 23 correspond to the

main steps of the PSO implementation, but are slightly modified

by adding a mechanism that updates the connections among the

particles, if no improvement is observed between iterations (steps

19 to 21). These latter steps were suggested as an alternative by

Clerc [30] to improve the adaptability, and hence the performance,

of the swarm.

Algorithm 3. Our implementation of Dynamic PSO
1: Input: PSO parameters and previous swarm S(k − 1).

2: Output: Optimized solutions.

3: for all particles i from S(k − 1) such that 1 ≤ i ≤ P do

4: Compute fitness values for si using D(k)

5: Update s′
i
if si is better (s′

i
← si)

6: end for

7: Initialize dynamically the new swarm S(k) by keeping �% of

the best information (positions s′
i
) from the preceding swarm

S(k − 1) and by creating new particles.

8: Initialize the links among the particles based on a nearest

neighborhood rule according to the topology chosen.

9: q ← 0;

10: repeat

11: for all particles i such that 1 ≤ i ≤ P do

12: Compute fitness value for the current position si(q)

13: Update s′
i
(q) if position si(q) is better (s′

i
(q) ← si(q))

14: end for

15: Select the best fitness of this iteration q, i.e. s′
i
(q)

16: for all particles i such that 1 ≤ i ≤ P do

17: Update velocity ṡi(q) (Eq. (6)) and current position si(q)

(Eq. (7))

18: end for

19: if F(s∗(q)) = F(s∗(q − 1)) { No improvement. Change particle

communication structure } then

20: Randomly change the particles’ links based on the

topology chosen.

21: end if

22: q = q + 1

23: until maximum iterations or other stop criteria be attained

So, through the use of these modules, the proposed method

allows the searching process to evolve and adapt itself dynamically.

Even though this framework has unique features, there is still room

for authors to investigate new strategies for the adapted grid search

module, detection mechanisms, and even strategies to re-optimize

solutions.

In order to clarify the whole concept, we illustrate the pro-

posed method in a case study in Fig. 9. This case study represents

an empirical reference to the general concept illustrated in Fig. 4.

In particular, it depicts overviews of searching processes carried

out by the proposed method and full optimization processes over

cumulative sequences of data increased logarithmically from the

Satimage database. Based on these results, it is shown in Fig. 9(a)

that the proposed method can achieve similar results to those

obtained by full optimization processes with PSO (Full PSO), but

more quickly and in fewer iterations if the whole sequence is con-

sidered.

Exploring this case study further, we compile a list of activities

performed by the proposed method during the searching processes

and their effects in terms of the generalization error on a test set, as

shown in Fig. 9(b). It is easy to see which module of the framework

was responsible for selecting the final solution. In addition, we list

the results of searching processes between the datasets D(6, 13) in

a table in order to provide more details. Basically, the results in the

table include the use of the optimized swarm S(6), resulting from

a DPSO execution, as a pool of hypotheses for additional datasets,

where a particle si is selected as the best one, according to some

criteria and via: keeping the same previous best (BK), adapted grid

(AG), or DPSO processes.

Some of the main results are depicted in the table in Fig. 9(c),

where we have selected the ten most performing particles and pre-

sented their best positions in a logarithmic scale. Then, for each set,

we indicate the solution pointed out by the method by highlighting

its fitness in gray. When a previous best solution remains the same

for the next dataset, no evaluation is performed for the other par-

ticles. Assuming that the solutions are well-placed in the search

space, we have started by reporting the results for the dataset

D(6), where the best solution s9 in swarm S(6) was found by DPSO.

Next, the solution s9 found over the dataset D(6) has been kept for

dataset D(7). We note that the current best solution experienced

M.N. Kapp et al. / Applied Soft Computing 12 (2012) 2550–2565 2559

Fig. 9. Case study: operation of the proposed method, dynamic model selection (DMS). In (a), we show an overview of searching processes for SVM models based on the

proposed method and on full optimization processes over sequences of incoming data. We can see that DMS can approximate performing solutions by requiring fewer

iterations than full optimization processes. The dashed vertical lines indicate when more data were injected and how many iterations were needed to accomplish the

searching tasks. Next, in (b) and (c), we show a zoom on the proposed method’ activities and generalization errors. These figures empirically depict an analogy to the general

concept illustrated in Fig. 4.

a decrease in performance between datasets D(7, 8) (in next col-

umn), which is denoted as a negative behavior. As a consequence,

the adapted grid-search module is activated to try to find another

satisfactory solution. Following evaluation, the adapted grid mod-

ule elects a new solution s7 and no further searches are carried

out, since the best current result has improved and there is no

indication of any big changes that would justify additional opti-

mizations. Next, between datasets D(8, 9), the change detection

rule is re-activated, and again a fine search is carried out over the

other solutions to check whether or not there is a better solution.

The new solution returns to s9 and another application of the rule

over the two best results indicates that the DPSO module does not

need to be activated. Thereafter, between dataset D(9, 10), the cur-

rent best particle s9 was preserved since no relevant variation has

occurred. On the other hand, the same behavior between datasets

D(8, 9) occurs among the datasets D(10, 12), resulting in s2 and

s7, respectively. Afterwards, the searching process continues by

re-activating DPSO for the dataset D(13), which results in a new

2560 M.N. Kapp et al. / Applied Soft Computing 12 (2012) 2550–2565

swarm S(13) with a new best solution s9. Therefore, dynamic opti-

mizations are employed whenever the method judges it necessary

to update the swarm. Mainly due to performance degradation, or

for instance, when the adapted grid is activated and the results are

neither improved nor do they characterize changes in the search

space.

5. Experimental protocol

A series of experiments were carried out to test the effective-

ness of the proposed method. In particular, we have compared

our method with other model selection strategies under a gradual

learning scenario. In the latter, an SVM classifier must be built grad-

ually from scratch whenever more data become available. We have

used datasets generated from synthetic and real-world problems.

For each dataset, the following experimental setup was conceived:

First of all, the original training sets were divided into sets of

data. The total number of samples for each dataset was progres-

sively increased according to a logarithmic rule [31], from about

16 examples per class to the total number of samples available in

the dataset. For datasets in which the original distribution of sam-

ples was unbalanced among the classes, we have maintained the

original class-priors for each dataset.

Then we have applied each SVM model selection strategy over

the datasets. Once the model for each dataset had been selected,

the performance of the classifiers was assessed in terms of its

generalization error on the test set after each simulation. The gen-

eralization error was estimated as the ratio of misclassified test

set samples over the total number of test samples. This made it

possible to observe the effect of the training dataset size for each

model selection approach and the final test performance attained.

As some strategies tested use stochastic algorithms, the results rep-

resent averages drawn over 10 replications. The kernel chosen for

the SVM classifier was the RBF (Radial Basis Function), and so, the

model selection methods were carried out to find optimal values

for the hyper-parameter set (C,). Additional specifications on the

approaches tested and information on the datasets are provided in

next section.

5.1. SVM model selection strategies tested

We have compared the following SVM model selection strate-

gies:

• Traditional Grid-Search (GS): This method selects the best solution

by evaluating several combinations of possible values. The best

combination is kept to train the final SVM classifier. In this study,

we consider a grid of 70 (7 × 10) positions, where the possible

combinations lie within these values: C = {0.01, 0.1, 100, 150,

170, 250, 600}, and = {0.08, 0.15, 15, 20, 50, 100, 300, 500,

1000, 1500}.
• 1st Grid-Search (1st-GS): This strategy applies a traditional grid-

search only over the first dataset and retains the same solution

found for the subsequent subsets.
• Full Particle Swarm Optimization (FPSO): The optimal hyper-

parameter values are selected by the standard PSO algorithm for

each new set of data.
• Chained PSO (CPSO): PSO is applied by this strategy to search for

optimal solutions. However, the solutions here are optimized

among sequences of datasets in a chained way, like a serial

process. This means that the optimization process is performed

continuously over the datasets, and not by fully re-initializing the

swarm between sets.
• Dynamic model selection (DMS): This strategy is the proposed

method introduced in Section 4.

5.2. Experiments parameters setting

The following parameters setting were used in the experiments.

• Optimization Algorithms Parameters: The maximum number of

iterations and the swarm size were set to 100 and 20, respectively.

The dimensions of each particle are denoted by hyper-parameter

values for C and , where the maximum and minimum values of

such dimensions were set to [2−6, 214], [2−15, 210], respectively.

The topology used in PSO and DPSO was lbest with � = 3. This

topology was selected because unlike the gbest topology, which

has a tendency towards premature convergence because all the

particles are influenced by the same global source, the lbest
topology is more sophisticated for exploring multiple regions in

parallel [26]. Furthermore, the parallelism of the lbest topology

allows distant neighborhoods to be explored more indepen-

dently. Basically, this topology creates a neighborhood for each

individual comprising itself and its � nearest neighbors in the

swarm. A neighborhood may consist of some small group of par-

ticles, where the neighborhoods overlap and every particle can

be in multiple neighborhoods.

Two stop criteria were implemented for the optimization

processes. The first was implemented based on the maximum

iteration permitted. As a result, the optimization might finish

whenever the number of iterations reaches the maximum value

(100). However, the second criterion was built based on the best

fitness value. Generally speaking, if the best fitness value did

not improve over 10 consecutive iterations, then the optimiza-

tion process was stopped. In fact, this last stop criterion was the

most active, since the simulations never attained to the maximum

number of iterations.
• Objective Function: Several objective functions have been

proposed in the literature for searching for optimal hyper-

parameters, e.g. radius margin bound [2], span bound [3], support

vector count [4], etc. More information about them can be found

in [6]. Unfortunately, these measures usually depend on certain

assumptions, e.g. they are valid for a specific kernel or require

a separation of the training set without error. The problem is

that these assumptions are quite strong for real-world problems.

Thus, the best alternative is to use as objective function measures

related to the performance of the classifiers, since no assump-

tions are needed [15]. Taking this into account, the minimization

of the generalization error from cross-validation (CV) procedures

over a training set is a good option. In the �-CV procedure, the

original training set is firstly divided into � portions of data, and

then sequentially one dataset is tested by using a classifier trained

from the remaining � − 1 portions of data. To sum up, it means

that each instance of the entire training set is predicted once,

and the final generalization error is computed as an average over

the test errors obtained. In fact, a �-CV is the best option since it

results in a better generalization error estimation than by sepa-

rating a small dataset into a hold-out procedure and being less

computationally expensive than by using leave-one-out proce-

dure (� = total number of training samples), for example. In this

work, we have used � = 5 (five-fold cross-validation), since it is

the most commonly used and is also suggested in [8].

5.3. Datasets

We have used fourteen synthetic and real-world datasets in the

experiments. They are listed in Table 3 along with more details. The

synthetic problems used were the well-known Circle-in-Square

(CiS) [32] and P2 [21] problems. The CiS problem consists of two

classes, where the decision boundary is nonlinear and the samples

are uniformly distributed in ranges from 0 to 1. A circle inside a

square denotes one class, while the other class is formed by the

M.N. Kapp et al. / Applied Soft Computing 12 (2012) 2550–2565 2561

Table 3

Specifications on the datasets used in the experiments.

Database Number of classes Number of features Number of training samples Number of sets Number of test samples

Adult 2 123 3185 19 29,376

Circle-in-Square 2 2 3856 21 10,000

DNA 3 180 1400 15 1186

GermanCredit 2 24 800 13 200

IR-Ship 8 11 1785 10 760

Nist-Digits 10 132 5860 16 60,089/58,646

P2 2 2 3856 21 10,000

Satimage 6 36 4435 15 2000

Segment 7 19 1848 12 462

Svmguide 2 4 3089 20 4000

Splice 2 60 1000 15 2175

Mushrooms 2 112 6498 24 1626

Usps 10 256 7291 17 2007

area outside the circle. The area of the circle is equal to half of the

square. The P2 problem is also a two-class problem, where each

class is defined in multiple decision regions delimited by one or

more than four simple polynomial and trigonometric functions. As

in [31], one of the original equations was modified such that the

areas occupied by the classes become approximately equal. In both

problems, the classes are nested without overlapping, so the total

probability of error is 0%.

The real-problems employed are described as follows. The Adult

dataset represents a two-class problem from the UCI Reposi-

tory [33]. The task is to predict whether or not income exceeds

$50K/year based on census data. The DNA, German Credit, and

Satimage datasets are from the Statlog Project [34]. The DNA

dataset is a multi-class problem where each class represents a dif-

ferent protein. The German Credit dataset is a binary-classification

problem, where the goal is to classify people as good or bad credit

risks based on a set of attributes. The Satimage dataset consists

of multi-spectral values of pixels in a satellite image, where the

aim is to predict the class of central pixels in 3 × 3 neighborhoods,

given the multi-spectral features. The Nist-Digits is a dataset com-

posed of samples from the NIST Digits Special database 19 (NIST

SD19). Composed of handwritten samples of 0 to 9 digit images, this

dataset is one of the most popular real-world databases employed

to evaluate handwritten digit recognition methods. We have used

two distinct test sets denoted as Nist-Digits 1 (60,089 samples) and

Nist-Digits 2 (58,646 samples) in this paper. Both are partitions of

the NIST’s Special Database 19: hsf-4 and hsf-7, respectively. The

former is considered to be more difficult to classify than the latter.

Samples from hsf-0123 partitions were used as training set. The fea-

ture set employed is the same as that suggested by Oliveira et al.

[35]. Basically, the features are a mixture of concavity, contour and

character surface, where the final feature vector is composed of 132

components normalized between 0 and 1. The IR-Ship database is

a military database which consists of Forward Looking Infra-Red

(FLIR) images of eight different classes of ships. The images were

provided by the U.S. Naval Weapons Center and Ford Aerospace

Corporation. The same feature set employed by Park and Sklan-

sky [36] was used in this work. Segment, Splice, Mushrooms, and

Usps are also databases from [33]. The Segment database contains

instances randomly drawn from outdoor images. Each instance

is a 3 × 3 region, where each region represents a class, such as:

brickface, sky and foliage. The Splice database is composed of sam-

ples of DNA sequences, where the problem is to classify them

into IE (intron/exon) or EI (exon/intron) boundaries. The Mush-

rooms database includes descriptions of samples corresponding

to 23 species of gilled mushrooms. Each species is identified as

definitely edible or poisonous. The Usps database is composed of

images of isolated digits with 300 pixels/in in 8-bit gray scale on a

high-quality flat bed digitizer. Finally, the Svmguide problem is a

two-class database that involves an astroparticle application [8].

5.4. Parallel processing

In order to speed up the execution of our experiments, we have

implemented the PSO algorithm and our proposed method in a

parallel processing architecture (a Beowulf cluster with 20 nodes

using Athlon XP 2500+processors with 1 GB of PC-2700 DDR RAM

(333 MHz FSB)). The optimization algorithms were implemented

using LAM MPI v6.5 in master-slave mode with a simple load bal-

ance. It means that while one master node executes the main

operation related to the control of the processes, like the updating

of particles’ positions/velocities, and then switching between the

different levels (e.g. adapted grid, DPSO), the evaluations of fitness

are performed by several slave processors. The results obtained are

given in subsequent sections.

5.5. Obtained results

The results are reported in Tables 4–6, in terms of generalization

error rates, number of stored support vectors, and computa-

tional time spent, respectively. It is important to mention that

these results were tested on multiple comparisons using the

Kruskal–Wallis nonparametric statistical test by testing the equal-

ity between mean values. The confidence level was set to 95% and

the Dunn–Sidak correction was applied to the critical values. The

best results for each classification problem are shown in bold. Based

on the results, we can see how important a careful selection of

hyper-parameters is to generate high performing classifiers. For

instance, the results for the GS and 1st-Grid approaches in Table 4

show us that searching for optimal hyper-parameters given a new

dataset can achieve better results, in both classification accuracy

and model complexity, than those that apply a searching process

just once.

In addition, we have observed that PSO based approaches are

very promising, since their results have overtaken those of the

two grid-search methods (see in Tables 4 and 5). Furthermore,

the most important fact is that the proposed method (DMS) was

able to attain similar results, but was less time consuming, than

the full PSO (FPSO) strategy. As previously mentioned, because

some of the model selection strategies (FPSO, CPSO, and DMS)

use stochastic algorithms, we have replicated the experiments 10

times. Therefore, the results for these strategies represent aver-

ages over 10 replications. All these results, mainly comparing GS vs
1st-GS and CPSO vs DMS, are particularly interesting because they

confirm the importance of tracking optimal solutions when new

data are available and show the relevance of the proposed method.

By analyzing the results, we can say that by shifting between re-

evaluations and re-optimizations of previous swarms can be quite

effective for building new solutions. The adapted grid module is less

time consuming and performs better than evaluating, a grid ran-

domly composed of 70 different combinations (GS), for instance,

2562 M.N. Kapp et al. / Applied Soft Computing 12 (2012) 2550–2565

Table 4

Mean error rates and standard deviation values over 10 replications when the size of the dataset attained the size of the original training set. The best results for each data

set are shown in bold.

Database GS 1st-GS FPSO CPSO DMS

Adult 17.54 24.06 15.55 (0.06) 23.85 (0.01) 15.56 (0.05)

CiS 0.34 0.67 0.14 (0.03) 0.19 (0.03) 0.13 (0.03)

Dna 12.82 42.24 5.13 (0.18) 6.37 (0.44) 5.16 (0.56)

GermanCredit 30.00 35.00 26.6 (0.21) 30.10 (0.32) 26.65 (0.31)

IR-Ship 6.05 7.50 4.86 (0.35) 5.66 (0.45) 4.72 (0.29)

Nist-Digits 1 2.82 6.84 2.75 (0.04) 3.02 (0.23) 2.74 (0.14)

Nist-Digits 2 7.38 14.30 6.68 (0.15) 7.33 (0.59) 6.72 (0.39)

P2 1.79 3.71 1.64 (0.10) 2.03 (0.29) 1.69 (0.14)

Satimage 10.20 10.50 8.06 (0.13) 14.32 (0.30) 8.26 (0.22)

Segment 2.81 4.33 2.78 (0.52) 4.87 (2.04) 2.80 (0.9)

Svmguide 13.15 50 3.10 (0.01) 3.97 (0.02) 3.11 (0.07)

Splice 12.38 12.38 10.40 (0.92) 11.9 (2.10) 10.45 (1.10)

Mushrooms 0.00 0.00 0.00 0.00 0.00

Usps 10.16 10.21 6.44 (0.15) 8.41 (0.19) 6.35 (0.08)

Table 5

Mean of support vectors and standard deviation values obtained over 10 replications when the size of the dataset attained the size of the original training set. The best results

for each data set are shown in bold.

Database GS 1st-GS FPSO CPSO DMS

Adult 1508 1572 1176.50 (12.53) 3075.00 (10.00) 1174.80 (12.66)

CiS 64 476 35.40 (6.47) 43.30 (12.18) 37.40 (8.36)

Dna 1906 1914 628.40 (32.50) 436.10 (42.83) 810.60 (31.69)

German Credit 800 516 418.40 (3.63) 776.50 (74.31) 421.30 (9.74)

IR-Ship 443 661 320.70 (13.34) 671.40 (21.74) 318.70 (9.53)

Nist-Digits 880 2912 898.40 (30.45) 1556.30 (62.56) 947.40 (55.09)

P2 226 430 161.40 (26.12) 383.50 (77.37) 152.80 (8.47)

Satimage 1117 1073 1888.00 (93.51) 1384.10 (60.64) 1849.00 (99.64)

Segment 251 298 218.30 (79.39) 381.3 (135.85) 281.7 (72.75)

Svmguide 2801 3003 245.50 (7.90) 254.5 (3.44) 246.8 (5.37)

Splice 959 959 499.80 (176.85) 326.10 (32.17) 444.50 (22.39)

Mushrooms 1102 1102 240.80 (89.15) 245.10 (30.48) 244.30 (38.21)

Usps 4200 4199 1115.20 (91.74) 1702.20 (164.70) 1152.50 (58.40)

or starting a whole new optimization process (FPSO). Besides, it

was shown that the DPSO algorithm is capable of tracking opti-

mal solutions by resetting the particles’ memories and injecting

diversity.

In order to better quantify and visualize the performance of

the methods over all the sets, we have also reported the mean

error rates across all the subsets and over the 10 replications

in the two case studies in Fig. 10 for the IR-Ship and Satimage

databases.

For a deeper analysis of the proposed method, we have depicted

in Fig. 11 the frequencies of at which a module was responsi-

ble for the selection of the final solution. From these results, it is

even possible to guess the different degrees of difficulty among the

databases. For example, databases whose the final solutions were

pointed out more often by the DPSO module, e.g. German Credit

and DNA, seem to have a major degree of uncertainty, due perhaps

a greater overlapping between classes, than other databases, such

as Nist-Digits and CiS, for example.

By comparing the optimization approaches directly, we can see

that the results reported in Table 7 demonstrate that our DPSO

implementation is advantageous, mainly in terms of the processing

time demanded to search for solutions. Unlike FPSO, which requires

several iterations, because it starts a new search randomly every

time, our dynamic version saves time by applying dynamic opti-

mization techniques, such as: the use of previous knowledge and

increasing diversity. As a result, when the DPSO module is activated,

it converges faster and with similar results to those obtained with

FPSO and better than those obtained with CPSO.

The results also reveal an important advantage of our dynamic

model selection strategy (DMS) over the common used FPSO

Table 6

Mean computational time spent (hh:mm:ss) for model selection processes for the entire sequences of datasets with the most promising strategies. Results for the FPSO

strategy over the entire databases (FPSO-all data) are also reported.

Database FPSO-all data FPSO CPSO DMS

Adult 01:28:07 (00:38:13) 02:41:36 (00:02:53) 01:37:21 (00:01:07) 00:32:31 (00:02:50)

CiS 02:56:15 (00:55:41) 05:07:17 (00:09:59) 2:23:10 (00:06:12) 01:35:45 (00:08:34)

Dna 00:34:59 (00:15:59) 01:07:58 (00:01:34) 00:42:27 (00:00:39) 00:14:21 (00:01:01)

GermanCredit 00:07:51 (00:00:57) 00:13:43 (00:00:06) 00:11:36 (00:00:02) 00:13:17 (0:00:05)

IR-Ship 00:19:08 (00:07:41) 00:30:42 (00:01:01) 00:15:17 (00:04:09) 00:11:26 (00:05:00)

NistDigit 06:47:51 (02:22:15) 13:46:00 (00:16:04) 03:46:24 (00:08:33) 00:56:38 (00:05:34)

P2 06:02:28 (00:48:29) 16:04:54 (00:17:44) 10:21:50 (00:13:47) 05:35:55 (00:33:24)

Satimage 01:45:55 (00:38:40) 02:46:18 (00:03:41) 01:41:29 (00:02:22) 01:31:03 (00:05:04)

Segment 00:01:51 (00:00:38) 00:04:15 (00:00:44) 00:02:11 (00:00:31) 00:00:38 (00:00:43)

Svmguide 00:43:24 (00:33:39) 01:44:03 (00:38:15) 01:10:12 (00:17:43) 00:41:30 (00:39:07)

Splice 00:00:39 (00:00:12) 00:01:35 (00:00:20) 00:01:35 (00:00:15) 00:00:51 (00:00:23)

Mushrooms 00:51:40 (00:07:37) 02:02:21 (00:08:53) 01:37:23 (00:03:17) 00:01:39 (00:01:27)

Usps 06:10:53 (02:14:33) 14:13:41 (03:05:37) 12:35:26 (03:28:36) 05:31:42 (02:46:18)

M.N. Kapp et al. / Applied Soft Computing 12 (2012) 2550–2565 2563

Fig. 10. Error and support vectors rates. For the databases, Ship ((a) and (b)) and Satimage ((c) and (d)). The results were obtained over 10 replications.

0 10 20 30 40 50 60 70 80 90 100

Usps

Mushrooms

Splice

Svmguide

Segment

Satimage

P2

Nist−Digits

IR−Ship

German Credit

Dna

CiS

Adult

(%) Modules frequencies for pointing out final solutions

Best Kept

Adapted Grid

DPSO

Fig. 11. Average of frequencies which indicates how many times each module was responsible for pointing out the final solution.

2564 M.N. Kapp et al. / Applied Soft Computing 12 (2012) 2550–2565

Table 7

Mean of number iterations attained and standard deviation values for each opti-

mization algorithm over 10 replications. The results for the Full and Chained PSO

strategies were computed over all datasets. In contrast, the results for the DPSO

module were computed considering only the datasets where it was activated.

Database Full PSO Chained PSO DPSO module

Adult 18.63 (7.04) 12.00 (1.04) 14.66 (4.37)

CiS 23.53 (7.52) 17.71 (2.92) 17.05 (6.10)

Dna 23.18 (7.07) 15.95 (5.47) 17.08 (5.09)

GermanCredit 21.48 (7.44) 12.61 (2.14) 14.07 (4.34)

IR-Ship 30.45 (8.78) 15.82 (5.34) 17.38 (5.20)

Nist-Digits 31.60 (8.44) 14.17 (4.74) 15.72 (6.41)

P2 27.39 (9.26) 20.72 (5.81) 15.50 (4.61)

Satimage 24.86 (8.19) 16.78 (6.53) 18.14 (6.48)

Segment 29.70 (3.16) 20.32 (1.88) 17.01 (5.34)

Svmguide 40.91 (2.41) 32.11 (1.22) 16.50 (5.05)

Splice 33.24 (2.34) 26.69 (1.70) 17.75 (6.23)

Mushrooms 36.38 (1.13) 29.6 (0.47) 13.65 (1.87)

Usps 38.73 (2.58) 31.31 (2.80) 19.86 (6.09)

strategy. While a huge amount of computational time was required

for the FPSO optimization approach to perform the model selection

processes, our proposed method was capable of finding satisfac-

tory solutions in less computational time, by mainly considering it

for each set of data. This is because the FPSO strategy requires a

large number of evaluations than the proposed method, especially

over each dataset, or still because when applied gradually over the

datasets, the proposed method usually accelerates the searching

process by approximating solutions before reaching the total size

of training sets. Based on these results, we can see that the pro-

posed method, DMS, has spent less computational time than the

other strategies. Besides, it can also be noted that sometimes the

application of DMS gradually over subsets of data can be even faster

than realizing a full optimization process over the entire original

training set.

Ending, the efficiency of the proposed method was demon-

strated through the results. Even though the strategies sometimes

perform similarly in terms of generalization errors, as in the case

of the CiS database, the proposed method is clearly superior with

respect to other factors, e.g. the model complexity (number of

support vectors) and computational time. Furthermore, by taking

fewer iterations and having adaptation capabilities, the use of the

proposed method in a fully dynamic environment is very promis-

ing, mainly in those applications where the system must adapt itself

to new data (time-series data, for example).

6. Conclusion

In this work we presented the SVM model selection problem as

a dynamic optimization problem which depends on available data.

In particular, it was shown that if one intends to build efficient SVM

classifiers from different, gradual, or serial source of data, the best

way is to consider the model selection process as a dynamic process

which can evolve, change, and hence require different solutions

overtime depending on the knowledge available about the problem

and uncertainties in the data.

In order to solve the model selection problem and also take

into account this dynamism, we proposed a PSO-based framework

(DMS) based on the ideas of self-organization, change detec-

tion, and dynamic optimization techniques to track the optimal

solutions and save computational time. The relevance of the pro-

posed method was confirmed through experiments conducted on

six databases. Briefly, the results have shown that: (1) if PSO is

applied sequentially over datasets as a whole optimization pro-

cess (Chained PSO) with the purpose of saving computational time,

the resulting optimized solutions may stay trapped in local min-

ima after successive hyper-parameter model selection processes.

On the other hand, (2) although full optimization processes with

PSO (Full PSO strategy) constitute an efficient way to achieve good

results, they are very time consuming, particularly when applied

to each new dataset. (3) DMS was very similar to full optimization

processes, but less computationally expensive, mainly due to the

use of the dynamic optimization techniques.

Ending, in this paper we examined the SVM model selection

problem in a gradual learning context where hyper-parameters

must be re-estimated in order to retrain an SVM classifier from data

at different times k in a cumulative fashion, as occurs in applica-

tions where data collection is expensive, such as cancer diagnosis

and signature verification. The proposed method is also particu-

larly useful for real-world applications requiring the generation

of new classifiers dynamically in a serial way (e.g. those involving

streaming data), since by taking fewer iterations and having adap-

tation capabilities, it promises to be very useful in a fully dynamic

environment.

Acknowledgements

This research was supported by Defense Research and Develop-

ment Canada, DRDC-Valcartier under the contract W7701-2-4425

and in part by grant OGP0106456 to Robert Sabourin from the

NSERC of Canada.

References

[1] M.N. Kapp, R. Sabourin, P. Maupin, A PSO-based framework for dynamic SVM
model selection, in: Proceedings of the Genetic and Evolutionary Computation
Conference, 2009, pp. 1227–1234.

[2] V.N. Vapnik, Statistical Learning Theory, Wiley, NY, 1998.
[3] O. Chapelle, V. Vapnik, Model selection for support vector machines, in:

Advances in Neural Information Processing Systems, 1999, pp. 230–236.
[4] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer Verlag, NY,

1995.
[5] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines and

Other Kernel-Based Learning Methods, Cambridge University Press, 2000.
[6] O. Chapelle, V. Vapnik, O. Bousquet, S. Mukherjee, Choosing multiple parame-

ters for support vector machines, Machine Learning 46 (1–3) (2002) 131–159.
[7] N. Ayat, M. Cheriet, C. Suen, Automatic model selection for the optimization of

SVM kernels, Pattern Recognition 38 (10) (2005) 1733–1745.
[8] C.C. Chang, C.J. Lin, Libsvm: A Library for Support Vector Machines, 2005, URL

http://www.csie.ntu.edu.tw/cjlin/libsvm/.
[9] C.-W. Hsu, C.-J. Lin, A comparison of methods for multiclass support vector

machines, IEEE Transactions on Neural Networks 13 (2) (2002) 415–425.
[10] C.-M. Huang, Y.-J. Lee, D.K. Lin, S.-Y. Huang, Model selection for support vector

machines via uniform design, Computational Statistics & Data Analysis 52 (1)
(2007) 335–346.

[11] Z. Chunhong, J. Licheng, Automatic parameters selection for SVM based on GA,
in: Proceedings of the 5th World Congress on Intelligent Control and Automa-
tion, 2004, pp. 1869–1872.

[12] G. Cohen, M. Hilario, A. Geissbuhler, Model selection for support vector clas-
sifiers via genetic algorithms. An application to medical decision support, in:
Proceedings of the 5th International Symposium on Biological and Medical Data
Analysis, 2004, pp. 200–211.

[13] T. Suttorp, C. Igel, Multi-objective optimization of support vector machines, in:
Multi-Objective Machine Learning, Vol. 16 of Studies in Computational Intelli-
gence, Springer, 2006, pp. 199–220.

[14] C. Chatelain, S. Adam, Y. Lecourtier, L. Heutte, T. Paquet, Multi-objective opti-
mization for SVM model selection, in: Proceedings of the 9th International
Conference on Document Analysis and Recognition, 2007, pp. 427–431.

[15] F. Friedrichs, C. Igel, Evolutionary tuning of multiple SVM parameters, in: Pro-
ceedings of the 12th European Symposium on Artificial Neural Networks, 2004,
pp. 519–524.

[16] B.F. de Souza, A.C.P.L.F. de Carvalho, R. Calvo, R.P. Ishii, Multiclass SVM model
selection using particle swarm optimization, in: Proceedings of the 6th Inter-
national Conference on Hybrid Intelligent Systems, 2006, pp. 31–34.

[17] M. Jiang, X. Yuan, Construction and application of PSO-SVM model for personal
credit scoring, in: Proceedings of the International Conference on Computa-
tional Science, Lecture Notes in Computer Science, 2007, pp. 158–161.

[18] G. Valentini, Ensemble Methods based on Bias-variance Analysis, Ph.D. Thesis,
University of Genova, Genova, Italy, 2003.

[19] C. Domeniconi, D. Gunopulos, Incremental support vector machine construc-
tion, in: Proceedings of the International Conference on Data Mining, 2001, pp.
589–592.

[20] C.P. Diehl, G. Cauwenberghs, SVM incremental learning, adaptation and opti-
mization, in: Proceedings of the International Joint Conference on Neural
Networks, 2003, pp. 2685–2690.

http://www.csie.ntu.edu.tw/cjlin/libsvm/

M.N. Kapp et al. / Applied Soft Computing 12 (2012) 2550–2565 2565

[21] G. Valentini, An experimental bias-variance analysis of SVM ensembles based
on resampling techniques, IEEE Transactions on Systems Man and Cybernetics
Part B 35 (6) (2005) 1252–1271.

[22] A. Shilton, M. Palaniswami, D. Ralph, A.C. Tsoi, Incremental training of support
vector machines, IEEE Transactions on Neural Networks 16 (2005) 114–131.

[23] Y. Jin, J. Branke, Evolutionary optimization in uncertain environments—A sur-
vey, IEEE Transactions on Evolutionary Computation 9 (3) (2005) 303–317.

[24] L. Cohen, G. Avrahami-Bakish, M. Last, A. Kandel, O. Kipersztok, Real-time
data mining of non-stationary data streams from sensor networks, Information
Fusion 9 (3) (2008) 344–353.

[25] J. Kennedy, R.C. Eberhart, Particle swarm intelligence, in: Proceedings of the
International Conference on Neural Networks, 1995, pp. 1942–1948.

[26] J. Kennedy, Some issues and practices for particle swarms, in: Proceedings of
the IEEE Swarm Intelligence Symposium, 2007, pp. 801–808.

[27] M. Clerc, J. Kennedy, The particle swarm—explosion stability and convergence
in a multidimensional complex space, IEEE Transactions on Evolutionary Com-
putation 6 (1) (2002) 58–73.

[28] A. Carlisle, G. Dozier, Tracking changing extrema with adaptive particle swarm
optimizer, in: Proceedings of the 5th Biannual World Automation Congress,
Orlando, USA, 2002, pp. 265–270.

[29] X. Hu, R.C. Eberhart, Adaptive particle swarm optimization: detection and
response to dynamic systems, in: Proceedings of the Congress on Evolutionary
Computation, 2002, pp. 1666–1670.

[30] M. Clerc, Particle Swarm Optimization, ISTE Publishing Company, London, 2006.
[31] P. Henniges, E. Granger, R. Sabourin, Factors of overtraining with fuzzy ARTMAP

neural networks, in: Proceedings of the International Joint Conference on Neu-
ral Networks, 2005, pp. 1–4.

[32] G.A. Carpenter, S. Grossberg, J.H. Reynolds, ARTMAP: supervised real-time
learning and classification of nonstationary data by a self-organizing neural
network, Neural Networks 4 (5) (1991) 565–588.

[33] C.L. Blake, C.J. Merz, UCI Repository of Machine Learning Databases, 1998, URL
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

[34] D. Michie, D.J. Spiegelhalter, C.C. Taylor, Machine Learning. Neural and Statis-
tical Classification, ftp.ncc.up.pt/pub/statlog/.

[35] L.S. Oliveira, R. Sabourin, F. Bortolozzi, C.Y. Suen, A methodology for feature
selection using multi-objective genetic algorithm for handwritten digit string
recognition, International Journal of Pattern Recognition and Artificial Intelli-
gence 17 (6) (2003) 903–930.

[36] Y. Park, J. Sklansky, Automated design of linear tree classifiers, Pattern Recog-
nition 23 (1990) 1393–1412.

http://www.ics.uci.edu/mlearn/MLRepository.html
http://www.ftp.ncc.up.pt/pub/statlog/

	A dynamic model selection strategy for support vector machine classifiers
	1 Introduction11This paper is an extension in terms of experimental results, analysis depth and explanations of our first ...
	2 Support Vector Machines
	3 SVM model selection and dynamic optimization problems
	4 The proposed dynamic SVM model selection strategy
	4.1 Framework
	4.1.1 Change detection module
	4.1.2 Adapted grid-search
	4.1.3 Dynamic Particle Swarm Optimization-DPSO

	5 Experimental protocol
	5.1 SVM model selection strategies tested
	5.2 Experiments parameters setting
	5.3 Datasets
	5.4 Parallel processing
	5.5 Obtained results

	6 Conclusion
	Acknowledgements
	References

