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Plant metabolism is highly adapted in response to its surrounding for acquiring limiting

resources. In this study, a dynamic flux balance modeling framework with a multi-tissue

(leaf and root) diel genome-scale metabolic model of Arabidopsis thalianawas developed

and applied to investigate the reprogramming of plant metabolism through multiple

growth stages under different nutrient availability. The framework allowed the modeling

of optimal partitioning of resources and biomass in leaf and root over diel phases.

A qualitative flux map of carbon and nitrogen metabolism was identified which was

consistent across growth phases under both nitrogen rich and limiting conditions. Results

from the model simulations suggested distinct metabolic roles in nitrogen metabolism

played by enzymes with different cofactor specificities. Moreover, the dynamic model was

used to predict the effect of physiological or environmental perturbation on the growth

of Arabidopsis leaves and roots.

Keywords: dynamic flux balance analysis, genome-scale metabolic modeling, seedling growth, resource

allocation, multi-tissue model

INTRODUCTION

In recent years, genome-scale metabolic models, containing reactions catalyzed by enzymes
encoded in an organism’s genome, have been an emerging tool to study plant metabolic systems
(Sweetlove and Ratcliffe, 2011; Seaver et al., 2012; de Oliveira Dal’Molin and Nielsen, 2013).
Genome-scale metabolic models are mathematical presentations of metabolism systems and they
can be analyzed using computational approaches such as flux balance analysis (FBA) (Orth
et al., 2010). This allows researchers to computationally explore possible and optimal behavior
of plant metabolism (Yang and Midmore, 2005; Grafahrend-Belau et al., 2013; Poolman et al.,
2013; Cheung et al., 2014; de Oliveira Dal’Molin et al., 2015; Feller et al., 2015; Weraduwage
et al., 2015). New biological insights about plants were gained using single cell metabolic models
(Poolman et al., 2009, 2013; de Oliveira Dal’Molin et al., 2010a; Cheung et al., 2013). The first
large scale model of plant was published in 2009 on barely seed metabolism (Grafahrend-Belau
et al., 2009). The model predicted responses in oxygen depletion and enzyme deletion conditions.
In addition, the predicted growth rates in different conditions were in accordance with published
experimental results. In the same year, a genome-scale metabolic model of Arabidopsis thaliana
was constructed based on AraCyc database (Poolman et al., 2009). A series of improvement of
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this model for biochemical representation were achieved by
Cheung et al. including accounting for maintenance costs
(Cheung et al., 2013), day-night metabolism (Cheung et al.,
2014) and enzymatic costs in FBA (Cheung et al., 2015).
Another Arabidopsis genome-scale metabolic model, AraGEM,
was constructed based on literature evidences and was tested
by simulating literature-based plant metabolic functions (de
Oliveira Dal’Molin et al., 2010a). AraGEM provided a platform
for building and annotating metabolic models of other species
(de Oliveira Dal’Molin et al., 2010b; Saha et al., 2011). In 2010,
three C4 genome-scale models were constructed for mesophyll
and bundle sheath cells to observe C4 photosynthesis (de
Oliveira Dal’Molin et al., 2010b) which predicted the classical
C4 biosynthesis pathways and important metabolic interactions
between the two cell types. Mintz-Oron et al. (2012) developed
a computational pipeline for creating fully compartmentalized
tissue-specific Arabidopsis genome-scale models from databases
such as AraCyc (Mueller et al., 2003) and KEGG (Kanehisa
et al., 2017). The models were validated against computational
and experimental data to test their predictive ability. The first
genome-scale model of rice (Oryza sativa) was published in
2013, and was applied to investigate the metabolic behaviors of
a mesophyll cell of an expanding leaf at varying light intensities
(Poolman et al., 2013). Some important interactions between
chloroplast and mitochondria in different light levels along with
role of photorespiration in high light were identified from the
model. In the same year, the effect of flood and drought stresses
were investigated in another rice model representing two tissue
types: germinating seeds and photorespiring leaves (Lakshmanan
et al., 2013). However, these models are not developed to
study diel metabolism for both leaf and root under dynamic
growth periods. More recently, the development in modeling
the behavior of multi-cellular organisms, including plants, have
been extended to connect multiple tissue-types to study their
inter-dependencies (Grafahrend-Belau et al., 2013; de Oliveira
Dal’Molin et al., 2015). The better representation of higher
organisms with multi-tissue metabolic models with diel phases
could lead to significantly improved model predictions and allow
the modeling of source to sink relation. Most of the current plant
genome-scale metabolic models were built using a top-down
approach, where annotations from biochemical databases (such
as BioCyc Caspi et al., 2016, KEGG Kanehisa et al., 2017, PMN
Schlapfer et al., 2017 etc.) have been curated to obtain a functional
network of biochemical reactions for different species, and such
building procedures in most cases result in multiple problematic
features including stoichiometric inconsistencies (Gevorgyan
et al., 2008), dead metabolites, and disconnected sub-networks
(Poolman et al., 2006). Most of these features were inherited from
the databases the models were constructed from (Poolman et al.,
2006), which is especially problematic for plants due to the large
sizes of plant genomes. To avoid the limitations pertaining to
top-down models, Arnold and Nikoloski (2014) used a bottom-
up approach to reconstruct a large scale Arabidopsis model
relying solely on species specific annotations without the need of
gap-filling algorithms.

As for the algorithm used in modeling, the standard technique
of FBA, which only predicts single metabolic state, has been

extended to dynamic FBA (dFBA) (Mahadevan et al., 2002; Hanly
and Henson, 2011), which allows the modeling of metabolic
changes over time. dFBA allows to observe dynamic flux
distributions i.e., change of qualitative and quantitative fluxes
over time (e.g., growth) which serves a platform to analyse the
temporal changes in rates of metabolic reactions, metabolite
transport, C-N and growth material partitioning across organs
etc. dFBA has been extensively used to study growth of microbial
organisms (Mahadevan et al., 2002; Hanly andHenson, 2011) and
it has also been applied in plants (Grafahrend-Belau et al., 2013).

Being a sessile organism, plants have evolved ways to adapt
to changes in their environments such as the availability of
nutrients and light. Such adaptations include reprogramming
of metabolism and changes in resource allocation. In this
regard, many researchers have considered the balanced growth
(or optimal partitioning) theory (Shipley and Meziane, 2002;
Berendse and Möller, 2009; Guo et al., 2016) to study resource
allocation during growth under different environments. Balanced
growth has been supported by studies in many herbaceous plants
(Shipley andMeziane, 2002) and observations of inhibitory effect
of high rates of nitrate on root growth of individual Arabidopsis
thaliana (Zhang and Forde, 2000) and growth in individually
grown flowering plants with high/low soil nutrients (specifically
nitrogen) (Berendse and Möller, 2009; Guo et al., 2016).

The different organs in plants are interdependent and their
metabolism is coordinated during their growth (de Oliveira
Dal’Molin et al., 2015; Feller et al., 2015). This can be represented
by integrating multiple single models to generate a multi-tissue
model (Grafahrend-Belau et al., 2013; de Oliveira Dal’Molin
et al., 2015). The multi-tissue model can be used with dFBA to
simulate the shifts in metabolism in a growing plant over diel
cycle. In this study, we have upgraded an existing Arabidopsis
genome-scale metabolic model (Cheung et al., 2014) to a multi-
tissue model and introduced a novel method to simulate its
dynamic changes in metabolism per day basis under different
available resources. To represent a significant growth period,
we have considered plant growth right after germination to
maturity of the rosette, allowing the model to optimize allocation
of resources based on nitrate availability and incident photon.
The advantage of using diel metabolic model in dFBA is that it
allows comprehensive study of plant growth under light and dark
phases of different growth stages. The multi-tissue dynamic FBA
modeling framework allows the investigation of qualitative and
quantitative metabolic reprogramming in plants under different
conditions and/or subjected to perturbations. Thus, allocation of
C and N can be studied and mechanism of resource partitioning
can be analyzed with specific role of some pathways in space and
time.

MATERIALS AND METHODS

Arabidopsis Diel Multi-Tissue Model
Construction
Genome-scale metabolic model of Arabidopsis thaliana (Cheung
et al., 2014), previously used to capture themetabolic interactions

Frontiers in Plant Science | www.frontiersin.org 2 June 2018 | Volume 9 | Article 884

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Shaw and Cheung Arabidopsis Dynamic Multi-Tissue Modeling

between day and night, was adapted here to construct a multi-
tissue metabolic model with diel phases containing 11,320
reactions (along with exchange reactions) and 10,664 metabolites
(Supplementary File 1). Each reaction from the model was
duplicated to represent a diel leaf and root model, which
created four separated modules, i.e., leaf and root in light and
dark phases. The reactions and metabolites of these modules
were labeled as, “Leaf_Day,” “Leaf_Night,” “Root_Day,” and
“Root_Night,” to represent leaf at light and dark and root at
light and dark, respectively. Metabolite transport between root
and leaf was implemented by defining a shared resource pool
or common pool (CP) representing the phloem (de Oliveira
Dal’Molin et al., 2015). Sucrose (Suc), sulfate (SO2−

4 ), nitrate
(NO−3 ), phosphate (Pi) and 18 amino acids (as in Cheung et al.,
2014) were allowed to be transported between root and leaf
through phloem. A number of carbohydrates, organic acids and
amino-acids were allowed to accumulate between the light and
dark phases of leaf and root as in Cheung et al. (2014). Figure 1
shows the schematic representation of the diel multi-tissuemodel
including metabolite storage and inter-tissue exchanges with
their proportional constraints between light and dark phases.

Four individual biomass reactions (Biomass_Leaf/
Root_Day/Night_tx) were used in the respective four modules
(light and dark phases of leaf and root), representing the
biosynthesis of 39 biomass components, including amino acids,
nucleotides, cellulose, sucrose, lignin, fructose, glucose, fatty
acid and starch, in observed proportions for leaf and root
(Supplementary File 2). The stoichiometric coefficient for the
biomass components in leaf and root were obtained from the
calculations of de Oliveira Dal’Molin et al. (2015). Light and
dark phases in leaf and root have the same biomass component’s
stoichiometry (i.e., similar synthesizing proportion). These
coefficients were normalized to represent one gram biomass
(dry weight) production for a unit of flux through the biomass
reactions.

Modeling Constraints
Sucrose and amino acid transport between leaf and root during
the light and dark phases was constrained at a ratio of 3:1
(light:dark) (Gibon et al., 2004). Amino acid compositions in the
phloem were fixed based on the measurements of Arabidopsis
phloem (Wilkinson and Douglas, 2003). Nitrate represents the
major source of nitrogen (N) in leaf (Macduff and Bakken, 2003)
and it is the most common source of N for plants (Tischner,
2000), hence nitrate was set as the sole nitrogen source in
the model. Nitrate uptake rate from root was constrained at a
ratio of 3:2 under light and dark phases (Delhon et al., 1995;
Macduff and Bakken, 2003; Siebrecht et al., 2003). To account
for photorespiration, rubisco carboxylase:oxygenase was set at
a ratio of 3:1. The reason of these constraints are elaborately
described in Cheung et al. (2014). Water and protons in the
cytosol, mitochondrion, plastid, peroxisome and vacuole were
set as external metabolites. ATP and NADPH requirement
for maintenance per gram dry weight (DW) of biomass were
estimated to be 7.27 and 2.56 mmol gDW−1 day−1, respectively,
based on the data fromArabidopsis heterotrophic cell suspension
culture under control conditions (Supplementary File 3) that

accounts a ATP:NADPH ratio of∼3:1 (Cheung et al., 2013). The
values of total ATP and NADPH maintenance requirement in a
day (24 h) were equally divided in to light (12 h) and dark (12 h)
phases (50% each), and the maintenance costs were assumed to
be equal for leaf and root per gram of respective tissue biomass.
Generic ATPase and NADPH oxidase reactions were used to
account for these maintenance costs as used in Cheung et al.
(2013). The primary objective function for flux balance analysis
was set to maximize whole plant biomass production. The
solutions were obtained under the consideration of minimum
overall reaction flux (Holzhütter, 2004) that reflects maximum
cellular economy to the utilization of enzymatic machinery.
To investigate the robustness of the qualitative flux map
predicted from the entire growth period using objective functions
mentioned before, flux variability analysis (FVA) (Mahadevan
and Schilling, 2003) was conducted with the primary objective
function of maximizing biomass production and a secondary
objective function of minimizing overall reaction flux.

Our approach in modeling resource allocation was based
on the balanced growth scheme (Shipley and Meziane, 2002;
Berendse and Möller, 2009; Guo et al., 2016). Balanced growth
suggests that biomass can be preferentially allocated to leaves
or roots so that plants can capture limiting external resources.
To implement this scheme in our dFBA growth model which
dynamically allocates resources to grow leaf and root based on
available resources per day, we have introduced a parameter
quantifying the relative growth rates (RGR) of leaf, namely leaf
growth proportion (gr, see Equation 1), which describes the
proportion of overall plant biomass synthesis occurs in the leaf
(gr) and root (1-gr). gr was used to partition leaf (gr) and root (1-
gr) growth proportions (line 11 of Algorithm 1) by encapsulating
diminishing (S(t), nitrate) and fixed (Pmax, photon) resources
subject to the plant’s acquiring capacity, i.e., it estimates the
growth proportion of leaf in a day based on the amount of nitrate
and photon available under present plant leaf and root biomass
that will intake these resources. gr can be modified to simulate
growth onmultiple limited resources or inclusion of other factors
in plant growth in future studies.

gr =
ln ( PLA(t) ×Pmax

σNmax (t)
)

ln
(

Pmax
S(t)

)

+
LB(t)
RB(t)

=
ln PNr(t)

ln
(

Pmax
S(t)

)

+
LB(t)
RB(t)

(1)

Here, PNr represents the ratio of usable photon to possible
nitrate uptake. PLA is the projected leaf area, Pmax is the
maximum incident photon (mol photons day−1), σNmax (mol
gDW−1 day−1) is the maximum nitrate uptake rate calculated
by Michaelis–Menten equation and present root biomass (line 6
of Algorithm 1), S(t) is the available nitrate concentration (mol)
and LB and RB are the leaf and root biomass (g), respectively.
Michaelis-Menten equation has been used to determine the
rate of ion influx to root (Claassen and Barber, 1974) from
the external solution given the ion (NO−3 ) concentration (S),
observed maximum rate of influx (Vmax) and Michaelis constant
(KM) (the ion concentration where ion influx is one-half of
Vmax). Here, we assumed no efflux of ions from root to the
external environment as our focus is to study plant growth
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FIGURE 1 | Schematic description of diel leaf-root metabolic model of Arabidopsis thaliana. Light and dark phases are represented with white and dark backgrounds,

respectively. The ratio of rubisco carboxylase (RBC):oxygenase (RBO) was set to 3:1 in all phases (only leaf in the light is shown). Starch, glucose (Glc), sucrose (Suc),

fructose (FRU), malate (MAL), fumarate (FUM), citrate (CIT), and nitrate (NO−3 ) were allowed to accumulate in the light and dark phases of leaf and root (dashed

rectangle between light and dark where arrows indicate bidirectional storage). AA represents the 18 different amino acids. AA can be stored in the light and utilize in

the dark. Exchange of AA, Suc, sulfate (SO2−
4 ), nitrate and phosphate (Pi) were allowed between leaf and root through the common pool using an active proton

pump. Nitrate and photon uptake were allowed through root and leaf, respectively, at a maximum rate quantified by the corresponding tissue biomass. Uptake of

other mineral nutrients (SO2−
4 , Pi, etc.) were allowed only through the root. Gaseous exchange of CO2 and O2 were allowed in all four modules.

dynamics driven by absorbed ions rather than root uptake
kinetics. Small amount of nitrate (10−6 mol) was assumed to be
remaining in the last 5 days during maturation to allow feasible
solutions with very low growth rates.

Growth Simulation by Dynamic Flux
Balance Analysis (dFBA)
In this study dFBA was applied to model the dynamic changes
in metabolic fluxes over diel cycles during the growth and
maturation of Arabidopsis leaves and roots. Algorithm 1
summarizes the steps used for simulating Arabidopsis thaliana
growth from its seedling to mature vegetative stage i.e., 6–36

days after sowing (DAS) in steps of 1 day (24 h). Michaelis-
Menten kinetics was used to determine maximum nitrate uptake
rate, σNmax, which depends on the present root biomass. The
sum of light phase nitrate uptake rate, σ ND(mol gDW−1 light
phase(12 h)−1), and dark phase nitrate uptake rate, σ NN (mol
gDW−1 dark phase(12 h)−1), was constrained to be lower or equal
to the maximum nitrate uptake rate in a day (σNmax, 24 h). Leaf
biomass was used to determine the projected leaf area (PLA,
m2) following the PLA and LB data for Arabidopsis given in
Weraduwage et al. (2015). Slope of the scatter plot, m (m2 g−1),
between PLA and LB (Supplementary File 4) was used to scale
present leaf biomass (LB(t)) into corresponding projected leaf
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Algorithm 1 Dynamic Flux Balance Analysis (dFBA) for Plant
Growth
1: function Plant Growth (S(6),LB (6), RB (6))
2: t= 6
3: while Day ≤ 36 do
4: t← t +1
5: Day(t)← t

6: σNmax (t) ← VmaxS(t−1)
Km+S(t−1)

RB(t − 1) Michaelis–Menten

kinetics
7:

∑

σND(t),
σNN(t) ≤

σNmax(t)
8: PLA(t)←mLB(t−1) PLA, Projected Leaf Area
9: σP(t)≤PmaxPLA(t)
10: Maximize Z←

∑σLD,
σLN,

σRD,
σRN

11:
∑

σLD(t),
σLN(t):

∑

σRD(t),
σRN(t) ← gr(t):

(1 –gr(t))
12: S(t)← S(t – 1) – [σND(t)+

σNN(t)]
13: LB(t)←LB(t−1)+ [σLD(t)+

σLN(t)]
14: RB(t)←RB(t−1)+ [σRD(t)+

σRN(t)]
15: end while

16: end function

area (PLA(t)). Photon influx rate, σP (mol photons m−2 light
phase(12 h)−1) depends on the maximum irradiance, Pmax and
present PLA. The objective function (Z) of maximizing whole
plant biomass was set by maximizing leaf absolute growth rate
(AGR, g day−1) at light (σLD) and dark (σLN) along with root
AGR at light (σRD) and dark (

σRN) phases. Nitrate concentration
on each day, S(t), was decreased by the amount nitrate was taken
up through the root in a 24 h light-dark cycle. Leaf and root
total biomass (LB and RB, respectively) were increased per day
in amounts they were produced in 24 h (light+ dark).

Vmax ∼ 0.00336 mol g DW−1 day−1 was used for nitrate
transporter in Arabidopsis based on the data from Okamoto
et al. (2006) and Gibeaut et al. (1997) (Supplementary File 5).
AtNRT1.1 nitrate transporter has two KM values for nitrate
and that can vary from 40 µmol to 4 mmol between low and
high nitrate concentrations (Parker and Newstead, 2014). In this
study, we used the value of KM = 0.4 mmol, slightly less than the
maximum saturation value (Krapp et al., 2014) which allowed the
model to consume maximum nitrate around mid-growth period
(Nlow) and results the best-fit sigmoid growth under our used
initial nitrate concentrations.

Initial Parameters
Initial leaf to root biomass ratio was set to 25.8 following
the estimates of Weraduwage et al. (2015) in the seedling of
Arabidopsis, considering 6 DAS as the start day when cotyledons
become fully open (Boyes et al., 2001). 300µmol photons m−2s−1

was used during the 12 h photoperiod as the maximum incident
photon (Havaux and Niyogi, 1999; Varma et al., 1999). In this
study, two scenarios with different initial nitrate amount were
modeled with 50 mmol and 1.2 mmol used as high (S(6) =
Nhigh) and low (S(6) = Nlow) nitrate (Supplementary File 6),
respectively at day 6 to commence the growth.

Software Use
Metabolic modeling tool COBRAPy (Ebrahim et al., 2013) was
used to implement the method and results were analyzed by the
scripts written in Python (www.python.org).

RESULTS

Dynamic FBA Framework Simulated
Growth Dynamics and Resource
Partitioning Over Multiple Developmental
Stages in Arabidopsis
We applied dynamic FBA on a multi-tissue metabolic model
of Arabidopsis thaliana to explore the metabolic interactions
between leaf and root in a diel cycle and the metabolic
reprogramming across various growth stages (hypocotyl
and cotyledon development, leaf and root development and
maturation) under different environment conditions. The
dFBA approach predicted the well-known plant growth pattern
(Figure 2A) from seedling development to maturation stages.
With abundant nitrate (50 mmol), leaf and root total biomass
have increased until the day the simulation was ended at day 36.
This growth distinctly involves two growth stages (cotyledon
development and rosette development), and does not reach
maturation since there were no constraints that limit growth
under Nhigh. However, with low nitrate (Nlow), diminishing
nitrate takes growth into maturation and resulted a sigmoid
growth pattern (Yin et al., 2003) of plant growth. This pattern can
be considered as the stunted appearance for chronic N deficiency
that here begins from the early rosette development stage. In this
study, growth under Nlow was analyzed in more detail than Nhigh

to study the three growth stages including maturation. Figure 2B
shows the AGR, i.e, biomass gained per day in leaf and root
under Nlow during light and dark phases. Model has predicted
leaf growth only in light and root was grown during light and
dark phases under both resource conditions.

Growth patterns under both Nlow and Nhigh were predicted to
first start with more investment in the root as initial root biomass
was much smaller than cotyledon leaf (Figure 2C). Under Nlow,
more growth was partitioned to the root than the leaf (gr below
0.5, Figure 2C) from day 6 to day 28. Thus, in Nlow, a near-
linear increase in R/L during the rosette development occurred
(Figure 2D) until day 28. After day 28, there was an increase in
leaf growth proportion, but given the lack of available nitrate,
the absolute growth rate was so low that it had little impact
on the ratio of root to leaf biomass. Figure 2C also shows that
leaf growth proportion in Nhigh gradually increased and becomes
steady until the end of the simulation. In this case, R/L tends
toward a value of about 0.4 (Figure 2D) until the end of the
simulation as both nutrients (photon and nitrate) were not
limiting.

C:N Fixation, Quantum Demand and
Assimilation Quotient Vary With Plant
Development
Carbon fixation through photosynthesis supplies the organic
form of carbon molecules such as glucose and sucrose as
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FIGURE 2 | (A) Simulated total biomass (dry weight) accumulation of Arabidopsis thaliana over time in a 30-day period. Total biomass of leaf (LB ) and root (RB )

under Nhigh (_H) and Nlow (_L) are shown here. These suffixes will be used to distinguish reactions in Nhigh and Nlow throughout this manuscript. Simulations were

started with the cotyledon development (hypocotyl and cotyledon development) stage of Arabidopsis at day 6 that continues upto day 10. Rosette development (leaf

and root development) begins from day 11 and completed on day 30 when maturation starts. Days were shown from the day after sowing in all figures. (B) Absolute

growth rates (AGR) of individual tissues at Day (light) and Night (dark) under Nlow. (C) Leaf growth proportion (gr ) under Nhigh and Nlow. (D) Root:leaf (RB:LB )

biomass ratio under Nhigh and Nlow.

carbohydrates (Plaxton, 1996; Zheng, 2009). These molecules
provide the energy and building blocks for plant growth,
maintenance processes and as the food reserve (Stark et al.,
1992). Nitrogen uptake and assimilation is a key factor regarding
plant growth (Schulze et al., 1994) and gets special attention in
crop plants for food (Masclaux-Daubresse et al., 2010). Thus, the
ratio of carbon fixation to nitrogen fixation (Cfix/Nfix) and their
partitioning is a key determinant for the plant’s optimal growth
according to nutrient availability (Hermans et al., 2006; Zheng,
2009). Allocation of carbon and nitrogen as growth materials
to specific organs effect the size and hence the nutrient capture
capacity of the plant. Moreover, the balance of carbon and
nitrogen also serves as a signal for up/down regulation of genes
for the control of metabolism and cellular responses (Zheng,
2009). Therefore, understanding central metabolism of carbon
and nitrogen in plants is a key factor for gaining insight in to
plant metabolic behavior and engineering for improved nutrient
use efficiency (Sweetlove et al., 2017).

Figure 3A suggests shifting pattern of priorities for C and N
partitioning between leaf and root during growth (involving diel
cycle) under Nlow. C and N partitioned to the different locations
were relatively steady under growth in Nhigh (data not shown).

During the cotyledon development stage, high Cfix/Nfix indicates
that the excess leaf biomass fixes more C than N uptake by small
root. There was a gradual decrease in Cfix/Nfix until day 18 due
to the increasing root biomass that can uptake more nitrate.
From day 28, just before the maturation phase, there was a sharp
increase in Cfix/Nfix as the nitrate source depletes. During the
cotyledon development stage, more fixed carbon was utilized in
leaf than transport to root (Cprop < 0.36). This is mainly due to
the small demand for fixed carbon from the root as the initial root
biomass was very small. Cprop gradually increased to above 40%
when root biomass increases from exponential growth for more
nitrate uptake. During the shift into maturation, proportional
increase of fixed carbon partitioning to root was occurred for
overcoming very low nitrate concentration. Nitrate was only
transported to leaf during the light phases under Nhigh and Nlow.
The proportion of nitrate transported to the leaf from total nitrate
uptake (Nprop, Figure 3A) was close to unity in all growth stages,
indicating that most imported nitrate was first transported to the
leaf during the day.

Quantum Demand (QD) and Assimilation Quotient (AQ) are
common measures of efficiency of photosynthesis (John Pirt,
1986; Osborne and Geider, 1987; Cote et al., 1989; Searles and
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FIGURE 3 | (A) Assimilation and partitioning of carbon and nitrogen under Nlow. Cprop, and Nprop are the proportions of C and N allocated to root and leaf,

respectively in a day from the total uptake. Remaining C and N were allocated to leaf and root, respectively. Cfix/Nfix is the ratio of net carbon fixed during the light (flux

of CO2 transport into leaf during the light phase, CO2_tx_Leaf_Day) to the nitrate uptake in a day (light+dark). (B) Quantum demand (QD) and assimilation quotient

(AQ) under Nlow and Nhigh. QD is the ratio of photon required:net CO2 fixed (Photon_tx_Leaf_Day:CO2_tx_Leaf_Day i.e., σP:σCO2) and AQ is the net CO2 fixed:net

O2 released (CO2_tx_Leaf_Day:O2_tx_Leaf_Day).

Bloom, 2003; Poolman et al., 2013). QD is defined as the amount
of photon required to fix one mole of CO2, which is a measure
of efficient photon utilization to supply assimilates and energy.
AQ is the ratio of net CO2 fixed to net O2 evolved. Figure 3B
shows the change in QD and AQ over different growth stages in
Nlow and Nhigh, which illustrates the relationship between QD
and nutrient availability and indicates a continuous metabolic
reprogramming in response to change in nutrient availability
during plant growth. Maximally efficient QDs were 15.84 and
16.38 in Nlow and Nhigh, respectively, which was similar to the
value of 16.6 calculated from a rice metabolic model (Poolman
et al., 2013).

Minimum QD appeared in the mid rosette development
stage (day 27) and at the end (day 36) in Nlow and Nhigh

(Figure 3B), respectively. QD in Nhigh, steadily decreased to
its minimum in the very last day, whereas under Nlow, QD
has decreased to its minimum at the mid rosette development
stage, then increased to a higher value during maturation.
The Pearson’s correlation coefficients between R/L and QD
are −0.8 and −0.89 with a p-value of 9 × 10−8 and 2.87
× 10−11 for Nlow and Nhigh, respectively, which suggest a
negative correlation between root mass growth and QD. It is
likely that as root mass increases, there is more N assimilation
which leads to a decrease in QD as more energy is diverted
from C assimilation to N assimilation. During the start of
maturation under Nlow, N assimilation started to decrease as
external nitrate depletes, which led to a slight increase QD.
Similar to QD, the initial decrease in AQ suggests an increase in

N assimilation, while an increase in AQ at the maturation phase
under Nlow coincides with the decrease in nitrate availability and
N assimilation such that AQ approaches 1 as N assimilation
approaches 0.

Enzymes With Different Cofactor
Specificities in Nitrogen Metabolism Serve
Distinct Metabolic Roles
Assimilates of C and N are of paramount importance
for plant growth and maintenance in all developmental
stages. Figure 4 summarizes a qualitative flux map of the
central carbon and nitrogen metabolism of a developing
Arabidopsis rosette from our multi-tissue diel metabolic
model.

From the results of the model simulations, most of the
nitrate entered into the root was transported to the leaf, with a
small amount of nitrate reduced to nitrite by NADH dependent
nitrate reductase (NR) in root cytosol during light and dark
phases (Figure 4). The low nitrate reduction in root correlates
with the low rate of ammonia assimilation by GS in the root.
Nitrate reduction in root was active only until end of the rosette
development stage of Nlow and later this stage all of the nitrate
was allocated to leaf. This might seem energetically inefficient
at first as nitrate has to be transported from the root to the
leaf, and assimilated N in the form of amino-acids have to be
transported back from the leaf to the root. However, themodeling
results suggest that N assimilation in the leaf is more efficient than
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FIGURE 4 | Central carbon and nitrogen metabolism of Arabidopsis thaliana active in most growth stages and conditions simulated. Full Calvin-Benson cycle was

active in leaf during the light phases. A complete TCA cycle was mainly active at the dark phases of leaf and in light and dark phases of root. Full oxidative pentose

phosphate pathway reactions were active at the dark phases in leaf plastid and in light and dark phases of root plastid. These pathways were omitted from the flux

map for clarity. The thickness of the arrows is not scaled to relative flux magnitudes. Bold lines indicate reactions identified as essential by FVA under most of the

growth days. RuBP, ribulose-1,5-bisphosphate; G3P, 3-phosphoglycerate; 2-PGly, 2-phosphoglycolate; GAP, glyceraldehyde 3-phosphate; Pi, inorganic phosphate;

2-OX, 2-oxoglutarate/α-ketoglutarate; GLU, glutamate; GLN, glutamine; OAA, oxaloacetate; FDox, oxidized-ferredoxins; FDred, reduced-ferredoxins; NO
−

2 , nitrite;

H2O2, hydrogen-peroxide; GLYOX, glyoxylate; SER, serine; OH-PYR, hydroxypyruvate; GLY, glycine; THF, tetrahydrofolate; CH2-THF,

5,10-methylene-tetrahydrofolate; ASP, aspartate; PYR, pyruvate; G1P, glucose 1-phosphate; ISO-CIT, threo-isocitrate; ACoA, Acetyl-CoA.

having to transport more fixed carbon from the leaf to the root to
provide the energy for N assimilation in the root.

Under both nitrate concentrations, all of the partitioned
N in leaf was first reduced to ammonia (NH3) during
the light period in plastid by ferredoxin-dependent nitrite
reductase (NIR) (Figure 4) then assimilated by plastidic GS
(Figure 5). Ammonium assimilation mainly takes place by the
combined action of glutamine synthetase (GS) and glutamate
synthase (GOGAT) in most plants (Martin-Figueroa et al.,
2000; Masclaux-Daubresse et al., 2006). Although cytosolic,
mitochondrial and plastidic GS are present in leaf and root, our
model predicted only the mitochondrial and plastidial isoforms
carried flux (Figures 4, 5). The modeling results suggest that

the GS-GOGAT pathway was the main ammonia assimilation
pathway which was active in leaf plastid during the light periods
in all growth stages using the ferredoxin(Fd)-GOGAT. In root,
nitrite was reduced to ammonia by NIR in the plastid, which
mostly transported to the mitochondria where it was assimilated
by GS to produce glutamine (GLN). GLN was released to the
cytosol, and was then imported into the plastid to form glutamate
(GLU) by NADH-GOGAT. Experimental study has shown that
ammonium assimilation in Arabidopsis root can directly engage
NADH-GOGAT, and Fd-GOGATmainly assimilates ammonium
in leaves (Kojima et al., 2014; Konishi et al., 2014). While Fd- and
NADH-GOGAT were present both in leaf and root, the model
predicted that Fd-GOGAT was the predominant enzyme in the
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FIGURE 5 | Fluxes of glutamine synthetases (GS) in leaf and nitrate transport from common pool to leaf. Flux values were normalized to per gram leaf biomass. _m

and _p represent mitochondrial and plastidic GS, respectively. RFR, relative flux rate.

leaf during the day, whereas root primarily uses NADH-GOGAT
for ammonia assimilation. This is consistent with experimental
results where Fd-GOGATs were found to be around 90% among
all GOGATs in shoot (Kojima et al., 2014).

As for GS, our modeling results showed that the plastidial GS
flux in the leaf follows that of the nitrate imported in to the leaf
during the day in both nitrate conditions tested (Figure 5). This
correlation suggests that the net assimilation of N into amino-
acids through the GS/GOGAT pathway was primarily carried out
by the plastidial GS. In contrast, the mitochondrial GS flux is
correlated with the rubisco oxygenase flux, suggesting that the
primary function of the mitochondrial GS is the reassimilation of
ammonia from the photorespiratory pathway.

At night in the leaf, the stored starch was converted into

pyruvate through glycolysis, which was then converted into
citrate in themitochondria via pyruvate decarboxylase and citrate

synthase. Some of the citrate was stored at night in vacuole to

provide C skeleton in the GS-GOGAT pathway for amino acid
biosynthesis during the light phase, which was consistent with

the previous experimental and computational studies (Gauthier
et al., 2010; Cheung et al., 2014). A recent study on tDT

vacuolar malate transporter also showed quantitative changes
in citrate levels between light and dark phases under standard

conditions (Frei et al., 2018). The maximum daily change in

citrate content in our Nlow simulations at day 25 (at maximum
growth rate) is 276.1 µmol/gDW, which is comparable with

the experimental measurement of 342.32 µmol/gDW (calculated
from 22.0 µmol/gFW, based on a conversion ratio from FW to
DW for root tissue) under standard condition. Frei et al. (2018)
also observed a reciprocal behavior of citrate levels to the changes
in malate under diurnal cycle, which is also apparent in our
simulation results, both qualitatively and quantitatively, i.e., there
was a similar amount of malate accumulation during the day

as compared to the amount of citrate accumulates in the dark
(see citrate and malate accumulation in Figure 4). Aspartate and
glycine stored during the day in the leaf were used as the main
N sources at night to provide substrates for mitochondrial GS for
transamination. The resulting glutamine was then released from
the leaf to the root.

To confirm the robustness of this qualitative flux map during
Arabidopsis growth, we conducted flux variability analysis (FVA)
(Mahadevan and Schilling, 2003). Simulated results show that
many reactions shown in Figure 4 (bold lines) are essential
for most of the growth days to assimilate and partition C-N
efficiently. In addition, a sensitivity analysis was performed by
varying the following constraints independently, (i) the flux ratio
of phloem export between the light and dark phases, (ii) the
flux ratio of nitrate uptake between the light and dark phases,
(iii) the flux ratio of rubisco carboxylase and oxygenase activity
during the light phase, and (iv) the initial nitrate content. Results
from the sensitivity analysis confirmed that the pattern of flux
distributions shown in Figure 4 was applicable for all scenarios
tested (Supplementary File 7).

Dynamic Model Predicting Responses to
Physiological and Environmental
Perturbations
Figure 6 shows the plant growth performance under different
perturbations. A sudden reduction in leaf biomass, simulating
the effect of herbivory, resulted in a reduced final leaf and root
biomass compared to normal growth (Figures 6A,B). Under high
nitrate, leaf biomass was able to recover significantly as sufficient
N source was available along with time to complete growth
(Figure 6A). Approximately 6 days were required to recover the
damage when leaf biomass exceeds the root biomass. However,
the recovery was much slower under low nitrate condition
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FIGURE 6 | Metabolic responses to physiological and environmental perturbations. All perturbations (A–F) were imposed on day 21. Solid lines are the results with

perturbations; dashed lines are the growth curves for Nhigh or Nlow without perturbation. Blue, green and cyan lines represent leaf growth proportion (gr ), leaf and root

biomass, respectively. (A,B) Reduction in leaf biomass on day 21 to 0.001 g under Nhigh and Nlow, respectively. (C,D) Increase in nitrate concentration to 100 mmol

under Nhigh and Nlow, where simulations were started with 50 mmol and 1.2 mmol nitrate concentrations under Nhigh and Nlow, respectively. (E,F) Incident photon

flux decreased from 300 µmol photons m−2 s−1 to 100 µmol photons m−2 s−1 under Nhigh and Nlow, respectively.

and leaf biomass remains smaller than root at the end of the
simulation (Figure 6B). Here, most of the photo assimilates
were used to recover root growth under low nitrate so that
it would capture more nitrate for growth. Increase in nitrate

availability, simulating the effect of application of fertilizers,
has marginal effect under Nhigh as the plant had access to

sufficient N source from beginning of the growth (Figure 6C),

which is in contrast to a large change in leaf growth proportion
under low nitrate growth that resulted in an increase in leaf

growth, allowing the plant to fix more carbon per N assimilated
(Figure 6D).

A decrease in light intensity (Figures 6E,F), simulating the
effect of shades, resulted in a decrease in overall plant growth

and a shift in favor of root growth as compared to leaf growth
(decrease in leaf growth proportion). This shift in investment
could be a response to save resource from growing leaf, and focus
the resource on root growth to assimilate more N.

DISCUSSION

The modeling framework developed in this study provides a
tool for predicting the pattern of resource partitioning and
the metabolic processes involved across multiple phases of
plant development (Supplementary File 8). The method was
tested with the genome-scale metabolic model of Arabidopsis
thaliana in modeling seedling growth to mature rosette
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leaves. From the day when cotyledon is fully opened, it
takes approximately 30 days to mature and initiate flowering
(Boyes et al., 2001). The model was able to simulate plant
growth stages under different resources as well as abrupt
perturbations including the removal of gained biomass by
herbivores, addition of nutrients in the soil and shades. To
the best of our knowledge, it is the first modeling approach
to investigate C, N and growth partitioning in diel phases
over multiple developmental stages of Arabidopsis thaliana
with dynamically imposing environmental and physiological
perturbations.

dFBA Modeling Framework Simulated
Plant Growth Dynamics Without
Time-Specific Growth Constraints
Flux balance analysis was first used to represent time profile
for the growth of Escherichia coli in batch and fed-batch
cultures (Varma and Palsson, 1994). This approach was extended
incorporating rate of change of flux constraints as dynamic
flux balance analysis (dFBA) to observe diauxic growth in
E. coli (Mahadevan et al., 2002). Since then, dFBA has been
applied to model different metabolic systems such as examining
microbial growth in substrate mixtures (Hanly and Henson,
2011) and studying life-cycle and synthetic biology prospective
for microalgae (Baroukh et al., 2016; Flassig et al., 2016). First
multi-tissue model of plant representing leaf-root of barley and
their interaction using dFBA was introduced by Grafahrend-
Belau et al. (2013), in which the authors used a functional
plant model (FPM) to obtain growth kinetics (in time scale)
and fed the outputs of FPM to a FBA model as constraints
to obtain flux solutions across multiple tissues during seed
development from 53 to 70 day after sowing. Our approach
differs from Grafahrend-Belau et al. (2013) in that, (i) instead
of using separate FPM, the dynamic constraints (present leaf
and root biomass, available nitrate and photon, allowed uptake
capacity, etc.) were calculated each day, based on the plant growth
performance of previous day and available resources (see section
Materials and Methods) and (ii) we simulated growth from
cotyledon (day 6) to maturation phase (day 36) of Arabidopsis
to analyze plant growth under two resource gradients. A recently
developed multi-tissue modeling framework using Arabidopsis
explores the source-sink interaction and C-N allocation under
diel cycle (de Oliveira Dal’Molin et al., 2015). This was the
first study to explore the potential of multi-tissue framework
in identifying tissue, organ, day period and condition specific
pathway correlation. In this study, we extended the scope of such
analysis by including growth stages as a time axis, accompanying
with a method that can model changes in conditions.

Growth Partitioning for Leaf and Root Is
Optimized Based on Nutrient Availability
for Growth
Overall growth pattern shown in Figure 2A showed that the
model is capable of simulating the expected plant biomass growth
over time (see Figure 3 of Weraduwage et al., 2015). Moreover,
the behavior of plants under limiting below ground resources

suggests that plant can partition more resources to root to grow
it faster than leaf for optimal partitioning (Shipley and Meziane,
2002; Kiba and Krapp, 2016). Zhang and Forde (2000) observed a
suppressed lateral root development in 50 mmol KNO3 solution,
whereas lateral root growth had been observed in 1 mmol KNO3

solution in Arabidopsis thaliana. This supports the pattern that
lateral root elongation can result in higher root biomass under
limited N source to acquire more nutrients and compete within
the environment. Ericsson (1995) has also observed this pattern
with P and S (other major mineral nutrients) along with N.
The model predictions were consistent with experiments where
the leaf growth proportion is lower (i.e., more resources were
allocated to root growth) under low nitrate (Figure 2C). Model
also predicted that due to low N allocation in leaf under Nlow, its
growth gradually decreased starting from day 14 and ultimately
end up with significantly lower leaf mass than Nhigh (Figure 2A).
The ratio of root:leaf (R/L_L) in this case at day 19 (Figure 2D)
is similar to experimental value of Arabidopsis root to shoot
ratio obtained under ambient CO2 and low N media (Hachiya
et al., 2014). It was interesting to see that model predicted leaf
growth only during photo periods whereas root growth occurs
during both light and dark periods under Nlow (Figure 2B).
Under our assumption of optimization in FBA, which equates to
the efficiencies in the use of available resources and enzymatic
machinery for plant growth, the resulting flux solutions showed
that the daytime is the more economic phase for leaf growth.

Photon Use Efficiency Is Variable With
Growth Stages and Nutrient Availability
Modeling results showed that QD is variable across different
growth stages depending on the available nutrients and growth
partitioning requirements (Figure 3B). This is evident from the
QD of the young leaf during cotyledon development stage, which
was higher in Nlow than Nhigh, in contrast to during rosette
development stage where QD was lower in Nlow than Nhigh as
more energy was diverted for N assimilation for leaf growth in
Nhigh (Figure 3B). This suggests that the photon usage efficiency
depends on the necessary C and N assimilation and partitioning
for the required leaf:root growth.

N Assimilation Preferentially Occurs in
Leaf During Daytime
We used our model to investigate the behavior of metabolic
reactions involved in nitrogen metabolism during the growth
and maturation of Arabidopsis seedling. Figure 5 shows that
glutamine synthetase (GS) activity was predicted from our model
to be higher both in leaf and root during the light period
compared to during the night period, which was consistent
with experimental studies in tobacco where the total GS activity
was found to be higher during the light period than during
the dark period in leaf and root (Matt et al., 2001). In the
leaf during the day, the flux of ammonia assimilation by
GS in the mitochondrion was predicted to be much higher
than that of GS in the plastid (Figure 5), suggesting that
there was more photorespiratory ammonia being reassimilated
in the mitochondrion compared to ammonia assimilation for
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net amino-acid synthesis in the plastid. This coincides with
experimental studies suggesting that mitochondrial GS activity
in light adapted Arabidopsis leaf can be higher than that in
the chloroplast as photorespiratory Gly oxidation (Figure 4) can
yields large ammonium that needs to be reassimilated (Taira et al.,
2004).

All of the nitrogen partitioned to the leaf was assimilated
during the light phase in all growth stages in both Nlow and
Nhigh. Besides experimental studies on Arabidopsis (Taira et al.,
2004), our modeling results were also in line with the observation
in tobacco where illumination increases the activity of nitrate
reductase (NR) and high rates of nitrate assimilation can occur
during the light period but remain negligible at night, with
similar trend also observed for glutamine synthetase activity
(Matt et al., 2001; Stitt et al., 2002). Most of the nitrate absorbed
into the root in the dark was stored in the vacuole (about 96-
99%) and was exported to supply nitrate in leaf during the
light phase, whereas nitrate transport from root to leaf was
absent during the dark phases. These results suggest that it is
energetically preferable to store nitrate during the night which
is then transported and fixed in the leaf during the day using the
free energy and reducing power directly from the photosynthetic
light reaction. Moreover, organic N storage in leaf and its
transport to root supports the cycling of nitrogen between root

and leaf, and suggests the role of reduced N in phloem sap from
source leaf (Dieter Jeschke and Hartung, 2000; Okumoto and
Pilot, 2011), presumably to supply nitrogen for root growth.

Interplays Between Amino-Acids Synthesis
and Related Metabolic Processes With
Carbon Fixation
Days corresponding to the lowest and highest QD under
Nlow were used to analyze metabolic reprogramming when
Arabidopsis thaliana growth shifts from rapid rosette
development to its maturation under low nitrate condition.
Figure 7 shows the metabolic changes between these two stages.

The role of carbonic anhydrase (CA, EC 4.2.1.1) has recently
been recognized for amino acid biosynthesis and optimal plant
growth in low CO2 in Arabidopsis (DiMario et al., 2016). The
study with double mutant (βCAs) in Arabidopsis leaf suggests
that the CAs do not have important link with photosynthesis
(DiMario et al., 2016) but has a role in responding to changes
in environmental CO2 concentrations (Raines et al., 1992). In
C4 plants, it has been observed that CA has a significant role
to accelerate the rate of photosynthesis (Badger and Price, 1994;
Moroney et al., 2001). Our model shows that CA activity can also
depend on the C:N assimilation requirement to satisfy metabolic

FIGURE 7 | Simulated flux distribution in a day under growing and mature stages of Arabidopsis leaf and root in Nlow. The days correspond to lowest QD (15.84)

during the rosette development (day 27) and highest QD (16.177) during maturation (day 36) in Figure 3B are shown with blue and red font, respectively. Flux values

were normalized to per net CO2 fixed. Flux values for AA represent the normalized sum of all amino acids. Note that the thickness of the arrows is not scaled to

relative flux magnitudes. CIS-ACON, cis-aconitate; PEP, phosphoenolpyruvate; HCO−3 , hydrogen carbonate.
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demands. During maturation phase with limited nitrogen source,
high C:N assimilation led to low CA activity (Figure 7).

Besides the effect on CA activity, low nitrogen availability
could result in lower rates of amino-acids synthesis, which
in turn could have a knock on effect on the activities of
enzymes involved in providing carbon skeleton for amino-acid
synthesis. One example is aconitase (aconitate hydratase, AH)
where our model has predicted its localization to be primarily
in the mitochondrion under these two stages investigated. It
was experimentally observed that reduced expression of AH
can enhance rate of photosynthesis in mature leaves of wild-
type tomato grown under 250 µmol photons m−2s−1 and
available nutrients (Carrari et al., 2003). From our modeling
results, it seems that a decrease in AH (or other enzymes
involved in the synthesis of carbon skeleton of amino-acids)
could lead to a decrease in N fixation, where the energy from
the photosynthetic light reactions could be diverted to carbon
fixation.

CONCLUSION

We developed and applied a multi-tissue dynamic FBAmodeling
framework with a genome-scale metabolic model of Arabidopsis
to study the metabolic reprogramming and changes in resource
allocation over the growth and maturation of Arabidopsis
seedling under two different initial nutrient levels as well as
three different types of perturbations. Our model enables us to
investigatemetabolic reprogramming that can occur during plant
growth over a spatio-temporal resolution, thus, able to study
the movement and metabolism of carbon and nitrogen through
space, time as well as variations in resource availability and
perturbations. Knowledge on the partitioning and metabolism of
C and N can guide efforts in metabolic engineering to improve
nitrogen use efficiency and photosynthesis.

Our modeling results suggested that plants rely on a common
metabolic flux mode during growth and maturation for C and
N assimilation and translocation (Figure 4). Primary N fixation
directly using the energy from photon was shown to be more

economical than the use of catabolic energy based on our
modeling prediction that N fixation primarily occurs in the leaf
during the day. Our model simulations demonstrated that, based
on simple rules of plant-environment and tissue interactions,
the whole-plant growth analysis can uncover optimal growth
strategies in different stress conditions involving diel phases.
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