
Accepted by IEEE TRANSACTIONS ON CYBERNETICS, 2014

Abstract—Hyper-heuristics are search methodologies that

aim to provide high quality solutions across a wide variety of

problem domains, rather than developing tailor-made

methodologies for each problem instance/domain. A

traditional hyper-heuristic framework has two levels, namely,

the high level strategy (heuristic selection mechanism and the

acceptance criterion) and low level heuristics (a set of problem

specific heuristics). Due to the different landscape structures

of different problem instances, the high level strategy plays an

important role in the design of a hyper-heuristic framework.

In this work, we propose a new high level strategy for the

hyper-heuristic framework. The proposed high level strategy

utilizes the dynamic multi-armed bandit-extreme value based

rewards as an online heuristic selection mechanism to select

the appropriate heuristic to be applied at each iteration. In

addition, we propose a gene expression programming

framework to automatically generate the acceptance criterion

for each problem instance, instead of using human designed

criteria. Two well-known, and very different, combinatorial

optimization problems, one static (exam timetabling) and one

dynamic (dynamic vehicle routing) are used to demonstrate

the generality of the proposed framework. Compared with

various well-known acceptance criteria, state of the art of

hyper-heuristics and other bespoke methods, empirical results

demonstrate that the proposed framework is able to generalize

well across both domains. We obtain competitive, if not better

results, when compared to the best known results obtained

from other methods that have been presented in the scientific

literature. We also compare our approach against the recently

released hyper-heuristic competition (CHeSC) test suite. We

again demonstrate the generality of our approach when we

compare against other methods that have utilized the same six

benchmarks datasets from this test suite.

Index Terms—Gene Expression Programming, Hyper-

heuristic, Timetabling, Vehicle Routing, Dynamic

Optimization.

Nasser R. Sabar and Masri Ayob are with Data Mining and Optimization

Research Group (DMO), Centre for Artificial Intelligent (CAIT),
Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.

email: nasser@ftsm.ukm.my, masri@ftsm.ukm.my

Graham Kendall and Rong Qu are with ASAP Research Group, School
of Computer Science, The University of Nottingham, Nottingham NG8

1BB, UK. email: Graham.Kendall@nottingham.ac.uk,

Rong.Qu@nottingham.ac.uk.
Nasser R. Sabar and Graham Kendall are also with The University of

Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor,

Malaysia. email: Nasser.Sabar@nottingham.edu.my,
Graham.Kendall@nottingham.edu.my.

I. INTRODUCTION

Meta-heuristic research communities have acknowledged

the fact that meta-heuristic configurations (operators and

parameter settings) play a crucial role on the algorithm

performance [1], [2], [3]. Indeed, it has been shown that

different meta-heuristic configurations work well for

particular problem instances or only at particular stages of

the solving process [4],[5]. Within this context, automated

heuristic design methods have emerged as a new research

trend [4]. The ultimate goal of these methods is to automate

the algorithm design process as far as possible, to enable

them to work effectively across a diverse set of problem

domains [1],[6]. Hyper-heuristics [4] represent one of these

methodologies. They are a search methodology that is able

to provide solutions to a wide variety of problem domains,

rather than being tailored for each problem or even each

problem instance encountered. Hyper-heuristics operate on

the heuristic search spaces, rather than operating directly on

the solution space, which is usually the case with meta-

heuristic algorithms [7]. The key motivation behind hyper-

heuristics is to raise the level of generality, by drawing on

the strengths, and recognizing the weaknesses, of different

heuristics and providing a framework to exploit this. The

most common hyper-heuristic framework has two levels; a

high level strategy and a set of low level heuristics. The

high level strategy manages which low level heuristic to

call (heuristic selection mechanism) and then decides

whether to accept the returned solution (the acceptance

criterion). The low level heuristics contains a set of problem

specific heuristics which are different for each problem

domain.

The success of a hyper-heuristic framework is usually

due to the appropriate design of the high level strategy and

it is not surprising that much work in the development of

hyper-heuristics is focused on the high level strategy [8].

The variety of landscape structures and the difficulty of the

problem domains, or even problem instances, usually

require an efficient heuristic selection mechanism and

acceptance criteria to achieve good performance [4]. Both

components are crucial and many works have shown that

different combinations and configurations usually yield

different performance [7], [8], [9].

Therefore, in this work we address these challenges by

proposing a new high level strategy for the hyper-heuristic

framework with the following two components (see Fig. 1):

A Dynamic Multi-Armed Bandit-Gene Expression

Programming Hyper-Heuristic for Combinatorial

Optimization Problems

 Nasser R. Sabar, Masri Ayob, Graham Kendall, Senior Member, IEEE and Rong Qu, Senior Member,

IEEE

Accepted by IEEE TRANSACTIONS ON CYBERNETICS, 2014

i) Heuristic selection mechanism: the proposed

framework utilizes the dynamic multi-armed bandit-

extreme value based rewards [10] as an on-line heuristic

selection mechanism. The attractive feature of a

dynamic multi-armed bandit is the integration of the

Page-Hinkly statistical test to determine the most

appropriate heuristic for the next iteration by detecting

the changes in average rewards for the current best

heuristics. In addition, the extreme value-based rewards

credit assignment mechanism records the historical

information of each heuristic to be used during the

heuristic selection process.

ii) Acceptance criterion: instead of using an acceptance

criterion manually designed by human experts (which

usually requires ongoing tuning), we propose an

automatic framework to automatically generate, during

the solving process, different acceptance criteria for

different instances or problem domains as well as to

consider the current problem state by using gene

expression programming (GEP) [11]. We choose GEP

to automatically generate the acceptance criteria due to

its ability to always generate solutions that are

syntactically correct and to avoid the problem of code

bloat.

Heuristic selection

mechanism

Dynamic multi-armed bandit-

extreme value based rewards

Acceptance criterion

Gene Expression Programming

Low level heuristics

LLH1 LLH2

….. LLHn

A set of low level heuristics

Domain Barrier

High Level Strategy

Problem representation

Evaluation function

Initial solution

Hyper-heuristic

Fig. 1. The proposed gene expression programming based hyper-heuristic

(GEP-HH) framework.

In the scientific literature, automatic program generation

methods, such as genetic programming (GP), have been

successfully utilized as a hyper-heuristics to generate

heuristics for optimization problems such as 2D packing

and MAX-SAT problems [7]. However, despite the success

of GP based hyper-heuristics, the same hyper-heuristic

cannot be used to generate heuristics for other domains

such as exam timetabling or vehicle routing problems. This

is because existing GP based hyper-heuristics generate

heuristics for only one domain. Hence, the function and

terminal sets that have been defined for one domain cannot

be used on other domains. In other words, to solve a new

problem domain we have to define a fundamentally

different set of functions and terminals that are suitable to

the problem at hand. Based on this current level of

generality, in this work, we propose an automatic program

generation framework to automatically generate the high

level strategy competent of the hyper-heuristic framework.

The novelty of the proposed framework is that it being used

at the higher level of abstraction and can tackle many

optimization problems using the same set of functions and

terminals. This feature distinguishes our framework from

existing GP based hyper-heuristics. In practice, evolving or

optimizing algorithm components will not only alleviate

user intervention in finding the most effective

configuration, but can also facilitate algorithm

configurations. In addition, besides the fact that manual

configurations may only represent a small fraction of the

available search space, usually it requires a considerable

amount of expertise and experience. Hence, exploring the

search space using a suitable search methodology (i.e. GEP

in this work) might yield a better performance compared to

a manual configured search methodology. Our objectives

are:

- To propose an on-line hyper-heuristic framework that

can adapt itself to the current problem state using a

heuristic selection mechanism which integrates a

statistical test to select the most appropriate low level

heuristics.

- To propose an on-line framework to automatically

generate, for each instance, an acceptance criterion that

uses the current problem state, and that is able to cope

with changes that might occur during the search process.

This will be achieved using a gene expression

programming algorithm.

- To test the generality and consistency of the proposed

hyper-heuristic framework on two different problem

domains (both static and dynamic) and compare its

performance against well-known acceptance criteria,

state of the art of hyper-heuristics and the best known

bespoke methods in the scientific literature.

Two well-known combinatorial optimization problems, but

with very different search space characteristics, are used as

our benchmarks. The problems are: the exam timetabling

problem (ITC 2007 instances [12]) and the dynamic vehicle

routing problem (Kilby instances [13]). We also further test

the generality of the approach by comparing against the

recently introduced hyper-heuristic test suite of problems

(hyper-heuristic competition (CHeSC 2011)) [14]. To the

best of our knowledge, this is the first work in the hyper-

heuristic literature which has considered both dynamic and

static problems.

II. HYPER-HEURISTICS AND RELATED WORKS

Burke et al. [4] defined a hyper-heuristic as “an automated

methodology for selecting or generating heuristics to solve

hard computational search problems”. Hyper-heuristics

have been widely used, with much success, to solve various

classes of problems. A traditional hyper-heuristic

framework has two levels, a high and a low level.

The high level strategies, which are problem independent

and have no knowledge of the domain, control the selection

or generation of heuristics to be called (without knowing

Accepted by IEEE TRANSACTIONS ON CYBERNETICS, 2014

what specific function it performs) at each decision point in

the search process. In contrast to meta-heuristics, hyper-

heuristics search the space of heuristics instead of directly

searching the solution space. The low level heuristics

represent a set of problem dependent heuristics which

operate directly on the solution space.

 Generally, the high level abstraction of the hyper-

heuristic framework means that it can be applied to multiple

problem domains with little (or no) extra development

effort. Recently, Burke et al. [4] classified hyper-heuristic

frameworks based on the nature of the heuristic search

spaces and the source of feedback during learning. The

source of feedback can either be on-line, if the hyper-

heuristic framework uses the feedback obtained during the

problem solving procedure, or off-line, if the hyper-

heuristic framework uses information gathered during a

training phase in order to be used when solving unseen

instances. The nature of the heuristic search space is also

classified into two subclasses known as heuristics to choose

heuristics and heuristics to generate heuristics. The

classification specifies whether heuristics (either chosen or

generated) are constructive or pertubative. Please note that

our proposed hyper-heuristic framework can be classified

as an on-line perturbative heuristic to choose heuristics

framework.

A. Heuristic to choose heuristics

Most of the hyper-heuristic frameworks published so far

have been heuristics to choose heuristics [4]. For a given

problem instance, the role of the hyper-heuristic framework

is to intelligently choose a low level heuristic from the low

level set, so as to apply it at that decision point. The idea is

to combine the strengths of several heuristics into one

framework. Meta-heuristics and machine learning

methodologies have been used as heuristic selection

mechanisms, for example tabu search with reinforcement

learning [16] and scatter search [17]. Many different

acceptance criteria have also been used, including all moves

[18], only improvements [18], improving and equal [18],

Monte-Carlo [19], record to record travel [20], simulated

annealing [21], [22], late acceptance [23], great deluge [24]

and tabu search [25]. More details are available in [7].

Recently, the cross-domain heuristic search (CHeSC)

competition was introduced, which provides a common

software interface for investigating different (high level)

hyper-heuristics and provides access to six problem

domains where the low level heuristics are provided as part

of the supplied framework [14]. The algorithm designer

only needs to provide the higher level component (heuristic

selection and acceptance criterion). Further details about the

competition, including results, are available in [14].

B. Heuristic to generate heuristics

Heuristics that generate heuristics focus on designing new

heuristics by combining existing heuristic components and

then applying them to the current solution. Generative

genetic programming hyper-heuristics have been utilized to

solve many combinatorial optimization problems including

SAT [26], timetabling [27], vehicle routing [27] and bin

packing [28]. A recent review on hyper-heuristic is

available in [7] which provides more details about this area.

Although promising results have been achieved, GP has

been utilized as an off-line heuristic/rule builder using a

specific set of functions and terminals. Besides being

computationally expensive due to the need of training and

testing, they do not guarantee to deliver the same

performance across different domains or even different

instances of the same domain. This is because the generated

heuristics/rules are suited to only the instance that has been

used in the training phase. Furthermore, they are tailored to

solve specific problems and were only applied to a single

(static) domain, which raises the question: to what extent

they will generalize to other domains?

The success of the above work, which has some

resemblance to the proposed gene expression programming,

is the main motivation for proposing an on-line gene

expression programming framework to generate the

acceptance criteria for the hyper-heuristic framework. The

benefit of this framework is the ability to generate different

acceptance criteria for different instances based on the

problem state and thus enabling it to cope with changes that

might occur during the solving process.

III. THE PROPOSED FRAMEWORK

We start by describing the proposed perturbative based

hyper-heuristic framework, followed by the components of

the high level strategy, i.e. the heuristic selection and

acceptance criterion mechanisms. Finally, we describe the

low level heuristics that will be used in our framework.

A. A Perturbative based Hyper-heuristic Framework

Our on-line perturbative based hyper-heuristic framework

comprises of a high level strategy and a set of low level

heuristics. The high level strategy consists of two

components, heuristic selection and acceptance criterion.

The goal of the high level strategy is to select a low level

heuristic to be applied at a given time. The low level

contains a set of perturbative heuristics that are applied to

the problem instance, when called by the high level

strategy. Therefore, based on the utilized low level

heuristics, the proposed hyper-heuristic framework is an

improvement based method as the hyper-heuristic starts

with an initial solution and iteratively improves it using a

set of perturbative low level heuristics.

The proposed hyper-heuristic iteratively explores the

neighborhood of the incumbent solution, seeking for

improvement. Given a set of low level heuristics (LLHs), a

complete initial solution, S, (generated either randomly or

via a constructive heuristic) and the objective function, F,

the aim of the hyper-heuristic framework is to select an

appropriate low level heuristic and apply it to the current

solution (S'=LLH(S)). Next, the objective function is called

to evaluate the quality of the resultant solution (F(S')),

followed by the acceptance criterion which decides whether

to accept or reject S'. If S' is accepted, it will replace S.

Otherwise, S' will be rejected. The hyper-heuristic will

update the algorithmic parameters and another iteration will

start. This process is repeated for a certain number of

Accepted by IEEE TRANSACTIONS ON CYBERNETICS, 2014

iterations. In what follows we discuss the components of

the proposed high level strategy.

B. High Level Strategy

In this work, we propose a new high level strategy, as

shown in Fig. 2. It has two components: heuristic selection

mechanism (dynamic multi-armed bandit-extreme value-

based rewards) and an acceptance criterion (gene

expression programming).

1) The heuristic selection mechanism

The heuristic selection mechanism successively invokes

two tasks, credit assignment (extreme value-based rewards

[10]) and heuristic selector (dynamic multi-armed bandit

mechanism [10]). The credit assignment mechanism

maintains a value (reward) for each low level heuristic and

these values are used by the heuristic selector mechanism to

decide which heuristic to be executed at each decision

point.

Apply the selected

low level heuristicLHH1

LHH2

LHH3

LHHn

……..

T
h

e
 c

r
e
d

it
 a

r
r
a
y
 o

f
 t

h
e

L
o

w
 l

e
v

e
l

h
e

u
r
is

t
ic

s

Sele
ct

Update
YesYes

Extreme value-

based rewards

Credit assignment

Dynamic multi-

armed bandit

Low level heuristic

selector

Impact

evaluation
Gene Expression Programming

Acceptance criterion

No

Heuristic selection

mechanism

Fig. 2. The high level strategy within the proposed GEP-HH framework

a) The credit assignment mechanism: Extreme value-

based rewards

The credit assignment mechanism maintains a value

(reward) for each low level heuristic (LLH), indicating how

well it has performed recently. The LLH will be rewarded

during the search process if it finds a better solution or the

solution is accepted by the employed acceptance criterion.

In this work, the extreme value-based reward [10] is

employed as the credit assignment mechanism. Low level

heuristics, which are called infrequently, but lead to large

improvements in solution quality, are preferred over those

that only lead to small improvements, over a longer time

frame. Low level heuristics which bring frequent, small

improvements will be rewarded less and consequently have

less chance of being selected [10].

The extreme value-based reward mechanism works as

follows. When a low level heuristic is selected, its

improvement compared to the current solution is computed.

The improvement (PILLH) of the applied low level heuristic

to a current solution is calculated as follows: Assume f1 is

the quality of the current solution and f2 is the quality of the

resultant solution after applying the low level heuristic

(LLH), PILLH = (f1-f2 /f1) * 100. PILLH is then saved for that

low level heuristic, at the corresponding iteration for a

sliding time window of size W, using First in, First Out

(FIFO), i.e. improvements of the selected low level

heuristic in the last W iterations are saved. The credit of any

low level heuristic (r) is then set as the maximum value in

its corresponding sliding window as follows:

(1)

where W is the size of the sliding window. The size of the

sliding window, W, controls the size of the gathered

information. Based on our preliminary testing (see Section

IV.A), it was found that when W=20 the hyper-heuristic

performs well. We have thus fixed W=20 in all our

experiments.

b) Heuristic selector: Dynamic multi-armed bandit

mechanism

Based on their previous performance (assigned credit value

by the credit assignment mechanism) and the number of

times that the low level heuristics have been applied, the

heuristic selection mechanism selects low level heuristics to

be applied to the current solution. In this work, we use the

dynamic multi-armed bandit (DMAB) mechanism as an on-

line heuristic selector mechanism [10]. The attractive

feature of DMAB is the integration of the Page-Hinkly

(PH) statistical test to detect the changes in average rewards

of the current best low level heuristic. DMAB is based on

an upper confidence bound strategy which deterministically

selects a low level heuristic with maximum accumulative

rewards. A low level heuristic is selected based on its

empirical rewards and the number of times it has been

applied up to current time step.

Formally, let k denote the number of available low level

heuristics, each one having some unknown probability.

DMAB selects the best low level heuristic that maximizes

the accumulative rewards over time. Each low level

heuristic is associated with its empirical rewards qi,t (2) (the

average rewards ri obtained by the i-th low level heuristic

up to time t) and a confidence level ni,t (the number of times

that the i-th low level heuristic has been applied up to time

t).

, 1 , ,
, 1

,

()*i t i t i t
i t

i t

n q r
q

n

 (2)

where ri,t is the credit value (based on the credit assignment

mechanism) of the i-th low level heuristic up to time t. At

each decision point, the low level heuristic with the best

confidence interval (maximum accumulative rewards) is

selected (using (3)) to be applied to the current solution.

,1

1... ,

,

2log
max

k

j tj

i k i t

i t

n
select q c

n

 (3)

where c is a scaling factor which controls the trade-off

between the low level heuristic that has the best reward (the

left term of equation 3) and the heuristic that has been

infrequently applied (the right term of equation 3).

,1...max {()}ii W LLHr PI

Accepted by IEEE TRANSACTIONS ON CYBERNETICS, 2014

DMAB uses the Page-Hinkly (PH) statistical test to detect

the changes in average rewards of the current best low level

heuristics. If the current best low level heuristic is no longer

the best one, DMAB is restarted from scratch. The

underlying idea is to quickly and dynamically identify new

best low level heuristics, avoiding irrelevant information.

Let αt represent the average reward of a low level heuristic

over the last t time steps, r represents the rewards of the i-th

low level heuristic at time j, the PH test [10] uses equation

(4) to detect the changes in average rewards.

 (4)

where et is the difference between the current reward (rt)

and the average reward (αt) of the i-th low level heuristic

plus a tolerance parameter δ which is fixed to 0.15 (see

Section A. GEP-HH Parameter Settings). mt is a variable

that accumulates the differences et up to step t. PH

recognizes that the change in the reward is detected when

the difference (
1...max {| |} | |j t i tm m) is greater than a pre-

defined threshold γ (
1...max {| |} | |j t j tm m).

2) The acceptance criterion mechanism

The role of the acceptance criterion is to decide whether to

accept or reject the solution that is generated once the

selected low level heuristic has been applied [8]. In this

work, we propose a gene expression programming

framework to evolve the acceptance criterion for our hyper-

heuristic. It is implemented as an on-line acceptance

criterion generation method that takes the quality of the

previous solution, current solution and current state of the

search process as input and returns the decision as to

whether to accept or reject the solution. This removes the

need for manual customization and/or tuning. It also

contributes to the literature on the automatic generation of

heuristic components that are able to avoid being trapped in

confined areas of the search space and are able to work well

across different problem domains/instances. In the

following subsections, we present the basic gene expression

programming algorithm followed by the proposed

framework to generate the acceptance criteria of the

proposed high level strategy of the hyper-heuristic.

a) Basic gene expression programming algorithm

Gene expression programming (GEP) [11] is a form of

genetic programming (GP) that uses the advantage of both

genetic algorithms (GA) and genetic programming (GP) in

evolving a population of computer programs. The attractive

features of GEP, compared to GP, are its ability to always

generate syntactically correct programs and avoid the

problem of code bloat (a recognized problem in traditional

GP) [11]. GEP uses a linear representation of a fixed size of

strings called genomes (or chromosomes) which are

translated into a parse tree of various sizes in a breadth-first

search form. The parse tree is then executed to generate a

program that will be used to solve the given problem.

Instead of applying operators directly to the trees, as in

genetic programming, GEP applies genetic operators

(crossover, mutation, inversion and transposition) directly

to the linear encoding.

The genomes in GEP represent a set of symbol strings

called genes. Each one consists of two parts; head which

contains both terminal and function symbols and tail which

only contains terminal symbols [11]. Usually, the head

length h is set by the user, whilst, the tail length tt is

calculated by the formula tt = h*(n-1)+1, where n represents

the maximum number of arguments of the functions.

Consider a chromosome comprising of a set of symbols

of function F = {*, /, +, -} and terminals T = {a, b}. In this

example, n=2 because the maximum arity of the function is

two arguments. If we set the head length h=10, then tt=11

and the chromosome length will be h+tt=10+11=21.

Assume the solution (chromosome) is randomly generated,

one possible example is as follows [11]: GEP_gene=+*ab-

ab+aab+ababbbababb and its corresponding expression tree

is: GEP_expression= a+b*((a+b)-a).

There are five components in GEP, namely the function

set (F), terminal set (T), fitness function, GEP parameters

and stopping condition [11]. To evaluate the fitness of

individuals, chromosomes are firstly translated into

expression trees following the breadth-first form as follows

[11]:

- Scan the chromosome string one by one from left to

right.

- The first element represents the node of the

corresponding tree and other strings are written in a left

to right manner on each lower level.

- If the scanned element is a function (F) with n (n>=1)

arguments, then the next n elements are attached below

it as its n children. If the scanned element is a terminal

(T), then it will form a leaf of the corresponding tree.

This process is repeated until all leaves in the tree are from

the terminal set (T) only. Next, the corresponding programs

are executed on the user-defined problem, and their fitness

values are calculated. Algorithm 1 presents the pseudocode

of GEP. As in standard GA, GEP starts with a population of

solutions (randomly generated). Each individual

(chromosome) in the population employs the head-tail

encoding method which ensures the validity of the

generated solution. All chromosomes are then translated

into expression trees, and executed to obtain their fitness

values. Based on their fitness values, some individuals are

selected by the selection mechanism (e.g. roulette wheel

selection) to form the new generation by using the

following genetic operators [11]:

- Crossover: exchanges elements between two randomly

selected genes from the chosen parents. Both one-point

and two-point crossover operators can be used. In this

work, a one-point crossover operator is employed. In

one-point crossover, first randomly select a point in both

parents and then swap all data beyond the selected

points between the parents [11].

- Mutation: occurs at any position in the generated

chromosome as long as it respects the gene rules such

that the elements in the head part can be changed into

both terminal and function, whilst, the elements in the

1 1

1
, (),

t t

t j t t t t jj j
r e r m e

t

Accepted by IEEE TRANSACTIONS ON CYBERNETICS, 2014

tail part can be changed into terminals only. In this

work, we use a point mutation operator. This mutation

operator scans chromosome genes one by one and,

based on the mutation probability, change the value of

current gene in such a way that if the current gene is in

the head part it can be changed into both terminal and

function, whilst, if it is in the tail part it can be changed

into terminals only.

- Inversion: reverses the sequence of elements within the

head or tail. Based on the inversion probability rate,

randomly select a point in either head or the tail of a

given chromosome and reverses the sequence beyond

the selected point.

The newly generated chromosomes are then evaluated to

calculate their fitness values, and added into the next

generation. Following roulette wheel selection the fittest

individuals are always copied into the next generation (i.e.

elitism is employed). This process is executed until a

stopping condition is satisfied.

b) Gene expression programming algorithm for

evolving acceptance criterion

In this work, we propose a GEP framework to automatically

generate the acceptance criterion which is specific to a

given problem instance within the hyper-heuristic

framework. A key decision in the design of the proposed

GEP framework is the definition of the terminal set (T),

function set (F) and the fitness function.

In order to be able to use the proposed GEP framework

across a variety of problems, we keep the definition of the

terminal set (T), function set (F) and the fitness function as

general, and simple, as possible. This ensures that the

proposed framework can be used to solve different classes

of problems rather than just those considered in this work,

and can be easily integrated into other meta-heuristic

algorithms. The function (F) and terminal (T) sets that have

been used in the proposed GEP framework are presented in

Table 1.

The main role of GEP is to evolve a population of

individuals, each encoding an acceptance criterion. To

assess the performance of an acceptance criterion, the

hyper-heuristic framework is run on the given problem

instance with the evolved acceptance criterion. Specifically,

the proposed hyper-heuristic invokes the following steps: it

calls the heuristic selection mechanism to select a low level

heuristic, which is applied to the current solution, and

calculates the quality of the generated solution. If the

generated solution is better than the current one, the current

one is replaced (accepted). If not, the hyper-heuristic will

call the acceptance criterion that is generated by the GEP

framework and execute the corresponding program. Then,

the generated solution is accepted if the exponential value

of the utilized acceptance criterion returns a value less or

equal to 0.5 (the exp function returns values between 0 and

1). Otherwise, the solution will be rejected (if the

exponential value of the utilized acceptance criterion is

greater than 0.5). In the literature, a value of 0.5 was

suggested [28] but for different domains. In our work, the

evolved programs in our hyper-heuristic framework are

utilized as an acceptance criterion rather than as a

constructive heuristic as in [28]. The value 0.5 was also

determined based on preliminary testing. The proposed

hyper-heuristic framework will keep using the utilized

acceptance criterion, which is generated by GEP

framework, for a pre-defined number of iterations (it stops

after 10 consecutive non improvement iterations,

determined by preliminary experimentation, see IV.A).

Algorithm 1: Pseudocode of GEP algorithm

Set number of generations, populationsize, Headlength, Taillength, pcrossover,

 pmuataion, Inversionsize

population← initializepopulation(populationsize, Headlength, Taillength)

foreach soli population do
 // translate the chromosome into expression tree//
 soli-et ←TranslateBreadthFirst(Soli-genes)
 // execute the corresponding expression tree//

 soli-cost ←execute (soli-et)

end

solbest ←SelectBestSolution(populationsize)

while stopping condition not true do
 // parent selection process //

 parenti← SelectParents(populationsize)

 parentj← SelectParents(populationsize)
 // crossover operator //
 child1←Crossover(parenti, parentj,pcrossover)

 child2←Crossover(parenti, parentj, pcrossover)

 // mutation operator //

 child1m← Mutation(child1, pmuataion)
 child2m←Mutation(child2, pmuataion)

 // inversion operator //

 child1-inversion←Inversion(child1m, Inversionsize)
 child2-inversion ← Inversion(child2m, Inversionsize)
 // translated the chromosome into expression tree//

 child1-et ← TranslateBreadthFirst(child1-inversion)
 child2-et ← TranslateBreadthFirst(child2-inversion)
 // execute the corresponding expression tree//
 child1 -cost ←execute(child1-et)

 child2 -cost ←execute(child2-et)
 //update the population //

 population ← populationUpdateRWS (child1-cost, child2-cost)

end

return the best solution

TABLE 1 THE TERMINAL AND FUNCTION SETS OF GEP-HH

Terminal set

terminal description

delta The change in the solution quality
PF The quality of the previous solution

CF The quality of the current solution

CI Current iteration
TI Total number of iterations

Function set

function description

+ Add two inputs
- Subtract the second input from the first one

* Multiply two inputs

ex The result of the child node is raised to its
power (Euler’s number)

% Protected divide function, i.e., change the

division by zero into 0.001

When the stopping condition is satisfied, the performance

of the utilized acceptance criterion is assessed by

calculating its fitness function. The fitness function (FF),

which is problem independent, is used to assess the

performance of the current acceptance criterion.

In this work, we adapt the idea that was used to control

the population size in an evolutionary algorithm [29] to

evaluate the fitness of the current acceptance criterion. The

probability of each acceptance criterion is updated with

Accepted by IEEE TRANSACTIONS ON CYBERNETICS, 2014

respect to the quality of the best solution returned after the

stopping condition is satisfied.

Let Ac[] be the array of the fitness value of selecting the

acceptance criterion, fi and fb represents the quality of the

initial and returned solutions, NoAc represents the number

of acceptance criteria, or the population size of GEP,

respectively. Then, if the application of the i-th acceptance

criterion leads to an improvement in the solution quality,

the fitness of the i-th acceptance criterion is updated as

follows: Ac[i]=Ac[i]+∆ where ∆=(fi - fb)/ (fi + fb), j

{1,…,NoAc} and j≠i, Ac[j]=Ac[j]-(∆/(NoAc-1)). Otherwise

(if the solution cannot be improved), Ac[i]=Ac[i]-|(∆*α)|

where α=Current_Iteration/Total_Iteration, j

{1,…,NoAc} and j≠i, Ac[j]=Ac[j]+(|∆|*α/(NoAc-1)). We

decrease the fitness value of the other acceptance criteria

(individuals) in order to decrease their chances of being

selected. Initially, the fitness of each acceptance criterion is

calculated by executing their corresponding program.

C. Low Level Heuristics

The low level of the proposed hyper-heuristic framework

contains a pool of problem-specific heuristics. The aim of

the low level heuristics is to explore the neighborhoods of

the current solution by altering the current solution

(perturbation). Details of these heuristics are presented in

the problem description sections (Sections IV-B-1-a and

IV-B-2-a).

IV. EXPERIMENTAL SETUP

In this section, we discuss the parameter settings of GEP-

HH and briefly describe the combinatorial optimization

problems that we used to evaluate GEP-HH. Please note

that, to save space, some tables and figures are presented in

a supplementary file.

A. GEP-HH Parameter Settings

Finding the best parameter values is a tedious, and time

consuming task that often requires considerable expertise

and experience [30], [31]. In this work, the Relevance

Estimation and Value Calibration (REVAC) [30] is used.

REVAC is a tool for parameter optimization that takes all

parameters, and their possible values, and suggests the

appropriate value for each parameter [32]. Taking into

consideration the solution quality as well as the

computational time needed to achieve good quality

solutions, the running time for each instance is fixed to 20

seconds and the number of iterations performed by REVAC

is fixed at 100 iterations (see [30] for more details). Table 2

lists the parameter settings of GEP-HH that have been used

across all problem domains.

TABLE 2 GEP-HH PARAMETERS

Parameters
Possible

Range

Suggested Value by

REVAC

1 Population size 5-50 10

2 Number of generations 10-200 100

3 Crossover probability 0.1-0.9 0.7

4 Mutation probability 0.1-0.9 0.1

5 Inversion rate 0.1-0.9 0.1

6 Head length h 2-40 5

7 Selection mechanism - Roulette Wheel

Sampling with Elitism

8 Crossover type Two/multi/
one point

One point

9 No. of consecutive non

improvement iterations
0-100 10

10 γ in the PH test 1-50 14

11 The scaling factor C 1-100 7

12 The sliding window size W 2-100 20

13 The tolerance parameter δ 0.1-1.00 0.15

B. Problem Descriptions

Two well-known combinatorial optimization problems have

been chosen as the test domains in this work (exam

timetabling and dynamic vehicle routing). In addition, the

generality of the proposed hyper-heuristic is also verified

using the CHeSC competition dataset [14], which provides

access to six problem domains (see the supplementary file).

1) Application I: Exam Timetabling

The exam timetabling problem involves allocating a set of

exams into a limited number of timeslots and rooms [33].

The allocation process is subject to a set of hard and soft

constraints. The aim of the optimization process is to

minimize soft constraint violations as much as possible and

satisfy the hard constraints [33]. The quality of a timetable

is measured by how many soft constraints, possibly

weighted, are violated. In this work, we test GEP-HH on

the recently introduced exam timetabling instances from the

2007 International Timetabling Competition (ITC 2007)

[12]. Tables 3 and 4 (see the supplementary file) present the

hard and soft constraints, and Table 5 (see the

supplementary file) shows the main characteristics of these

instances. The proximity cost [12], which represents the

soft constraint violations, is used to calculate the penalty

cost (objective function value) of the generated solution.

a) Exam Timetabling: Initial solution and the low

level heuristics

As mentioned in Section III-A, GEP-HH starts with a

complete initial solution and iteratively improves it. The

initial solution is generated by hybridizing three graph

coloring heuristics proposed in [34]. The set of low level

heuristics, which are commonly used in the scientific

literature [33], are as follows:

Nbe1: Select one exam at random and move it to any feasible

timeslot/room.

Nbe2: Select two exams at random and swap their timeslots (if

feasible).
Nbe3: Select two timeslots at random and swap all their exams.

Nbe4: Select three exams at random and exchange their timeslots

randomly (if feasible).
Nbe5: Move the exam leading to the highest soft constraint violation to

any feasible timeslot.

Nbe6: Select two exams at random and move them to any feasible
timeslots.

Nbe7: Select one exam at random, then randomly select another

timeslot and apply the Kempe chain neighborhood operator.
Nbe8: Select one exam at random and move it to a randomly selected

room (if feasible).

Nbe9: Select two exams at random and swap their rooms (if feasible).

Accepted by IEEE TRANSACTIONS ON CYBERNETICS, 2014

2) Application II: Dynamic Vehicle Routing Problems

The dynamic vehicle routing problem (DVRP) [13] is a

variant of the classical, and static, VRP [35], where the aim

in both versions is to minimize the cost of routes to serve a

set of customers. In contrast to the static VRP, where the

problem information is known in advance, in DVRP not all

information is known at the start, and changes might occur

at any time. DVRP can be modeled as a VRP with the

difference that new orders from customers might appear

during the optimization process.

The goal is to find a feasible set of routes that do not

violate any hard constraints and minimizes the travel

distance as far as possible. The hard constraints that must

be satisfied are [35]: i) each vehicle starts, and terminates

its route at the depot, ii) the total demand of each route does

not exceed the vehicle capacity, iii) each customer is visited

exactly once by exactly one vehicle, and iv) the duration of

each route does not exceed a global upper bound. The

quality of the generated solution is represented as the total

traveling distance (see [35] for more details).

In DVRP, the problem information can be changed over

time [13], [36], i.e. new orders are revealed over time. Such

changes need to be included in the current schedule as

follows: when new orders appear, they should be integrated

into a current route or a new route is created for them. As a

result, some customers in the current solution may be

rescheduled in order to accommodate these changes. The 21

DVRP instances that were originally introduced in [13] and

further refined in [36] are used as the benchmark to assess

whether the proposed hyper-heuristic framework can

perform well on dynamic problems (see Table 6 in the

supplementary file).

In this work, we have used the same model presented in

[37], [36], [38]. In this model, the DVRP is decomposed

into a (partial) sequence of static VRPs and then they are

successively solved by the proposed GEP-HH. The model

parameters are presented in Table 7 (see the supplementary

file), which is the same as in [37].

a) DVRP: Initial solution and the low level heuristics

The initial feasible solution is constructed by generating a

random permutation of orders which missed the service

from the previous working day [38]. The low level

heuristics that we employ in GEP-HH for the DVRP

instances are the most common ones used to solve the

capacitated vehicle routing problems in the literature [35].

They are described as follows:

Nbv1: Select one customer randomly and move it to any feasible

route.

Nbv2: Select two customers at random and swap their routes.
Nbv3: Select one route at random and reverse a part of a tour

between two selected customers.

Nbv4: Select and exchange routes of three customers at random.
Nbv5: Select one route at random and perform the 2-opt procedure.

Nbv6: Perform the 2-opt procedure on all routes.
Nbv7: Select two distinct routes at random and swap a portion of the

first route with the first portion of the second route.

Nbv8: Select two distinct routes at random and from each route select
one customer. Swap the adjacent customer of the selected one

for both routes.

Nbv9: Select two distinct routes at random and swap the first portion

with the last portion.
Nbv10 Select one customer at random and move it to another position

in the same route.

V. COMPUTATIONAL RESULTS AND DISCUSSIONS

This section is divided into two subsections. The first

section (V-A) is devoted to compare the results of GEP-HH

with the state of the art of hyper-heuristic and bespoke

methods. The second section (V-B) discusses the

performance of the GEP-HH across all the problem

domains. In order to make the comparison as fair as

possible, for all experimental tests, the execution time is

fixed, with the stopping condition, determined as follows:

 For exam timetabling [12] and HyFlex problem domains

[14] the execution time is determined by using the

benchmark software provided by the organizers to ensure

fair comparisons between researchers using different

platforms. We have used this software to determine the

allowed execution time using our computer resources (i.e.

10 minutes).

 For dynamic vehicle routing, the execution time is fixed

as in [37] and [38] (i.e. 750 seconds).

To gain sufficient experimental data, for all experimental

tests, we executed GEP-HH and the tested hyper-heuristic

variants (implemented herein) for 51 independent runs with

different random seeds for exam timetabling and DVRP

problems and, 31 runs for the HyFlex domains (adhering to

the competition rules [14]).

A. Comparing GEP-HH Results with the State of the Art

This section presents the performance comparison between

GEP-HH and the state of the art of hyper-heuristics as well

as other bespoke methods that have been tested on ITC

2007 and DVRP. The results of HyFlex problem domains

(adhering to all CHeSC rules) are presented in the

supplementary file.

1) The comparison of GEP-HH results with the state of the

art methods for ITC 2007

In this section, we assess the computational results of GEP-

HH against the best known results in the scientific

literature. The considered methods are:

 The ITC 2007 winners :Witc1 [40], Witc2 [41], Witc3 [42],

Witc4 [43] and Witc5 [44])

 The Post-ITC 2007 methods: hyper-heuristics (HHitc6

[45], HHitc7 [46] and HHitc8 [47]) and bespoke methods

(Bitc9 [48], Bitc10 [49] and Bitc11 [49]).

The best and the instances ranking of GEP-HH results are

presented and compared with the ITC 2007 winners and

Post-ITC 2007 methods in Table 8 (best results are shown

in bold). In addition, for each instance, the relative error in

percentage (∆(%)) from the best known value found in the

literature is also calculated, ∆(%)=((a-b)/b) * 100, where a

is the best result returned over 51 independent runs by

GEP-HH and b is the best known value found in the

Accepted by IEEE TRANSACTIONS ON CYBERNETICS, 2014

literature. It should be noted that the execution time (i.e. 10

minutes) of all the compared methods (GEP-HH, ITC 2007

winners and post ITC 2007 methods) are determined by the

benchmark software provided by the ITC 2007 organizers

[12].

As Table 8 shows, GEP-HH provides new best results for

4 out of 8 instances. From Table 8, we infer that, although

GEP-HH does not obtain the best results for all instances

(Datasets 1, 4, 6 and 8), overall, the quality of solutions

with regard to relative error is between 0.02 and 0.09. In

addition, GEP-HH obtained the second rank for these

instances (Datasets 1, 4, 6 and 8). If we compare GEP-HH

with the ITC 2007 winners, on 7 (except Dataset 1) out of 8

instances, GEP-HH produces better quality solutions

compared to the ITC 2007 winners. Compared to the hyper-

heuristic methods in Table 8, we can see that, across all

instances, GEP-HH outperforms other hyper-heuristic

methods (HHitc6, HHitc7 and HHitc8). In Table 9 (see the

supplementary file), we present the average results of GEP-

HH and the compared methods. Please note that only those

that reported the average results are considered in the

comparison. As shown in Table 9, the average results of

GEP-HH are better than other methods. Thus, we can

conclude that the relative error and instance ranking reveal

that GEP-HH generalizes well and obtains good results

(with regard to ITC 2007 instances).

To validate the performance of GEP-HH more

accurately, we have also performed a multiple comparison

statistical test [39] with regard to other methods (ITC 2007

winners and Post-ITC 2007 methods). To do so, we

performed Friedman and Iman-Davenport tests with a

critical level of 0.05 to detect whether there are statistical

differences between the results of these methods [39].

The p-value of Friedman (p-value=0.000) and Iman-

Davenport (p-value=0.000) are less than the critical level

0.05. This implies that there is a significant difference

between the compared methods (GEP-HH, ITC 2007

winners and Post-ITC 2007 methods). As a result, a post-

hoc statistical test (Holm and Hochberg statistical tests) is

used to detect the correct difference between the methods

(see [39] for more details). Table 10 (see the supplementary

file) summarizes the average ranking (the lower the better)

produced by the Friedman test for each method. GEP-HH is

ranked first with Bitc9, Witc1, HHitc8, Witc2, Witc3 and

Witc5 ranking the 2, 3, 4, 5, 6 and 7, respectively. The

adjusted p-values of Holm and Hochberg statistical tests for

the GEP-HH (the control method) and others in Table 11

(see the supplementary file) demonstrate that GEP-HH

outperforms Witc5, Witc3 and Witc2 (3 out of 6 methods)

with a critical level of 0.05 (adjusted p-value < 0.05) and

better than Witc5, Witc3, Witc2, HHitc8 and Witc1 (5 out of 6

methods) with a critical level of 0.10 (adjusted p-value <

0.10). However, the results in Table 11 indicate that, GEP-

HH does not outperform Bitc9 (adjusted p-value > 0.10).

To summarize, although the results of Holm and Hochberg

statistical tests (Table 11) suggest that GEP-HH is not

better than Bitc9, nevertheless, the results in Table 8 reveals

that GEP-HH outperformed Bitc9 on 7 out of 8 instances

and the average result in Table 9 is much better across all

instances. It worth noting that all of the compared methods

are tailor made to obtain the best results for one or few

instances only, whilst, one can easily see that GEP-HH

generalizes well across all instances.

TABLE 8 RESULTS OF GEP-HH ON THE ITC 2007 EXAM TIMETABLING DATASETS

COMPARED TO ITC 2007 WINNERS and Post-ITC 2007 methods
GEP-HH ITC 2007 Winners Hyper-heuristics Bespoke methods

Instances Best ∆ (%) Rank Witc1 Witc2 Witc3 Witc4 Witc5 HHitc6 HHitc7 HHitc8 Bitc9 Bitc10 Bitc11

Dataset 1 4371 0.02 2 4370 5905 8006 6670 12035 6235 8559 6234 4775 4370 4633

Dataset 2 380 * 1 400 1008 3470 623 3074 2974 830 395 385 385 405

Dataset 3 8965 * 1 10049 13862 18622 - 15917 15832 11576 13002 8996 9378 9064
Dataset 4 15381 0.08 2 18141 18674 22559 - 23582 35106 21901 17940 16204 15368 15663

Dataset 5 2909 * 1 2988 4139 4714 3847 6860 4873 3969 3900 2929 2988 3042

Dataset 6 25750 0.03 2 26950 27640 29155 27815 32250 31756 28340 27000 25740 26365 25880
Dataset 7 4037 * 1 4213 6683 10473 5420 17666 11562 8167 6214 4087 4138 4037

Dataset 8 7468 0.09 2 7861 10521 14317 - 16184 20994 12658 8552 7777 7516 7461

Note: Best results are shown in bold. ∆ (%) represents the relative error in percentage from the best result. “*” means GEP-HH result is better than other
methods. “-“ indicates no feasible solution has been found.

2) The comparison of GEP-HH results with the state of the

art methods for DVRP

In this section, we evaluate the performance of GEP-HH

against the best available results in the scientific literature

(Ant colony (ANT) [36], greedy randomize adaptive search

procedure (GRASP) [36], genetic algorithms (GA) [38],

tabu search (TS) [38] and genetic hyper-heuristic (GA-HH)

[37]) that have been tested on DVRP. To our knowledge,

only one hyper-heuristic method (GA-HH) has been tested

on DVRP. The computational time of the compared

methods is as follows: GEP-HH, GA, TS and GA-HH is 750

seconds, whilst ANT and GRASP is 1500 seconds. Table 12

gives the computational results of GEP-HH (best, the

relative error (∆(%)) and instance ranking) along with best

results obtained by other methods, while, Table 13 (see the

supplementary file) shows the average results obtained by

GEP-HH as well as the compared methods (best results are

shown in bold).

Considering the best results in Table 12, we can see that

GEP-HH achieved better quality results for 20 (except

tai75b) out of 21 instances compared to GA-HH. Observing

the best results of the bespoke methods (ANT, GRASP, GA

and TS) reported in Table 12, GEP-HH outperformed the

bespoke methods on 13 problem instances, while it is

inferior on 8 instances. Even though GEP-HH does not

outperform bespoke methods on all problem instances, the

average results of GEP-HH (Table 13, see the

supplementary file) are, however, much better than the

Accepted by IEEE TRANSACTIONS ON CYBERNETICS, 2014

bespoke methods across all instances, except instance

tai75d where the average results achieved by GA are

slightly better than GEP-HH. In addition, the relative error

from the best known results (Table 12) of GEP-HH for

instance c100b, c150, c50, f71, tai100c, tai100d, tai75b,

tai75c and tai75d which are 0.92, 0.29, 1.77, 0.49, 0.67,

1.69, 0.05, 3.34 and 2.36, respectively, are relatively small.

In addition to the above results, it is worth drawing some

statistical significant conclusions regarding the performance

of GEP-HH as well as the bespoke methods (ANT, GRASP,

GA, TS and GA-HH). Therefore, multiple comparison

statistical tests Friedman and Iman-Davenport with a

critical level of 0.05 are carried out, followed by a post-hoc

statistical (Holm and Hochberg statistical tests) in case that

the results of Friedman and Iman-Davenport are less than

0.05. Thus, since the p-value of both tests is less than the

critical level 0.05, we further analyze the result to detect the

correct difference among the considered methods.

Table 14 (see the supplementary file) shows the average

ranking of GEP-HH as well as ANT, GRASP, GA, TS and

GA-HH produced by Friedman test (the lower the better).

From this table one can observe that, GEP-HH achieved the

first rank out of the six compared methods followed by GA,

GA-HH, TS, ANT and GRASP, respectively.

Table 15 (see the supplementary file) gives the adjusted

p-values of Holm and Hochberg statistical tests for each

comparison between GEP-HH (the controlling method) and

ANT, GRASP, GA, TS and GA-HH. The results of the

adjusted p-values reveal the following: GEP-HH is

statistically better than all of the bespoke methods (ANT,

GRASP, GA and TS) as well as the hyper-heuristic method

(GA-HH) with a critical level of 0.05. That is, no

comparison of GEP-HH, with any method obtained an

adjusted p-value equal to or greater than 0.05.

The above result implies that GEP-HH outperforms the

GA-HH hyper-heuristic and is competitive, if not better (on

some instances), to some bespoke methods (ANT, GRASP,

GA and TS). Also, it is worth noting that the compared

methods are specifically designed to produce the best

results for one or, a few instances only. All of the above

observations are evidence that GEP-HH is able to produce

good quality results and generalize well over all instances,

instead of producing good quality results for just a few

instances.

TABLE 12 THE BEST RESULTS OF GEP-HH ON DVRP INSTANCES COMPARED TO THE LITERATURE
 GEP-HH ANT GRASP GA TS GA-HH

Instances Best ∆ (%) Rank Best Best Best Best Best

c100 957.157 * 1 973.26 1080.33 961.1 997.15 975.17

c100b 890.11 0.92 2 944.23 978.39 881.92 891.42 956.67

c120 1237.61 * 1 1416.45 1546.5 1303.59 1331.8 1245.94
c150 1322.13 0.29 2 1345.73 1468.36 1348.88 1318.22 1342.91

c199 1642.1 * 1 1771.04 1774.33 1654.51 1750.09 1689.52

c50 581.05 1.77 2 631.3 696.92 570.89 603.57 597.74

c75 956.17 * 1 1009.38 1066.59 981.57 981.51 979.25

f134 14563.4 * 1 15135.51 15433.84 15528.81 15717.9 14801.55

f71 281.62 0.49 2 311.18 359.16 301.79 280.23 288
tai100a 2180.24 * 1 2375.92 2427.07 2232.71 2208.85 2227.51

tai100b 2058.21 * 1 2283.97 2302.95 2147.7 2219.28 2183.35

tai100c 1525.31 0.67 2 1562.3 1599.19 1541.28 1515.1 1656.92
tai100d 1865.78 1.69 2 2008.13 1973.03 1834.6 1881.91 1834.4

tai150a 3290.12 * 1 3644.78 3787.53 3328.85 3488.02 3346.08

tai150b 2864.96 * 1 3166.88 3313.03 2933.4 3109.23 2874.83
tai150c 2510.38 * 1 2811.48 3110.1 2612.68 2666.28 2583.04

tai150d 2901.61 * 1 3058.87 3159.21 2950.61 2950.83 3084.52

tai75a 1764.45 * 1 1843.08 1911.48 1782.91 1778.52 1769.67
tai75b 1451.31 0.05 2 1535.43 1582.24 1464.56 1461.37 1450.44

tai75c 1453.28 3.34 3 1574.98 1596.17 1440.54 1406.27 1685.15
tai75d 1432.88 2.36 4 1472.35 1545.21 1399.83 1430.83 1432.87

Note: Bold fonts indicate the best results. ∆ (%): represents the relative error in percentage from the best result. “*” means

GEP-HH result is better than other methods.

B. Discussion

The numerical results presented throughout this work

demonstrate that, across different combinatorial

optimization problems with fundamentally different search

spaces (static and dynamic), GEP-HH achieved favorable

results compared to the best available methods in the

literature. The results establish that, on some instances,

GEP-HH has better performance than the best available

methods in the literature. Hence, a fundamental question

naturally arises: why GEP-HH obtains such good results?

We hypothesis that the capability of GEP-HH in dealing

with different problem domains and achieving such results

is due to the following two factors:

1- The ability of the proposed gene expression

programming algorithm to generate, for each instance,

different acceptance criterion during the optimization

process. Due to the fact that some instances of the

considered problem domains have a large search space, or

the search spaces are rugged and contain many local

optima because of the imposed constraints, it might be

that feasible regions are isolated by infeasible ones.

Therefore, by generating for each instance different

acceptance criterion during the instance solving process,

the hyper-heuristic is capable of escaping from the local

optima as well as effectively exploring the entire search

space. Generating algorithm components can reduce the

user intervention in finding the most effective

configuration and the facilitate algorithm configurations.

Accepted by IEEE TRANSACTIONS ON CYBERNETICS, 2014

The success of GEP-HH on all problem domains

validated our hypothesis in using GEP-HH to

automatically evolve the hyper-heuristic acceptance

criteria instead of using human designed ones such IO,

SA, GD and TS.

2- The integration of the Page-Hinkly statistical test as well

as the extreme value-based reward credit assignment

mechanism in the heuristic selection mechanism provided

good results. As shown, and analyzed, throughout the

results section, the use of the Page-Hinkly statistical test

and extreme value-based reward credit assignment

mechanism with the heuristic selection mechanism has a

positive impact and produced good results compared to

other heuristic selection mechanisms. Therefore, the good

results obtained on all the considered problem domains

validated our hypothesis that these two components help

the heuristic selection to quickly select the suitable low

level heuristics during the instance solving process.

VI. CONCLUSIONS

The work presented in this paper has proposed a new

improvement based hyper-heuristic framework, gene

expression programming based hyper-heuristic (GEP-HH),

for combinatorial optimization problems. GEP-HH has two

levels, a high level strategy and a low level heuristic. The

latter consists of a set of human designed low level

heuristics that are used to perturb the solution of a given

instance. The former has two components, the heuristic

selection mechanism and the acceptance criterion. The

dynamic multi-armed bandit-extreme value based rewards

is utilized at the higher level to perform the task of selecting

a low level heuristic. Gene expression programming is used

as an on-line method to generate the acceptance criterion in

order to decide if the generated solution is accepted or not.

This work has shown that it is possible to use a heuristic

selection mechanism that utilizes a statistical test in

determining the most suitable low level heuristic as well as

generating a different acceptance criterion for each problem

instance. The efficiency, consistency and the generality of

GEP-HH has been demonstrated across eight challenging

problems, a static problem (exam timetabling), a dynamic

problem (dynamic vehicle routing problems) and the

HyFlex problem domains (boolean satisfiability, one

dimensional bin packing, permutation flow shop, personnel

scheduling, traveling salesman and vehicle routing), which

have very different search spaces. The experimental results

show that GEP-HH achieves highly competitive results, if

not superior to other methods, and that it generalizes well

over all domains when compared to other well-known

acceptance criteria (IO, SA, GD and TS) as well as state of

the art of hyper-heuristics and bespoke methods. The main

contributions of this work are:

- The development of the GEP-HH framework that

utilizes an on-line heuristic selection mechanism which

integrates a statistical test, demonstrating that this

selection mechanism is capable of selecting the most

appropriate low level heuristics using information

gathered during the instance solving process.

- The development of a framework to generate an

acceptance criterion that can be integrated with any

hyper-heuristic or meta-heuristic method, using gene

expression programming. This framework generates, for

each instance, a different acceptance criterion during

instance solving and obtains consistent, competitive

results that generalize well across eight different

problem domains.

- The development of a hyper-heuristic framework that is

not customized to specific problems classes and can be

applied to different problems without much

development effort (i.e. the user only needs to replace

the set of low level heuristics).

In this work, we have proposed an automatic programing

generation method to generate the high level strategy

component. In future work, we would also like to

investigate generating the low level heuristics and, perhaps,

placing them in competition with one another. If this were

successful, we will have a complete framework that is able

to tackle any problem, with very little human intervention

REFERENCES

[1] A. E. Eiben, R. Hinterding, and Z. Michalewicz, "Parameter

control in evolutionary algorithms," IEEE Transactions on

Evolutionary Computation, , vol. 3, pp. 124-141, 1999.
[2] Y.-S. Ong, M.-H. Lim, N. Zhu, and K.-W. Wong,

"Classification of adaptive memetic algorithms: a comparative

study," IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, vol. 36, pp. 141-152, 2006.

[3] J. E. Smith, "Coevolving Memetic Algorithms: A Review and

Progress Report," IEEE Transactions on Systems, Man, and
Cybernetics, Part B:, vol. 37, pp. 6-17, 2007.

[4] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J.

R. Woodward, "A Classification of Hyper-heuristic
Approaches," in Handbook of Metaheuristics. vol. 146, M.

Gendreau and J. Potvin, Eds., 2nd ed: Springer, 2010, pp. 449-

468.
[5] E. Talbi, Metaheuristics: From Design to Implementation:

Wiley online Library, 2009.

[6] Y. S. Ong and A. J. Keane, "Meta-Lamarckian learning in
memetic algorithms," IEEE Transactions on Evolutionary

Computation, , vol. 8, pp. 99-110, 2004.

[7] E. K. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan, and R.
Qu, "Hyper-heuristics: A Survey of the State of the Art,"

Journal of the Operational Research Society, to appear, 2013.

[8] E. Ozcan, B. Bilgin, and E. E. Korkmaz, "A comprehensive
analysis of hyper-heuristics," Intell. Data Anal., vol. 12, pp. 3-

23, 2008.

[9] K. Chakhlevitch and P. Cowling, "Hyperheuristics: recent
developments," Adaptive and Multilevel Metaheuristics, pp. 3-

29, 2008.

[10] Á. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag,
"Analyzing bandit-based adaptive operator selection

mechanisms," Annals of Mathematics and Artificial

Intelligence, pp. 1-40, 2010.
[11] C. Ferreira, Gene Expression Programming: Mathematical

Modeling by an Artificial Intelligence (Studies in

Computational Intelligence): Springer-Verlag New York, Inc.,

2006.

[12] B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis,

A. J. Parkes, L. D. Gaspero, R. Qu, and E. K. Burke, "Setting

Accepted by IEEE TRANSACTIONS ON CYBERNETICS, 2014

the research agenda in automated timetabling: The second

international timetabling competition," INFORMS Journal on
Computing, vol. 22, pp. 120-130, 2010.

[13] P. Kilby, P. Prosser, and P. Shaw, "Dynamic VRPs: A study of

scenarios," Technical Report APES-06-1998, University of
Strathclyde, U.K.1998.

[14] G. Ochoa, M. Hyde, T. Curtois, J. Vazquez-Rodriguez, J.

Walker, M. Gendreau, G. Kendall, B. McCollum, A. Parkes, S.
Petrovic, and E. K. Burke, "HyFlex: A Benchmark Framework

for Cross-Domain Heuristic Search," in Evolutionary

Computation in Combinatorial Optimization, 2012, pp. 136-
147.

[15] G. Ochoa, R. Qu, and E. K. Burke, "Analyzing the landscape of

a graph based hyper-heuristic for timetabling problems," in
Proceedings of the 11th Annual conference on Genetic and

evolutionary computation GECCO '09, 2009, pp. 341-348.

[16] E. K. Burke, G. Kendall, and E. Soubeiga, "A Tabu-Search
Hyperheuristic for Timetabling and Rostering," Journal of

Heuristics, vol. 9, pp. 451-470, 2003.

[17] N. R. Sabar and M. Ayob, "Examination timetabling using

scatter search hyper-heuristic," in Data Mining and

Optimization, 2009. DMO '09. 2nd Conference on, 2009, pp.

127-131.
[18] P. Cowling, G. Kendall, and E. Soubeiga, "A Hyperheuristic

Approach to Scheduling a Sales Summit," in Practice and

Theory of Automated Timetabling III. vol. 2079, E. Burke and
W. Erben, Eds., ed: Springer Berlin Heidelberg, 2001, pp. 176-

190.
[19] M. Ayob and G. Kendall, "A monte carlo hyper-heuristic to

optimise component placement sequencing for multi head

placement machine," in Proceedings of the International
Conference on Intelligent Technologies, InTech, 2003, pp. 132-

141.

[20] G. Kendall and M. Mohamad, "Channel assignment
optimisation using a hyper-heuristic," in Cybernetics and

Intelligent Systems, 2004 IEEE Conference on, 2004, pp. 791-

796.
[21] R. Bai and G. Kendall, "An investigation of automated

planograms using a simulated annealing based hyper-heuristic,"

in Metaheuristics: Progress as Real Problem Solvers, ed:
Springer, 2005, pp. 87-108.

[22] K. A. Dowsland, E. Soubeiga, and E. Burke, "A simulated

annealing based hyperheuristic for determining shipper sizes
for storage and transportation," European Journal of

Operational Research, vol. 179, pp. 759-774, 2007.

[23] E. Ozcan, Y. Bykov, M. Birben, and E. K. Burke,
"Examination timetabling using late acceptance hyper-

heuristics," in Evolutionary Computation, 2009. CEC'09. IEEE

Congress on, 2009, pp. 997-1004.
[24] G. Kendall and M. Mohamad, "Channel assignment in cellular

communication using a great deluge hyper-heuristic," in

Networks, 2004.(ICON 2004). Proceedings. 12th IEEE
International Conference on, 2004, pp. 769-773.

[25] K. Chakhlevitch and P. Cowling, "Choosing the fittest subset of

low level heuristics in a hyperheuristic framework," in

Evolutionary Computation in Combinatorial Optimization, ed:

Springer, 2005, pp. 23-33.

[26] M. Bader-El-Den and R. Poli, "Generating SAT local-search
heuristics using a GP hyper-heuristic framework," in

Proceedings of the Evolution artificielle, 8th international

conference on Artificial evolution, Tours, France, 2008, pp. 37-
49.

[27] N. R. Sabar, M. Ayob, G. Kendall, and Q. Rong, "Grammatical

Evolution Hyper-Heuristic for Combinatorial Optimization
Problems," Evolutionary Computation, IEEE Transactions on,

vol. 17, pp. 840-861, 2013.

[28] E. K. Burke, M. Hyde, G. Kendall, and J. Woodward, "A
genetic programming hyper-heuristic approach for evolving 2-

D strip packing heuristics," IEEE Transactions on Evolutionary

Computation, vol. 14, pp. 942-958, 2010.
[29] J. Arabas, Z. Michalewicz, and J. Mulawka, "GAVaPS-a

genetic algorithm with varying population size," in Proceedings

of the 1st IEEE Conference on Evolutionary Computation,
1994, 1994, pp. 73-78 vol. 1.

[30] V. Nannen and A. Eiben, "Efficient relevance estimation and

value calibration of evolutionary algorithm parameters," in
IEEE Congress on Evolutionary Computation, 2007, pp. 103-

110.

[31] A. E. Eiben and S. K. Smit, "Parameter tuning for configuring
and analyzing evolutionary algorithms," Swarm and

Evolutionary Computation, vol. 1, pp. 19-31, 3// 2011.

[32] E. Montero, M.-C. Riff, L. Pérez-Caceres, and C. Coello
Coello, "Are State-of-the-Art Fine-Tuning Algorithms Able to

Detect a Dummy Parameter?," in Parallel Problem Solving

from Nature - PPSN XII. vol. 7491, C. C. Coello, et al., Eds.,
ed: Springer Berlin Heidelberg, 2012, pp. 306-315.

[33] R. Qu, E. K. Burke, B. McCollum, L. T. G. Merlot, and S. Y.

Lee, "A survey of search methodologies and automated system
development for examination timetabling," Journal of

Scheduling, vol. 12, pp. 55-89, 2009.

[34] M. Ayob, A. Malik, S. Abdullah, A. Hamdan, G. Kendall, and
R. Qu, "Solving a practical examination timetabling problem: a

case study," Computational Science and Its Applications–

ICCSA 2007, pp. 611-624, 2007.

[35] P. Toth and D. Vigo, The vehicle routing problem vol. 9:

Society for Industrial Mathematics, 2002.

[36] R. Montemanni, L. M. Gambardella, A. E. Rizzoli, and A. V.
Donati, "Ant colony system for a dynamic vehicle routing

problem," Journal of Combinatorial Optimization, vol. 10, pp.

327-343, 2005.
[37] P. Garrido and M. C. Riff, "DVRP: a hard dynamic

combinatorial optimisation problem tackled by an evolutionary
hyper-heuristic," Journal of Heuristics, vol. 16, pp. 795-834,

2010.

[38] F. T. Hanshar and B. M. Ombuki-Berman, "Dynamic vehicle
routing using genetic algorithms," Applied Intelligence, vol. 27,

pp. 89-99, 2007.

[39] S. García, A. Fernández, J. Luengo, and F. Herrera, "Advanced
nonparametric tests for multiple comparisons in the design of

experiments in computational intelligence and data mining:

Experimental analysis of power," Information Sciences, vol.
180, pp. 2044-2064, 2010.

[40] T. Müller, "ITC2007 solver description: a hybrid approach,"

Annals of Operations Research, vol. 172, pp. 429-446, 2009.
[41] C. Gogos, P. Alefragis, and E. Housos, "A multi-staged

algorithmic process for the solution of the examination

timetabling problem," Practice and Theory of Automated
Timetabling (PATAT 2008), Montreal, pp. 19-22, 2008.

[42] M. Atsuta, K. Nonobe, and T. Ibaraki, "ITC2007 Track 2, an

approach using general csp solver," Practice and Theory of
Automated Timetabling (PATAT 2008), pp. 19–22, 2008.

[43] G. De Smet, "Itc2007-examination track," Practice and Theory

of Automated Timetabling (PATAT 2008), pp. 19-22, 2008.
[44] A. Pillay, "Developmental Approach to the Examination

timetabling Problem," Practice and Theory of Automated

Timetabling (PATAT 2008), pp. 19–22, 2008.
[45] E. K. Burke, R. Qu, and A. Soghier, "Adaptive selection of

heuristics for improving constructed exam timetables," in

Practice and Theory of Automated Timetabling (PATAT 2010),

2010, pp. 136-151.

[46] N. Pillay, "Evolving Hyper-Heuristics for a Highly Constrained

Examination Timetabling Problem," in Practice and Theory of
Automated Timetabling (PATAT 2010), 2010, pp. 336-346.

[47] N. Sabar, M. Ayob, R. Qu, and G. Kendall, "A graph coloring

constructive hyper-heuristic for examination timetabling
problems," Applied Intelligence, vol. 37, pp. 1-11, 2012.

[48] C. Gogos, P. Alefragis, and E. Housos, "An improved multi-

staged algorithmic process for the solution of the examination
timetabling problem," Annals of Operations Research, pp. 1-

19, 2010.

[49] B. McCollum, P. McMullan, A. Parkes, E. K. Burke, and S.
Abdullah, "An Extended Great Deluge Approach to the

Examination Timetabling Problem," in 4th Multidisciplinary

International Scheduling Conference: Theory and Applications,
MISTA 2009, 2009, pp. 424-434.

