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Abstract—Hyper-heuristics are search methodologies that 

aim to provide high quality solutions across a wide variety of 

problem domains, rather than developing tailor-made 

methodologies for each problem instance/domain. A 

traditional hyper-heuristic framework has two levels, namely, 

the high level strategy (heuristic selection mechanism and the 

acceptance criterion) and low level heuristics (a set of problem 

specific heuristics). Due to the different landscape structures 

of different problem instances, the high level strategy plays an 

important role in the design of a hyper-heuristic framework. 

In this work, we propose a new high level strategy for the 

hyper-heuristic framework. The proposed high level strategy 

utilizes the dynamic multi-armed bandit-extreme value based 

rewards as an online heuristic selection mechanism to select 

the appropriate heuristic to be applied at each iteration. In 

addition, we propose a gene expression programming 

framework to automatically generate the acceptance criterion 

for each problem instance, instead of using human designed 

criteria. Two well-known, and very different, combinatorial 

optimization problems, one static (exam timetabling) and one 

dynamic (dynamic vehicle routing) are used to demonstrate 

the generality of the proposed framework. Compared with 

various well-known acceptance criteria, state of the art of 

hyper-heuristics and other bespoke methods, empirical results 

demonstrate that the proposed framework is able to generalize 

well across both domains. We obtain competitive, if not better 

results, when compared to the best known results obtained 

from other methods that have been presented in the scientific 

literature. We also compare our approach against the recently 

released hyper-heuristic competition (CHeSC) test suite. We 

again demonstrate the generality of our approach when we 

compare against other methods that have utilized the same six 

benchmarks datasets from this test suite. 

 

Index Terms—Gene Expression Programming, Hyper-

heuristic, Timetabling, Vehicle Routing, Dynamic 

Optimization. 
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I. INTRODUCTION 

Meta-heuristic research communities have acknowledged 

the fact that meta-heuristic configurations (operators and 

parameter settings) play a crucial role on the algorithm 

performance [1], [2], [3]. Indeed, it has been shown that 

different meta-heuristic configurations work well for 

particular problem instances or only at particular stages of 

the solving process [4],[5]. Within this context, automated 

heuristic design methods have emerged as a new research 

trend [4]. The ultimate goal of these methods is to automate 

the algorithm design process as far as possible, to enable 

them to work effectively across a diverse set of problem 

domains [1],[6]. Hyper-heuristics [4] represent one of these 

methodologies. They are a search methodology that is able 

to provide solutions to a wide variety of problem domains, 

rather than being tailored for each problem or even each 

problem instance encountered. Hyper-heuristics operate on 

the heuristic search spaces, rather than operating directly on 

the solution space, which is usually the case with meta-

heuristic algorithms [7]. The key motivation behind hyper-

heuristics is to raise the level of generality, by drawing on 

the strengths, and recognizing the weaknesses, of different 

heuristics and providing a framework to exploit this. The 

most common hyper-heuristic framework has two levels; a 

high level strategy and a set of low level heuristics. The 

high level strategy manages which low level heuristic to 

call (heuristic selection mechanism) and then decides 

whether to accept the returned solution (the acceptance 

criterion). The low level heuristics contains a set of problem 

specific heuristics which are different for each problem 

domain. 

The success of a hyper-heuristic framework is usually 

due to the appropriate design of the high level strategy and 

it is not surprising that much work in the development of 

hyper-heuristics is focused on the high level strategy [8]. 

The variety of landscape structures and the difficulty of the 

problem domains, or even problem instances, usually 

require an efficient heuristic selection mechanism and 

acceptance criteria to achieve good performance [4]. Both 

components are crucial and many works have shown that 

different combinations and configurations usually yield 

different performance [7], [8], [9].  

Therefore, in this work we address these challenges by 

proposing a new high level strategy for the hyper-heuristic 

framework with the following two components (see Fig. 1): 
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i) Heuristic selection mechanism: the proposed 

framework utilizes the dynamic multi-armed bandit-

extreme value based rewards [10] as an on-line heuristic 

selection mechanism. The attractive feature of a 

dynamic multi-armed bandit is the integration of the 

Page-Hinkly statistical test to determine the most 

appropriate heuristic for the next iteration by detecting 

the changes in average rewards for the current best 

heuristics. In addition, the extreme value-based rewards 

credit assignment mechanism records the historical 

information of each heuristic to be used during the 

heuristic selection process.  
 

ii) Acceptance criterion: instead of using an acceptance 

criterion manually designed by human experts (which 

usually requires ongoing tuning), we propose an 

automatic framework to automatically generate, during 

the solving process, different acceptance criteria for 

different instances or problem domains as well as to 

consider the current problem state by using gene 

expression programming (GEP) [11]. We choose GEP 

to automatically generate the acceptance criteria due to 

its ability to always generate solutions that are 

syntactically correct and to avoid the problem of code 

bloat.  
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Fig. 1. The proposed gene expression programming based hyper-heuristic 

(GEP-HH) framework. 

In the scientific literature, automatic program generation 

methods, such as genetic programming (GP), have been 

successfully utilized as a hyper-heuristics to generate 

heuristics for optimization problems such as 2D packing 

and MAX-SAT problems [7]. However, despite the success 

of GP based hyper-heuristics, the same hyper-heuristic 

cannot be used to generate heuristics for other domains 

such as exam timetabling or vehicle routing problems. This 

is because existing GP based hyper-heuristics generate 

heuristics for only one domain. Hence, the function and 

terminal sets that have been defined for one domain cannot 

be used on other domains. In other words, to solve a new 

problem domain we have to define a fundamentally 

different set of functions and terminals that are suitable to 

the problem at hand. Based on this current level of 

generality, in this work, we propose an automatic program 

generation framework to automatically generate the high 

level strategy competent of the hyper-heuristic framework. 

The novelty of the proposed framework is that it being used 

at the higher level of abstraction and can tackle many 

optimization problems using the same set of functions and 

terminals. This feature distinguishes our framework from 

existing GP based hyper-heuristics. In practice, evolving or 

optimizing algorithm components will not only alleviate 

user intervention in finding the most effective 

configuration, but can also facilitate algorithm 

configurations. In addition, besides the fact that manual 

configurations may only represent a small fraction of the 

available search space, usually it requires a considerable 

amount of expertise and experience. Hence, exploring the 

search space using a suitable search methodology (i.e. GEP 

in this work) might yield a better performance compared to 

a manual configured search methodology. Our objectives 

are:  

 

- To propose an on-line hyper-heuristic framework that 

can adapt itself to the current problem state using a 

heuristic selection mechanism which integrates a 

statistical test to select the most appropriate low level 

heuristics. 

 

- To propose an on-line framework to automatically 

generate, for each instance, an acceptance criterion that 

uses the current problem state, and that is able to cope 

with changes that might occur during the search process. 

This will be achieved using a gene expression 

programming algorithm. 

 

- To test the generality and consistency of the proposed 

hyper-heuristic framework on two different problem 

domains (both static and dynamic) and compare its 

performance against well-known acceptance criteria, 

state of the art of hyper-heuristics and the best known 

bespoke methods in the scientific literature.  

 

Two well-known combinatorial optimization problems, but 

with very different search space characteristics, are used as 

our benchmarks. The problems are: the exam timetabling 

problem (ITC 2007 instances [12]) and the dynamic vehicle 

routing problem (Kilby instances [13]). We also further test 

the generality of the approach by comparing against the 

recently introduced hyper-heuristic test suite of problems 

(hyper-heuristic competition (CHeSC 2011)) [14]. To the 

best of our knowledge, this is the first work in the hyper-

heuristic literature which has considered both dynamic and 

static problems.  

II. HYPER-HEURISTICS AND RELATED WORKS  

Burke et al. [4] defined a hyper-heuristic as “an automated 

methodology for selecting or generating heuristics to solve 

hard computational search problems”. Hyper-heuristics 

have been widely used, with much success, to solve various 

classes of problems. A traditional hyper-heuristic 

framework has two levels, a high and a low level.  

The high level strategies, which are problem independent 

and have no knowledge of the domain, control the selection 

or generation of heuristics to be called (without knowing 
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what specific function it performs) at each decision point in 

the search process. In contrast to meta-heuristics, hyper-

heuristics search the space of heuristics instead of directly 

searching the solution space. The low level heuristics 

represent a set of problem dependent heuristics which 

operate directly on the solution space. 

 Generally, the high level abstraction of the hyper-

heuristic framework means that it can be applied to multiple 

problem domains with little (or no) extra development 

effort. Recently, Burke et al. [4] classified hyper-heuristic 

frameworks based on the nature of the heuristic search 

spaces and the source of feedback during learning. The 

source of feedback can either be on-line, if the hyper-

heuristic framework uses the feedback obtained during the 

problem solving procedure, or off-line, if  the hyper-

heuristic framework uses information gathered during a 

training phase in order to be used when solving unseen 

instances. The nature of the heuristic search space is also 

classified into two subclasses known as heuristics to choose 

heuristics and heuristics to generate heuristics. The 

classification specifies whether heuristics (either chosen or 

generated) are constructive or pertubative. Please note that 

our proposed hyper-heuristic framework can be classified 

as an on-line perturbative heuristic to choose heuristics 

framework. 

A. Heuristic to choose heuristics 

Most of the hyper-heuristic frameworks published so far 

have been heuristics to choose heuristics [4]. For a given 

problem instance, the role of the hyper-heuristic framework 

is to intelligently choose a low level heuristic from the low 

level set, so as to apply it at that decision point. The idea is 

to combine the strengths of several heuristics into one 

framework. Meta-heuristics and machine learning 

methodologies have been used as heuristic selection 

mechanisms, for example tabu search with reinforcement 

learning [16] and scatter search [17]. Many different 

acceptance criteria have also been used, including all moves 

[18], only improvements [18], improving and equal [18], 

Monte-Carlo [19], record to record travel [20], simulated 

annealing [21], [22], late acceptance [23], great deluge [24] 

and tabu search [25]. More details are available in [7]. 

Recently, the cross-domain heuristic search (CHeSC) 

competition was introduced, which provides a common 

software interface for investigating different (high level) 

hyper-heuristics and provides access to six problem 

domains where the low level heuristics are provided as part 

of the supplied framework [14]. The algorithm designer 

only needs to provide the higher level component (heuristic 

selection and acceptance criterion). Further details about the 

competition, including results, are available in [14]. 

B. Heuristic to generate heuristics  

Heuristics that generate heuristics focus on designing new 

heuristics by combining existing heuristic components and 

then applying them to the current solution. Generative 

genetic programming hyper-heuristics have been utilized to 

solve many combinatorial optimization problems including 

SAT [26], timetabling [27], vehicle routing [27] and bin 

packing [28]. A recent review on hyper-heuristic is 

available in [7] which provides more details about this area.  

Although promising results have been achieved, GP has 

been utilized as an off-line heuristic/rule builder using a 

specific set of functions and terminals. Besides being 

computationally expensive due to the need of training and 

testing, they do not guarantee to deliver the same 

performance across different domains or even different 

instances of the same domain. This is because the generated 

heuristics/rules are suited to only the instance that has been 

used in the training phase. Furthermore, they are tailored to 

solve specific problems and were only applied to a single 

(static) domain, which raises the question: to what extent 

they will generalize to other domains? 

The success of the above work, which has some 

resemblance to the proposed gene expression programming, 

is the main motivation for proposing an on-line gene 

expression programming framework to generate the 

acceptance criteria for the hyper-heuristic framework. The 

benefit of this framework is the ability to generate different 

acceptance criteria for different instances based on the 

problem state and thus enabling it to cope with changes that 

might occur during the solving process.   

III. THE PROPOSED FRAMEWORK  

We start by describing the proposed perturbative based 

hyper-heuristic framework, followed by the components of 

the high level strategy, i.e. the heuristic selection and 

acceptance criterion mechanisms. Finally, we describe the 

low level heuristics that will be used in our framework. 

A. A Perturbative based Hyper-heuristic Framework 

Our on-line perturbative based hyper-heuristic framework 

comprises of a high level strategy and a set of low level 

heuristics. The high level strategy consists of two 

components, heuristic selection and acceptance criterion. 

The goal of the high level strategy is to select a low level 

heuristic to be applied at a given time. The low level 

contains a set of perturbative heuristics that are applied to 

the problem instance, when called by the high level 

strategy. Therefore, based on the utilized low level 

heuristics, the proposed hyper-heuristic framework is an 

improvement based method as the hyper-heuristic starts 

with an initial solution and iteratively improves it using a 

set of perturbative low level heuristics. 

The proposed hyper-heuristic iteratively explores the 

neighborhood of the incumbent solution, seeking for 

improvement. Given a set of low level heuristics (LLHs), a 

complete initial solution, S, (generated either randomly or 

via a constructive heuristic) and the objective function, F, 

the aim of the hyper-heuristic framework is to select an 

appropriate low level heuristic and apply it to the current 

solution (S'=LLH(S)). Next, the objective function is called 

to evaluate the quality of the resultant solution (F(S')), 

followed by the acceptance criterion which decides whether 

to accept or reject S'. If S' is accepted, it will replace S. 

Otherwise, S' will be rejected. The hyper-heuristic will 

update the algorithmic parameters and another iteration will 

start. This process is repeated for a certain number of 
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iterations. In what follows we discuss the components of 

the proposed high level strategy.  

B. High Level Strategy 

In this work, we propose a new high level strategy, as 

shown in Fig. 2. It has two components: heuristic selection 

mechanism (dynamic multi-armed bandit-extreme value-

based rewards) and an acceptance criterion (gene 

expression programming). 

 

1) The heuristic selection mechanism 

 

The heuristic selection mechanism successively invokes 

two tasks, credit assignment (extreme value-based rewards 

[10]) and heuristic selector (dynamic multi-armed bandit 

mechanism [10]). The credit assignment mechanism 

maintains a value (reward) for each low level heuristic and 

these values are used by the heuristic selector mechanism to 

decide which heuristic to be executed at each decision 

point. 
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Fig. 2. The high level strategy within the proposed GEP-HH framework 

a) The credit assignment mechanism: Extreme value-

based rewards 

The credit assignment mechanism maintains a value 

(reward) for each low level heuristic (LLH), indicating how 

well it has performed recently. The LLH will be rewarded 

during the search process if it finds a better solution or the 

solution is accepted by the employed acceptance criterion. 

In this work, the extreme value-based reward [10] is 

employed as the credit assignment mechanism. Low level 

heuristics, which are called infrequently, but lead to large 

improvements in solution quality, are preferred over those 

that only lead to small improvements, over a longer time 

frame. Low level heuristics which bring frequent, small 

improvements will be rewarded less and consequently have 

less chance of being selected [10].  

The extreme value-based reward mechanism works as 

follows. When a low level heuristic is selected, its 

improvement compared to the current solution is computed. 

The improvement (PILLH) of the applied low level heuristic 

to a current solution is calculated as follows: Assume f1 is 

the quality of the current solution and f2 is the quality of the 

resultant solution after applying the low level heuristic 

(LLH), PILLH = (f1-f2 /f1) * 100. PILLH is then saved for that 

low level heuristic, at the corresponding iteration for a 

sliding time window of size W, using First in, First Out 

(FIFO), i.e. improvements of the selected low level 

heuristic in the last W iterations are saved. The credit of any 

low level heuristic (r) is then set as the maximum value in 

its corresponding sliding window as follows:  

 

(1) 

 

where W is the size of the sliding window. The size of the 

sliding window, W, controls the size of the gathered 

information. Based on our preliminary testing (see Section 

IV.A), it was found that when W=20 the hyper-heuristic 

performs well. We have thus fixed W=20 in all our 

experiments. 

b) Heuristic selector: Dynamic multi-armed bandit 

mechanism 

Based on their previous performance (assigned credit value 

by the credit assignment mechanism) and the number of 

times that the low level heuristics have been applied, the 

heuristic selection mechanism selects low level heuristics to 

be applied to the current solution. In this work, we use the 

dynamic multi-armed bandit (DMAB) mechanism as an on-

line heuristic selector mechanism [10]. The attractive 

feature of DMAB is the integration of the Page-Hinkly 

(PH) statistical test to detect the changes in average rewards 

of the current best low level heuristic. DMAB is based on 

an upper confidence bound strategy which deterministically 

selects a low level heuristic with maximum accumulative 

rewards. A low level heuristic is selected based on its 

empirical rewards and the number of times it has been 

applied up to current time step.  

Formally, let k denote the number of available low level 

heuristics, each one having some unknown probability. 

DMAB selects the best low level heuristic that maximizes 

the accumulative rewards over time. Each low level 

heuristic is associated with its empirical rewards qi,t (2) (the 

average rewards ri obtained by the i-th low level heuristic 

up to time t) and a confidence level ni,t (the number of times 

that the i-th low level heuristic has been applied up to time 

t).  
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where ri,t is the credit value (based on the credit assignment 

mechanism) of the i-th low level heuristic up to time t. At 

each decision point, the low level heuristic with the best 

confidence interval (maximum accumulative rewards) is 

selected (using (3)) to be applied to the current solution. 
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where c is a scaling factor which controls the trade-off 

between the low level heuristic that has the best reward (the 

left term of equation 3) and the heuristic that has been 

infrequently applied (the right term of equation 3).  

,1...max {( )}ii W LLHr PI
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DMAB uses the Page-Hinkly (PH) statistical test to detect 

the changes in average rewards of the current best low level 

heuristics. If the current best low level heuristic is no longer 

the best one, DMAB is restarted from scratch. The 

underlying idea is to quickly and dynamically identify new 

best low level heuristics, avoiding irrelevant information. 

Let αt represent the average reward of a low level heuristic 

over the last t time steps, r represents the rewards of the i-th 

low level heuristic at time j, the PH test [10] uses equation 

(4) to detect the changes in average rewards. 

 

                                                                                           (4) 

 

where et is the difference between the current reward (rt) 

and the average reward (αt) of the i-th low level heuristic 

plus a tolerance parameter δ which is fixed to 0.15 (see 

Section A. GEP-HH Parameter Settings). mt is a variable 

that accumulates the differences et up to step t. PH 

recognizes that the change in the reward is detected when 

the difference (
1...max {| |} | |j t i tm m  ) is greater than a pre-

defined threshold γ (
1...max {| |} | |j t j tm m    ). 

 

2) The acceptance criterion mechanism  

The role of the acceptance criterion is to decide whether to 

accept or reject the solution that is generated once the 

selected low level heuristic has been applied [8]. In this 

work, we propose a gene expression programming 

framework to evolve the acceptance criterion for our hyper-

heuristic. It is implemented as an on-line acceptance 

criterion generation method that takes the quality of the 

previous solution, current solution and current state of the 

search process as input and returns the decision as to 

whether to accept or reject the solution. This removes the 

need for manual customization and/or tuning. It also 

contributes to the literature on the automatic generation of 

heuristic components that are able to avoid being trapped in 

confined areas of the search space and are able to work well 

across different problem domains/instances. In the 

following subsections, we present the basic gene expression 

programming algorithm followed by the proposed 

framework to generate the acceptance criteria of the 

proposed high level strategy of the hyper-heuristic. 

a) Basic gene expression programming algorithm 

Gene expression programming (GEP) [11] is a form of 

genetic programming (GP) that uses the advantage of both 

genetic algorithms (GA) and genetic programming (GP) in 

evolving a population of computer programs. The attractive 

features of GEP, compared to GP, are its ability to always 

generate syntactically correct programs and avoid the 

problem of code bloat (a recognized problem in traditional 

GP) [11]. GEP uses a linear representation of a fixed size of 

strings called genomes (or chromosomes) which are 

translated into a parse tree of various sizes in a breadth-first 

search form. The parse tree is then executed to generate a 

program that will be used to solve the given problem. 

Instead of applying operators directly to the trees, as in 

genetic programming, GEP applies genetic operators 

(crossover, mutation, inversion and transposition) directly 

to the linear encoding.  

The genomes in GEP represent a set of symbol strings 

called genes. Each one consists of two parts; head which 

contains both terminal and function symbols and tail which 

only contains terminal symbols [11]. Usually, the head 

length h is set by the user, whilst, the tail length tt is 

calculated by the formula tt = h*(n-1)+1, where n represents 

the maximum number of arguments of the functions.  

Consider a chromosome comprising of a set of symbols 

of function F = {*, /, +, -} and terminals T = {a, b}. In this 

example, n=2 because the maximum arity of the function is 

two arguments. If we set the head length h=10, then tt=11 

and the chromosome length will be h+tt=10+11=21. 

Assume the solution (chromosome) is randomly generated, 

one possible example is as follows [11]: GEP_gene=+*ab-

ab+aab+ababbbababb and its corresponding expression tree 

is: GEP_expression= a+b*((a+b)-a).  

There are five components in GEP, namely the function 

set (F), terminal set (T), fitness function, GEP parameters 

and stopping condition [11]. To evaluate the fitness of 

individuals, chromosomes are firstly translated into 

expression trees following the breadth-first form as follows 

[11]:  

 

- Scan the chromosome string one by one from left to 

right. 

- The first element represents the node of the 

corresponding tree and other strings are written in a left 

to right manner on each lower level. 

- If the scanned element is a function (F) with n (n>=1) 

arguments, then the next n elements are attached below 

it as its n children.  If the scanned element is a terminal 

(T), then it will form a leaf of the corresponding tree. 

This process is repeated until all leaves in the tree are from 

the terminal set (T) only. Next, the corresponding programs 

are executed on the user-defined problem, and their fitness 

values are calculated. Algorithm 1 presents the pseudocode 

of GEP. As in standard GA, GEP starts with a population of 

solutions (randomly generated). Each individual 

(chromosome) in the population employs the head-tail 

encoding method which ensures the validity of the 

generated solution. All chromosomes are then translated 

into expression trees, and executed to obtain their fitness 

values. Based on their fitness values, some individuals are 

selected by the selection mechanism (e.g. roulette wheel 

selection) to form the new generation by using the 

following genetic operators [11]: 

- Crossover: exchanges elements between two randomly 

selected genes from the chosen parents. Both one-point 

and two-point crossover operators can be used. In this 

work, a one-point crossover operator is employed. In 

one-point crossover, first randomly select a point in both 

parents and then swap all data beyond the selected 

points between the parents [11].  

- Mutation: occurs at any position in the generated 

chromosome as long as it respects the gene rules such 

that the elements in the head part can be changed into 

both terminal and function, whilst, the elements in the 

1 1

1
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tail part can be changed into terminals only. In this 

work, we use a point mutation operator. This mutation 

operator scans chromosome genes one by one and, 

based on the mutation probability, change the value of 

current gene in such a way that if the current gene is  in 

the head part it can be changed into both terminal and 

function, whilst, if it is in the tail part it can be changed 

into terminals only. 

- Inversion: reverses the sequence of elements within the 

head or tail. Based on the inversion probability rate, 

randomly select a point in either head or the tail of a 

given chromosome and reverses the sequence beyond 

the selected point.  

The newly generated chromosomes are then evaluated to 

calculate their fitness values, and added into the next 

generation. Following roulette wheel selection the fittest 

individuals are always copied into the next generation (i.e. 

elitism is employed). This process is executed until a 

stopping condition is satisfied.  

b) Gene expression programming algorithm for 

evolving acceptance criterion 

In this work, we propose a GEP framework to automatically 

generate the acceptance criterion which is specific to a 

given problem instance within the hyper-heuristic 

framework. A key decision in the design of the proposed 

GEP framework is the definition of the terminal set (T), 

function set (F) and the fitness function. 

In order to be able to use the proposed GEP framework 

across a variety of problems, we keep the definition of the 

terminal set (T), function set (F) and the fitness function as 

general, and simple, as possible. This ensures that the 

proposed framework can be used to solve different classes 

of problems rather than just those considered in this work, 

and can be easily integrated into other meta-heuristic 

algorithms. The function (F) and terminal (T) sets that have 

been used in the proposed GEP framework are presented in 

Table 1.  

The main role of GEP is to evolve a population of 

individuals, each encoding an acceptance criterion. To 

assess the performance of an acceptance criterion, the 

hyper-heuristic framework is run on the given problem 

instance with the evolved acceptance criterion. Specifically, 

the proposed hyper-heuristic invokes the following steps: it 

calls the heuristic selection mechanism to select a low level 

heuristic, which is applied to the current solution, and 

calculates the quality of the generated solution. If the 

generated solution is better than the current one, the current 

one is replaced (accepted). If not, the hyper-heuristic will 

call the acceptance criterion that is generated by the GEP 

framework and execute the corresponding program. Then, 

the generated solution is accepted if the exponential value 

of the utilized acceptance criterion returns a value less or 

equal to 0.5 (the exp function returns values between 0 and 

1). Otherwise, the solution will be rejected (if the 

exponential value of the utilized acceptance criterion is 

greater than 0.5). In the literature, a value of 0.5 was 

suggested [28] but for different domains. In our work, the 

evolved programs in our hyper-heuristic framework are 

utilized as an acceptance criterion rather than as a 

constructive heuristic as in [28]. The value 0.5 was also 

determined based on preliminary testing. The proposed 

hyper-heuristic framework will keep using the utilized 

acceptance criterion, which is generated by GEP 

framework, for a pre-defined number of iterations (it stops 

after 10 consecutive non improvement iterations, 

determined by preliminary experimentation, see IV.A). 

 
Algorithm 1: Pseudocode of GEP algorithm 

Set number of generations, populationsize, Headlength, Taillength, pcrossover, 

 pmuataion, Inversionsize 

population← initializepopulation(populationsize, Headlength, Taillength) 

foreach soli  population do 
            // translate the chromosome into expression tree// 
     soli-et  ←TranslateBreadthFirst(Soli-genes)  
          // execute the corresponding expression tree// 

     soli-cost ←execute (soli-et  )                  

end 

solbest ←SelectBestSolution(populationsize) 

while stopping condition not true  do 
                    // parent selection process // 

      parenti← SelectParents(populationsize) 

      parentj← SelectParents(populationsize) 
                         // crossover operator // 
      child1←Crossover(parenti, parentj,pcrossover) 

      child2←Crossover(parenti, parentj, pcrossover) 

                        // mutation operator // 

      child1m← Mutation(child1, pmuataion) 
      child2m←Mutation(child2, pmuataion) 

                     // inversion operator // 

      child1-inversion←Inversion(child1m, Inversionsize) 
      child2-inversion  ← Inversion(child2m, Inversionsize) 
                // translated the chromosome into expression tree// 

      child1-et ← TranslateBreadthFirst(child1-inversion) 
      child2-et  ← TranslateBreadthFirst(child2-inversion ) 
            // execute the corresponding expression tree// 
      child1 -cost ←execute(child1-et) 

      child2 -cost ←execute(child2-et  ) 
                           //update the population // 

      population ← populationUpdateRWS (child1-cost, child2-cost) 

end  

return the best solution 

 
TABLE 1 THE TERMINAL AND FUNCTION SETS OF GEP-HH 

Terminal set  

terminal description  

delta The change in the solution quality 
PF The quality of the previous solution 

CF The quality of the current solution 

CI Current iteration 
TI Total number of iterations 

Function set  

function  description  

+ Add two inputs 
- Subtract the second input from the first one 

* Multiply two inputs 

ex The result of the child node is raised to its 
power (Euler’s number) 

% Protected divide function, i.e., change the 

division by zero into 0.001 

 

When the stopping condition is satisfied, the performance 

of the utilized acceptance criterion is assessed by 

calculating its fitness function. The fitness function (FF), 

which is problem independent, is used to assess the 

performance of the current acceptance criterion.  

In this work, we adapt the idea that was used to control 

the population size in an evolutionary algorithm [29] to 

evaluate the fitness of the current acceptance criterion. The 

probability of each acceptance criterion is updated with 
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respect to the quality of the best solution returned after the 

stopping condition is satisfied.  

Let Ac[] be the array of the fitness value of selecting the 

acceptance criterion, fi and fb represents the quality of the 

initial and returned solutions, NoAc represents the number 

of acceptance criteria, or the population size of GEP, 

respectively. Then, if the application of the i-th acceptance 

criterion leads to an improvement in the solution quality, 

the fitness of the i-th acceptance criterion is updated as 

follows: Ac[i]=Ac[i]+∆  where ∆=(fi - fb)/ ( fi + fb),  j

{1,…,NoAc} and  j≠i,  Ac[j]=Ac[j]-(∆/(NoAc-1)). Otherwise 

(if the solution cannot be improved), Ac[i]=Ac[i]-|(∆*α)| 

where α=Current_Iteration/Total_Iteration,  j

{1,…,NoAc} and  j≠i, Ac[j]=Ac[j]+(|∆|*α/(NoAc-1)). We 

decrease the fitness value of the other acceptance criteria 

(individuals) in order to decrease their chances of being 

selected. Initially, the fitness of each acceptance criterion is 

calculated by executing their corresponding program. 

C. Low Level Heuristics 

The low level of the proposed hyper-heuristic framework 

contains a pool of problem-specific heuristics. The aim of 

the low level heuristics is to explore the neighborhoods of 

the current solution by altering the current solution 

(perturbation). Details of these heuristics are presented in 

the problem description sections (Sections IV-B-1-a and 

IV-B-2-a).  

IV. EXPERIMENTAL SETUP 

In this section, we discuss the parameter settings of GEP-

HH and briefly describe the combinatorial optimization 

problems that we used to evaluate GEP-HH. Please note 

that, to save space, some tables and figures are presented in 

a supplementary file. 

A. GEP-HH Parameter Settings 

Finding the best parameter values is a tedious, and time 

consuming task that often requires considerable expertise 

and experience [30], [31]. In this work, the Relevance 

Estimation and Value Calibration (REVAC) [30] is used. 

REVAC is a tool for parameter optimization that takes all 

parameters, and their possible values, and suggests the 

appropriate value for each parameter [32]. Taking into 

consideration the solution quality as well as the 

computational time needed to achieve good quality 

solutions, the running time for each instance is fixed to 20 

seconds and the number of iterations performed by REVAC 

is fixed at 100 iterations (see [30] for more details). Table 2 

lists the parameter settings of GEP-HH that have been used 

across all problem domains. 

 
TABLE 2 GEP-HH PARAMETERS 

# Parameters 
Possible 

Range 

Suggested Value by 

REVAC 

1 Population size 5-50 10 

2 Number of generations 10-200 100 

3 Crossover probability 0.1-0.9 0.7 

4 Mutation probability 0.1-0.9 0.1 

5 Inversion rate 0.1-0.9 0.1 

6 Head length h 2-40 5 

7 Selection mechanism - Roulette Wheel 

Sampling with Elitism 

8 Crossover type Two/multi/ 
one point 

One point 

9 No. of consecutive non 

improvement iterations  
0-100 10 

10 γ  in the PH test 1-50 14 

11 The scaling factor C 1-100 7 

12 The sliding window size W 2-100 20 

13 The tolerance parameter δ 0.1-1.00 0.15 

 

B. Problem Descriptions 

Two well-known combinatorial optimization problems have 

been chosen as the test domains in this work (exam 

timetabling and dynamic vehicle routing). In addition, the 

generality of the proposed hyper-heuristic is also verified 

using the CHeSC competition dataset [14], which provides 

access to six problem domains (see the supplementary file).  

 

1) Application I: Exam Timetabling 

The exam timetabling problem involves allocating a set of 

exams into a limited number of timeslots and rooms [33]. 

The allocation process is subject to a set of hard and soft 

constraints. The aim of the optimization process is to 

minimize soft constraint violations as much as possible and 

satisfy the hard constraints [33]. The quality of a timetable 

is measured by how many soft constraints, possibly 

weighted, are violated. In this work, we test GEP-HH on 

the recently introduced exam timetabling instances from the 

2007 International Timetabling Competition (ITC 2007) 

[12]. Tables 3 and 4 (see the supplementary file) present the 

hard and soft constraints, and Table 5 (see the 

supplementary file) shows the main characteristics of these 

instances. The proximity cost [12], which represents the 

soft constraint violations, is used to calculate the penalty 

cost (objective function value) of the generated solution.  

a) Exam Timetabling: Initial solution and the low 

level heuristics 

As mentioned in Section III-A, GEP-HH starts with a 

complete initial solution and iteratively improves it. The 

initial solution is generated by hybridizing three graph 

coloring heuristics proposed in [34]. The set of low level 

heuristics, which are commonly used in the scientific 

literature [33], are as follows:  

 
Nbe1: Select one exam at random and move it to any feasible 

timeslot/room. 

Nbe2: Select two exams at random and swap their timeslots (if 

feasible). 
Nbe3: Select two timeslots at random and swap all their exams. 

Nbe4: Select three exams at random and exchange their timeslots 

randomly (if feasible).  
Nbe5: Move the exam leading to the highest soft constraint violation to 

any feasible timeslot. 

Nbe6: Select two exams at random and move them to any feasible 
timeslots. 

Nbe7: Select one exam at random, then randomly select another 

timeslot and apply the Kempe chain neighborhood operator.  
Nbe8: Select one exam at random and move it to a randomly selected 

room (if feasible). 

Nbe9: Select two exams at random and swap their rooms (if feasible). 
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2) Application II: Dynamic Vehicle Routing Problems  

The dynamic vehicle routing problem (DVRP) [13] is a 

variant of the classical, and static, VRP [35], where the aim 

in both versions is to minimize the cost of routes to serve a 

set of customers. In contrast to the static VRP, where the 

problem information is known in advance, in DVRP not all 

information is known at the start, and changes might occur 

at any time. DVRP can be modeled as a VRP with the 

difference that new orders from customers might appear 

during the optimization process.  

The goal is to find a feasible set of routes that do not 

violate any hard constraints and minimizes the travel 

distance as far as possible. The hard constraints that must 

be satisfied are [35]: i) each vehicle starts, and terminates 

its route at the depot, ii) the total demand of each route does 

not exceed the vehicle capacity, iii) each customer is visited 

exactly once by exactly one vehicle, and iv) the duration of 

each route does not exceed a global upper bound. The 

quality of the generated solution is represented as the total 

traveling distance (see [35] for more details).  

In DVRP, the problem information can be changed over 

time [13], [36], i.e. new orders are revealed over time. Such 

changes need to be included in the current schedule as 

follows: when new orders appear, they should be integrated 

into a current route or a new route is created for them. As a 

result, some customers in the current solution may be 

rescheduled in order to accommodate these changes. The 21 

DVRP instances that were originally introduced in [13] and 

further refined in [36] are used as the benchmark to assess 

whether the proposed hyper-heuristic framework can 

perform well on dynamic problems (see Table 6 in the 

supplementary file).   

In this work, we have used the same model presented in 

[37], [36], [38]. In this model, the DVRP is decomposed 

into a (partial) sequence of static VRPs and then they are 

successively solved by the proposed GEP-HH. The model 

parameters are presented in Table 7 (see the supplementary 

file), which is the same as in [37]. 

a) DVRP: Initial solution and the low level heuristics 

The initial feasible solution is constructed by generating a 

random permutation of orders which missed the service 

from the previous working day [38]. The low level 

heuristics that we employ in GEP-HH for the DVRP 

instances are the most common ones used to solve the 

capacitated vehicle routing problems in the literature [35]. 

They are described as follows:  

 
Nbv1: Select one customer randomly and move it to any feasible 

route. 

Nbv2: Select two customers at random and swap their routes. 
Nbv3: Select one route at random and reverse a part of a tour 

between two selected customers. 

Nbv4: Select and exchange routes of three customers at random.  
Nbv5: Select one route at random and perform the 2-opt procedure. 

Nbv6: Perform the 2-opt procedure on all routes. 
Nbv7: Select two distinct routes at random and swap a portion of the 

first route with the first portion of the second route.  

Nbv8: Select two distinct routes at random and from each route select 
one customer. Swap the adjacent customer of the selected one 

for both routes. 

Nbv9: Select two distinct routes at random and swap the first portion 

with the last portion. 
Nbv10 Select one customer at random and move it to another position 

in the same route. 

V. COMPUTATIONAL RESULTS AND DISCUSSIONS 

This section is divided into two subsections. The first 

section (V-A) is devoted to compare the results of GEP-HH 

with the state of the art of hyper-heuristic and bespoke 

methods. The second section (V-B) discusses the 

performance of the GEP-HH across all the problem 

domains. In order to make the comparison as fair as 

possible, for all experimental tests, the execution time is 

fixed, with the stopping condition, determined as follows: 

 

 For exam timetabling [12] and HyFlex problem domains 

[14] the execution time is determined by using the 

benchmark software provided by the organizers to ensure 

fair comparisons between researchers using different 

platforms. We have used this software to determine the 

allowed execution time using our computer resources (i.e. 

10 minutes).  

 For dynamic vehicle routing, the execution time is fixed 

as in [37] and [38] (i.e. 750 seconds).  

To gain sufficient experimental data, for all experimental 

tests, we executed GEP-HH and the tested hyper-heuristic 

variants (implemented herein) for 51 independent runs with 

different random seeds for exam timetabling and DVRP 

problems and, 31 runs for the HyFlex domains (adhering to 

the competition rules [14]).  

 

A. Comparing GEP-HH Results with the State of the Art 

This section presents the performance comparison between 

GEP-HH and the state of the art of hyper-heuristics as well 

as other bespoke methods that have been tested on ITC 

2007 and DVRP. The results of HyFlex problem domains 

(adhering to all CHeSC rules) are presented in the 

supplementary file.  

 

1) The comparison of GEP-HH results with the state of the 

art methods for ITC 2007   

In this section, we assess the computational results of GEP-

HH against the best known results in the scientific 

literature. The considered methods are: 

 The ITC 2007 winners :Witc1 [40], Witc2 [41], Witc3 [42], 

Witc4 [43] and Witc5 [44]) 

 The Post-ITC 2007 methods: hyper-heuristics (HHitc6 

[45], HHitc7 [46] and HHitc8 [47]) and bespoke methods 

(Bitc9 [48], Bitc10 [49] and Bitc11 [49]). 

The best and the instances ranking of GEP-HH results are 

presented and compared with the ITC 2007 winners and 

Post-ITC 2007 methods in Table 8 (best results are shown 

in bold). In addition, for each instance, the relative error in 

percentage (∆(%)) from the best known value found in the 

literature is also calculated, ∆(%)=((a-b)/b) * 100, where a 

is the best result returned over 51 independent runs by 

GEP-HH and b is the best known value found in the 
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literature. It should be noted that the execution time (i.e. 10 

minutes) of all the compared methods (GEP-HH, ITC 2007 

winners and post ITC 2007 methods) are determined by the 

benchmark software provided by the ITC 2007 organizers 

[12]. 

As Table 8 shows, GEP-HH provides new best results for 

4 out of 8 instances. From Table 8, we infer that, although 

GEP-HH does not obtain the best results for all instances 

(Datasets 1, 4, 6 and 8), overall, the quality of solutions 

with regard to relative error is between 0.02 and 0.09. In 

addition, GEP-HH obtained the second rank for these 

instances (Datasets 1, 4, 6 and 8). If we compare GEP-HH 

with the ITC 2007 winners, on 7 (except Dataset 1) out of 8 

instances, GEP-HH produces better quality solutions 

compared to the ITC 2007 winners. Compared to the hyper-

heuristic methods in Table 8, we can see that, across all 

instances, GEP-HH outperforms other hyper-heuristic 

methods (HHitc6, HHitc7 and HHitc8). In Table 9 (see the 

supplementary file), we present the average results of GEP-

HH and the compared methods. Please note that only those 

that reported the average results are considered in the 

comparison. As shown in Table 9, the average results of 

GEP-HH are better than other methods. Thus, we can 

conclude that the relative error and instance ranking reveal 

that GEP-HH generalizes well and obtains good results 

(with regard to ITC 2007 instances).  

To validate the performance of GEP-HH more 

accurately, we have also performed a multiple comparison 

statistical test [39] with regard to other methods (ITC 2007 

winners and Post-ITC 2007 methods). To do so, we 

performed Friedman and Iman-Davenport  tests with a 

critical level of 0.05 to detect whether there are statistical 

differences between the results of these methods [39]. 

The p-value of Friedman (p-value=0.000) and Iman-

Davenport (p-value=0.000) are less than the critical level 

0.05. This implies that there is a significant difference 

between the compared methods (GEP-HH, ITC 2007 

winners and Post-ITC 2007 methods). As a result, a post-

hoc statistical test (Holm and Hochberg statistical tests) is 

used to detect the correct difference between the methods  

(see [39] for more details). Table 10 (see the supplementary 

file) summarizes the average ranking (the lower the better) 

produced by the Friedman test for each method. GEP-HH is 

ranked first with Bitc9, Witc1, HHitc8, Witc2, Witc3 and 

Witc5 ranking the 2, 3, 4, 5, 6 and 7, respectively. The 

adjusted p-values of Holm and Hochberg statistical tests for 

the GEP-HH (the control method) and others in Table 11 

(see the supplementary file) demonstrate that GEP-HH 

outperforms Witc5, Witc3 and Witc2 (3 out of 6 methods) 

with a critical level of 0.05 (adjusted p-value < 0.05) and 

better than Witc5, Witc3, Witc2, HHitc8 and Witc1 (5 out of 6 

methods) with a critical level of 0.10 (adjusted p-value < 

0.10). However, the results in Table 11 indicate that, GEP-

HH does not outperform Bitc9 (adjusted p-value > 0.10). 

To summarize, although the results of Holm and Hochberg 

statistical tests (Table 11) suggest that GEP-HH is not 

better than Bitc9, nevertheless, the results in Table 8 reveals 

that GEP-HH outperformed Bitc9 on 7 out of 8 instances 

and the average result in Table 9 is much better across all 

instances. It worth noting that all of the compared methods 

are tailor made to obtain the best results for one or few 

instances only, whilst, one can easily see that GEP-HH 

generalizes well across all instances. 
 

TABLE 8 RESULTS OF GEP-HH ON THE ITC 2007 EXAM TIMETABLING DATASETS  

COMPARED TO ITC 2007 WINNERS and Post-ITC 2007 methods 
GEP-HH ITC 2007 Winners Hyper-heuristics  Bespoke methods 

Instances Best ∆ (%) Rank Witc1 Witc2 Witc3 Witc4 Witc5 HHitc6 HHitc7 HHitc8 Bitc9 Bitc10 Bitc11 

Dataset 1 4371 0.02 2 4370 5905 8006 6670 12035 6235 8559 6234 4775 4370 4633 

Dataset 2 380 * 1 400 1008 3470 623 3074 2974 830 395 385 385 405 

Dataset 3 8965 * 1 10049 13862 18622 - 15917 15832 11576 13002 8996 9378 9064 
Dataset 4 15381 0.08 2 18141 18674 22559 - 23582 35106 21901 17940 16204 15368 15663 

Dataset 5 2909 * 1 2988 4139 4714 3847 6860 4873 3969 3900 2929 2988 3042 

Dataset 6 25750 0.03 2 26950 27640 29155 27815 32250 31756 28340 27000 25740 26365 25880 
Dataset 7 4037 * 1 4213 6683 10473 5420 17666 11562 8167 6214 4087 4138 4037 

Dataset 8 7468 0.09 2 7861 10521 14317 - 16184 20994 12658 8552 7777 7516 7461 

Note: Best results are shown in bold. ∆ (%) represents the relative error in percentage from the best result. “*” means GEP-HH result is better than other 
methods. “-“ indicates no feasible solution has been found. 

2) The comparison of GEP-HH results with the state of the 

art methods for DVRP 

In this section, we evaluate the performance of GEP-HH 

against the best available results in the scientific literature 

(Ant colony (ANT) [36], greedy randomize adaptive search 

procedure (GRASP) [36], genetic algorithms (GA) [38], 

tabu search (TS) [38] and genetic hyper-heuristic (GA-HH) 

[37]) that have been tested on DVRP.  To our knowledge, 

only one hyper-heuristic method (GA-HH) has been tested 

on DVRP. The computational time of the compared 

methods is as follows: GEP-HH, GA, TS and GA-HH is 750 

seconds, whilst ANT and GRASP is 1500 seconds. Table 12 

gives the computational results of GEP-HH (best, the 

relative error (∆(%)) and instance ranking) along with best 

results obtained by other methods, while, Table 13 (see the 

supplementary file) shows the average results obtained by 

GEP-HH as well as the compared methods (best results are 

shown in bold).  

Considering the best results in Table 12, we can see that 

GEP-HH achieved better quality results for 20 (except 

tai75b) out of 21 instances compared to GA-HH. Observing 

the best results of the bespoke methods (ANT, GRASP, GA 

and TS) reported in Table 12, GEP-HH outperformed the 

bespoke methods on 13 problem instances, while it is 

inferior on 8 instances. Even though GEP-HH does not 

outperform bespoke methods on all problem instances, the 

average results of GEP-HH (Table 13, see the 

supplementary file) are, however, much better than the 
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bespoke methods across all instances, except instance 

tai75d where the average results achieved by GA are 

slightly better than GEP-HH. In addition, the relative error 

from the best known results (Table 12) of GEP-HH for 

instance c100b, c150, c50, f71, tai100c, tai100d, tai75b, 

tai75c and tai75d which are 0.92, 0.29, 1.77, 0.49, 0.67, 

1.69, 0.05, 3.34 and 2.36, respectively, are relatively small. 

In addition to the above results, it is worth drawing some 

statistical significant conclusions regarding the performance 

of GEP-HH as well as the bespoke methods (ANT, GRASP, 

GA, TS and GA-HH). Therefore, multiple comparison 

statistical tests Friedman and Iman-Davenport with a 

critical level of 0.05 are carried out, followed by a post-hoc 

statistical (Holm and Hochberg statistical tests) in case that 

the results of Friedman and Iman-Davenport are less than 

0.05. Thus, since the p-value of both tests is less than the 

critical level 0.05, we further analyze the result to detect the 

correct difference among the considered methods.  

Table 14 (see the supplementary file) shows the average 

ranking of GEP-HH as well as ANT, GRASP, GA, TS and 

GA-HH produced by Friedman test (the lower the better). 

From this table one can observe that, GEP-HH achieved the 

first rank out of the six compared methods followed by GA, 

GA-HH, TS, ANT and GRASP, respectively.  

Table 15 (see the supplementary file) gives the adjusted 

p-values of Holm and Hochberg statistical tests for each 

comparison between GEP-HH (the controlling method) and 

ANT, GRASP, GA, TS and GA-HH. The results of the 

adjusted p-values reveal the following: GEP-HH is 

statistically better than all of the bespoke methods (ANT, 

GRASP, GA and TS) as well as the hyper-heuristic method 

(GA-HH) with a critical level of 0.05. That is, no 

comparison of GEP-HH, with any method obtained an 

adjusted p-value equal to or greater than 0.05.  

The above result implies that GEP-HH outperforms the 

GA-HH hyper-heuristic and is competitive, if not better (on 

some instances), to some bespoke methods (ANT, GRASP, 

GA and TS). Also, it is worth noting that the compared 

methods are specifically designed to produce the best 

results for one or, a few instances only. All of the above 

observations are evidence that GEP-HH is able to produce 

good quality results and generalize well over all instances, 

instead of producing good quality results for just a few 

instances. 
 

TABLE 12 THE BEST RESULTS OF GEP-HH ON DVRP INSTANCES COMPARED TO THE LITERATURE 
 GEP-HH ANT GRASP GA TS GA-HH 

Instances Best ∆ (%) Rank Best Best Best Best Best 

c100 957.157 * 1 973.26 1080.33 961.1 997.15 975.17 

c100b 890.11 0.92 2 944.23 978.39 881.92 891.42 956.67 

c120 1237.61 * 1 1416.45 1546.5 1303.59 1331.8 1245.94 
c150 1322.13 0.29 2 1345.73 1468.36 1348.88 1318.22 1342.91 

c199 1642.1 * 1 1771.04 1774.33 1654.51 1750.09 1689.52 

c50 581.05 1.77 2 631.3 696.92 570.89 603.57 597.74 

c75 956.17 * 1 1009.38 1066.59 981.57 981.51 979.25 

f134 14563.4 * 1 15135.51 15433.84 15528.81 15717.9 14801.55 

f71 281.62 0.49 2 311.18 359.16 301.79 280.23 288 
tai100a 2180.24 * 1 2375.92 2427.07 2232.71 2208.85 2227.51 

tai100b 2058.21 * 1 2283.97 2302.95 2147.7 2219.28 2183.35 

tai100c 1525.31 0.67 2 1562.3 1599.19 1541.28 1515.1 1656.92 
tai100d 1865.78 1.69 2 2008.13 1973.03 1834.6 1881.91 1834.4 

tai150a 3290.12 * 1 3644.78 3787.53 3328.85 3488.02 3346.08 

tai150b 2864.96 * 1 3166.88 3313.03 2933.4 3109.23 2874.83 
tai150c 2510.38 * 1 2811.48 3110.1 2612.68 2666.28 2583.04 

tai150d 2901.61 * 1 3058.87 3159.21 2950.61 2950.83 3084.52 

tai75a 1764.45 * 1 1843.08 1911.48 1782.91 1778.52 1769.67 
tai75b 1451.31 0.05 2 1535.43 1582.24 1464.56 1461.37 1450.44 

tai75c 1453.28 3.34 3 1574.98 1596.17 1440.54 1406.27 1685.15 
tai75d 1432.88 2.36 4 1472.35 1545.21 1399.83 1430.83 1432.87 

Note: Bold fonts indicate the best results. ∆ (%): represents the relative error in percentage from the best result. “*” means 

GEP-HH result is better than other methods.  

 

B. Discussion 

The numerical results presented throughout this work 

demonstrate that, across different combinatorial 

optimization problems with fundamentally different search 

spaces (static and dynamic), GEP-HH achieved favorable 

results compared to the best available methods in the 

literature. The results establish that, on some instances, 

GEP-HH has better performance than the best available 

methods in the literature. Hence, a fundamental question 

naturally arises: why GEP-HH obtains such good results? 

We hypothesis that the capability of GEP-HH in dealing 

with different problem domains and achieving such results 

is due to the following two factors:  

 

1- The ability of the proposed gene expression 

programming algorithm to generate, for each instance, 

different acceptance criterion during the optimization 

process. Due to the fact that some instances of the 

considered problem domains have a large search space, or 

the search spaces are rugged and contain many local 

optima because of the imposed constraints, it might be 

that feasible regions are isolated by infeasible ones. 

Therefore, by generating for each instance different 

acceptance criterion during the instance solving process, 

the hyper-heuristic is capable of escaping from the local 

optima as well as effectively exploring the entire search 

space. Generating algorithm components can reduce the 

user intervention in finding the most effective 

configuration and the facilitate algorithm configurations. 
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The success of GEP-HH on all problem domains 

validated our hypothesis in using GEP-HH to 

automatically evolve the hyper-heuristic acceptance 

criteria instead of using human designed ones such IO, 

SA, GD and TS. 

 

2- The integration of the Page-Hinkly statistical test as well 

as the extreme value-based reward credit assignment 

mechanism in the heuristic selection mechanism provided 

good results. As shown, and analyzed, throughout the 

results section, the use of the Page-Hinkly statistical test 

and extreme value-based reward credit assignment 

mechanism with the heuristic selection mechanism has a 

positive impact and produced good results compared to 

other heuristic selection mechanisms. Therefore, the good 

results obtained on all the considered problem domains 

validated our hypothesis that these two components help 

the heuristic selection to quickly select the suitable low 

level heuristics during the instance solving process. 

VI. CONCLUSIONS  

The work presented in this paper has proposed a new 

improvement based hyper-heuristic framework, gene 

expression programming based hyper-heuristic (GEP-HH), 

for combinatorial optimization problems. GEP-HH has two 

levels, a high level strategy and a low level heuristic. The 

latter consists of a set of human designed low level 

heuristics that are used to perturb the solution of a given 

instance. The former has two components, the heuristic 

selection mechanism and the acceptance criterion. The 

dynamic multi-armed bandit-extreme value based rewards 

is utilized at the higher level to perform the task of selecting 

a low level heuristic. Gene expression programming is used 

as an on-line method to generate the acceptance criterion in 

order to decide if the generated solution is accepted or not.  

This work has shown that it is possible to use a heuristic 

selection mechanism that utilizes a statistical test in 

determining the most suitable low level heuristic as well as 

generating a different acceptance criterion for each problem 

instance. The efficiency, consistency and the generality of 

GEP-HH has been demonstrated across eight challenging 

problems, a static problem (exam timetabling), a dynamic 

problem (dynamic vehicle routing problems) and the 

HyFlex problem domains (boolean satisfiability, one 

dimensional bin packing, permutation flow shop, personnel 

scheduling, traveling salesman and vehicle routing), which 

have very different search spaces. The experimental results 

show that GEP-HH achieves highly competitive results, if 

not superior to other methods, and that it generalizes well 

over all domains when compared to other well-known 

acceptance criteria (IO, SA, GD and TS) as well as state of 

the art of hyper-heuristics and bespoke methods. The main 

contributions of this work are: 

 

- The development of the GEP-HH framework that 

utilizes an on-line heuristic selection mechanism which 

integrates a statistical test, demonstrating that this 

selection mechanism is capable of selecting the most 

appropriate low level heuristics using information 

gathered during the instance solving process. 

    

- The development of a framework to generate an 

acceptance criterion that can be integrated with any 

hyper-heuristic or meta-heuristic method, using gene 

expression programming. This framework generates, for 

each instance, a different acceptance criterion during 

instance solving and obtains consistent, competitive 

results that generalize well across eight different 

problem domains.  

  

- The development of a hyper-heuristic framework that is 

not customized to specific problems classes and can be 

applied to different problems without much 

development effort (i.e. the user  only needs to replace 

the set of low level heuristics).  

In this work, we have proposed an automatic programing 

generation method to generate the high level strategy 

component. In future work, we would also like to 

investigate generating the low level heuristics and, perhaps, 

placing them in competition with one another. If this were 

successful, we will have a complete framework that is able 

to tackle any problem, with very little human intervention 
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