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Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
W e present an architecture that features dynamic 

multithreading execution of a single program. Threads 

are created automatically by hardware at procedure and 

loop boundaries and executed speculatively on a 

simultaneous multithreading pipeline. Data prediction is 

used to alleviate dependency constraints and enable 

lookahead execution of the threads. A two-level hierarchy 

significantly enlarges the instruction window. Eficient 

selective recovery from the second level instruction 

window takes place after a mispredicted input to a thread 

is corrected. The second level is slower to access but has 

the advantage of large storage capacity. W e show several 

advantages of this architecture: (1) it minimizes the 

impact of ICache misses and branch mispredictions by 

fetching and dispatching instructions out-of-order, (2) it 

uses a novel value prediction and recovery mechanism to 

reduce artt$cial data dependencies created by the use of a 

stack to manage run-time storage, and (3) it improves the 

execution throughput of a superscalar by 15% without 

increasing the execution resources or cache bandwidth, 

and by 30% with one additional ICache fetch port. The 

speedup was measured on the integer SPEC95 

benchmarks, without any compiler support, using a 

detailed peqormance simulator, 

1 Introduction 

Today’s out-of-order superscalars use techniques such 

as register renaming and dynamic scheduling to eliminate 

hazards created by the reuse of registers, and to hide long 

execution latencies resulting from DCache misses and 

floating point operations [l]. However, the basic method 

of sequential fetch and dispatch of instructions is still the 

underlying computational model. Consequently, the 

performance of superscalars is limited by instruction 

supply disruptions caused by branch mispredictions and 

ICache misses. On programs where these disruptions 

occur often, the execution throughput is well below a 

wide superscalar’s peak bandwidth. 

Ideally, we need an unintermpted instruction fetch 

supply to increase performance. Even then, there are other 

complexities that have to be overcome to increase 

execution throughput [2]. Register renaming requires 

dependency checking among instructions of the same 

block, and multiple read ports into the rename table. This 

logic increases in complexity as the width of the rename 

stage increases. A large pool of instructions is also 

necessary to find enough independent instructions to run 

the execution units at full utilization. The issue logic has 

to identify independent instructions quickly, as soon as 

their inputs become ready, and issue them to the 

execution units. 

We present an architecture that improves instruction 

supply and allows instruction windows of thousands of 

instructions. The architecture uses dynamic multiple 

threads (DMT) of control to fetch, rename, and dispatch 

instructions simultaneously from different locations of the 

same program into the instruction window. In other 

words, instructions are fetched out-of-order. Fetching 

using multiple threads has three advantages. First, due to 

the frequency of branches in many programs, it is easier 

to increase the instruction supply by fetching multiple 

small blocks simultaneously than by increasing the size of 

the fetch block. Second, when the supply from one thread 

is interrupted due to an ICache miss or a branch 

m&prediction, the other threads will continue filling the 

instruction window. Third, although duplication of the 

ICache fetch port and the rename unit is necessary to 

increase total fetch bandwidth, dependency checks of 

instructions within a block and the number of read ports 

into a rename table entry do not increase in complexity. 

In order to enlarge the instruction pool without 

creating too much complexity in the issue logic, we have 

designed a hierarchy of instruction windows. One small 

window is tightly coupled with the execution units. A 

conventional physical register file or reorder buffer can be 

used for this level. A much larger set of instruction 

buffers are located outside the execution pipeline. These 

buffers are slower to access, but can store many more 

instructions. The hardware breaks up a program 

automatically into loops and procedure threads that 
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execute simultaneously on the superscalar processor. Data 

speculation on the inputs to a thread is used to allow new 

threads to start execution immediately. Otherwise, a 

thread may quickly stall waiting for its inputs to be 

computed by other threads. Although the instruction fetch, 

dispatch, and execution is out of order, instructions are 

reordered after they complete execution and all 

mispredictions, including branch and data, are corrected. 

Results are then committed in order. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.1 Related work 

Many of the concepts in this paper have roots in recent 

research on multithreading and high performance 

processor architectures. The potential for achieving a 

significant increase in throughput on a superscalar by 

using simultaneous multithreading (SMT) was first 

demonstrated in [3]. SMT is a technique that allows 

multiple independent threads or programs to issue 

multiple instructions to a superscalar’s functional units. In 

SMT all thread contexts are active simultaneously and 

compete for all execution resources. Separate program 

counters, rename tables, and retirement mechanisms are 

provided for the running threads, but caches, instruction 

queues, the physical register file and the execution units 

are simultaneously shared by all threads. SMT has a cost 

advantage over multiple processors on a single chip due to 

its capability to dynamically assign execution resources 

every cycle to the threads that need them. The DMT 

processor we present in this paper uses a simultaneous 

multithreading pipeline to increase processor utilization, 

except that the threads are created dynamically from the 

same program. 

Although the DMT processor is organized around 

dynamic simultaneous multiple threads, the execution 

model draws a lot from the multiscalar architecture [4,5]. 

The multiscalar implements mechanisms for multiple 

flows of control to avoid instruction fetch stalls and 

exploit control independence. It breaks up a program into 

tasks that execute concurrently on identical processing 

elements connected as a ring. Since the tasks are not 

independent, aggressive memory dependency speculation 

is used. The multiscalar combines compiler technology 

with hardware to identify tasks and register dependencies. 

The multiscalar handles the complexity of the large 

instruction window resulting from lookahead execution 

by distributing the window and register file among the 

processing elements. The DMT architecture in contrast 

uses a hierarchy of instruction windows to manage 

instruction issue complexity. Since the DMT processor 

does not rely on the compiler for recognizing register 

dependencies, data r&predictions are more common than 

on the multiscalar. Hence, an efficient data recovery 

mechanism has to be implemented. 

The trace processor [6] uses traces to execute many 

instructions per cycle from a large window. Like the 

multiscalar, the instruction window is distributed among 

identical processing elements. The trace processor does 

not rely on the compiler to identify register dependencies 

between traces. It employs trace-level data speculation 

and selective recovery from data mispredictions. The trace 

processor fetches and dispatches traces in program order. 

In contrast, the DMT processor creates threads out-of- 

order, allowing lookahead far away in a program for 

parallelism. On the other hand, this increases the DMT 

processor data r&prediction penalty since recovery is 

scheduled from the larger but slower second level 

instruction window. 

A Speculative Multithreaded Processor (SM) has been 

presented in [7]. SM uses hardware to partition a program 

into threads that execute successive iterations of the same 

loop. The Speculative Multithreaded Processor achieves 

significant throughput on loop intensive programs such as 

floating-point applications. The DMT processor performs 

very well with procedure intensive applications. We view 

the two techniques as complementary. 

Work reported in [8] highlights the potential for 

increasing ILP by predicting data values. 

1.2 Paper overview 

Section 2 gives a general overview of the 

microarchitecture. Section 3 describes the 

microarchitecture in more detail including control flow 

prediction, the trace buffers where the threads speculative 

state is stored, data speculation and recovery, handling of 

branch n-&predictions, the register dataflow predictor, and 

memory disambiguation hardware. Simulation 

methodology and key results are presented in section 4. 

The paper ends with a final summary. 

2 DMT microarchitecture overview 

Figure la shows a block diagram of the DMT 

processor. Each thread has its own PC, set of rename 

tables, trace buffer, and load and store queues. The 

threads share the memory hierarchy, physical register file, 

functional units, and branch prediction tables. The dark 

shaded boxes correspond to the duplicated hardware. 

Depending on the simulated configuration, the hardware 

corresponding to the light shaded boxes can be either 

duplicated or shared. 

Program execution starts as a single thread. As 

instructions are decoded, hardware automatically splits 

the program, at loop and procedure boundaries, into 

pieces that are executed as different threads in the SMT 

pipeline. Control logic keeps a list of the thread order in 

the program, and the start PC of each thread. A thread 

stops fetching instructions when its PC reaches the start of 

the next thread in the order list. If an earlier thread never 
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Figure 1: a) DMT block diagram, b) Execution pipeline, and c) Recovery pipeline 

reaches the start PC of the next thread in the order list, the 

next thread is considered to be mispredicted and is 

squashed (more on this to follow in section 3.1.2). 

The threads communicate through registers and 

memory. The dataflow between two threads is one way, 

dictated by their position within the sequential program. 

To relax the limitations imposed by register and memory 

dependencies, thread-level dataflow and data value 

prediction is used. A new thread uses as input the register 

context from the thread that spawns it. Loads are issued 

speculatively to memory as if there are no conflicting 

stores from prior threads. Inputs to a thread are validated 

as prior thread instructions produce live input registers 

and prior stores are issued. 

Threads look ahead far into the program to find 

parallelism. Since the threads do not wait for their inputs, 

data mispredictions are common. The DMT processor 

performs selective recovery of instructions affected by a 

misprediction, and as soon as the correct input is 

available. Selective recovery requires all speculative 

execution results to be accessible. Since threads look 

ahead far into a program, traditional reorder buffers or 

physical register files [l] cannot be enlarged to hold all 

the speculative results. These structures have to be 

accessible at very high frequency and bandwidth to 

support multiple issue per cycle. The above suggest 

another level of speculative state hierarchy. We use large 

trace buffers outside the pipeline to hold all the 

speculative instructions and results. Data misprediction 

recovery involves sequentially fetching affected 

instructions from a trace buffer, and redispatching them 

into the execution pipeline. 

2.1 Execution pipeline 

Figure lb shows the execution pipeline. Instructions 

are written into a trace buffer as they are passed to the 

rename unit. There is one trace buffer per thread. After 

mapping logical into physical registers, the rename unit 

writes the instructions into the waiting buffers and sends 

the destination mappings to the trace buffer. Load and 

store queue entries are assigned at this stage. Instructions 

are issued for execution when their inputs become 

available. Results are written back into the physical 
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register file, as well as the trace buffers. After completing 

execution, instructions are cleared from the pipeline in 

order, freeing physical registers that are not needed. We 

refer to this pipe stage as early retirement. It is just a 

guess at this time that the results are correct and can be 

committed. The instructions and their speculative state, 

however, still reside in the trace buffers and load/store 

queues. Only after all data mispredictions are detected and 

corrected is speculative state finally committed in order 

from the trace buffers into a final retirement register file. 

The load queue entries are then freed, and stores are 

issued to memory. Retiring instructions from the trace 

buffer in order implies that threads are retired in order. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.2 Recovery pipeline 

Figure lc shows the data misprediction recovery 

pipeline. Before a thread finally retires, its speculative 

register inputs are compared to the final retirement values 

at the end of the prior thread. Memory mispredictions are 

detected by disambiguation logic in the load queues. 

When a misprediction is detected from either source, 

instruction fetch is switched from the ICache to the trace 

buffer. Blocks of instructions are fetched sequentially, 

starting from the point of n&prediction. Instructions are 

sorted, and those affected by the misprediction are 

grouped and sent to the rename unit. The rename unit 

receives a sequence of recovery instructions in program 

order, but not necessarily contiguous in the dynamic trace. 

Input registers local to the sequence are renamed using a 

thread recovery map table, and logical destinations are 

assigned new physical registers. If a register input is 

produced outside the sequence, the recovery mapping 

table is bypassed. The mapping or value, if available, is 

provided from the trace buffer instead. The recovery 

instructions execute when their operands become 

available, and write their results into the new physical 

registers and the trace buffers. 

3 Details of the DMT microarchitecture 

3.1 Control flow prediction mechanisms 

The processor breaks a sequential program into sub- 

units of dynamically contiguous instructions and runs 

them as different threads. A thread spawns a new thread 

(Figure 2a) when it encounters a procedure call (point A) 

or a backward branch (point B). Backward branches are 

speculatively treated as end of loops, since they most 

often are. The default start address of a new thread is the 

static address after the call or backward branch. The first 

thread continues to execute the procedure or loop, while 

the new thread executes subsequent blocks in the 

program. A history buffer is used to predict after-loop 

thread addresses that differ from defauh values. State is 

kept for each thread to prevent an inner loop thread from 

spawning a fall-through thread at the loop backward 

branch more than once. The spawned fall-through thread, 

however, is allowed to spawn other loop threads. 

Therefore, several iterations of an outer loop could be 

executing concurrently. 

3.1.1 Thread ordering. Due to the type of threads that 

are implemented, threads are not necessarily spawned in 

program order. Moreover, speculative threads are allowed 

to spawn other threads themselves. From the perspective 

of any particular thread, the most recent threads it spawns 

are the earliest threads to retire. An ordered tree is used to 

keep track of the program order of the threads. Threads 

spawned by the same thread are inserted into the tree in 

order, say left to right. Figure 2b shows a time sequence 

of the ordered tree as the program in the example is 

executed. At any point in time, a thread order list is 

determined by walking the tree from top to bottom, and 

right to left. 

3.1.2 Thread allocation. The thread allocation policy is 

pre-emptive. When all thread contexts are used, a new 

thread earlier in program order pre-empts the lowest 

thread in the order list. The lowest thread is then 

squashed, all its state is reset, and its context is assigned 

to the new thread. This policy improves load balancing by 

preventing threads too far away in the program from 

occupying processor resources for too long waiting for 

final retirement. The allocation policy also cleans up the 

tree from mispredicted threads, such as those left active 

after an unexpected loop exit. A false thread will block 

subsequent threads in the program order list from 

retirement. Therefore, false threads are at the bottom of 

the order list and are pre-empted by new good threads. 

3.1.3 Thread selection. A spawned thread may be 

squashed, may do little useful work, or even slow down 

execution. An optimal thread selection process can be 

quite complex. We have chosen simple selection criteria 

that have worked reasonably well: thread retirement, 

thread overlap, and thread size. An array of 2-bit 

saturating counters is accessed using the thread start 

address. The thread is selected if the count is above one. 

The counter is updated when the selected thread is retired 

or squashed. The counter is reset for a thread that is too 

small or does not sufficiently overlap other threads. 

When a thread is not selected because of its counter’s 

state, there is no execution of this thread that takes place 

and consequently no feedback information about the 

prediction accuracy. Without feedback, the thread’s 

counter is stuck in a not-taken state. To avoid this 

problem, the counter is also updated by logic that 

observes the retired instructions to estimate how the 

thread would execute if spawned. This logic works as 
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follows. Spawn points in the retirement stream are seen in 

reverse order to join points. Potential threads are pushed 

on a stack, and joined threads are popped off. The 

retirement PC is compared to the top of the stack to 

identify joined threads. The thread distance is defined to 

be the number of threads encountered between the 

spawning and the joining of a thread. The counter is 

incremented if a thread joins and the thread distance is 

less than the number of machine thread contexts. 

Otherwise, it is decremented. 

3.1.4 The branch predictor. The branch predictor uses a 

modified gshare scheme [9]. All threads access a single 

table of 2-bit counters. Each thread has its own branch 

history register. When a new thread is spawned, its branch 

history register is cleared. Therefore, early branches in a 

thread are predicted with limited or no correlation. The 

prediction algorithm becomes a true gshare after k 

branches in the thread, where k is the history register size. 

Each thread has its own return address stack (RAS). 

When a new thread is spawned, it receives a copy of the 

RAS of the spawning thread. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.2 The trace buffers and data speculation and 

recovery 

The trace buffers unit is a complete thread-level 

dataflow engine. Thread instructions are written into a 

large speculative buffer after renaming. Selective issue of 

instructions takes place, as corrected thread inputs arrive. 

Threads and their speculative state are retired in order. 

3.2.1 writing instructions and results into a trace 
buffer. As instructions are written into the trace buffer 

instruction queue, a rename unit maps source operands to 

T3 spawned at (B) 

(b) 

T3 

8 
T2 

Tl retired 

thread buffer entries and writes them with the instructions 

(Figure 3). We will be using the phrase ‘execution 

pipeline rename unit’ to avoid any confusion with the 

‘trace buffer rename unit’. The trace buffers also store 

tags and results of the executed instructions. There is an 

entry allocated per instruction in each of the trace buffer 

instruction queue, tag array, and data array. A tag entry 

consists of the physical destination register ID assigned to 

the instruction by the pipeline rename unit and a result 

valid bit. Results that are written back are tagged with a 

thread ID, a trace buffer entry ID, and the physical 

register destination. The tag and data arrays are indexed 

using the thread and trace buffer entry IDS. If the 

destination tag matches, the result valid bit is set in the tag 

entry and the result is written into the data array. 

In order to avoid slowing down the writeback buses 

and subsequently increasing the clock cycle, latches or 

buffers can be used to isolate the writeback buses from 

the signal routing to the trace buffers. Writing results into 

the trace buffers can be delayed without any impact to 

performance. Some of these results may be input operands 

to other instructions during data recovery, but they are 

typically needed many cycles after they are written. 

3.2.2 Thread input-output and final retirement 

register file. A new thread executes speculatively using 

the parent thread’s register context at the spawn point. 

The trace buffers unit contains an IO register file for each 

thread. When a thread is spawned, a fast copy within cell 

sets its input registers with the values from the parent 

thread output registers. As instructions from a thread are 

dispatched, the threads input operands are read from its 

input register file. There is enough time to read the thread 

inputs since operands are not needed until the execute 

stage in the pipeline. 
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Figure 3: The trace buffer block diagram 

The output registers receive register destination 

mappings from the pipeline rename unit. Results are 

written into the output registers by matching the 

writeback tags to these mappings, using a CAM port. If 

some values were not written and a new thread is 

spawned, the register mappings are copied to the new 

thread input registers. The input registers will then grab 

the results from the writeback bus as they are written. The 

output registers may receive incorrect results from a 

m&predicted path. Since they are used speculatively, we 

do not attempt to recover the correct output values after a 

branch misprediction. Nevertheless, we have observed 

very high value prediction accuracy. 

When instructions are finally retired, their results are 

copied from the trace buffer data array into the retirement 

registers. The input registers of all the other threads snoop 

the data bus on which the results are transferred to the 

retirement registers, using a CAM port. By the time a 

thread is completely retired, all the input registers of the 

subsequent thread have been checked. If one or more 

input registers have not matched, a recovery sequence is 

started. 

3.2.3 Recovery dispatch. A recovery finite state machine 

(FSM) receives requests from two sources: IO register file 

and load queues (Figure 3). A request identifies a thread, 

an input error location in the thread trace buffer, and the 

registers that contain the incorrect values. Register file 

requests may identify more than one register error 

simultaneously. A load buffer request identifies one 

register, the one that has been loaded by the mispredicted 

load. When a request is received, the FSM goes through a 

sequence of states in which blocks of instructions are read 

out of the queue starting at the misprediction point. A 

subset of each block that depends on one of the 

mispredicted registers is identified. ‘Dependent’ here is 

used in the transitive sense to mean either directly or 

indirectly. The dependent instructions are not necessarily 

consecutive within the block. Sorting logic selects the 

dependent instructions and groups them together, leaving 

out any instruction that is not affected by the 

misprediction. The selected instructions are grouped in 

program order and sent to the execution pipeline rename 

unit to be dispatched again for execution. 

The algorithm that identifies dependent instructions is 

very similar to register renaming. Instead of a mapping 

table, a dependency table is used. The table contains a 

flag for each logical register that indicates if the register 

depends on the mispredicted data. At the start of a 

recovery sequence, the flag corresponding to each 

mispredicted register is set. The dependency table is 

checked as instructions are read from the trace buffer. If 

one of the source operand flags is set, an instruction 

depends on the mispredicted data. The instruction is 

selected for recovery dispatch and its destination register 

flag is set in the table. Otherwise, the destination register 

flag is cleared. Only the table output for the most 

significant instruction within a block can be relied upon 

all the time. Subsequent instructions may depend on 

instructions ahead of them within the block. A bypass at 

the table output is needed to handle internal block 

dependencies. If the dependency table reaches a state 

during the recovery sequence in which all the dependency 

flags are clear, the recovery sequence is terminated. 

The dependency flags can be used to minimize the 

number of read ports in the tag array. Cleared dependency 

flags identify source operands from outside the recovery 

sequence. Tag array access for operands local to the 

sequence is not necessary, since their mappings are 

provided by the pipeline rename unit. If an operand from 
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outside the recovery sequence has been written back to 

the trace buffer, the data array is accessed after the tag 

array to retrieve the operand’s value. The data valid bits 

are stored with the tags to minimize the number of data 

array read ports. 

We have mentioned earlier that the pipeline rename 

unit uses two map tables, one for normal execution and 

one for data recovery. Depending on the execution mode, 

register mappings are updated, as registers are renamed, 

in one of the two tables. Live output registers modified 

during a data recovery sequence are exceptions. For these 

registers, both tables have to be updated so that, when 

normal execution resumes, the correct live outputs are 

used. The live output registers from a thread can be easily 

identified from the state in the trace buffer rename unit. 

The DMT selective recovery can be viewed as thread 

re-execution with reuse of instructions that are not 

affected by the mispredicted data. However, in contrast to 

the general instruction reuse mechanisms introduced in 

[lo], the trace buffer holds instructions from a contiguous 

execution trace. This simplifies significantly the reuse test 

and turns it into a simple lookup into a dependency table. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.3 Handling branch n&predictions and 
exceptions 

Branch mispredictions can occur during normal 

execution as well as recovery execution. Normal 

execution mispredictions can be handled in a usual 

manner, for example, by shadowing the register mappings 

in the pipeline execution unit when a branch is 

encountered and restoring the mappings from the 

checkpoint if it is r&predicted. Branches that are 

mispredicted during recovery may have already passed 

early retirement. The checkpoints would have been 

cleared by then. Such branches are handled at the branch 

final retirement, by clearing the trace buffer speculative 

state and restarting execution from the corrected path. 

Since false exceptions may be flagged at early 

retirement due to data mispredictions, an exception is 

handled precisely at the final retirement of a faulting 

instruction. At this point, all data mispredictions prior to 

the faulting instruction are resolved, and it is safe to reset 

the speculative processor state and invoke the exception 

handler. 

3.4 The register dataflow predictor 

Recovery from mispredicted register values may occur 

a significant time after the correct values are produced. 

We have therefore implemented a method to predict when 

a value may be mispredicted, and the instruction that 

generates the correct value. A history buffer contains 

entries for recently retired threads. Each entry contains an 

instruction address field for each input value that was 

mispredicted. The instruction addresses are those of the 

last register modifiers. These are the instructions that 

write the live output registers in the previous thread. A 

few address bits suffice to identify the last modifiers. 

Instruction addresses are compared to the last-update 

addresses from the predictor table early in the pipeline, 

e.g. at the decode stage. The matching instructions are 

marked to enable an input register update in the trace 

buffer and a recovery sequence at writeback time. The 

final retirement checks still takes place for these inputs. 

3.5 Memory disambiguation hardware 

To achieve any significant performance increase, loads 

from spawned threads have to be issued to memory 

speculatively. Since these loads may actually depend on 

stores from earlier threads, it is necessary to have a 

mechanism to disambiguate memory references and to 

signal recovery requests to the trace buffer, whenever 

speculative loads are incorrectly executed. 

Fully associative load and store queues hold memory 

access instructions for all threads. Entries are allocated the 

first time a load or a store is issued. Load entries are 

deallocated at final retirement. Store entries are 

deallocated after stores are finally retired and issued to 

memory. Stores are issued to memory in program order 

and compete for DCache port resources with speculative 

loads. There could be many cycles of delay from the time 

a store is finally retired until it is issued to memory and its 

entry is deallocated. Addresses of issued loads are 

compared to addresses in the store queues, and vice versa. 

When an issued store hits a load in a thread later in the 

order list, a recovery request is initiated. Store data values 

may be forwarded to issued loads from other threads. 

Since a load address could hit more than one store, and 

since a priority encoder would be needed to select the 

nearest store, we have assumed additional 2 cycles of 

latency for loads that hit stores in other thread queues. 

Notice that disambiguation logic in the load queue is not 

in the critical path, since the logic is not in the load and 

store normal execution pipeline. A detailed description of 

the memory disambiguation algorithm is contained in 

Vll. 
Data recovery may cause the same dynamic instance of 

a load or a store to be issued many times with different 

memory addresses. Only the last version of such load or 

store has the correct address. Set associative methods, 

such as address resolution buffers [12] or speculative 

caches [ 13,141, require special logic to handle incorrect 

versions of loads and stores that may have been stored in 

the wrong sets. The fully associative queues we have used 

do not require this additional logic complexity, since they 

are indexed with unique IDS that are assigned to loads and 

stores when they are initially fetched from the ICache. 

Addresses are simply stored again in the queues when 
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loads and stores are reissued from a recovery sequence, 

overwriting the previous and potentially incorrect 

addresses. As a consequence of this design, however, the 

thread size is limited by the cost and circuit complexity of 

the fully associative queues. We have observed that the 

store queue and load queue have to be at least one fourth 

of a trace buffer in size each for best performance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 Simulation methodology and results 

Experiments have been conducted on a detailed, cycle 

accurate, performance simulator that is derived from the 

SimpleScalar tools set [15]. The simulator takes binaries 

compiled with gee for the SimpleScalar instruction set 

architecture (ISA), which is derived from the MIPS ISA. 

Experiments are run using seven of the SPEC95 

benchmarks compiled with level three optimizations. 

Only non-numeric benchmarks are reported since these 

have proven difficult to parallelize. The reference inputs 

to the benchmarks are used with no modifications to the 

source code. All simulations are run until 300 million 

instructions finally retire. Performance measurements are 

reported based on total execution time and as a percentage 

speedup over a 4-wide superscalar with a 128-instruction 

window. In order not to favor DMT, which is less 

sensitive to branch mispredictions, gshare with very large 

BTB and prediction table is used for predicting branches. 

The base machine pipeline is the pipeline in Figure lb, 

but with one retire stage. The cache hierarchy has 16KB 

2-way set associative instruction and data caches and a 

256KB 4-way set associative L2 cache. Ll miss penalty is 

4 cycles, and an L2 miss costs additional 20 cycles. The 

execution units configuration and latencies are reported 

below with the simulation results. 

4.1 DMT execution throughput 

In this section, measurements that focus on the number 

of threads, the fetch bandwidth and the issue bandwidth 

are presented. The instruction window size is set to 128 

instructions. Window size here refers to the active 

instructions in the execution pipeline but does not include 

instructions that have early retired and are waiting in the 

trace buffer for final retirement. The trace buffer size is 

500 instructions per thread, and the trace buffer pipeline is 

4 cycles long. 

Figure 4 shows performance as a function of the 

number of threads. Both the DMT and base superscalar 

processors are simulated with unlimited execution units. 

Since all threads share the fetch resources, we have 

doubled the fetch bandwidth on the DMT processor by 

using two fetch ports and two rename units. This allows 

us to show the impact of the number of threads on 

performance without excessively limiting DMT 

performance by the fetch bandwidth. Half the bandwidth 

FiguIV 4: Performance vs. number of threads 

is assigned to the non-speculative thread (the thread in 

final retirement) and the other half is allocated equally to 

the speculative threads using a round robin policy. There 

is a significant increase in performance up to 6 threads, 

but little increase above. More than 35% average increase 

is achieved on an &thread processor. The fetch and 

rename block size per thread is kept the same as the base 

superscalar width of 4 instructions. We have seen slightly 

lower speedups with a fetch block size of 8 instructions. 

Figure 5: Rxfonnallce vs. number of fetch ports on a 
4threadprocessor 

The anomaly in 8T li and 2T m88ksim performance, 

apparent in Figure 4, is due to a sub-optimal thread 

selection process combined with resource sharing among 

threads and additional execution latencies incurred on 

n&predicted thread inputs. 

Figure 5 shows the performance of 4-thread DMT with 
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1, 2 and 4 fetch ports, and an equivalent number of 

rename units. Both the DMT and base superscalar 

processors are simulated with unlimited execution units. 

Even with equivalent total fetch bandwidth (1 fetch port), 

the DMT processor outperforms the base superscalar. We 

have seen 15% speedup with one fetch port and 6 threads. 

Figure 6 shows the performance of a 2-fetch ports 

DMT processor with realistic execution resources. The 

execution units include 4 ALUs, 2 of which are used for 

address calculations, and 1 multiply/divide unit. Two load 

and/or store instructions can be issued to the DCache 

every cycle. The latencies are 1 cycle for the ALU, 3 for 

multiply, 20 for divide, and 3 cycles for a load including 

address calculation. The graph in Figure 6 compares the 

simulated performance to an ideal DMT which is 

unlimited by the number of execution units and DCache 

bandwidth. Two sets of measurements are shown for 4 

and 6 thread processors. There is very little drop in 

speedup from the ideal machine. 

F&ure6: Pelfolmance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcompa&mofaDMTpnxmsor 

with limited execution uuil~ to au ideal DMT 

Figure 7 shows that a ‘200 instructions per thread’ 

configuration almost achieves maximum performance on 

a 6-thread processor. We have measured an average 

thread size between 50 and 130 instructions on the 

benchmarks that we have run. 

4.2 Lookahead on the DMT processor 

On a conventional superscalar, a mispredicted branch 

results in squashing instructions from the incorrect path 

and rolling back execution to the r&prediction point. The 

same is true within a thread on the DMT processor. 

However, a mispredicted branch in one thread does not 

cause subsequent threads to be squashed. DMT therefore 

allows execution overlap between instructions located 

before and instructions located after a mispredicted 

branch. Figure 8 shows, for a 6-thread processor, the 

percentage of total retired instructions that are 

successfully fetched and executed out-of-order relative to 

a m&predicted branch. Similarly, Figure 9 shows 

lookahead execution statistics beyond ICache misses. 

These percentages are zero on a conventional superscalar. 
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Figure 7: Performarm impact of the trace buffer size 

El Fetch 

Figure 8: Lookabeadexecution beyoudmispmdkted 
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4.3 Data prediction results 

Predicting that the input register values for a new 

thread are the register context at the spawn point 

eliminates false data dependencies created when registers 

are saved and restored to the stack during a call sequence. 

Considering the scope of the caller variables, it is easy to 

see why most of the input values to an after-procedure 

thread are predictable. Only variables modified by the 

procedure would have changed after the procedure is 

executed. Value prediction handles the unmodified 

values, while dataflow prediction ensures that modified 

values are promptly supplied to the spawned thread. 
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Fii 9: Lookahead zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexecution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbeyond ICache misses 

Figure 10 shows the performance of a 4-thread 

processor with value prediction only, and with value and 

dataflow prediction. Figure 11 shows the percentage of 

live thread input register values that are: (1) available at 

the spawn point, (2) written subsequent to the spawn time 

with the same values (e.g. stored then loaded from 

memory), and (3) correctly predicted by either the value 

or dataflow prediction method. The combined data 

prediction method gives hit rates of more than 90% for 

most benchmarks. 
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Figure 10: Datatlow prediction impact on performarm 

4.4 Trace buffer performance requirements and 

cost evaluation 

We present in this section a partial evaluation of the 

trace buffer cost and complexity. We focus on the 

instruction queue and the data array, since these are the 

largest arrays in the trace buffer in terms of storage 

capacity, especially if very far ahead speculation in the 

program is targeted. A complete evaluation of the DMT 

processor cost and complexity is left for future work. 

Figure 7 shows that a ‘200 instructions per thread’ 

Figure 11: Data prediclion statislics 

configuration gives good performance. This is a total 

capacity in the trace buffers of 1200 instructions and their 

results, on a 6-thread processor. Assuming 8 bytes of 

storage per result, 4 bytes per instruction, and 4 bytes of 

control state per instruction (source operand mappings 

from the trace buffer rename unit, store and load buffer 

IDS, etc...), the total capacity required in the trace buffer 

instruction queue and data array is approximately 19KB. 

We now show that the bandwidth and latency required 

can be supplied from instruction and data arrays of low 

complexity, allowing these arrays to be built with high 

density storage cells. 

The instruction queue is single ported. Blocks of 

instructions are written at fetch and read at recovery 

sequentially. Moreover, reads and writes do not happen at 

the same time. Figure 12 shows the performance for 

instruction read blocks of size 2, 4, and 6 instructions, as 

well as an ideal instruction queue that has enough read 

bandwidth to fill up the recovery dispatch pipe, which is 

4-instruction wide. These are sizes before the blocks are 

sorted to dispatch the instructions that are dependent on 

the mispredicted data. The read bandwidth required is not 

excessive. Moreover, there is good tolerance to recovery 

latency that allows enough time to read and sort 

instructions as shown in Figure 13. This latency tolerance 

is not surprising considering that on the average about 

30% of the instructions executed by speculative threads 

are redispatched from the trace buffer due to data 

misprediction, and that with a pipelined trace buffer 

dispatch, the latency is incurred only once at the 

beginning of the recovery sequence. 

Finally, the difference in performance when one read 

port data array configuration is compared to an ideal data 

array capable of supplying any number of operands every 

cycle is hardly noticeable. This is the case because most 

of the recovery instruction operands are local to the 

sequence and are communicated through the pipeline 
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register file. On the other hand, the required write 

bandwidth into the data array is very high. All issued 

instructions, except for branches and stores, write results 

into the data array. However, writing results in the data 

array is not in the critical path and can be delayed. 4-way 

interleaving of a single write port data array sustains the 

write bandwidth, and a 3-deep write queue per bank 

eliminates the majority of the bank write conflicts. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

F&we 12: Speedup vs. instrudon queue block size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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F@ne 13: Impact of trace buffer latency on performance 

5 Summary 

This paper presents a dynamic multithreading 

processor that achieves significant increase in non- 

numeric programs throughput with minimal increase in 

complexity in the critical execution pipeline. The dynamic 

multithreading architecture has several advantages over 

conventional superscalars: (1) lookahead execution 

beyond mispredicted branches and instruction cache 

misses (2) lookahead far into a program, (3) efficient 

value prediction that eliminates artificial dependencies 

due to procedure linkage using a stack, and (4) increased 

instruction supply efficiency due to multiple fetch 

streams. A novel DMT microarchitectnre has been 

implemented with two powerful features: an efficient 2- 

level instruction window hierarchy, and a renaming 

method that allows fast communication of registers 

between threads, and between execution and recovery 

sequences of instructions from the same thread. 
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