
A Dynamic Multithreading Processor

Haitham Akkary

Microcomputer Research Labs

Michael A. Driscoll

Department of Electrical and Computer Engineering

Intel Corporation Portland State University

haitham.akkary@intel.com driscoll@ee.pdx.edu

Abstract zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
W e present an architecture that features dynamic

multithreading execution of a single program. Threads

are created automatically by hardware at procedure and

loop boundaries and executed speculatively on a

simultaneous multithreading pipeline. Data prediction is

used to alleviate dependency constraints and enable

lookahead execution of the threads. A two-level hierarchy

significantly enlarges the instruction window. Eficient

selective recovery from the second level instruction

window takes place after a mispredicted input to a thread

is corrected. The second level is slower to access but has

the advantage of large storage capacity. W e show several

advantages of this architecture: (1) it minimizes the

impact of ICache misses and branch mispredictions by

fetching and dispatching instructions out-of-order, (2) it

uses a novel value prediction and recovery mechanism to

reduce artt$cial data dependencies created by the use of a

stack to manage run-time storage, and (3) it improves the

execution throughput of a superscalar by 15% without

increasing the execution resources or cache bandwidth,

and by 30% with one additional ICache fetch port. The

speedup was measured on the integer SPEC95

benchmarks, without any compiler support, using a

detailed peqormance simulator,

1 Introduction

Today’s out-of-order superscalars use techniques such

as register renaming and dynamic scheduling to eliminate

hazards created by the reuse of registers, and to hide long

execution latencies resulting from DCache misses and

floating point operations [l]. However, the basic method

of sequential fetch and dispatch of instructions is still the

underlying computational model. Consequently, the

performance of superscalars is limited by instruction

supply disruptions caused by branch mispredictions and

ICache misses. On programs where these disruptions

occur often, the execution throughput is well below a

wide superscalar’s peak bandwidth.

Ideally, we need an unintermpted instruction fetch

supply to increase performance. Even then, there are other

complexities that have to be overcome to increase

execution throughput [2]. Register renaming requires

dependency checking among instructions of the same

block, and multiple read ports into the rename table. This

logic increases in complexity as the width of the rename

stage increases. A large pool of instructions is also

necessary to find enough independent instructions to run

the execution units at full utilization. The issue logic has

to identify independent instructions quickly, as soon as

their inputs become ready, and issue them to the

execution units.

We present an architecture that improves instruction

supply and allows instruction windows of thousands of

instructions. The architecture uses dynamic multiple

threads (DMT) of control to fetch, rename, and dispatch

instructions simultaneously from different locations of the

same program into the instruction window. In other

words, instructions are fetched out-of-order. Fetching

using multiple threads has three advantages. First, due to

the frequency of branches in many programs, it is easier

to increase the instruction supply by fetching multiple

small blocks simultaneously than by increasing the size of

the fetch block. Second, when the supply from one thread

is interrupted due to an ICache miss or a branch

m&prediction, the other threads will continue filling the

instruction window. Third, although duplication of the

ICache fetch port and the rename unit is necessary to

increase total fetch bandwidth, dependency checks of

instructions within a block and the number of read ports

into a rename table entry do not increase in complexity.

In order to enlarge the instruction pool without

creating too much complexity in the issue logic, we have

designed a hierarchy of instruction windows. One small

window is tightly coupled with the execution units. A

conventional physical register file or reorder buffer can be

used for this level. A much larger set of instruction

buffers are located outside the execution pipeline. These

buffers are slower to access, but can store many more

instructions. The hardware breaks up a program

automatically into loops and procedure threads that

226 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0-8186-8609-x/98 $10.00 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1998 IEEE

execute simultaneously on the superscalar processor. Data

speculation on the inputs to a thread is used to allow new

threads to start execution immediately. Otherwise, a

thread may quickly stall waiting for its inputs to be

computed by other threads. Although the instruction fetch,

dispatch, and execution is out of order, instructions are

reordered after they complete execution and all

mispredictions, including branch and data, are corrected.

Results are then committed in order. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.1 Related work

Many of the concepts in this paper have roots in recent

research on multithreading and high performance

processor architectures. The potential for achieving a

significant increase in throughput on a superscalar by

using simultaneous multithreading (SMT) was first

demonstrated in [3]. SMT is a technique that allows

multiple independent threads or programs to issue

multiple instructions to a superscalar’s functional units. In

SMT all thread contexts are active simultaneously and

compete for all execution resources. Separate program

counters, rename tables, and retirement mechanisms are

provided for the running threads, but caches, instruction

queues, the physical register file and the execution units

are simultaneously shared by all threads. SMT has a cost

advantage over multiple processors on a single chip due to

its capability to dynamically assign execution resources

every cycle to the threads that need them. The DMT

processor we present in this paper uses a simultaneous

multithreading pipeline to increase processor utilization,

except that the threads are created dynamically from the

same program.

Although the DMT processor is organized around

dynamic simultaneous multiple threads, the execution

model draws a lot from the multiscalar architecture [4,5].

The multiscalar implements mechanisms for multiple

flows of control to avoid instruction fetch stalls and

exploit control independence. It breaks up a program into

tasks that execute concurrently on identical processing

elements connected as a ring. Since the tasks are not

independent, aggressive memory dependency speculation

is used. The multiscalar combines compiler technology

with hardware to identify tasks and register dependencies.

The multiscalar handles the complexity of the large

instruction window resulting from lookahead execution

by distributing the window and register file among the

processing elements. The DMT architecture in contrast

uses a hierarchy of instruction windows to manage

instruction issue complexity. Since the DMT processor

does not rely on the compiler for recognizing register

dependencies, data r&predictions are more common than

on the multiscalar. Hence, an efficient data recovery

mechanism has to be implemented.

The trace processor [6] uses traces to execute many

instructions per cycle from a large window. Like the

multiscalar, the instruction window is distributed among

identical processing elements. The trace processor does

not rely on the compiler to identify register dependencies

between traces. It employs trace-level data speculation

and selective recovery from data mispredictions. The trace

processor fetches and dispatches traces in program order.

In contrast, the DMT processor creates threads out-of-

order, allowing lookahead far away in a program for

parallelism. On the other hand, this increases the DMT

processor data r&prediction penalty since recovery is

scheduled from the larger but slower second level

instruction window.

A Speculative Multithreaded Processor (SM) has been

presented in [7]. SM uses hardware to partition a program

into threads that execute successive iterations of the same

loop. The Speculative Multithreaded Processor achieves

significant throughput on loop intensive programs such as

floating-point applications. The DMT processor performs

very well with procedure intensive applications. We view

the two techniques as complementary.

Work reported in [8] highlights the potential for

increasing ILP by predicting data values.

1.2 Paper overview

Section 2 gives a general overview of the

microarchitecture. Section 3 describes the

microarchitecture in more detail including control flow

prediction, the trace buffers where the threads speculative

state is stored, data speculation and recovery, handling of

branch n-&predictions, the register dataflow predictor, and

memory disambiguation hardware. Simulation

methodology and key results are presented in section 4.

The paper ends with a final summary.

2 DMT microarchitecture overview

Figure la shows a block diagram of the DMT

processor. Each thread has its own PC, set of rename

tables, trace buffer, and load and store queues. The

threads share the memory hierarchy, physical register file,

functional units, and branch prediction tables. The dark

shaded boxes correspond to the duplicated hardware.

Depending on the simulated configuration, the hardware

corresponding to the light shaded boxes can be either

duplicated or shared.

Program execution starts as a single thread. As

instructions are decoded, hardware automatically splits

the program, at loop and procedure boundaries, into

pieces that are executed as different threads in the SMT

pipeline. Control logic keeps a list of the thread order in

the program, and the start PC of each thread. A thread

stops fetching instructions when its PC reaches the start of

the next thread in the order list. If an earlier thread never

227

Decode zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9
Waiting

Instruction

Buffers
c

Rename G?

Physical

Register

File

Fetch Decode Rename Issue Register Execute Early Final

Read Retire Retire

(b) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 1: a) DMT block diagram, b) Execution pipeline, and c) Recovery pipeline

reaches the start PC of the next thread in the order list, the

next thread is considered to be mispredicted and is

squashed (more on this to follow in section 3.1.2).

The threads communicate through registers and

memory. The dataflow between two threads is one way,

dictated by their position within the sequential program.

To relax the limitations imposed by register and memory

dependencies, thread-level dataflow and data value

prediction is used. A new thread uses as input the register

context from the thread that spawns it. Loads are issued

speculatively to memory as if there are no conflicting

stores from prior threads. Inputs to a thread are validated

as prior thread instructions produce live input registers

and prior stores are issued.

Threads look ahead far into the program to find

parallelism. Since the threads do not wait for their inputs,

data mispredictions are common. The DMT processor

performs selective recovery of instructions affected by a

misprediction, and as soon as the correct input is

available. Selective recovery requires all speculative

execution results to be accessible. Since threads look

ahead far into a program, traditional reorder buffers or

physical register files [l] cannot be enlarged to hold all

the speculative results. These structures have to be

accessible at very high frequency and bandwidth to

support multiple issue per cycle. The above suggest

another level of speculative state hierarchy. We use large

trace buffers outside the pipeline to hold all the

speculative instructions and results. Data misprediction

recovery involves sequentially fetching affected

instructions from a trace buffer, and redispatching them

into the execution pipeline.

2.1 Execution pipeline

Figure lb shows the execution pipeline. Instructions

are written into a trace buffer as they are passed to the

rename unit. There is one trace buffer per thread. After

mapping logical into physical registers, the rename unit

writes the instructions into the waiting buffers and sends

the destination mappings to the trace buffer. Load and

store queue entries are assigned at this stage. Instructions

are issued for execution when their inputs become

available. Results are written back into the physical

228

register file, as well as the trace buffers. After completing

execution, instructions are cleared from the pipeline in

order, freeing physical registers that are not needed. We

refer to this pipe stage as early retirement. It is just a

guess at this time that the results are correct and can be

committed. The instructions and their speculative state,

however, still reside in the trace buffers and load/store

queues. Only after all data mispredictions are detected and

corrected is speculative state finally committed in order

from the trace buffers into a final retirement register file.

The load queue entries are then freed, and stores are

issued to memory. Retiring instructions from the trace

buffer in order implies that threads are retired in order. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2.2 Recovery pipeline

Figure lc shows the data misprediction recovery

pipeline. Before a thread finally retires, its speculative

register inputs are compared to the final retirement values

at the end of the prior thread. Memory mispredictions are

detected by disambiguation logic in the load queues.

When a misprediction is detected from either source,

instruction fetch is switched from the ICache to the trace

buffer. Blocks of instructions are fetched sequentially,

starting from the point of n&prediction. Instructions are

sorted, and those affected by the misprediction are

grouped and sent to the rename unit. The rename unit

receives a sequence of recovery instructions in program

order, but not necessarily contiguous in the dynamic trace.

Input registers local to the sequence are renamed using a

thread recovery map table, and logical destinations are

assigned new physical registers. If a register input is

produced outside the sequence, the recovery mapping

table is bypassed. The mapping or value, if available, is

provided from the trace buffer instead. The recovery

instructions execute when their operands become

available, and write their results into the new physical

registers and the trace buffers.

3 Details of the DMT microarchitecture

3.1 Control flow prediction mechanisms

The processor breaks a sequential program into sub-

units of dynamically contiguous instructions and runs

them as different threads. A thread spawns a new thread

(Figure 2a) when it encounters a procedure call (point A)

or a backward branch (point B). Backward branches are

speculatively treated as end of loops, since they most

often are. The default start address of a new thread is the

static address after the call or backward branch. The first

thread continues to execute the procedure or loop, while

the new thread executes subsequent blocks in the

program. A history buffer is used to predict after-loop

thread addresses that differ from defauh values. State is

kept for each thread to prevent an inner loop thread from

spawning a fall-through thread at the loop backward

branch more than once. The spawned fall-through thread,

however, is allowed to spawn other loop threads.

Therefore, several iterations of an outer loop could be

executing concurrently.

3.1.1 Thread ordering. Due to the type of threads that

are implemented, threads are not necessarily spawned in

program order. Moreover, speculative threads are allowed

to spawn other threads themselves. From the perspective

of any particular thread, the most recent threads it spawns

are the earliest threads to retire. An ordered tree is used to

keep track of the program order of the threads. Threads

spawned by the same thread are inserted into the tree in

order, say left to right. Figure 2b shows a time sequence

of the ordered tree as the program in the example is

executed. At any point in time, a thread order list is

determined by walking the tree from top to bottom, and

right to left.

3.1.2 Thread allocation. The thread allocation policy is

pre-emptive. When all thread contexts are used, a new

thread earlier in program order pre-empts the lowest

thread in the order list. The lowest thread is then

squashed, all its state is reset, and its context is assigned

to the new thread. This policy improves load balancing by

preventing threads too far away in the program from

occupying processor resources for too long waiting for

final retirement. The allocation policy also cleans up the

tree from mispredicted threads, such as those left active

after an unexpected loop exit. A false thread will block

subsequent threads in the program order list from

retirement. Therefore, false threads are at the bottom of

the order list and are pre-empted by new good threads.

3.1.3 Thread selection. A spawned thread may be

squashed, may do little useful work, or even slow down

execution. An optimal thread selection process can be

quite complex. We have chosen simple selection criteria

that have worked reasonably well: thread retirement,

thread overlap, and thread size. An array of 2-bit

saturating counters is accessed using the thread start

address. The thread is selected if the count is above one.

The counter is updated when the selected thread is retired

or squashed. The counter is reset for a thread that is too

small or does not sufficiently overlap other threads.

When a thread is not selected because of its counter’s

state, there is no execution of this thread that takes place

and consequently no feedback information about the

prediction accuracy. Without feedback, the thread’s

counter is stuck in a not-taken state. To avoid this

problem, the counter is also updated by logic that

observes the retired instructions to estimate how the

thread would execute if spawned. This logic works as

229

Tl

(A)
Call

New
thread

T2

64

Figure 2: a) Procedure and loop thread example, and b) Ordering tree sequence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 T2

T2 spawned at (A) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 T2

T3 retired

follows. Spawn points in the retirement stream are seen in

reverse order to join points. Potential threads are pushed

on a stack, and joined threads are popped off. The

retirement PC is compared to the top of the stack to

identify joined threads. The thread distance is defined to

be the number of threads encountered between the

spawning and the joining of a thread. The counter is

incremented if a thread joins and the thread distance is

less than the number of machine thread contexts.

Otherwise, it is decremented.

3.1.4 The branch predictor. The branch predictor uses a

modified gshare scheme [9]. All threads access a single

table of 2-bit counters. Each thread has its own branch

history register. When a new thread is spawned, its branch

history register is cleared. Therefore, early branches in a

thread are predicted with limited or no correlation. The

prediction algorithm becomes a true gshare after k

branches in the thread, where k is the history register size.

Each thread has its own return address stack (RAS).

When a new thread is spawned, it receives a copy of the

RAS of the spawning thread. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.2 The trace buffers and data speculation and

recovery

The trace buffers unit is a complete thread-level

dataflow engine. Thread instructions are written into a

large speculative buffer after renaming. Selective issue of

instructions takes place, as corrected thread inputs arrive.

Threads and their speculative state are retired in order.

3.2.1 writing instructions and results into a trace
buffer. As instructions are written into the trace buffer

instruction queue, a rename unit maps source operands to

T3 spawned at (B)

(b)

T3

8
T2

Tl retired

thread buffer entries and writes them with the instructions

(Figure 3). We will be using the phrase ‘execution

pipeline rename unit’ to avoid any confusion with the

‘trace buffer rename unit’. The trace buffers also store

tags and results of the executed instructions. There is an

entry allocated per instruction in each of the trace buffer

instruction queue, tag array, and data array. A tag entry

consists of the physical destination register ID assigned to

the instruction by the pipeline rename unit and a result

valid bit. Results that are written back are tagged with a

thread ID, a trace buffer entry ID, and the physical

register destination. The tag and data arrays are indexed

using the thread and trace buffer entry IDS. If the

destination tag matches, the result valid bit is set in the tag

entry and the result is written into the data array.

In order to avoid slowing down the writeback buses

and subsequently increasing the clock cycle, latches or

buffers can be used to isolate the writeback buses from

the signal routing to the trace buffers. Writing results into

the trace buffers can be delayed without any impact to

performance. Some of these results may be input operands

to other instructions during data recovery, but they are

typically needed many cycles after they are written.

3.2.2 Thread input-output and final retirement

register file. A new thread executes speculatively using

the parent thread’s register context at the spawn point.

The trace buffers unit contains an IO register file for each

thread. When a thread is spawned, a fast copy within cell

sets its input registers with the values from the parent

thread output registers. As instructions from a thread are

dispatched, the threads input operands are read from its

input register file. There is enough time to read the thread

inputs since operands are not needed until the execute

stage in the pipeline.

230

From Decoder Instructions A ‘Mappings & From Pipeline

From Load
Operands to Rename Unit

Rename Unit
I

- Retirement

Instruction Queue f

Dependency table e

and sorting logic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 3: The trace buffer block diagram

The output registers receive register destination

mappings from the pipeline rename unit. Results are

written into the output registers by matching the

writeback tags to these mappings, using a CAM port. If

some values were not written and a new thread is

spawned, the register mappings are copied to the new

thread input registers. The input registers will then grab

the results from the writeback bus as they are written. The

output registers may receive incorrect results from a

m&predicted path. Since they are used speculatively, we

do not attempt to recover the correct output values after a

branch misprediction. Nevertheless, we have observed

very high value prediction accuracy.

When instructions are finally retired, their results are

copied from the trace buffer data array into the retirement

registers. The input registers of all the other threads snoop

the data bus on which the results are transferred to the

retirement registers, using a CAM port. By the time a

thread is completely retired, all the input registers of the

subsequent thread have been checked. If one or more

input registers have not matched, a recovery sequence is

started.

3.2.3 Recovery dispatch. A recovery finite state machine

(FSM) receives requests from two sources: IO register file

and load queues (Figure 3). A request identifies a thread,

an input error location in the thread trace buffer, and the

registers that contain the incorrect values. Register file

requests may identify more than one register error

simultaneously. A load buffer request identifies one

register, the one that has been loaded by the mispredicted

load. When a request is received, the FSM goes through a

sequence of states in which blocks of instructions are read

out of the queue starting at the misprediction point. A

subset of each block that depends on one of the

mispredicted registers is identified. ‘Dependent’ here is

used in the transitive sense to mean either directly or

indirectly. The dependent instructions are not necessarily

consecutive within the block. Sorting logic selects the

dependent instructions and groups them together, leaving

out any instruction that is not affected by the

misprediction. The selected instructions are grouped in

program order and sent to the execution pipeline rename

unit to be dispatched again for execution.

The algorithm that identifies dependent instructions is

very similar to register renaming. Instead of a mapping

table, a dependency table is used. The table contains a

flag for each logical register that indicates if the register

depends on the mispredicted data. At the start of a

recovery sequence, the flag corresponding to each

mispredicted register is set. The dependency table is

checked as instructions are read from the trace buffer. If

one of the source operand flags is set, an instruction

depends on the mispredicted data. The instruction is

selected for recovery dispatch and its destination register

flag is set in the table. Otherwise, the destination register

flag is cleared. Only the table output for the most

significant instruction within a block can be relied upon

all the time. Subsequent instructions may depend on

instructions ahead of them within the block. A bypass at

the table output is needed to handle internal block

dependencies. If the dependency table reaches a state

during the recovery sequence in which all the dependency

flags are clear, the recovery sequence is terminated.

The dependency flags can be used to minimize the

number of read ports in the tag array. Cleared dependency

flags identify source operands from outside the recovery

sequence. Tag array access for operands local to the

sequence is not necessary, since their mappings are

provided by the pipeline rename unit. If an operand from

231

outside the recovery sequence has been written back to

the trace buffer, the data array is accessed after the tag

array to retrieve the operand’s value. The data valid bits

are stored with the tags to minimize the number of data

array read ports.

We have mentioned earlier that the pipeline rename

unit uses two map tables, one for normal execution and

one for data recovery. Depending on the execution mode,

register mappings are updated, as registers are renamed,

in one of the two tables. Live output registers modified

during a data recovery sequence are exceptions. For these

registers, both tables have to be updated so that, when

normal execution resumes, the correct live outputs are

used. The live output registers from a thread can be easily

identified from the state in the trace buffer rename unit.

The DMT selective recovery can be viewed as thread

re-execution with reuse of instructions that are not

affected by the mispredicted data. However, in contrast to

the general instruction reuse mechanisms introduced in

[lo], the trace buffer holds instructions from a contiguous

execution trace. This simplifies significantly the reuse test

and turns it into a simple lookup into a dependency table. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3.3 Handling branch n&predictions and
exceptions

Branch mispredictions can occur during normal

execution as well as recovery execution. Normal

execution mispredictions can be handled in a usual

manner, for example, by shadowing the register mappings

in the pipeline execution unit when a branch is

encountered and restoring the mappings from the

checkpoint if it is r&predicted. Branches that are

mispredicted during recovery may have already passed

early retirement. The checkpoints would have been

cleared by then. Such branches are handled at the branch

final retirement, by clearing the trace buffer speculative

state and restarting execution from the corrected path.

Since false exceptions may be flagged at early

retirement due to data mispredictions, an exception is

handled precisely at the final retirement of a faulting

instruction. At this point, all data mispredictions prior to

the faulting instruction are resolved, and it is safe to reset

the speculative processor state and invoke the exception

handler.

3.4 The register dataflow predictor

Recovery from mispredicted register values may occur

a significant time after the correct values are produced.

We have therefore implemented a method to predict when

a value may be mispredicted, and the instruction that

generates the correct value. A history buffer contains

entries for recently retired threads. Each entry contains an

instruction address field for each input value that was

mispredicted. The instruction addresses are those of the

last register modifiers. These are the instructions that

write the live output registers in the previous thread. A

few address bits suffice to identify the last modifiers.

Instruction addresses are compared to the last-update

addresses from the predictor table early in the pipeline,

e.g. at the decode stage. The matching instructions are

marked to enable an input register update in the trace

buffer and a recovery sequence at writeback time. The

final retirement checks still takes place for these inputs.

3.5 Memory disambiguation hardware

To achieve any significant performance increase, loads

from spawned threads have to be issued to memory

speculatively. Since these loads may actually depend on

stores from earlier threads, it is necessary to have a

mechanism to disambiguate memory references and to

signal recovery requests to the trace buffer, whenever

speculative loads are incorrectly executed.

Fully associative load and store queues hold memory

access instructions for all threads. Entries are allocated the

first time a load or a store is issued. Load entries are

deallocated at final retirement. Store entries are

deallocated after stores are finally retired and issued to

memory. Stores are issued to memory in program order

and compete for DCache port resources with speculative

loads. There could be many cycles of delay from the time

a store is finally retired until it is issued to memory and its

entry is deallocated. Addresses of issued loads are

compared to addresses in the store queues, and vice versa.

When an issued store hits a load in a thread later in the

order list, a recovery request is initiated. Store data values

may be forwarded to issued loads from other threads.

Since a load address could hit more than one store, and

since a priority encoder would be needed to select the

nearest store, we have assumed additional 2 cycles of

latency for loads that hit stores in other thread queues.

Notice that disambiguation logic in the load queue is not

in the critical path, since the logic is not in the load and

store normal execution pipeline. A detailed description of

the memory disambiguation algorithm is contained in

Vll.
Data recovery may cause the same dynamic instance of

a load or a store to be issued many times with different

memory addresses. Only the last version of such load or

store has the correct address. Set associative methods,

such as address resolution buffers [12] or speculative

caches [13,141, require special logic to handle incorrect

versions of loads and stores that may have been stored in

the wrong sets. The fully associative queues we have used

do not require this additional logic complexity, since they

are indexed with unique IDS that are assigned to loads and

stores when they are initially fetched from the ICache.

Addresses are simply stored again in the queues when

232

loads and stores are reissued from a recovery sequence,

overwriting the previous and potentially incorrect

addresses. As a consequence of this design, however, the

thread size is limited by the cost and circuit complexity of

the fully associative queues. We have observed that the

store queue and load queue have to be at least one fourth

of a trace buffer in size each for best performance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4 Simulation methodology and results

Experiments have been conducted on a detailed, cycle

accurate, performance simulator that is derived from the

SimpleScalar tools set [15]. The simulator takes binaries

compiled with gee for the SimpleScalar instruction set

architecture (ISA), which is derived from the MIPS ISA.

Experiments are run using seven of the SPEC95

benchmarks compiled with level three optimizations.

Only non-numeric benchmarks are reported since these

have proven difficult to parallelize. The reference inputs

to the benchmarks are used with no modifications to the

source code. All simulations are run until 300 million

instructions finally retire. Performance measurements are

reported based on total execution time and as a percentage

speedup over a 4-wide superscalar with a 128-instruction

window. In order not to favor DMT, which is less

sensitive to branch mispredictions, gshare with very large

BTB and prediction table is used for predicting branches.

The base machine pipeline is the pipeline in Figure lb,

but with one retire stage. The cache hierarchy has 16KB

2-way set associative instruction and data caches and a

256KB 4-way set associative L2 cache. Ll miss penalty is

4 cycles, and an L2 miss costs additional 20 cycles. The

execution units configuration and latencies are reported

below with the simulation results.

4.1 DMT execution throughput

In this section, measurements that focus on the number

of threads, the fetch bandwidth and the issue bandwidth

are presented. The instruction window size is set to 128

instructions. Window size here refers to the active

instructions in the execution pipeline but does not include

instructions that have early retired and are waiting in the

trace buffer for final retirement. The trace buffer size is

500 instructions per thread, and the trace buffer pipeline is

4 cycles long.

Figure 4 shows performance as a function of the

number of threads. Both the DMT and base superscalar

processors are simulated with unlimited execution units.

Since all threads share the fetch resources, we have

doubled the fetch bandwidth on the DMT processor by

using two fetch ports and two rename units. This allows

us to show the impact of the number of threads on

performance without excessively limiting DMT

performance by the fetch bandwidth. Half the bandwidth

FiguIV 4: Performance vs. number of threads

is assigned to the non-speculative thread (the thread in

final retirement) and the other half is allocated equally to

the speculative threads using a round robin policy. There

is a significant increase in performance up to 6 threads,

but little increase above. More than 35% average increase

is achieved on an &thread processor. The fetch and

rename block size per thread is kept the same as the base

superscalar width of 4 instructions. We have seen slightly

lower speedups with a fetch block size of 8 instructions.

Figure 5: Rxfonnallce vs. number of fetch ports on a
4threadprocessor

The anomaly in 8T li and 2T m88ksim performance,

apparent in Figure 4, is due to a sub-optimal thread

selection process combined with resource sharing among

threads and additional execution latencies incurred on

n&predicted thread inputs.

Figure 5 shows the performance of 4-thread DMT with

233

1, 2 and 4 fetch ports, and an equivalent number of

rename units. Both the DMT and base superscalar

processors are simulated with unlimited execution units.

Even with equivalent total fetch bandwidth (1 fetch port),

the DMT processor outperforms the base superscalar. We

have seen 15% speedup with one fetch port and 6 threads.

Figure 6 shows the performance of a 2-fetch ports

DMT processor with realistic execution resources. The

execution units include 4 ALUs, 2 of which are used for

address calculations, and 1 multiply/divide unit. Two load

and/or store instructions can be issued to the DCache

every cycle. The latencies are 1 cycle for the ALU, 3 for

multiply, 20 for divide, and 3 cycles for a load including

address calculation. The graph in Figure 6 compares the

simulated performance to an ideal DMT which is

unlimited by the number of execution units and DCache

bandwidth. Two sets of measurements are shown for 4

and 6 thread processors. There is very little drop in

speedup from the ideal machine.

F&ure6: Pelfolmance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcompa&mofaDMTpnxmsor

with limited execution uuil~ to au ideal DMT

Figure 7 shows that a ‘200 instructions per thread’

configuration almost achieves maximum performance on

a 6-thread processor. We have measured an average

thread size between 50 and 130 instructions on the

benchmarks that we have run.

4.2 Lookahead on the DMT processor

On a conventional superscalar, a mispredicted branch

results in squashing instructions from the incorrect path

and rolling back execution to the r&prediction point. The

same is true within a thread on the DMT processor.

However, a mispredicted branch in one thread does not

cause subsequent threads to be squashed. DMT therefore

allows execution overlap between instructions located

before and instructions located after a mispredicted

branch. Figure 8 shows, for a 6-thread processor, the

percentage of total retired instructions that are

successfully fetched and executed out-of-order relative to

a m&predicted branch. Similarly, Figure 9 shows

lookahead execution statistics beyond ICache misses.

These percentages are zero on a conventional superscalar.

100

4 90

-
g

80

&

70

60

& 50

5 40

s 30
2
$

20
10

0 .

Figure 7: Performarm impact of the trace buffer size

El Fetch

Figure 8: Lookabeadexecution beyoudmispmdkted

bra&m

4.3 Data prediction results

Predicting that the input register values for a new

thread are the register context at the spawn point

eliminates false data dependencies created when registers

are saved and restored to the stack during a call sequence.

Considering the scope of the caller variables, it is easy to

see why most of the input values to an after-procedure

thread are predictable. Only variables modified by the

procedure would have changed after the procedure is

executed. Value prediction handles the unmodified

values, while dataflow prediction ensures that modified

values are promptly supplied to the spawned thread.

234

Fii 9: Lookahead zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAexecution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbeyond ICache misses

Figure 10 shows the performance of a 4-thread

processor with value prediction only, and with value and

dataflow prediction. Figure 11 shows the percentage of

live thread input register values that are: (1) available at

the spawn point, (2) written subsequent to the spawn time

with the same values (e.g. stored then loaded from

memory), and (3) correctly predicted by either the value

or dataflow prediction method. The combined data

prediction method gives hit rates of more than 90% for

most benchmarks.

35

Figure 10: Datatlow prediction impact on performarm

4.4 Trace buffer performance requirements and

cost evaluation

We present in this section a partial evaluation of the

trace buffer cost and complexity. We focus on the

instruction queue and the data array, since these are the

largest arrays in the trace buffer in terms of storage

capacity, especially if very far ahead speculation in the

program is targeted. A complete evaluation of the DMT

processor cost and complexity is left for future work.

Figure 7 shows that a ‘200 instructions per thread’

Figure 11: Data prediclion statislics

configuration gives good performance. This is a total

capacity in the trace buffers of 1200 instructions and their

results, on a 6-thread processor. Assuming 8 bytes of

storage per result, 4 bytes per instruction, and 4 bytes of

control state per instruction (source operand mappings

from the trace buffer rename unit, store and load buffer

IDS, etc...), the total capacity required in the trace buffer

instruction queue and data array is approximately 19KB.

We now show that the bandwidth and latency required

can be supplied from instruction and data arrays of low

complexity, allowing these arrays to be built with high

density storage cells.

The instruction queue is single ported. Blocks of

instructions are written at fetch and read at recovery

sequentially. Moreover, reads and writes do not happen at

the same time. Figure 12 shows the performance for

instruction read blocks of size 2, 4, and 6 instructions, as

well as an ideal instruction queue that has enough read

bandwidth to fill up the recovery dispatch pipe, which is

4-instruction wide. These are sizes before the blocks are

sorted to dispatch the instructions that are dependent on

the mispredicted data. The read bandwidth required is not

excessive. Moreover, there is good tolerance to recovery

latency that allows enough time to read and sort

instructions as shown in Figure 13. This latency tolerance

is not surprising considering that on the average about

30% of the instructions executed by speculative threads

are redispatched from the trace buffer due to data

misprediction, and that with a pipelined trace buffer

dispatch, the latency is incurred only once at the

beginning of the recovery sequence.

Finally, the difference in performance when one read

port data array configuration is compared to an ideal data

array capable of supplying any number of operands every

cycle is hardly noticeable. This is the case because most

of the recovery instruction operands are local to the

sequence and are communicated through the pipeline

235

register file. On the other hand, the required write

bandwidth into the data array is very high. All issued

instructions, except for branches and stores, write results

into the data array. However, writing results in the data

array is not in the critical path and can be delayed. 4-way

interleaving of a single write port data array sustains the

write bandwidth, and a 3-deep write queue per bank

eliminates the majority of the bank write conflicts. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

F&we 12: Speedup vs. instrudon queue block size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

100
a90
s 80
8 70
t% 60

&60
%40
s 30
2 20
d 10

0

F@ne 13: Impact of trace buffer latency on performance

5 Summary

This paper presents a dynamic multithreading

processor that achieves significant increase in non-

numeric programs throughput with minimal increase in

complexity in the critical execution pipeline. The dynamic

multithreading architecture has several advantages over

conventional superscalars: (1) lookahead execution

beyond mispredicted branches and instruction cache

misses (2) lookahead far into a program, (3) efficient

value prediction that eliminates artificial dependencies

due to procedure linkage using a stack, and (4) increased

instruction supply efficiency due to multiple fetch

streams. A novel DMT microarchitectnre has been

implemented with two powerful features: an efficient 2-

level instruction window hierarchy, and a renaming

method that allows fast communication of registers

between threads, and between execution and recovery

sequences of instructions from the same thread.

References

HI

121

[31

141

151

161

[71

PI

[91

J. E. Smith, G. S. Sohi. The Microarchitecture of

Superscalar Processors. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProceedings of the IEEE,
December 1995.
S. Palacharla, N. Jouppi, J. E. Smith. Complexity-Effective

Superscalar Processors. The 241h Annual International
Symposium on Computer Architecture, pp. 206-218, June

1997.

D. M. Tullsen, S. J. Eggers, H. M. Levy. Simultaneous

Multitbreading: Maximizing On-chip Parallelism The 22”d

International Symposium on Computer Architecture, June

1995.

M. Franklin. The M&scalar Architecture. Ph.D. Thesis,

University of Wisconsin, Nov 93.

G. S. Sohi, S. E. Breach, T. N. Vijaykumar. Multiscalar

Processors. The 22”d Annual International Symposium on
Computer Architecture, pp. 414-425, June 1995.

E. Rotenberg, Q. Jacobson, Y. Sazeides, J. E. Smith. Trace

Processors. The 3o’n International Symposium on
Microarchitecture, pp. 138-148, December 1997.

P. Marcuello, A. Gonztiez, and J. Tubella. Speculative

Multithreaded Processors. International Conference on
Supercomputing’98, July 1998.

M. H. Lipasti, C. B. Wilkerson, J. P. Shen. Value Locality

and Data Prediction. In Proceedings of ASPLOS-VII, pp.
138-147, October 1996.

S. McFarling. Combining Branch Predictors. WI?L
Technical Note TN-36, June 1993. _1

[lo] A. Sodani, G. S. Sohi. Dynamic Instruction Reuse. The 24”

Annual International Symposium on Computer
Architecture, pp. 194-205, June 1997.

[I 1] H. Alckarv. A Dvnamic Multithreading Processor, Ph.D.

Dissertation, Department of Electri& and Computer

Engineering, Portland State University, Technical Report

PSU-ECE-199811, June 1998.

M. Franklin, G. S. Sohi. ARB: A Hardware Mechanism for

Dynamic Reordering of Memory References. IEEE
Transactions on Computers, May 1996.

J. Steffan, T. Mowry. The Potential for Using Thread-Level

Data Speculation to Facilitate Automatic Parallelization. In
Proceedings of HPCA-N, pp. 2-13, January 1998.

S. Gopal, T. Vijaykumar, J. Smith, G. Sohi. Speculative

Versioning Cache. In Proceedings of HPCA-IV, pp. 195-

207, January 1998.

D. Burger, T. M. Austin. The SimpleScalar Tool Set,

Version 2.0. Computer Architecture News, Vol. 25, No. 3,

pp. 13-25, June 1997.

WI

[I31

[I41

[I51

236

