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Abstract—In this paper, a dynamic-neighborhood-based
switching PSO (DNSPSO) algorithm is proposed where a new
velocity updating mechanism is designed to adjust the person-
al best position and the global best position according to a
distance-based dynamic neighborhood to make full use of the
population evolution information among the entire swarm. In
addition, a novel switching learning strategy is introduced to
adaptively select the acceleration coefficients and updatethe
velocity model according to the searching state at each iteration,
thereby contributing to a thorough search of the problem space.
Furthermore, the differential evolution algorithm is successful-
ly hybridized with the PSO algorithm to alleviate premature
convergence. A series of commonly used benchmark functions
(including unimodal, multimodal and rotated multimodal cases)
are utilized to comprehensively evaluate the performance of
the DNSPSO algorithm. Experimental results demonstrate that
the developed DNSPSO algorithm outperforms a number of
existing PSO algorithms in terms of the solution accuracy and
convergence performance, especially for complicated multimodal
optimization problems.

Index Terms—Particle swarm optimization, switching strategy,
dynamic neighborhood, topology, differential evolution.

I. I NTRODUCTION

The past few decades have witnessed the rapid development
of optimization techniques owing to their clear application
potential in various research fields including healthcare,en-
gineering, and telecommunications [19], [22], [24], [36],[40].
As a powerful family of optimization techniques, evolutionary
computation (EC) approaches have shown outstanding perfor-
mance in solving optimization problems. Some popular EC
approaches include genetic algorithms, Tabu search, simulated
annealing, particle swarm optimization (PSO), etc [19], [21],
[24], [25], [44]. Compared with other EC algorithms, the
PSO algorithm proposed in [15] demonstrates competitive or
even superior performance due to its easy implementation,
fast convergence rate, guaranteed diversity and satisfactory
accuracy [11], [23], [39], [42].
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Inspired by the mimicry of social behavior (e.g., birds
flocking and fish schooling), the PSO algorithm explores
the problem space by updating the particles’ velocities and
positions based on the swarm intelligence. In fact, the PSO
algorithm has become an attractive optimization technique
owing to its rather powerful ability to effectively searching
the global optimal solution. In this regard, the PSO algorithm
has been widely studied and successfully applied to various
research fields [4], [13], [27], [48], [49]. Nevertheless, it
has been found that the PSO algorithm suffers from certain
shortcomings of premature convergence and poor convergence
performance when there exist a large number of local optima,
especially in high-dimensional optimization problems [18],
[26], [29]. As such, great efforts have been made in recent
years to develop variant PSO algorithms which can be catego-
rized into four types: 1) modifying parameters [6], [30], [33],
[34], [38]; 2) hybridizing with other EC algorithms [14], [32],
[42], [45]; 3) using topology for velocity updating [2], [16]–
[18], [26], [29]; 4) introducing control theories for designing
new learning strategies [10], [20], [28], [35], [47].

Recently, developing PSO algorithms with different topolo-
gies and learning strategies has become a research hotspot
[3]. Generally, these types of PSO variants aim to enhance the
population diversity of the PSO algorithm and alleviate the
premature convergence problem. In particular, five well-known
topological structures (including all, ring, clusters, pyramid,
and von Neumann) have been discussed in [16]. A fully
informed PSO algorithm has been introduced in [26] where the
velocity of each particle is updated depending on its neighbors’
information. In [18], a comprehensive learning PSO algorithm
has been developed where each dimension of a single particle
is updated by learning from the local best position of different
particles. In addition, a locally informed PSO algorithm has
been proposed in [29] where the particles are guided to explore
the problem space by several personal best positions chosen
in the neighborhood.

The developed PSO variants that employ the above men-
tioned topologies have demonstrated satisfactory performance
in searching the global optimal solution. Nevertheless, the
topology of these PSO variants is determined at the initial-
ization stage and remains unchanged during the evolution
process, which indicates that the neighborhood of the particles
is fixed. In this case, the PSO algorithms with a fixed neigh-
borhood have the following two limitations: 1) it is difficult
to seek an ideal topology for most optimization problems;
and 2) the fixed neighborhood may lead to poor local search
performance.

To solve the above mentioned problems, a distance-based



FINAL VERSION 2

dynamic neighborhood is proposed in this paper to update the
personal best positionpbest and the global best positiongbest
so as to strengthen the capability of escaping from the local
optima. The conventional PSO algorithm updates the velocity
and position of each particle only based on the information of
the pbest and thegbest discovered by the entire swarm. That
is, the searching strategy of the conventional PSO algorithm
restricts the social learning part only to thegbest which may
cause the premature convergence problem. In addition, there
is no guarantee that thegbest is always close to the global
optimum, especially for the complex optimization problems
with a large number of local optimal solutions. To make full
use of the neighborhood information of other particles, a new
updating mechanism ofpbest and gbest is proposed in this
paper based on the developed dynamic neighborhood. Notice
that the evolutionary process of the swarm can be divided
into four searching states, including convergence, exploration,
exploitation, and jumping out [46]. To further enhance the
search ability of the PSO algorithm, a novel switching learning
strategy is introduced to adaptively select the acceleration
coefficients and adjust the velocity updating model according
to the searching state determined by an evolutionary factor
at each iteration. In addition, the differential evolution(DE)
algorithm [45] is utilized to further enhance the diversities of
pbest andgbest.

Motivated by above discussions, our aim is to put forward
a dynamic-neighborhood-based switching PSO (DNSPSO) al-
gorithm with the aim of improving the search performance
of the PSO algorithm. The key contributions of this study
can be summarized as follows: 1) a DNSPSO algorithm is
proposed where a distance-based dynamic neighborhood is put
forward to make full use of the neighborhood information by
updating thepbest andgbest according to their corresponding
neighborhood, which contributes to a high possibility of es-
caping from the local optima; 2) a switching learning strategy
is designed where the acceleration coefficients are adaptively
adjusted at each iteration, and the velocity updating modelis
adjusted according to the searching state determined by the
evolutionary factor; and 3) the performance of the DNSPSO
algorithm is comprehensively evaluated on 14 well-known
benchmark functions (including the unimodal, multimodal and
rotated multimodal cases), and experimental results demon-
strate that the proposed DNSPSO algorithm outperforms some
existing PSO algorithms in terms of convergence performance
and solution quality, especially for complicated multimodal
optimization problems.

The remainder of this paper is organized as follows. In
Section II, the traditional PSO algorithm and PSO variants
are presented. The distance-based dynamic neighborhood and
the proposed DNSPSO algorithm are presented in Section III.
In Section IV, the parameter setting, benchmark functions,
and experiment results are discussed. Finally, conclusions and
future work are presented in Section V.

II. PSO ALGORITHMS

A. Traditional PSO Algorithm

The PSO algorithm is a population-based EC approach
where each particle’s position serves as a potential solution

of the optimization problem [15]. In a PSO algorithm [15],
each particle searches through the problem space by learning
from its experience and cooperating with other particles.

In a D-dimensional problem space, the position
of the ith particle at kth iteration is denoted as
xi(k) = (xi1(k), xi2(k), · · · , xiD(k)). The velocity
of particle i at kth iteration is represented by
vi(k) = (vi1(k), vi2(k), · · · , viD(k)). Rules for updating
velocity and position of particlei are described as follows
[15]:

vi(k + 1) =wvi(k) + c1r1(pi(k)− xi(k))

+ c2r2(pg(k)− xi(k)) (1)

xi(k + 1) =xi(k) + vi(k + 1)

wherepi andpg represent the best solution found by particle
i and the entire swarm, known aspbest and gbest; w is the
inertia weight which is a scale factor that controls the influence
of the previous velocity on the current one;r1 andr2 are two
uniformly distributed random numbers sampled from[0, 1]; c1
andc2 are the cognitive acceleration coefficient and the social
acceleration coefficient which push the particle towardspbest
andgbest, respectively.

B. PSO Variants

In recent years, a great number of variant PSO algorithms
have been developed to improve the search ability of the tra-
ditional PSO algorithm. Various parameter updating strategies
have been introduced to improve the performance of PSO
algorithms by adjusting the parameters (e.g., inertia weight,
cognitive acceleration coefficient and social acceleration coef-
ficient) [33]. In general, a larger inertia weight will contribute
to the global search, and a smaller inertia weight will benefit
the local refinement. A linearly decreasing inertia weight
PSO (PSO-LDIW) algorithm has been proposed in [34] to
improve the search ability of the PSO algorithm. A PSO
algorithm with time-varying acceleration coefficients hasbeen
put forward in [30] with the aim to effectively control the
local and global explorations. The constriction factor hasbeen
introduced into the PSO algorithm (PSO-CK) in [6] to enhance
the convergence rate and search ability. In particular, a Markov
chain has been utilized in the switching PSO (SPSO) algorithm
proposed in [38] to adaptively control the inertia weight and
acceleration coefficients.

Some variant PSO algorithms focus on designing new topol-
ogy structures aiming to guarantee the population diversity and
prevent premature convergence. Several popular topologies
(including all, ring, clusters, pyramid, and von Neumann)
have been introduced into PSO algorithms [16]. By making
full use of neighborhood information, a fully informed PSO
algorithm has been developed in [26]. In the comprehensive
learning PSO algorithm, a new learning strategy has been put
forward which updates each particle by utilizing all other
particles’ individual best information [18]. Additionally, a
locally informed PSO algorithm has been introduced in [29]
by using several local best positions through the neighborhood
to guide the search of the particles.
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Another research direction in designing new PSO algorithms
is to hybridize with other EC algorithms. It has been revealed
that the combination of the PSO algorithm and other EC
methods shows promise in improving the performance of the
PSO algorithm [45]. Additionally, there is a growing research
interest on introducing the sociological/biological inspired
methods into the PSO algorithm, such as the niching PSO
algorithm [5], the aging theory inspired PSO algorithm [7],
and the cultural-based PSO algorithm [8], etc.

Recently, the complex system and control theory have been
employed into the PSO algorithms, such as chaos, fuzzy,
neural networks, time-delay, and the orthogonal learning [10],
[20], [28], [35], [47]. As a notable example, the delayed
information of the particles has been utilized in the switch-
ing delayed PSO (SDPSO) algorithm to make full use of
the historical information of the evolution process, thereby
facilitating a better exploration of the problem space thanthe
traditional PSO algorithm [38].

III. A D YNAMIC -NEIGHBORHOOD-BASED SWITCHING

PSO ALGORITHM

In this section, the proposed DNSPSO algorithm is dis-
cussed mainly from three aspects: 1) the distance-based dy-
namic neighborhood is introduced to adjust thepbest and
gbest based on their corresponding neighborhood, which
benefits the thorough exploration of the problem space so
as to alleviate the premature convergence problem; 2) the
developed switching strategy is utilized to adaptively choose
the acceleration coefficients and update the velocity according
to the searching state; and 3) the DE method is employed
to enhance the diversity of the PSO algorithm. Therefore,
the proposed DNSPSO algorithm could thoroughly search the
problem space in order to effectively discover the optimal
solution.

A. Framework of the DNSPSO Algorithm

In the proposed DNSPSO algorithm, the velocity and posi-
tion of particle i at iterationk are updated by the following
mechanism:

vi,j(k + 1) =w(k)vi,j(k)

+ c1(ξ(k))r1(pbest
j(ξ(k)) − xi,j(k))

+ c2(ξ(k))r2(gbest
j(ξ(k))− xi,j(k)), (2)

xi,j(k + 1) =xi,j(k) + vi,j(k + 1)

wherer1 andr2 are two random numbers distributed in [0,1];
j denotes the dimension of the problem space;c1(ξ(k)) and
c2(ξ(k)) are the cognitive acceleration coefficient and the
social acceleration coefficient, respectively.

Notice that c1(ξ(k)), c2(ξ(k)), pbestj(ξ(k)) and
gbestj(ξ(k)) are determined according to a mode-dependent
Markov chain ξ(k) (k ≥ 0). The Markov chain, which is
determined by a probability transition matrixP = (pij)J×J ,
takes a value in a finite state space:F = {1, 2, · · · , J} where
pij ≥ 0 (i, j ∈ F) and

∑J

j=1
pij = 1. In this paper,ξ(k)

represents four different searching states (J = 4) [38].

In particular, the current searching state of each particle
is determined by the probability transition matrixP and an
evolutionary factorEf [46]. Ef is an index for describing the
distribution property of swarm:

Ef (i) =
di − dmin

dmax − dmin

(3)

where dmax and dmin denote the maximum and minimum
distances amongdi, respectively.di is the mean distance
between particlei and other particles, which is calculated as
follows:

di =
1

N − 1

N
∑

j=1,j 6=i

√

√

√

√

D
∑

k=1

(xk
i − xk

j )
2 (4)

whereN andD respectively represent the swarm size and the
dimension of the problem space.

It should be mentioned thatEf defined in Eq. 3 is different
from it in [46]. To be specific, in this paper,di is defined in
Eq. 4, which is different from that in [46]. The classification
rule of the searching states and the probability transitionmatrix
P are given as follows:
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whereπ is the transition probability.

B. Distance-Based Dynamic Neighborhood
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Fig. 1. The schematic diagram of a particle’s trajectory in the
DNSPSO.

As mentioned previously, the conventional PSO algorithm
updates each particle only based on its individualpbest and
the gbest discovered by the entire swarm. Fig. 1 shows the
shortcoming of the updating strategy of the conventional PSO
algorithm, where yellow star stands forgbest, black triangle
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denotes a local optimum, red circle ispbest of the particle
represented by the white circle, and blue circle ispbest of
another particle. It should be pointed out that vector addition
in Fig. 1 satisfies the parallelogram law. The lengths of some
components are slightly changed due to the influence of the
acceleration coefficientsc1, c2 and the random numbersr1, r2.
According to Eq. 1, the red circle and the yellow star are
utilized to determine the next position of the white particle.
In this condition, the movement trajectory is the red dashed
line which is close to the local optima. Notice that if the red
circle is replaced with the blue one, result will be significantly
different. Therefore, we can draw a conclusion that making full
use of the information of the swarm could contribute to the
alleviation of the premature convergence problem, especially
for the test functions with a great many of local optimal
solutions.

To handle this drawback, in this paper a dynamic neighbor-
hood is introduced to enhance communication in the swarm,
and the neighborhood of particlepi is defined as the nearestk
particles by calculating the Euclidean distance between its cur-
rentpbest and other particles. Through the evolution process,
the neighborhood of each particle adjusts automatically ateach
iteration. To make full use of the neighborhood information
of other particles, a new updating mechanism ofpbest and
gbest is designed in this paper based on the developed dy-
namic neighborhood. In the proposed distance-based dynamic
neighborhood, particlepi randomly selects another particle
among the swarm, and learns from the neighbor of the selected
particle’spbest. In addition, a randomly selected particle from
the neighborhood of current global optimal solutiongbest is
employed to update the velocity of the particlepi instead of
currentgbest. By learning from the neighborhood ofgbest,
the possibility of falling into the local optima could be greatly
decreased.

The schematic diagram of the proposed learning strategy is
shown in Fig. 2, and its detailed procedure is given as follows:

p(i)

gbest

pbest(a)

p(m)

p(n)

pbest(i)

Fig. 2. The schematic diagram of the distance-based dynamic neigh-
borhood,k = 4.

Distance-Based Dynamic Neighborhood:
For i = 1, 2, ..., N

Identify each particle’s neighborhood (i.e., the nearestk

TABLE I
STRATEGIES FOR SELECTINGpbestj , gbestj AND ACCELERATION

COEFFICIENTS

State Mode c1 c2 pbestj gbestj

Convergence ξ(k) = 1 2 2 pi,j(k) pg,j(k)
Exploitation ξ(k) = 2 2.1 1.9 pm,j(k) pg,j(k)
Exploration ξ(k) = 3 2.2 1.8 pi,j(k) pn,j(k)
Jumping-out ξ(k) = 4 1.8 2.2 pm,j(k) pn,j(k)
1 pm andpn represent the particles shown in Fig. 2.

particles topbest(i)) based on the calculated Euclidean
distance

Identify gbest’s neighborhood (the nearestk particles to
gbest) based on the calculated Euclidean distance

For j = 1, 2, ..., dim
Choose one particle from the swarm randomly (except

the ith particle), termed asath particle
Choose one particle from the neighborhood of the
pbest(a) randomly, termed asmth particle

Choose one particle from thegbest’s neighborhood
randomly, termed asnth particle

Learn from themth particle and thenth particle
Endfor

Endfor

C. Switching Learning Strategy

The switching learning strategy of the proposed DNSPSO
algorithm is displayed in Table I. It should be pointed out
that c1 andc2 are set on the basis of our previous work [43].
Meanwhile, more details can be founded in [46] where the
authors have presented a strategy for selectingc1 andc2.

According to Eq. 2, a large value ofc1 benefits the individ-
ual search and a small value ofc2 mitigates the influence of
gbest. The main purpose of the exploitation and exploration
states is to thoroughly discover the search space and avoid
the particles being trapped in local optima. In this case, both
exploitation and exploration states have a small value ofc2
and a large value ofc1. In the jumping-out state, a large value
of c2 and a small value ofc1 are adopted, which aims to push
the particles away from current best positions.

Except for value settings for acceleration coefficientsc1
andc2, more comprehensive descriptions of the four searching
states are provided as follows:

• In the convergence state, the velocity updating strategy
in the DNSPSO algorithm is the same as that of the
traditional PSO algorithm. That is, each particle learns
from its ownpbest and the currentgbest.

• In the exploitation state, particles are encouraged to
search the problem space as much as possible, especially
the regions aroundpbest of each individual particle. For
the particlepi, we first randomly select another particle
among the swarm, and then randomly select a particle
termed aspm from the neighbor of the selected particle’s
pbest. Finally, we replace the originalpbest of particlepi
by pm. In this way, the particles share information among
the swarm, which benefits the particles to exploit through
the whole problem space.
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• In the exploration state, all the particles tend to search
around the region of discovered optimal solution for pre-
venting from falling into the local optimal. Therefore, we
randomly select a particle termed aspn in the distance-
based dynamic neighborhood ofgbest to replace the
currentgbest. In this way, the swarm in the DNSPSO
algorithm could have wider searching regions instead of
crowding around the currentgbest with high possibility
of being a local optimum.

• In the jumping-out state, all the particles are driven to
escape from the current local optimum and discover a
better optimal solution. In this case, we simultaneously
adjust thepbest and gbest like steps in the exploitation
and exploration phases in order to find a better global
optimum as soon as possible.

In addition, the evolutionary factorEf represents the pop-
ulation diversity. The larger theEf , the worse the diversity.
The inertia weightw is determined byEf , which is shown in

w = 0.5 ∗ Ef + 0.4 (6)

and more detailed information can be refereed in [38].

D. Differential Evolution

The DE algorithm, as a stochastic population-based evolu-
tionary algorithm, has been extensively investigated for im-
proving the performance of the PSO algorithm [42], [45]. The
hybridization of the DE algorithm could not only guarantee
the diversity of thepbest and gbest but also enhance the
capability of escaping from the local optima. In this paper,
the DE algorithm exploits thepbest of all particles with the
aim of generating new improved positions according to the
following steps.

First, a mutant vector is generated by the mutation opera-
tion:

vi,j = pbesti,j + F ∗ (pbestr1,j − pbestr2,j) (7)

wherer1 andr2 are random numbers which are in the range
of [1, 2, ..., N ]; andF represents the mutation factor∈ [0, 1].

Then, a trial vector is replaced with the mutant vector if
the randomly generated numberr is less than the crossover
constantCR, otherwise, it takes value of the currentpbest:

ui,j =

{

vi,j , if r ≤ CR
pbesti,j, otherwise

(8)

Finally, the pbesti and gbest are updated by the winner
between the generated trial vector and the corresponding
original values, in terms of the values of fitness function
(taking the minimization problem as an example):

{

pbesti = ui, if f(ui) < f(pbesti)
gbest = ui, if f(ui) < f(gbest)

(9)

Hence, the DE algorithm is integrated perfectly into the pro-
posed DNSPSO approach, and the flowchart of the proposed
DNSPSO algorithm is illustrated in Fig. 3.

Start

End

Initialize particles of the swarm and

the parameters of the DNSPSO

Evaluate the fitness value of each particle

Calculate the mean distance and evolutionary

factor for each particle according to (3), (4)

Update the state in the next generation based on the

current state and the probability transition matrix (5)

Calculate the inertia weight according to (6)

Select the acceleration coefficients, pbest

and gbest according to the Table I

Update the velocity and the position according to (2)

k=k+1

If k=maximum iteration?

No

Yes

Generate better pbest and gbest by differential

evolution algorithm

Compute the distance-based dynamic

neighborhood of each particle and gbest

Fig. 3. The flowchart of DNSPSO algorithm

IV. SIMULATION EXPERIMENTS

A. Experiments Setup

To verify the validity of the proposed DNSPSO algorithm,
experiments are conducted on 14 benchmark functions in
terms of unimodal functions, multimodal functions and rotated
multimodal functions [31], [37], [41]. It should be pointedout
that the developed DNSPSO algorithm aims to improve the
performance of PSO on complicated multimodal optimization
problems.f1(x) andf2(x) are unimodal functions which are
chosen as the first group of benchmark functions. The second
group is composed of seven complex multimodal functions
(f3(x)−f9(x)) which contain a large number of local optima.
The third group includes four rotated multimodal functions,
where the rotated variabley is generated by left multiplying
an orthogonal matrixM , described asy = M ∗ x. Note that
the orthogonal matrix is generated by using the Salomon’s
method [31]. The detailed information of all the benchmark
functions is shown in Table II, where “Acceptance” represents
the threshold for determining whether solutions found by PSO
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TABLE III
SELECTED PSOALGORITHMS

Algorithm Parameters Reference
PSO-LDIW w : 0.9− 0.4, c1 = c2 = 2 [34]
PSO-TVAC w : 0.9− 0.4, c1 : 2.5− 0.5, c2 : 0.5− 2.5 [30]

PSO-CK w : 0.729, c1 = c2 = 1.49 [6]
SPSO Automatically chosen [38]

LEPSO w : 0.9− 0.4, c1 = c2 = 2 [1]
SLEPSO Automatically chosen [42]
DNSPSO Automatically chosen Proposed

algorithms are acceptable or not. If the obtained solution falls
within the threshold, it is regarded as a successful result.

The performance of the DNSPSO algorithm is compared
with that of 6 existing PSO algorithms including the PSO-
LDIW algorithm [34], the PSO-TVAC algorithm [30], the
PSO-CK algorithm [6], the SPSO algorithm [38], the LEPSO
algorithm [1] and the SLEPSO algorithm [42].

In the proposed DNSPSO algorithm, the transition proba-
bility π is set to be 0.9, and the initial state is set as 1 (the
convergence state). The size of two neighborhoods (pbest and
gbest) is 5. In the DE algorithm, the mutation factorF linearly
increases from 0.5 to 1, andCR linearly decreases from 0.9 to
0.4. Note that the parameters of the other six PSO algorithms
are set according to the corresponding references as shown in
Table III.

In our simulation, the swarm contains 30 particles, and the
dimension of all benchmark functions is 30. The number of
fitness evaluations (FEs) is set to be5 × 104. Each experi-
ment is repeated 30 times independently for each benchmark
function.

B. Comparisons on the Solution Accuracy

In order to comprehensively evaluate the solution quality of
the PSO algorithms, the mean value, best value and standard
deviation (Std. Dev.) value of each benchmark function are
summarized in Table IV, where the best results are highlighted
in boldface. For simplicity, the convergence processes of mean
fitness values for 7 PSO algorithms applied to 6 typical
benchmark functions are graphically shown in Fig. 4.

We can see that the DNSPSO algorithm achieves the best
performance on most of 14 test functions among the 7 PSO
algorithms. In particular, the DNSPSO algorithm ranks first
on 12 functions (f1, f3-f12, andf14) according to the mean
value, and also ranks second onf2 andf13.

To be specific, in Table IV, we can see that the SPSO
algorithm, the LEPSO algorithm, the SLEPSO algorithm, and
the DNSPSO algorithm obtain the global minimum onf1. In
addition, the DNSPSO algorithm gets the second best global
mean value which is very close to the best result, with the
smallest Std. Dev. value forf2. Hence, the DNSPSO algorithm
demonstrates competitive performance on unimodal problems.

For multimodal problems without rotation, it can be clearly
seen that the developed DNSPSO algorithm performs better
than other 6 PSO methods. It can be observed from Table IV
and Fig. 4 that the solution accuracies are greatly improved
by the DNSPSO algorithm when applied to the functions
of f3, f4, f6 and f7. Notice that the DNSPSO algorithm

gets the global resultsfmin on f4 and f6. In addition, the
proposed DNSPSO algorithm achieves the best performance
on f5 and f8 in terms of the mean value and best value.
For f9, the DNSPSO algorithm, the PSO-TVAC algorithm,
the LEPSO algorithm as well as the SLEPSO algorithm all
find a satisfactory solution. It is worth mentioning that several
PSO algorithms obtain the same mean value and best value
on thef9 function, which reflects the fact that the Penalized
problem is easily trapped in the local optimum.

For multimodal problems with rotation, the developed
DNSPSO algorithm outperforms the other 6 PSO algorithms.
In particular, the DNSPSO algorithm has remarkable perfor-
mances when solving the functions off11, f12 andf14. That
is, only the DNSPSO algorithm can achieve the accuracies of
10−17 on f11, 0.8 on f12, and38 on f14. Forf10, the LEPSO,
SLEPSO, and DNSPSO algorithms find a close solution,
where the results of the SLEPSO and DNSPSO algorithms
are slightly better than the result obtained by the LEPSO
algorithm. Meanwhile, the proposed DNSPSO algorithm ranks
second onf13, which is quite close to the first obtained by the
LEPSO algorithm. It should be pointed out that the results of
optimization problems with rotation are generally worse than
those of the optimization problems without rotation, whichis
related to the increase of the problem complexity.

C. Comparisons of Convergence Performance

It is known that convergence performance is of key impor-
tance to evolutionary algorithms. The mean FEs, successful
rate (SR(%)) and success performance (SP) are selected as
performance indices [47] for comparison in a quantitative
manner, which is shown in Table V. The mean FEs stands for
the average evaluation number required to reach an acceptable
solution, notably, it only takes the “successful” trails ofall 30
runs into account. SR(%) represents the successful percentage
of 30 trails for each test function. As some PSO algorithms
cannot search the optimal solution in every trail on some func-
tions, the mean FEs cannot comprehensively demonstrate the
convergence performance of PSO algorithms. Therefore, SP
is exploited to further evaluate the evolutionary performance,
whereSP = Mean FEs

SR
. In addition, the ranks of SP and SR

for the selected PSO algorithms are also presented in Table V.
It should be mentioned that the corresponding SP ranking is
7 if there is no successful trail for a function.

It can be clearly seen from Table V that the DNSPSO
algorithm finds a solution within the acceptable threshold for
all test functions, which is verified by the SR index with
100% on all the benchmark functions. Notice that some PSO
algorithms fail all trails on some optimization problems, for
example, PSO-CK fails onf5, f7, f10, SPSO fails onf7,
f10, and PSO-TVAC fails onf10. The proposed DNSPSO
algorithm yields the highest reliability with 100% on aver-
age SR, followed by LEPSO (98.57%), SLEPSO (92.14%),
PSO-TVAC (85.71%), PSO-LDIW (84.29%), SPSO (60%),
and PSO-CK (55%). Therefore, the DNSPSO algorithm is a
reliable optimization algorithm with a high success rate on
both unimodal and multimodal problems.

In terms of SP, the DNSPSO algorithm on 14 functions
ranks second overall among the selected PSO algorithms. The
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TABLE II
FOURTEEN BENCHMARK FUNCTIONS USED FOR THE COMPARISON

Test Function D Search Space Globalx Global fmin Acceptance Name
f1 30 [−100, 100]D {0}D 0 0.01 Sphere
f2 30 [−10, 10]D {0}D 0 100 Rosenbrock
f3 30 [−5.12, 5.12]D {0}D 0 50 Rastrigin
f4 30 [−5.12, 5.12]D {0}D 0 50 Noncontinuous Rastrigin
f5 30 [−32, 32]D {0}D 0 0.01 Ackley
f6 30 [−600, 600]D {0}D 0 0.01 Griewank
f7 30 [−500, 500]D {420.96}D 0 2000 Schwefel
f8 30 [−0.5, 0.5]D {0}D 0 0.01 Weierstrass
f9 30 [−50, 50]D {0}D 0 0.01 Generalized Penalized
f10 30 [−32, 32]D {0}D 0 0.01 Rotated Ackley
f11 30 [−600, 600]D {0}D 0 100 Rotated Griewank
f12 30 [−0.5, 0.5]D {0}D 0 10 Rotated Weierstrass
f13 30 [−5.12, 5.12]D {0}D 0 100 Rotated Rastrigin
f14 30 [−5.12, 5.12]D {0}D 0 100 Rotated Noncontinuous Rastrigin

D represents the dimension of test function.

TABLE IV
THE COMPARISONS OF SEARCHING RESULTS AMONG SEVENPSOALGORITHMS ON FOURTEEN BENCHMARK FUNCTIONS

PSO-TVAC PSO-LDIW PSO-CK SPSO LEPSO SLEPSODNSPSO
f1 Mean 7.76e-128 1.45e-307 2.50e-323 0 0 0 0

Best value 6.70e-168 3.00e-323 0 0 0 0 0
Std. Dev. 2.45e-127 0 0 0 0 0 0

f2 Mean 20.97 65.84 2.34 26.76 4.88e-30 5.02e-30 4.95e-30
Best value 1.33 12.02 3.52e-21 3.99 0 0 0
Std. Dev. 20.67 99.83 2.66 26.45 1.06e-29 7.75e-307.70e-30

f3 Mean 17.01 10.94 62.50 54.13 5.07 30.05 1.19
Best value 11.94 4.97 40.79 33.83 0.99 14.92 0
Std. Dev. 3.88 4.01 16.24 15.82 2.46 9.86 1.31

f4 Mean 13.70 3.30 36.30 14.70 0.30 1 0
Best value 8 0 17 2 0 0 0
Std. Dev. 3.86 7.72 16.56 10.59 0.48 1.41 0

f5 Mean 8.70e-15 7.99e-15 1.84 0.79 7.64e-15 6.93e-156.57e-15
Best value 7.99e-15 7.99e-15 0.93 4.44e-15 4.44e-15 4.44e-15 4.44e-15
Std. Dev. 2.25e-15 0 0.55 0.87 1.12e-15 1.72e-15 1.83e-15

f6 Mean 0.0275 0.0135 0.0231 0.0152 7.40e-04 0.0079 0
Best value 3.44e-15 0 0 0 0 0 0
Std. Dev. 0.0284 0.0129 0.0226 0.0148 0.00234 0.0105 0

f7 Mean 2.03e+03 2.41e+03 5.69e+03 5.84e+03 7.92e+02 2.83e+03 5.45e+02
Best value 1.30e+03 1.88e+03 4.80e+03 4.94e+03 1.18e+02 1.34e+03 3.82e-04
Std. Dev. 4.70e+02 5.04e+02 6.11e+02 5.65e+02 4.71e+02 1.17e+03 4.07e+02

f8 Mean 2.42e-14 5.65e-06 2.48 1.69 1.71e-14 1.49e-141.21e-14
Best value 2.13e-14 1.42e-14 1.42e-14 0.00713 1.42e-14 0 7.11e-15
Std. Dev. 3.67e-15 1.79e-05 1.75 2.04 3.67e-15 7.07e-15 4.80e-15

f9 Mean 1.57e-32 1.58e-32 0.249 1.57e-32 1.57e-32 1.57e-321.57e-32
Best value 1.57e-32 1.57e-32 1.57e-32 2.73e-32 1.57e-32 1.57e-32 1.57e-32
Std. Dev. 2.88e-48 4.08e-34 0.3067 0.265 2.88e-48 2.88e-482.88e-48

f10 Mean 1.80 1.33 2.97 2.51 7.28e-15 6.93e-156.93e-15
Best value 1.34 7.99e-15 1.78 0.93 4.44e-15 4.44e-154.44e-15
Std. Dev. 0.40 0.98 1.04 0.87 1.50e-15 1.72e-151.72e-15

f11 Mean 0.0111 0.0182 0.0186 0.0235 1.66e-04 0.005911.11e-17
Best value 0 0 0 0 0 0 0
Std. Dev. 0.0122 0.0233 0.0279 0.0301 5.26e-04 0.006593.51e-17

f12 Mean 4.59 4.36 10.25 9.99 1.43 3.12 0.819
Best value 2.69 1.58 6.54 6.91 0.199 0.639 9.04e-04
Std. Dev. 1.27 1.31 2.69 2.07 1.07 1.98 0.60

f13 Mean 41.73 57.21 1.06e+02 66.07 30.35 49.95 38.70
Best value 22.91 40.79 95.68 42.56 21.89 37.81 20.89
Std. Dev. 15.91 15.98 12.00 15.02 6.05 8.15 14.06

f14 Mean 42.00 51.50 74.13 60.81 43.53 59.58 38.10
Best value 20.00 37.00 36.13 38.20 28 27 29
Std. Dev. 25.10 11.77 22.71 15.68 9.77 26.16 7.56

DNSPSO algorithm performs the best onf11, f13, and f14,
ranks second on 5 functions (f5, f7, f9, f10, f12), ranks third

on f6 andf8, ranks fourth onf1 andf2, and ranks seventh on
f3 andf4. For two unimodal problems, the DNSPSO algorithm
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Fig. 4. Convergence performance on benchmark functions. (a) Rosenbrock. (b) Rastrigin. (c) Noncontinuous Rastrigin. (d) Griewank. (e)
Rotated Griewank. (f) Rotated Weierstrass.

falls behind three algorithms (PSO-CK, SPSO, and SLEPSO)
but with extremely close performance. This phenomenon is
consistent with the fact that particles in the DNSPSO algorithm
utilize the information of neighborhoods ofpbest and gbest
to escape from local optima, which leads to a bigger mean
FEs than the PSO-CK algorithm, the SPSO algorithm, and
the SLEPSO algorithm.

In addition, the DNSPSO algorithm needs smaller mean FEs
when applied to optimizing most multimodal functions without
rotation. In particular, the DNSPSO algorithm significantly
outperforms the other contenders in a landslide by obtaining
three first and two second on five multimodal functions with
rotation. Meanwhile, the DNSPSO algorithm gets the largest
mean FEs on thef3 and f4, which may be caused by
the characteristics of Rastrigin and Noncontinuous Rastrigin
functions containing a large number of local optima. Note that

the solution accuracies off3 andf4 obtained by the DNSPSO
algorithm greatly surpass the other PSO algorithms, with a
rapid decline in the range from4×104 to 5×104 FEs, as shown
in Fig. 4. In summary, the developed DNSPSO algorithm
demonstrates satisfactory convergence rate on both unimodal
and multimodal problems, and significantly outperforms other
PSO variants on multimodal problems.

D. Analysis on the Neighborhood Size k

The selection of neighborhood sizek is of vital importance
to the performance of the DNSPSO algorithm. A series of
simulation experiments are conducted to find out how the
neighborhood size influences the algorithm performance. In
this work, two unimodal functions, three multimodal functions
without rotation and two multimodal functions with rotation
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TABLE V
THE COMPARISONS OF CONVERGENCE RATE AND SUCCESSFUL RATE AMONG SEVENPSOALGORITHMS ON FOURTEEN BENCHMARK FUNCTIONS

PSO-TVAC PSO-LDIW PSO-CK SPSO LEPSO SLEPSODNSPSO
f1 Mean FEs 8540 20815 336 312 885 302 514

SR(%) 100 100 100 100 100 100 100
SP 8540 20815 336 312 885 302 514

SP Rank 6 7 3 2 5 1 4
f2 Mean FEs 7940 19288 218 199 394 157 238

SR(%) 100 90 100 100 100 100 100
SP 7940 21400 218 199 394 157 238

SP Rank 6 7 3 2 5 1 4
f3 Mean FEs 8140 18600 142 174 17400 10900 31000

SR(%) 100 100 20 40 100 100 100
SP 8140 18600 710 435 17400 10900 31000

SP Rank 3 6 2 1 5 4 7
f4 Mean FEs 9130 21600 650 503 17300 522 26500

SR(%) 100 100 90 100 100 100 100
SP 9130 21600 722 503 17300 522 26500

SP Rank 4 6 3 1 5 2 7
f5 Mean FEs 8960 21400 - 403 4620 363 603

SR(%) 100 100 0 50 100 100 100
SP 8960 21400 - 805 4620 363 603

SP Rank 5 6 7 3 4 1 2
f6 Mean FEs 11200 21600 384 312 1400 621 913

SR(%) 40 50 40 50 100 80 100
SP 27900 43200 959 625 1400 777 913

Rank 5 7 4 1 5 2 3
f7 Mean FEs 6920 18400 - - 29300 44600 27600

SR(%) 60 20 0 0 100 20 100
SP 11500 92200 - - 29300 223000 27600

SP Rank 1 4 7 4 3 5 2
f8 Mean FEs 471 4390 871 1879 18.20 20 29.60

SR(%) 100 100 20 10 100 100 100
SP 471 4390 4360 18790 18.20 20 29.60

SP Rank 4 6 5 7 1 2 3
f9 Mean FEs 8420 18700 638 414 2300 275 483

SR(%) 100 100 40 40 100 100 100
SP 8420 18700 1590 1035 2300 275 483

SP Rank 6 7 3 4 5 1 2
f10 Mean FEs - 23895 - - 2070 386 639

SR(%) 0 20 0 0 100 100 100
SP - 119475 - - 2070 386 639

SP Rank 7 4 7 7 3 1 2
f11 Mean FEs 12.10 9.30 7.70 5.70 8.60 5.50 4.90

SR(%) 100 100 100 100 100 100 100
SP 12.10 9.30 7.70 5.70 8.60 5.50 4.90

SP Rank 7 6 4 3 5 2 1
f12 Mean FEs 6920 16700 196 1330 341 119 213

SR(%) 100 100 60 60 100 100 100
SP 6920 16700 327 2210 341 119 213

SP Rank 6 7 3 5 4 1 2
f13 Mean FEs 10900 16500 123 113 15500 183 101

SR(%) 100 100 100 100 100 90 100
SP 10900 16500 123 113 15500 203 101

SP Rank 5 7 3 2 6 4 1
f14 Mean FEs 8360 15200 126 112 6830 763 108

SR(%) 100 100 100 90 80 100 100
SP 8360 15200 126 125 8538 763 108

SP Rank 5 7 3 2 6 4 1
Ave. SP rank 5.07 6.21 4.07 3.36 4.43 2.21 2.93
Final SP rank 6 7 4 3 5 1 2

Ave. SR 85.71% 84.29% 55% 60% 98.57% 92.14% 100%
SR rank 4 5 7 6 2 3 1

are chosen for analyzing the neighborhood size. The results
of mean value, Std. Dev, mean FEs and SR(%) are shown
in Table VI. It should be pointed out that 1) the DNSPSO
algorithm obtains the SR of 100% for all selected seven
functions with differentk; and 2) the results of SP are the same
as the mean FEs and are therefore not shown in Table VI.

For the Sphere optimization problem, the DNSPSO algorith-
m performs well with different neighborhood sizes, and the
DNSPSO algorithm with a smallerk needs a smaller mean
FEs. For a complex unimodal problem and the Rosenbrock
problem, the performances of the DNSPSO algorithm with
different k are inconsistent. The results of the DNSPSO
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TABLE VI
INFLUENCES OF DIFFERENT NEIGHBORHOOD SIZES ON SEVEN TYPICALFUNCTIONS

Test Function Indicators k = 3 k = 4 k = 5 k = 6 k = 7

Sphere

Mean 0 0 0 0 0
Std. Dev. 0 0 0 0 0
Mean FEs 499.2 504 508.5 514.3 516.3

SR(%) 100 100 100 100 100

Rosenbrock

Mean 0.3987 6.6967e-30 5.2669e-30 0.3987 0.3987
Std. Dev. 1.2607 1.4810e-29 1.2581e-29 1.2607 1.2607
Mean FEs 275 247 279.8 341.1 262.1

SR(%) 100 100 100 100 100

Rastrigin

Mean 0.7960 0.2985 0.3980 0.7960 1.2934
Std. Dev. 0.9143 0.4806 0.5138 0.9143 1.3308
Mean FEs 30365.1 29351.7 22297.7 29391.6 28442.7

SR(%) 100 100 100 100 100

Griewank

Mean 7.3960e-4 9.8573e-4 0 0 9.8573e-4
Std. Dev. 0.0023 0.0031 0 0 0.0031
Mean FEs 711.7 836.7 652 652 689.9

SR(%) 100 100 100 100 100

Schwefel

Mean 645.4901 495.4677 436.2485 923.8213 992.9087
Std. Dev. 462.8494 352.4337 628.8176 703.7634 495.0306
Mean FEs 23031 25723.1 29288.6 23205.7 14687.8

SR(%) 100 100 100 100 100

Rotated Ackley

Mean 6.9278e-15 6.9278e-15 6.9278e-15 6.9278e-15 6.9278e-15
Std. Dev. 1.7161e-15 1.835e-15 1.835e-15 1.7161e-151.4980e-15
Mean FEs 622.8 643.6 638.8 642.3 655.5

SR(%) 100 100 100 100 100

Rotated Griewank

Mean 0.0017 3.3307e-17 3.3307e-17 0 3.2627e-05
Std. Dev. 0.0037 7.4934e-17 7.4934e-17 0 1.0317e-04
Mean FEs 5.5 4.5 4.9 5.5 4.2

SR(%) 100 100 100 100 100

algorithm whenk = 4 andk = 5 are much better than those
of other neighbor sizes. For multimodal functions without
rotation, the DNSPSO algorithm withk = 4 and k = 5
demonstrates competitive performance on the Rastrigin and
Schwefel functions, and it can provide outstanding perfor-
mances on the Griewank whenk is 5 and 6. Furthermore, the
DNSPSO algorithm with different neighborhood sizes obtains
the same result on the rotated Ackley function. In particular,
the DNSPSO algorithm achieves the global optimum on the
rotated Griewank problem when the neighborhood sizek is
set to 6.

Based on above discussions, therefore, we can summarize
the effects of neighborhood sizek on the performance of the
DNSPSO algorithm, which are: 1) the influence of neigh-
borhood sizek on the performance of DNSPSO algorithm
depends on the characteristic of optimization problems. For the
unimodal optimization problems, the neighborhood size canbe
chosen as a small value. A large neighborhood size is suitable
for multimodal problems, especially the rotated multimodal
ones; and 2) the neighborhood size is related to the swarm
size. In this paper, the neighborhood size is set as1/6 of the
swarm size.

V. CONCLUSIONS

In this paper, the DNSPSO algorithm has been proposed to
improve the search capability of the traditional PSO algorithm.
A distance-based dynamic neighborhood has been developed
where the neighborhood of the particles is dynamically updat-
ed at each iteration. The acceleration coefficients, personal best
particle and the global best particle of the DNSPSO algorithm

are automatically adjusted via the switching learning strategy
depending on the searching state. Particles in the DNSPSO
algorithm share information through the developed distance-
based dynamic neighborhood where the personal best particle
and the global best particle are replaced by the randomly
selected particles in their corresponding neighborhoods.Fur-
thermore, the DE algorithm has been utilized to further expand
the search space of the particles. Experimental results have
shown that the DNSPSO algorithm outperforms six PSO vari-
ants on 14 widely used benchmark functions in terms of the
solution quality and convergence performance, especiallyfor
complicated multimodal optimization problems. The influence
of neighborhood size on the performance of the DNSPSO
algorithm has also been comprehensively investigated and
demonstrates that the selection of neighborhood size should be
determined based on the property of the optimization problems
and the swarm size. In the future, we aim to further improve
the convergence rate of the developed DNSPSO algorithm. We
will also apply the DNSPSO algorithm to other research fields
such as event-triggered state estimation [9], moving horizon
estimation [50], [51], [52] and the self-organizing RBF neural
network [12].
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