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Abstract

A macroscopic loading model for multi-directional, time-varying and congested pedes-

trian flows is proposed in this paper. Walkable space is represented by a network of

streams that are each associated with an area in which they interact. To describe this

interaction, a stream-based pedestrian fundamental diagram is used that relates density

and walking speed in multi-directional flow. The proposed model is applied to two dif-

ferent case studies. The explicit modeling of anisotropy in walking speed is shown to

significantly improve the ability of the model to reproduce empirically observed walk-

ing time distributions. Moreover, the obtained model parametrization is in excellent

agreement with the literature.

Keywords: Pedestrian flow, network loading, macroscopic model, pedestrian

fundamental diagram, anisotropy, calibration.

1. Introduction

There is a general need to better understand pedestrian traffic in densely populated

areas such as airports, train stations, shopping malls or on busy pedestrian walkways.

While particular applications like evacuation have received considerable attention (Hel-

bing et al., 2002; Kirchner and Schadschneider, 2002), the simulation of general pedes-

trian flow is still insufficiently understood, in particular if multiple, potentially intersect-

ing pedestrian ‘streams’ are involved.
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It can be broadly distinguished between microscopic and macroscopic modeling ap-

proaches. Microscopic models describe the movement of individual agents through space

and time (e.g. Helbing and Molnár, 1995; Blue and Adler, 2001; Robin et al., 2009;

Asano et al., 2010). They are relatively costly in their application and typically hard to

calibrate (Hoogendoorn and Daamen, 2007). Macroscopic models consider traffic as a

continuum, both as far as pedestrian movements and trip-maker decisions are concerned

(e.g. Helbing, 1992; Hughes, 2002; Guo et al., 2011; Hoogendoorn et al., 2014). They

are typically less accurate in describing complex crowd movements, such as they occur

in congested or anisotropic flow. In return, their computation cost is independent of

the number of pedestrians, which is beneficial for applications on large networks, for

dynamic traffic assignment or for demand estimation (Abdelghany et al., 2012; Hänseler

et al., 2015b).

In this paper, we present a macroscopic network loading model that explicitly takes

anisotropy into account, i.e., the fact that the speed of pedestrians may differ depending

on their walking direction. This has not been achieved at the macroscopic level so far,

at least for the case of general multi-directional flow. We note that Jiang et al. (2009)

consider an anisotropic model which however is only capable of describing bi-directional

flow. Besides, there is a range of macroscopic models considering ‘multi-directional’ flow,

but no anisotropy (Hughes, 2002; Guo et al., 2011; Hänseler et al., 2014). In the remainder

of this paper, we first review the relevant body of literature on macroscopic modeling

and empirical characterization of multi-directional pedestrian flow. We then propose an

anisotropic loading model for pedestrians flows. The proposed model is calibrated on

real data and applied to two real case studies.

2. Literature review

Among the macroscopic approaches for modeling pedestrian flows, we focus on con-

tinuum models, and on related phenomenological models. The review is not meant to

be exhaustive, but rather to provide the necessary context for the modeling framework

presented in Section 3. For a comprehensive review of pedestrian flow models including

microscopic and hybrid models, we refer to Duives et al. (2013).

Continuum models interpret pedestrians as particles of flow that are conserved. They

formulate a set of partial differential equations (PDEs) in which walking speed is typically

determined by a fundamental diagram relating pedestrian density and speed. Inspired

by the kinematic wave theory, it is assumed that the fundamental diagram also holds for

non-stationary traffic, implying that pedestrians adapt their speed instantaneously with

infinite acceleration.

One of the first continuum models for pedestrian movements has been proposed by

Al-Gadhi and Mahmassani (1990), who study circular movements around religious stone

monuments during the Hajj, a Muslim pilgrimage to Makkah, Saudi Arabia. Their

approach has been generalized by Hughes (2002) in his seminal ‘continuum theory for

the flow of pedestrians.’ This theory is a two-dimensional extension of the Lighthill–

Whitham–Richard (LWR) model that is used to approximate the traffic movement on a
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uni-directional highway (Lighthill and Whitham, 1955; Richards, 1956). Hughes’ contin-

uum theory allows for multi-commodity flow involving pedestrians with different walking

directions and destinations.

Huang et al. (2009) show that the pedestrian route choice strategy in Hughes’ model

satisfies the reactive dynamic user equilibrium. A numerical procedure to solve the

coupled system of PDEs is presented and applied to a numerical example. Jiang et al.

(2009) extend this approach by adopting a bi-directional density-speed relationship that

can be used to simulate two groups of pedestrians traveling on crossing paths. The

emergence of lanes and stripes is reported. Such phenomena of self-organization had

already been observed previously in a similar model by Treuille et al. (2006), as well as

later by Colombo et al. (2012) who study pattern formation from a mathematical point

of view.

Hoogendoorn et al. (2014, 2015) derive a continuum model from a microscopic pedes-

trian model. As for the previous models, pedestrian flow is assumed in equilibrium by

setting all acceleration terms to zero. A closed-form expression for the walking speed

is obtained by approximating the density using a first-order Taylor series expansion.

The model is then specified such that a linear and isotropic density-speed relationship

results. Several numerical examples are considered using a two-dimensional Godunov

scheme (Lebacque, 1996; van Wageningen-Kessels et al., 2015a).

There are several further macroscopic continuum models that are noteworthy. In-

spired by classical fluid dynamics, Bellomo and Dogbé (2008) study the motion of pedes-

trians by describing a system of two PDEs invoking the conservation of mass and the

balance of linear momentum. Piccoli and Tosin (2011) present a measure-based model,

in which a family of measures are pushed forward by some flow maps, providing an esti-

mate of the space occupation of pedestrians at successive times. Schwandt et al. (2013)

use a multiphase approach based on a convection-diffusion equation and apply it to a

cross-flow experiment. Recently, Degond et al. (2013) have derived a continuum model

from a vision-based agent model (Ondřej et al., 2010), and Degond and Hua (2013) study

a hydrodynamic model of self-organized dynamics that is inspired from interactions of

animals observed in nature.

The above models have in common that they express a system of PDEs that are

solved numerically by discretization. The resulting solution schemes are similar to a

group of models that are referred to as ‘phenomenological.’ Phenomenological models

may provide a comparable level of detail in terms of spatial and temporal dynamics, but

they are not a direct product of the discretization of a system of PDEs. Having said that,

they lend many ideas from such discretization schemes, in particular the cell transmission

model (CTM, Daganzo, 1994, 1995). Phenomenological models leave more freedom to the

modeler and are sometimes more accurate, as the systems of PDEs discussed previously

do not represent any physical law in the first place. Furthermore, they are typically less

costly to apply in practice. In fact, with the exception of Al-Gadhi and Mahmassani

(1990), none of the above approaches have been calibrated on a real case study.

Asano et al. (2007) have been first to propose a generalized CTM to describe pedes-

trian flows. As used by Daganzo in the context of vehicular traffic, an isotropic trape-
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zoidal fundamental diagram is assumed in their pedestrian cell transmission model. No

framework for estimating ‘turning proportions’ is provided. Instead, the fractions of

pedestrians associated with each walking direction are exogenously given, and the exact

sequence of cells that a pedestrian traverses must be known in advance. This can be a

severe constraint for the application of their model in practice.

Extended by a discrete potential field, Guo et al. (2011) present a related framework to

study pedestrian route choice behavior and congestion during evacuation. A specification

of the exact sequence of cells for pedestrians is no longer required. However, their

framework is only capable of dealing with a trapezoidal fundamental diagram, which

is shown for the case of uni-directional flow. The use of a more general density-flow

relationship, as it may be found in applications different from evacuation, is not possible.

In a recent study, we have undertaken such an extension (Hänseler et al., 2014). The

proposed formulation allows for a general, non-linear pedestrian density-flow relation-

ship, which however needs to be isotropic. The concept of a cell-based potential field

is adapted, and combined with a logit-type en-route path choice model. It is shown

that, depending on the specification of the pedestrian model, various types of bottleneck

behavior ranging from disciplined queueing to impatient ‘jostling’ can be reproduced.

The large majority of macroscopic pedestrian models mentioned thus far rely on

isotropic density-speed relationships. Only Al-Gadhi and Mahmassani (1990) and Jiang

et al. (2009) consider a bi-directional fundamental diagram for two specific applications.

Yet pedestrian flow is in many cases multi-directional and, in particular under congested

conditions, anisotropic. Anisotropy is the property of being direction-dependent, here of

the walking speed. In anisotropic pedestrian flow, the walking speed at the same point

in space may be different depending on the orientation of a pedestrian. This definition

is consistent with that used in material science or physics (e.g. Sayir et al., 2008). For

an alternative definition of anisotropy in the context of microscopic models, see e.g.

Hoogendoorn and Bovy (2002).

In the following, some findings from empirical pedestrian research are recapitulated,

which are then used to construct a dynamic network loading model that can describe

multi-directional, anisotropic and congested pedestrian flows. This has been achieved

only at the microscopic level so far.

Several empirical studies consider a ‘stream’-based interpretation of flow to construct

an anisotropic pedestrian density-speed relationship. In these studies, multi-directional

pedestrian flow is decomposed into a set of uni-directional streams that interact within

the same space (Nikolić and Bierlaire, 2014). The direction of these streams depends on

the type of walking facilities and may be known a priori, or inferred from available data.

One of the earliest studies investigating anisotropy in pedestrian flow is due to Navin

and Wheeler (1969). They observe that counter-flow reduces walking speed, with a

maximum reduction of about 14.5% in case of a flow ratio of 10% : 90%, and a minimal

reduction of about 4% in case of symmetric flow. This is in qualitative agreement with

findings by Lam et al. (2002) who report that the maximum reduction in capacity is

around 19% for the same 10% : 90% split ratio.

Several researchers calibrate anisotropic density-speed relationships for pedestrian
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counter-flow, some of the earliest being Al-Gadhi et al. (2002). These relationships have

in common that the speed of a group of pedestrians moving in one direction depends on

the density of each of the two opposing streams. Zhang et al. (2012) provide a review of

more than two decades of research on bi-directional pedestrian fundamental diagrams.

While it seems widely acknowledged that the minor flow is slower than the major one,

they conclude that no commonly accepted model formulation for bi-directional pedes-

trian fundamental diagram exists yet. Based on their own experiments, they find that

anisotropy becomes apparent for densities beyond 1 ped/m2, and that the maximum

specific flow in uni-directional streams is significantly larger than that in a bi-directional

setting.

In a later study, Zhang and Seyfried (2014) extend their experiments to include cross-

flow, i.e., bi-directional pedestrian flow with an orthogonal intersection angle. They find

little difference in the shape of the pedestrian fundamental diagram between counter-

and cross-flow and hypothesize that the anisotropic effects reducing the walking speed

are independent of the intersection angle.

These results are in contrast with the findings by Wong et al. (2010) who experimen-

tally investigate the bi-directional pedestrian flow with intersection angles of 45◦, 90◦,

135◦ and 180◦. They find that the conflicting effect maximizes for a head-on situation

with a 180◦-intersection angle. Based on their experimental results, they propose a bi-

directional pedestrian density-speed relationship that considers the stream densities and

intersection angle. In a related study, Xie and Wong (2015) generalize that approach

to a n-directional pedestrian stream model, i.e., a pedestrian fundamental diagram that

explicitly considers the joint presence of n uni-directional streams.

Empirical observations show that it is often problematic to relate a single speed to

each density level in pedestrian flow. Nikolić et al. (2016) consider probabilistic formula-

tions of an isotropic density-speed relationship to relax this assumption. Depending on

factors such as the local flow pattern, trip purpose, age and gender, different pedestrians

may walk slowly or run fast under the same conditions. In the context of macroscopic

models, a density-speed relationship is primarily used to approach the expected speed

at a given density. Thus, deterministic formulations are sufficient for the remainder of

this work.

A typical phenomenon of multi-directional pedestrian flow is the formation of pat-

terns of self-organization (Helbing et al., 2005). Self-organization, such as the dynamic

formation of lanes, leads to more efficient behavior when pedestrians walk in different

directions (Moussaïd et al., 2010). Pedestrian fundamental diagrams can capture these

patterns only implicitly (see e.g. Zhang et al., 2012). The explicit modeling of phenomena

of self-organization at both the microscopic and macroscopic level is already discussed

widely in the literature (Helbing and Molnár, 1995; Treuille et al., 2006; Jiang et al.,

2009; Hoogendoorn et al., 2014).

In this paper, we aim to overcome the assumption of isotropy adopted in macro-

scopic pedestrian models by developing a dynamic network loading model that relies on

a stream-based formulation of a pedestrian fundamental diagram. The proposed model

is motivated by Hughes’ continuum theory and recent research focusing on the empiri-
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cal characterization of multi-directional pedestrian flow. The mathematical formulation

is based on a heuristic, multi-directional discretization scheme that is related to the

cell transmission model. Besides the explicit consideration of anisotropy, the model is

designed to be easily applicable to large and complex real-world applications. A Java

implementation and several illustrative test cases are available on GitHub (Hänseler and

Lederrey, 2015).

3. Model framework

We consider a discrete-time discrete-space model where each time interval τ ∈ T is

of uniform length ∆t. As suggested by Løvås (1994), walkable space is represented by

a directed graph G = (N, Λ), where N represents the set of nodes ν ∈ N, and Λ the

set of directed streams λ ∈ Λ. Nodes through which pedestrian traffic is discharged and

leaves the network are referred to as origin/destination nodes, and their set is denoted by

NOD ⊆ N. While their typical position is at the border of a walking facility, OD nodes

can also be located in the interior if they represent an access way to e.g. an elevator or

an escalator. Nodes have no physical length.

A stream λ connects two nodes and has a fixed length Lλ > 0. It carries pedestri-

ans only in one direction. Streams are obtained by decomposing the generally multi-

directional flow. This decomposition depends on the prevalent pedestrian flow, and

the geometry of the walking facility. It is assumed that a meaningful decomposition is

known a priori. In the literature on empirical flow characterization, several decomposi-

tion strategies are discussed (Nikolić and Bierlaire, 2014; Xie and Wong, 2015).

Walkable space is furthermore partitioned into a set of areas X. Every stream λ

is associated with an area ξ ∈ X, defining a space in which it interacts with other

streams. The surface size of an area ξ is denoted by Aξ, which takes into account a

potential presence of internal obstacles. Such obstacles include any object that reduces

the walkable space, such as a pillar or a trash bin. No prior assumptions about the shape

and size of areas are necessary. The set of streams associated with area ξ is denoted by

Λξ, with Λξ ⊂ Λ and Λξ ∩Λξ′ = ∅ if ξ , ξ′.

Fig. 1 illustrates the proposed space representation at the example of a longitudinal

corridor with an orthogonal space discretization. In this illustration, multi-directional

flow is decomposed into left-right as well as diagonal movements, resulting in six distinct

flow directions. Areas are delimited by solid lines, streams represented by dashed lines,

and nodes by circles. Since streams are direction-specific, each dashed line in Fig. 1

represents two streams, one in each direction. Pedestrians may cross from one area to

another at any position along the joint boundary, and not only through nodes. Likewise,

when traversing areas, pedestrians are not confined to the dashed lines, which only

represent their direction of flow conceptually. Origin/destination nodes at both ends of

the corridor are represented by the two stars.

An orthogonal discretization as in Fig. 1 represents the most common specification

for flow models relying on a fundamental diagram (Treuille et al., 2006; Huang et al.,

2009). The size of areas is typically between 1 m2 and 10 m2. In this range, the model
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Figure 1: Illustration of space representation.

dynamics are found to be approximately scale-invariant. Specifically, we have tested sev-

eral discretization meshes in that range at the example of the case studies presented later,

with no significant changes in the resulting model dynamics and calibration parameters.

For artificial test scenarios with abrupt changes in demand and density, this result may

however not hold. The main alternatives to an orthogonal space discretization are tri-

angular or hexagonal grids (Guo et al., 2011; Chen et al., 2014; van Wageningen-Kessels

et al., 2015b). Even irregular discretization geometries may be envisaged if they better

fit the infrastructural layout.

A route ρ is defined by a pair of origin and destination nodes (νρ
o, ν

ρ

d
), νρ

o, ν
ρ

d
∈ NOD,

and a set of streams Λρ that connect them. The set Λρ may be obtained by selecting

streams individually, or by including all streams that are associated with a set of areas.

There can be several routes connecting the same pair of OD nodes. Each route starts

and ends at an OD node, but cannot contain any OD node in between. The set of all

routes is denoted by R.

Depending on the network G and the set of streams Λρ, multiple ‘stream sequences’

may connect the origin and destination of a route ρ. Such stream sequences are referred

to as paths. To avoid their explicit enumeration, the concept of a path is not explicitly

used. Instead, the choice of a path within a route is considered by means of turning

proportions that are computed at every node. They may depend both on the route and

the prevailing traffic conditions. Depending on their specification, pedestrians may be

distributed across multiple paths within a route, or stick to a single one, for instance the

shortest path.

Pedestrians are organized in ‘packets.’ A pedestrian packet ℓ is characterized by a

route ρℓ, a departure time interval τℓ, and the number of people Xℓ that it contains.

The set of all packets is denoted by L ⊂ R × T . The size Xℓ of each pedestrian packet

ℓ ∈ L is assumed to be known a priori, and the corresponding demand vector is denoted

by X = [Xℓ]. Such information can be inferred from a demand estimation framework in

combination with a suitable route choice model, which are readily found in the literature

(Cascetta et al., 1993; Hoogendoorn and Bovy, 2004; Hänseler et al., 2015b).
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A conservation principle with respect to the number of pedestrians on each stream is

combined with an empirical density-speed relationship for calculating the flows between

them. Within a stream, pedestrians are assumed to be homogeneously distributed,

and their movements are not modeled explicitly. Moreover, pedestrians are assumed

to be homogeneous with respect to their walking characteristics. An extension to multi-

commodity flow is in principle possible (see e.g. Cooper, 2014), but out of the scope of

this work.

When pedestrian packets are propagated along the streams, they disperse by splitting

up into ‘fragments.’ In principle, pedestrian packets can split indefinitely, but they merge

again such that there is at most one fragment per packet in a stream. From a practical

view point, dispersion can be seen as mimicking the presence of slow and fast pedestrians.

This is an interesting property for traffic assignment, where estimates of walking time

distributions are more useful than simple point estimates.

The state of the model at any time interval is described by the distribution of the

fragments on the network. The number of pedestrians associated with packet ℓ in stream

λ during time interval τ is denoted by Mℓ
λ,τ

and referred to as the corresponding ‘frag-

ment size.’ The sum of all fragments in a stream λ during time interval τ is denoted by

Mλ,τ and referred to as the stream accumulation. The vector of stream accumulations

associated with area ξ and time interval τ is denoted by Mξ,τ = [Mλ,τ], with λ ∈ Λξ.

Similarly, each stream λ during time interval τ is associated with a walking speed

vλ,τ, which is grouped with the other stream speeds of the same area ξ in the velocity

vector vξ,τ = [vλ,τ], λ ∈ Λξ. It is assumed that a functional relationship between the

stream accumulation and velocity vectors for each area ξ and time interval τ exists. If

vf represents the ‘global’ free-flow walking speed, the stream velocity vector associated

with area ξ during time interval τ can be accordingly expressed as

vξ,τ = vfFξ,τ(Mξ,τ), (1)

where Fξ,τ(Mξ,τ) represents the corresponding dimensionless density-speed relation-

ship. Eq. (1) describes the relationship between the accumulation of each stream in an

area, and the corresponding pedestrian stream speeds. Several possible specifications,

both isotropic and anisotropic, are provided in Section 4. Note that in practice, mostly

time-invariant specifications are used due to the difficulty of calibrating time-dependent

models. The former are typically referred to as pedestrian fundamental diagrams.

Eq. (1) implies that pedestrians instantaneously adapt their speed if a change in

accumulation occurs. In traffic flow theory, this is characteristic for first-order flow

models. For pedestrian models, such an assumption is particularly well suited, since

pedestrians can accelerate from standstill to free-flow walking speed almost immediately

and vice versa (Weidmann, 1992).

Regarding the functional form of the vectorial density-speed relationship Fξ,τ(Mξ,τ),

two assumptions are made. These are inspired by Hughes’ continuum theory for pedes-

trian flows (Hughes, 2002).

First, it is hypothesized that in an unoccupied area, the walking speed in every

stream must be larger than zero, but may not exceed the global free-flow speed. If Fλ,τ
8



represents the entry in Fξ,τ associated with stream λ ∈ Λξ, this translates to

0 < Fλ,τ(0) ≤ 1 ∀ λ ∈ Λξ, ξ ∈ X, τ ∈ T , (2)

where 0 represents the null vector of length |Λξ|. The walking speed at zero density can

be lower than the global free-flow speed, which may be adequate for instance in uneven

terrain. It may however not be zero, excluding phenomena like waiting. The result-

ing formulation therefore represents an exclusive walking model like most macroscopic

approaches in the literature.

Second, walking speed is assumed not to increase with increasing stream accumula-

tion, i.e.,
∂Fλ,τ

∂Mλ′,τ

≤ 0 ∀ λ, λ′ ∈ Λξ, ξ ∈ X, τ ∈ T . (3)

For univariate density-speed relationships such as most isotropic fundamental diagrams,

Eq. (3) corresponds to the assumption of monotonicity. It is widely accepted under ‘nor-

mal’ conditions (Daganzo, 1994; Hughes, 2002), and required to guarantee the uniqueness

of a critical accumulation and speed, which is important for the envisaged model.

Some fundamental diagrams specify a jam density kjam, i.e., a density at which all

pedestrian movement halts. Equivalently, at the area level, a storage capacity N
jam
ξ

=

kjamAξ may be considered, representing the maximum number of pedestrians that can

be present in an area at any time. In that case, it is further required that

Fλ,τ(Mξ,τ) = 0 if Nξ,τ = N
jam
ξ

, (4)

where Nξ,τ =
∑

λ∈Λξ
Mλ,τ denotes the total accumulation in area ξ during time interval

τ.

To propagate pedestrians from one stream to the next, route-specific turning pro-

portions at each node need to be known. They may be exogenous, or computed by an

en-route path choice model based on the prevailing pedestrian traffic conditions. As-

suming that pedestrians associated with the same route follow the same en-route path

choice behavior, the turning proportion corresponding to the stream sequence λ → λ′

for the ensemble of people following route ρ that are in stream λ during time interval τ

may be denoted by δ
ρ

λ→λ′,τ
. Since pedestrians can only be sent to adjacent streams that

are part of their route, it must hold that
∑

λ′∈Θ
ρ

λ

δ
ρ

λ→λ′,τ
= 1, (5)

where Θ
ρ

λ
denotes the set of streams that originate from the end of stream λ and are

part of route ρ. Typically, a potential field is assumed to exist from which the turning

proportions for local path choice can be inferred (Hughes, 2002; Guo et al., 2011). These

turning proportions guide the pedestrians along their route to their desired destination,

taking the prevailing pedestrian traffic conditions into account. Depending on their

specification, the en-route path choice may resemble a diffusion model, a shortest path

model, or a mixture of both. In Section 4, a specification is provided that can reproduce

such walking behavior.
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Finally, the time discretization has to be such that pedestrians cannot traverse more

than one stream in a single time step. In numerical mathematics, this consideration is

referred to as the Courant–Friedrichs–Lewy (CFL) condition (Courant et al., 1967). It

can be expressed as

∆t ≤
Lλ

vf
, ∀ λ ∈ Λ. (6)

According to Eq. (6), the ratio of the shortest stream length and the free-flow walking

speed represents an upper bound for the time discretization. For instance, for the space

representation shown in Fig. 1, the constraining length is that of the diagonal streams,

which are shorter than the horizontal ones.

The actual choice of the time step ∆t is not critical for the stability of the model,

but known to have an influence on numerical dispersion and computational cost (van

Wageningen-Kessels et al., 2015a). In practice, it has been observed that such dispersion

can even lead to more realistic results (Lebacque, 1996). As such, the time step can be

seen as a calibration parameter. In this work, this possibility is not explored, and as in

most traffic flow studies, the bound defined in Eq. (6) is used to specify the time step,

i.e.,

∆t = min
λ∈Λ

{Lλ/vf} . (7)

Based on the above representation of pedestrians, walking space and time, as well

as the notion of a density-speed relationship and a conservation principle, a pedestrian

network loading model can be defined. The corresponding approach is inspired by Da-

ganzo’s cell transmission model and a recent adaptation to pedestrian flows (Daganzo,

1994; Hänseler et al., 2014). Details of the numerical scheme may be found in Appendix

A.

Conceptually, sending capacities are computed for each pedestrian fragment at every

time step. Simultaneously, for every stream and area, receiving capacities are computed.

Taking these capacity constraints into account, transition flows between streams may

be obtained. A ‘demand-proportional supply distribution’ is thereby assumed, i.e., no

distinction in the distribution of supply capacity with respect to specific directions is

made (Asano et al., 2007). In principle, other supply distribution schemes may be

envisaged. A variety of related models have been proposed in the literature dealing with

multi-legged junctions in road networks (Daganzo, 1995; Lebacque, 1996; Jin and Zhang,

2003). Most of these approaches are however specific to the case of vehicular traffic, and

not directly applicable in the context of pedestrian flows.

The resulting modeling framework represents a significant improvement over the

aforementioned pedestrian cell transmission model by Hänseler et al. (2014). In that

study, multi-directional pedestrian flow is approximated by an ‘equivalent’ uni-directional

flow with the same overall density, where the directionality of flow is entirely ignored.

Here, instead an explicit decomposition of flow into pedestrian streams is made, of which

each is associated with a distinct direction, density and speed. The concept of ‘cells’ is

replaced by that of ‘streams,’ which interact within ‘areas.’ To describe this interaction,

an anisotropic density-speed relationship can be used, whereas the previous approach
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only allows for isotropic formulations. This represents a critical improvement when de-

scribing multi-directional flows under congested conditions. While an isotropic approach

may be sufficient for modeling uni-directional flow or flow in absence of congestion, it

does not suffice for describing congested, multi-directional flow. Such flow conditions are

however increasingly found in railway stations, urban areas, or stadiums, representing

important fields of application of pedestrian network loading models for e.g. planning

purposes, demand estimation, or crowd management.

To apply the proposed model in practice, four types of exogenous inputs are required.

These are (i) the route flow demand in the form of the set of pedestrian packets L, (ii) a

network representation in the form of the set of streams Λ and their associated areas X,

(iii) a density-speed relationship such as an anisotropic fundamental diagram, and (iv)

an en-route path choice model that provides the turning proportions at nodes. The first

may be obtained by a demand estimation model, or by direct observation. The second

is given by the infrastructure of interest. The third and fourth input are discussed in

the following section.

4. Model specification and calibration

A specification of the stream-based pedestrian density-speed relationship and the

turning proportions is provided in the following. To assess the comparative advantage

of an anisotropic density-speed relationship, additional isotropic specifications are con-

sidered.

4.1. Density-speed relationship

To demonstrate the anisotropic features of the model, we propose a stream-based

pedestrian fundamental diagram (SbFD). It represents a generalization of the formulation

by Wong et al. (2010) to multiple streams that interact in a pair-wise manner as described

by Xie and Wong (2015). We however do not directly use Xie and Wong’s approach,

as it requires solving a fixed-point problem, for which the existence and uniqueness of a

solution are not a priori guaranteed. The specification is a means to explore the walking

behavior in the network loading model, and not the main focus of this research.

Let φλ,λ′ denote the intersection angle between streams λ and λ′ with φλ,λ′ = 0 if

λ = λ′, and let β and ϑ denote model parameters. We assume that the walking speed of

stream λ ∈ Λξ is given by

vλ = vf exp

−ϑ

(
Nξ

Aξ

)2
∏

λ′∈Λξ

exp

(
−β(1− cosφλ,λ′)

Mλ′

Aξ

)
. (8)

Eq. (8) represents a generalization of Drake’s one-dimensional traffic model (Drake

et al., 1967). The first exponential term considers the isotropic reduction in walking

speed induced by the overall accumulation in an area. A large value of ϑ implies a strong

reduction in walking speed with increasing accumulation, and vice versa. The second

term, i.e., the product of exponentials, represents the combined reduction in walking
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speed due to ‘friction’ with other pedestrian streams, depending on their density and

the intersection angle. Similarly, a large value of β increases the magnitude of these

anisotropic conflicting effects. In Appendix B, some properties of Eq. (8) are discussed,

and further explanation for the choice of the specification is provided.

Wong et al. (2010) estimate vf at 1.034m/s and ϑ at 0.075m4, and Xie and Wong

(2015) at 1.070m/s and 0.065m4, respectively. For β, no parameter estimates are avail-

able in the literature. If it is set to zero, Drake’s isotropic fundamental diagram,

vλ = vf exp

−ϑ

(
Nξ

Aξ

)2 , (9)

results.

For a rectangular space discretization, multi-directional flow is generally decomposed

in 12 uni-directional streams connecting each pair of area edges. There are eight dis-

tinct directions to cross an area, namely left/right, up/down, and diagonally. In the

subsequent case studies, accordingly there are up to eight directions of flow and up to

12 streams per area (see Fig. 3b).

We note that other, more advanced anisotropic formulations of pedestrian fundamen-

tal diagrams can be envisaged. In multi-directional pedestrian flow, different behavioral

regimes are likely to exist. For instance, for the major stream, a leader-follower behavior

may be predominant, while for the minor stream, collision avoidance is more important.

Both of these mechanisms probably depend differently on the intersection angle. A case

distinction for acute, right and obtuse angles may be beneficial. The exploration of such

advanced specifications is left for future research.

In terms of isotropic pedestrian density-speed relationships, one of the most widely

used specifications is that of Weidmann (1992), who defines the isotropic walking speed

of any stream λ in area ξ as

vλ = vf

{

1− exp

[
−γ

(
Aξ

Nξ

−
1

kjam

)]}
. (10)

According to Weidmann (1992), the free-flow walking speed is estimated at vf = 1.34m/s,

the shape parameter at γ = 1.913m−2, and the jam density at kjam = 5.4m−2. Spec-

ification (10) has been obtained from a literature review, trying to describe different

settings using a single relationship. As such, it may not be the most realistic fundamen-

tal diagram for any specific flow configuration, but one that is comparably general and

applicable in absence of anisotropy.

Finally, as a benchmark for the assessment of the various formulations, a ‘zero-model’

is considered, where the walking speed is constant over space and time and given by

vλ = vf. (11)

Further information related to these density-speed relationships, in particular including

a derivation of critical densities, is provided by Hänseler (2016).
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4.2. Turning proportions

It is assumed that a potential field exists from which local turning proportions at

each node can be inferred (Hughes, 2002; Guo et al., 2011). These turning proportions

are traffic-dependent and route-specific. Each node ν is assigned a potential Pρ
ν,τ repre-

senting the remaining walking time along the fastest path on route ρ at traffic conditions

as they are prevalent during time interval τ. The potential Pρ
ν,τ can be calculated using

any shortest path algorithm (Dijkstra, 1959). For any node ν that is not associated with

route ρ, it is set to infinity.

In principle, various specifications including a linear attribution scheme may be used

to deduce turning proportions from node potentials. In the context of discrete choice

theory (Ben-Akiva and Lerman, 1985), the potential of a node may be interpreted as its

‘utility.’ Using a logit-type model with weight µ, the turning proportion associated with

the stream sequence λ → λ′ and route ρ during time interval τ, with λ′ ∈ Θ
ρ

λ
and ν the

joint node of streams λ and λ′, can be calculated by

δ
ρ

λ→λ′,τ
=

exp
(
−µP

ρ

νd
λ′
,τ

)

∑
λ′′∈O

ρ
ν

exp
(
−µP

ρ

νd
λ′′

,τ

) , (12)

where the set of streams emanating from node ν ∈ N associated with route ρ is denoted

by Oρ
ν. This specification is memory-less in that the choice of the next stream λ′ depends

only on the current node, but not on the previous stream λ. This property can be

exploited to reduce the cost of computing these fractions.

Moreover, specification (12) assumes that pedestrians rely solely on instantaneous

information to make their path-choice decisions. No predictive information is available

to them, and travel cost to the respective destination is minimized in a reactive manner

(Hoogendoorn and Bovy, 2004).

In the literature, several related methods have been proposed to generate potential

fields, and to derive turning proportions from them (Hughes, 2002; Treuille et al., 2006;

Guo et al., 2011; Hänseler et al., 2014). The concept as such is rather well established, and

a large diversity of approaches exist. The latter is due to the complexity of pedestrian

route/path choice, which is influenced by various factors such as ambient conditions,

travel purpose, signage, habit or physical effort. Data availability is generally limited,

making an accurate modeling of these relationships difficult. In fact, neither Hughes

(2002) nor Guo et al. (2011) use real data to calibrate their model, and parameter

identifiability can be a problem (Hänseler et al., 2014). We leave the development of

more detailed models for future research.

4.3. Calibration

A pseudo maximum likelihood framework is used to calibrate the model (Besag,

1975; Gourieroux et al., 1984). The calibration is based on walking times, which are

comparatively easy to observe, yield a robust parametrization, and are an important

output of a network loading model. Previously, we have also investigated the use of
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other calibration measures, such as density and local flows, or a combination thereof

(Hänseler et al., 2014). The results have shown that a calibration based on walking

times alone yields an accurate parametrization, and greatly simplifies the estimation

process as compared to a multi-objective optimization problem. Besides, for some of the

case studies analyzed in the following, only demand and walking time data are available

anyway.

In the following, it is assumed that for each pedestrian i, the route ρi, the departure

time t
dep
i

and the walking time tti are known by observation without measurement

error. The observed walking time ttobs
i

of pedestrian i is considered as a draw from a

random variable TTobs
i

, whose distribution fobs
i

is unknown. In practice, knowledge of

that distribution is not available, except if the same experiment is run multiple times

(Kretz et al., 2006).

Let fest
i

(tt|X,θ) denote the walking time probability density of pedestrian i that is

generated by the model for a demand X and a set of parameters θ. It is given by the

walking time distribution of the corresponding pedestrian packet ℓ(i), with t
dep
i
∈ τℓ and

ρi = ρℓ.

The pseudo log-likelihood to reproduce the walking time vector ttobs = [ttobs
i

] for a

sample of n pedestrians can then be expressed as

L̃(ttobs|X,θ) =

n∑

i=1

log
(
festi (ttobs

i |X,θ)
)
. (13)

The objective of the calibration is to find a parametrization θ such that the pseudo

likelihood of reproducing the observed walking times is maximized, i.e.,

θ̂ = arg max L̃(ttobs|X,θ). (14)

Eq. (14) is referred to as the pseudo maximum likelihood estimator. It differs from

the actual maximum likelihood estimator in that any correlation between measurements

is neglected. There are generally two sources of correlation, namely serial and spatial.

Serial correlation is mostly an issue if multiple measurements of the same pedestrian are

considered. This is not the case here, since only one walking time estimate per person

is available. Spatial correlation occurs if observations are dependent across pedestrians.

Such clustering is indeed present in that several pedestrians may be associated with

the same pedestrian packet, and thus be described by the same estimated walking time

distribution. This leads to an artificial weighting of these distribution terms, which the

pseudo likelihood does not account for.

With decreasing packet sizes, the clustering effect vanishes. By changing the space

discretization, the time discretization changes through Eq. (7), and indirectly the packet

sizes can be influenced. In the case studies described in the next section, the discretiza-

tion is such that a large majority of packets contain at most two or three pedestrians,

and are of similar size. We have tested different discretizations and found only a very

small influence on the estimates (Lederrey, 2015). At least if packets are small, the role of

spatial correlation seems to be negligible, and the maximization of the pseudo likelihood
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defined in Eq. (13) provides a consistent estimate of the parameters. If large packets are

present, other estimation techniques such as indirect inference may be more appropriate

(Gourieroux et al., 1993).

Even if it is unbiased, the pseudo likelihood estimator is less efficient than the actual

maximum likelihood estimator. Standard techniques for statistical inference need in

principle to be adapted for use in a pseudo likelihood setting. Specifically, the Cramér-

Rao bound is generally not reached, and the standard likelihood-ratio test does not

apply, as the asymptotic distribution of the differences in pseudo log-likelihoods is not

χ2-distributed (Dodge, 2006). Following Hoogendoorn and Daamen (2007), and taking

into account the negligible role of clustering in the considered case studies, we still

provide standard variance estimates. We note however that their significance in a pseudo

likelihood framework is limited, and refer to the literature for generalized approaches

that should be used if pedestrian packets are large (Bai, 1999; Moreira, 2003). To assess

the goodness-of-fit of a specification, the Akaike information criterion (AIC) based on

the pseudo likelihood is reported. We have also computed the Bayesian information

criterion (BIC), and found that it agrees with the AIC on the preferred model for each

of the studied cases.

The estimator defined by Eq. (14) represents an improvement notably over the cali-

bration routine used by Hänseler et al. (2014). In that study, a least squares approach

based on mean walking times has been employed. The newly proposed method is superior

in that it is statistically more rigorous and computationally more efficient.

To solve Eq. (14), a derivative-free trust-region method for constrained optimiza-

tion in combination with random sampling of initial parameters is used (Powell, 2009).

Other globally convergent optimization methods such as simulated annealing or evolu-

tionary algorithms yield the same results, but turn out to be slower. Derivative-based

optimization methods are not recommended, as no derivative information of Eq. (14) is

available.

5. Case studies

Two case studies are considered, one based on a set of pedestrian counter-flow ex-

periments conducted in Hong Kong, China, and one based on a pedestrian cross-flow

experiment in Berlin, Germany. The first is particularly useful in that it explores a large

range of pedestrian traffic conditions, and the second in that it considers the walking

behavior of a typical student population in their daily environment. From a method-

ological point of view, the first case study allows to investigate aspects such as model

performance, robustness and predictive power, and the second case study is useful for

obtaining a concrete specification applicable to real case studies.

5.1. Counter-flow experiments

Wong et al. (2010) provide a set of 89 controlled experiments in which two pedestrian

groups of varying size intersect at different angles. These experiments were carried out in

a sports hall in Hong Kong, and video footage is available. Among the set of experiments,
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those with high densities and an intersection angle of 180◦ yield the highest level of

anisotropy (Wong et al., 2010). Table 1 provides a list of the corresponding experiments,

and Fig. 2 describes the 3 m wide and 9 m long walking corridor for the controlled

experiments.

(a) Sample image extracted from experiment #85
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(b) Walkway configuration

Figure 2: Experimental setup of counter-flow experiments (Wong et al., 2010).

Table 1: Observed walking speeds in counter-flow experiments.

Exp. major group minor group

#84 87 ped 1.08 ± 0.15 m/s – –

#85 79 1.19 ± 0.13 9 ped 0.80 ± 0.14 m/s

#86 68 0.90 ± 0.10 18 0.74 ± 0.15

#87 61 0.82 ± 0.06 26 0.67 ± 0.10

#88 53 0.83 ± 0.09 30 0.79 ± 0.15

#89 44 0.79 ± 0.10 44 0.79 ± 0.18

Each experiment is conducted once and lasts about 1 min. Pedestrians associated

with the major group wear blue hats, and those associated with the minor group wear

green hats. Due to a flat viewing angle and high density, no automatic data processing

is feasible. Instead, we have manually extracted the departure and walking time of

each pedestrian in the six experiments of interest. The ratio of the pedestrian group

sizes varies from approximately 10:0, 9:1, 8:2, 7:3, 6:4 to 5:5, of which the first and last
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experiment yield isotropic flows.

To evaluate the proposed model specifications, they are calibrated on two experi-

ments, and cross-validated on the remaining ones. We have tested different compositions

and sizes of the training and validation sets, but the results do not change significantly.

Importantly, the training set should contain experiments with anisotropic walking behav-

ior. In the following, experiments #85 and #87 are used for calibration, and experiments

#84, 86, 88 and 89 for validation. Table 2 shows the obtained parameter values and the

corresponding AIC values for four different density-speed relationships. The number of

observations available for each experiment corresponds to the number of pedestrians in-

volved, and is indicated in brackets. The number of estimation parameters is two, three,

four and four for the Zero-, Drake-, Weidmann and SbFD-model, respectively.

Table 2: Results of calibration and validation on counter-flow experiments.

Zero-Model Drake SbFD Weidmann

AICcalib
85,87 (175 obs.) 837.7 754.0 704.5 729.4

vf [m/s] 1.166 ± 0.001 1.170 ± 0.001 1.115 ± 0.000 1.169 ± 0.001

µ [-] 1.43 ± 0.06 12.15 ± 0.29 10.18 ± 2.02 14.84 ± 0.30

ϑ [m4] 0.078 ± 0.000 0.001 ± 0.004

β [m2] 0.210 ± 0.005

γ [m-2] 4.92 ± 0.20

kjam [m-2] 6.58 ± 0.46

AICvalid
84

(87 obs.) 355.2 338.4 311.4 348.2
AICvalid

86
(86 obs.) 381.7 371.3 355.3 401.4

AICvalid
88

(83 obs.) 400.3 384.6 364.0 435.3
AICvalid

89
(88 obs.) 458.2 408.8 396.8 454.6

The stream-based pedestrian fundamental diagram (SbFD) reaches a better AIC value

than the two other fundamental diagrams (Weidmann, Drake), both as far as the training

set and the validation experiments are concerned. Interestingly, this not only holds for

the anisotropic experiments (#86, #88), but also for the uni-directional pedestrian flow

experiment (#84) and that with equal flow shares (#89). A look at the mean walking

times for the major and minor pedestrian groups in each experiment corroborates that

finding (see Table 3). The SbFD-model is able to estimate walking times that are closer

to the ones observed, in particular for the minor group. This can also be seen from the

significant reduction in the squared error reported at the bottom of Table 3.

In Table 2, the obtained estimates for the free-flow walking speed vary between

1.115 m/s and 1.170 m/s with generally small errors. For the same parameter, Wong

et al. (2010) report a value of 1.034 m/s, which is slightly lower. With the exception of

the result for the zero-model (µ = 1.43), the values obtained for the path choice param-

eter µ lie in the range between 10 and 15, which is relatively high as a comparison to

the second case study will show. A high value implies that pedestrians tend to stick to

the fastest path, which in an experiment like this is expected. A low value on the other

hand leads to dispersion, which explains the low estimate obtained by the zero-model.

Dispersion is the only way for the zero-model to reproduce a distribution of walking
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Table 3: Walking times for counter-flow validation experiments.

Exp. Groups ttobs [s] ttZero [s] ttDrake [s] ttSbFD [s] ttWeidmann [s]

#84 87 / 0 8.5 / - 9.5 / - 9.1 / - 8.1 / - 8.3 / -

#86 68 / 18 10.1 /12.7 9.5 / 9.5 10.0 / 10.8 9.4 /12.5 8.8 / 9.5

#88 53 / 31 10.9 /11.8 9.5 / 9.5 10.0 / 10.6 10.3 / 11.7 8.9 / 9.2

#89 44 / 44 11.8 /11.6 9.5 / 9.5 11.6 / 11.4 11.7 / 11.6 9.7 / 9.9

L2-error (weighted, [s]) 21.4 / 23.4 9.0 / 10.5 7.9 / 0.7 22.3 / 23.3

times for a given route, since it does not take into account any density-speed interaction.

The remaining parameters shown in Table 2 are in line with the literature, too.

For the Drake-model, the obtained value of ϑ (0.078 m4) is in good agreement with

previous estimates by Wong et al. (2010) and Xie and Wong (2015), reporting 0.075 m4

and 0.065 m4, respectively. The same parameter estimate for SbFD is significantly lower

(ϑ = 0.001 m4) since a significant reduction in walking speed at high densities is explained

by the friction with opposing pedestrian streams instead. This effect is quantified by the

parameter β, for which no comparison to the literature exists. Regarding the Weidmann-

specification, the values obtained for the jam density and shape parameter, kjam =

6.58 m−2 and γ = 4.92 m−2, are high compared to a European context, for which values

of kjam = 5.4 m−2 and γ = 1.913 m−2 are reported (Weidmann, 1992). In the Hong

Kong experiment, pedestrians are apparently particularly tolerant towards high densities,

reducing their walking speed less with increasing density. This is in line with observations

from the video footage, and with observations from previous researchers investigating

differences in fundamental diagrams across countries (Chattaraj et al., 2009).

5.2. Cross-flow experiment

Plaue et al. (2014) present a multi-directional pedestrian flow experiment conducted

in the entrance hall of a university building at TU Berlin, Germany. Unlike in the previ-

ous example, pedestrians are not confined to a pre-defined corridor, and not ‘conditioned’

from foregoing experiments. The observed population consists primarily of students, of

which many carry backpacks, musical instruments, or wear heavy winter clothing. The

setting is video-recorded using three networked cameras, and trajectories of pedestrians

are extracted using a semi-automatic photogrammetric method.

In total, 142 pedestrians traverse the hall from left to right, and 83 pedestrians

from top to bottom (see Fig. 3). They intersect at an angle of roughly 90◦ in a region

of about 25 m2. According to Plaue et al. (2014), the maximum density amounts to

5 ped/m2 and the duration of the experiment is 69 s. Fig. 3 shows a sample image of the

experimental environment, as well as of the modeling configuration of the walking area

concerned. As can be seen from Fig. 3b, the various entrance and exit zones are modeled

by six origin/destination nodes. Local obstacles, namely the two supporting columns,

are considered by an according reduction of the surface size of the affected areas.
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(a) Sample image
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(b) Area configuration

Figure 3: Setting of cross-flow experiment at TU Berlin (Plaue et al., 2014).

The various model parameters are calibrated on the full data set (see Table 4). The

number of observations corresponds to 225 measurements of walking times. Considering

the decrease in the AIC value as compared to the zero-model, all ‘non-trivial’ fundamental

diagrams represent improvements, with the anisotropic SbFD having the lowest AIC

value overall.

Table 4: Results of calibration on cross-flow experiment.

Zero-Model Drake SbFD Weidmann

AIC 1160.0 1101.0 1062.6 1098.8

vf [m/s] 1.307 ± 0.005 1.308 ± 0.001 1.308 ± 0.006 1.332 ± 0.002

µ [-] 1.16 ± 0.03 1.39 ± 0.02 2.64 ± 0.41 2.05 ± 0.20

ϑ [m4] 0.139 ± 0.004 0.143 ± 0.004

β [m2] 0.300 ± 0.008

γ [m-2] 1.76 ± 0.15

kjam [m-2] 5.99 ± 0.61

The parameter estimates shown in Table 4 are in agreement with intuitive expecta-

tions. The free-flow walking speeds are estimated between 1.307 m/s and 1.332 m/s,

which is similar to previous studies from Europe (e.g. 1.34 m/s according to Weidmann,

1992). The path choice parameter lies in the range between 1.16 and 2.64, which is sig-

nificantly lower than that in the Hong Kong experiments. Pedestrians seem more willing

to deviate from the fastest path, for instance to avoid zones of high density. The entrance

hall at TU Berlin leaves more room for such deviations than the narrow corridor used

in the Hong Kong experiments. The values obtained for the remaining parameters are

comparable to the ones found in the previous case study. The sensitivity to density is

however larger, as can be seen from the higher values of ϑ and β, as well as the lower

values of γ and kjam. Besides differences in the experimental conditions, this is likely
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due to the larger physique of Europeans and their lower tolerance to invasion of space

(Lam et al., 2002).

Of all parameters, the path choice parameter µ has the largest relative standard

deviation from the mean, referred to as the coefficient of variation (CoV). For SbFD,

the CoV of µ corresponds to 15.6%. In turn, the relative standard deviation of the

free-flow walking speed vf is the lowest with a CoV of 0.5%. This is in agreement with

our experience, according to which identifying the optimal value of vf is relatively easy,

whereas the calibration of µ takes more computational time. It is likely that a more

realistic specification of the en-route path choice model, or the use of other data than

walking times would improve its identifiability.

A further way to validate the estimation results is with the observed walking times.

Fig. 4 provides a scatter plot, comparing the observed walking time of pedestrian i,

ttobs
i

, to the estimated walking time distribution of the corresponding pedestrian packet

ℓ(i), as approximated by the mean tt
est

ℓ(i) (denoted by circles) and the standard deviation

(error bars). For visual guidance, a 45◦-reference line (dashed), as well as two isolines

(dotted) representing a deviation of ∆t = ±5 s are shown. In the figure captions, the

squared error is given for each specification.

As expected, the zero-model (Fig. 4a) cannot reproduce the full range of observed

walking times, as they are simply proportional to the walked path lengths. This can be

seen by the horizontal ‘stripes’ that appear in the scatter plot. Similarly, the Drake-

specification (Fig. 4b) predicts walking times that are confined to a relatively nar-

row band that does not represent the bandwidth observed in reality. The Weidmann-

specification (Fig. 4c) is able to reproduce the full width, but with such significant

scattering that no improvement in the squared error as compared to the Drake-model

is achieved. The SbFD-specification (Fig. 4d) finally is able to reproduce the observed

width, and the squared error is significantly reduced. The spreading is narrower than

that for Weidmann, and the estimated walking time distributions come to lie closer to

the 45◦-reference line. Nevertheless, the remaining scatter is still substantial. The ob-

served stochasticity is likely due to individual differences in walking behavior in presence

of congestion, ranging from a pro-active ‘sneaking through’ to a more passive ‘waiting

for a gap,’ which may cause a large prediction uncertainty.

Table 5: Aggregate route walking times for Berlin case study.

nped ttobs [s] ttZero [s] ttWeidmann [s] ttDrake [s] ttSbFD [s]

W→E (9 m) 118 12.4 (base) 10.8 (-12.7%) 14.0 (+12.6%) 13.3 (+7.2%) 12.6 (+1.8%)

N→SE/SW (7 m) 46 10.6 (base) 8.4 (-21.3%) 9.9 (-6.8%) 10.0 (-6.2%) 10.9 (+2.2%)

In relation to these scatter plots, Table 5 summarizes both the observed and estimated

aggregate walking times for the two most frequently used routes. Route ‘W→E’ (left to

right) carries the major pedestrian flow, and has a length of 9 m. Route ‘N → SE/SW’

(top to lateral nodes at the bottom) carries the minor pedestrian flow, and is approx-

imately 7 m long. The observed average walking speed of the major stream amounts
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(d) SbFD (L2-error: 39.2 s)

Figure 4: Scatter plot of walking times for Berlin case study.

to 0.72 m/s (= 9 m/12.4 s), whereas for the minor stream a walking speed of 0.66 m/s

(= 7 m/10.6 s) is observed, i.e., anisotropy is clearly present. This anisotropy is not

reproduced by neither the Drake- nor the Weidmann-based specification, which both

overestimate the walking time of the major stream, and underestimate the walking time

of the minor stream. The stream-based fundamental diagram (SbFD), however, yields

walking time estimates with errors of 1.8% and 2.2% only. This shows that the explicit

consideration of anisotropy for estimating the walking times is not only highly beneficial

at the disaggregate, but also at the aggregate level.
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6. Discussion

The two investigated case studies unanimously show that the anisotropic specification

of the proposed pedestrian network loading model is superior to those based on Weid-

mann’s or Drake’s fundamental diagram. This finding holds throughout the analysis

and is based on the Akaike information criterion, which takes the number of parameters

into account. The Hong Kong counter-flow experiments underline the importance of the

stream density ratio when studying walking speeds in congested, multi-directional flow.

The Berlin case study considers a cross-flow situation, where random variations in flow

direction are present due to pedestrians avoiding areas of high density, obstacles, or those

overtaking others. The two case studies together are representative in that they cover

both a large range of pedestrian traffic conditions and real-world flows in a challenging

environment. In each case, the SbFD-specification shows the best performance both in

the calibration and validation.

The calibrated model parameters are in good agreement with the literature. The

values of free-flow speed obtained for the Berlin case study are slightly higher than for

the Hong Kong case study. For instance, in case of the SbFD-specification, they amount

to 1.308 m/s and 1.115 m/s, respectively. Inversely, the jam density is lower in the

Berlin than in the Hong Kong case study, with values of 5.99 ped/m2 and 6.58 ped/m2.

All shape parameters indicate a stronger sensitivity of walking speed with respect to

pedestrian density in the Berlin case study. These differences can be explained by regional

differences between Europe and Asia (Lam et al., 2002; Chattaraj et al., 2009). Besides,

the tightly controlled experimental conditions in the Hong Kong experiments lead to a

route choice behavior that is mainly characterized by the pursuit of the shortest path.

In the Berlin case study, pedestrians tend to deviate more from the shortest path. The

resulting values of the en-route path choice parameter µ reflect that behavior.

The successful calibration of both the fundamental diagrams and the en-route path

choice model is particularly encouraging since only the pedestrian demand and walking

times are required, while typically their estimation necessitates measurements of density

and speed. For the calibration of multi-directional fundamental diagrams, usually even

trajectory data is required, which is expensive to collect.

A central strength of the proposed model is its computational performance. On a

standard desktop machine, the anisotropic pedestrian flows occurring in the Berlin case

study can be computed for a given parameter set in about one second, which is almost

100 times faster than real-time. In contrast, commercial microscopic simulators operate

typically at the speed of real-time only.

The small number of parameters, and the direct physical interpretation they allow

for, facilitate their transferability from one case study to another. If the proposed model

is to be used for a practical application without further calibration, we suggest to use

the parametrization obtained from the Berlin case study, whose experimental conditions

are particularly realistic. The corresponding specification of the stream-based pedestrian

fundamental diagram is illustrated by Fig. 5.

The contour plot shows the expected walking speeds in a counter-flow scenario for

various total densities (represented by the x-axis), and different stream density ratios
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Figure 5: Walking speed for bi-directional flow (SbFD, Berlin data).

(y-axis). Due to the symmetry of the problem, only the speed of one stream is shown.

At low densities, the difference in speed between the two opposing streams is relatively

small, independently of the stream density ratio. The prevalent speeds are close to the

free-flow speed. At high total densities (≥ 1.5 ped/m2), the prevalent speed of the major

stream can be several times higher than that of the minor stream, and speeds are in

general lower.

A limitation of the model is due to its exclusive consideration of macroscopic walk-

ing, ignoring other activities such as waiting or phenomena involving social interaction

between individuals. For instance, group walking patterns are known to significantly in-

fluence crowd dynamics (Moussaïd et al., 2010). Similarly, non-walking facility elements

such as turnstiles or stairs cannot be described by the model.

A further criticism may relate to the fact that phenomena of self-organization are not

reproduced by the proposed model specification. The spontaneous formation of lanes

in counter-flow, or of stripes in cross-flow, is indeed well known, both empirically (Hel-

bing et al., 2001) and from modeling (Helbing and Molnár, 1995; Treuille et al., 2006;

Hoogendoorn et al., 2014). The question of whether macroscopic models should be able

to reproduce such patterns is however debatable. First, it may be argued that empiri-

cally calibrated fundamental diagrams already capture the influence of self-organization

implicitly (Zhang et al., 2012). Second, most macroscopic models are deterministic,

whereas self-organized flow patterns emerge spontaneously, and can hardly be predicted.
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For instance, even for homogenous counter-flow in a simple corridor, the configuration

and position of lanes change over time, such that on average no lanes may be discernible.

Not predicting any spontaneous patterns of self-organization, and accounting for their

impact on flow implicitly, may thus be preferable in a deterministic modeling context.

Overall, the proposed model seems highly useful for the planning and design of con-

gested walking facilities. Typically, the assessment of pedestrian infrastructures is based

on aggregate quantities such as density and specific flow (Fruin, 1971; Highway Capac-

ity Manual, 2000). Such information is readily available from the model, allowing a

quantitative prediction of the expected level-of-service in pedestrian facilities (Hänseler

et al., 2015a). Due to the performance of the model, a large number of infrastructure

configurations and complex walking networks can be evaluated in little time. Even an au-

tomated optimization may be considered, using for instance an evolutionary framework

to ‘streamline’ the design of a facility (Helbing et al., 2002).

7. Conclusions

A dynamic network loading model for congested, multi-directional and time-varying

pedestrian flows has been presented. Its novelty lies in the explicit consideration of

anisotropy within a macroscopic framework, which is achieved by using a ‘stream-based’

fundamental diagram for pedestrian traffic. To assess the performance of the proposed

model, several isotropic and anisotropic specifications are considered, and evaluated at

the example of two case studies. The first considers a set of pedestrian counter-flow

experiments in Hong Kong, covering a particularly large range of experimental conditions.

The second case study focuses on a pedestrian cross-flow experiment in Berlin, involving

students in a university environment. A detailed analysis shows that the consideration

of anisotropy significantly improves the accuracy of the proposed model, and that a

stream-based pedestrian fundamental diagram outperforms all of the tested isotropic

specifications. The obtained specifications of pedestrian fundamental diagrams are in

excellent agreement with the literature.

In the future, the proposed model may be improved by developing specifications that

capture anisotropy in more detail. Besides, its application for OD demand estimation or

for crowd management seems interesting, as it is one of very few models that allow to

generate reproducible and accurate walking time distributions in a single run and at low

cost.
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Appendix A. Numerical scheme

Since pedestrian streams are uni-directional, the associated flow is given by the hy-

drodynamic theory as the product of speed and density. Specifically, for stream λ ∈ Λξ

during time interval τ, the flow increment during an infinitesimal time interval dt can

be expressed as

dQλ,τ =
Mλ,τ

Lλ
vfFλ,τ(Mξ,τ)dt. (A.1)

Based on Eq. (7), and by defining the minimum stream length as Lmin = minλ∈Λ Lλ, the

cumulative hydrodynamic flow of stream λ during time interval τ is given by

∆Qλ,τ =
Lmin

Lλ
Mλ,τFλ,τ(Mξ,τ). (A.2)

The cumulative hydrodynamic stream flow does not represent an actual flow, but is a

characteristic quantity from which further stream properties can be calculated (Daganzo,

1994).

Due to properties (2) and (3), the function defined in Eq. (A.2) is known to reach

a maximum ∆Qcrit
λ,τ

at a characteristic accumulation Mcrit
λ,τ

, referred to as the critical

cumulative hydrodynamic flow and the critical stream accumulation, respectively. For

each stream and time interval, the critical accumulation Mcrit
λ,τ

divides the density-flow

relationship (Eq. A.2) into a free-flow and a congested regime. In the free-flow regime,

an infinitesimal increase in accumulation leads to an increased cumulative hydrodynamic

flow. In the congested regime, inversely an increase in accumulation leads to a decrease

in pedestrian flow.

The critical accumulation associated with stream λ during time interval τ is computed

by assuming that the accumulation of all other pedestrian streams in the same area, M′
ξ,τ

with λ′ ∈ Λξ and λ′ , λ, are known, i.e.,

Mcrit
λ,τ = argmax

M≥0

MFλ,τ(M;M′
ξ,τ). (A.3)

If the critical walking speed of stream λ during time interval τ is given by vcrit
λ,τ

=

vfFλ,τ(M
crit
λ,τ

;M′
ξ,τ

), the critical cumulative hydrodynamic flow of stream λ during time

interval τ is given by

∆Qcrit
λ,τ =

Lmin

Lλ
Mcrit

λ,τ

vcrit
λ,τ

vf
. (A.4)

The cumulative hydrodynamic flow allows to determine an outflow capacity at the

end of a stream, and an inflow capacity at the beginning (Lebacque, 1996). The hy-

drodynamic outflow capacity can be thought of as the maximum amount of pedestrians

that could be sent to a next stream in case of an unlimited supply. It is defined as equal
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to the cumulative hydrodynamic flow if the stream is in the free-flow regime, and set

equal to the critical cumulative hydrodynamic flow if it is in the congested regime. The

hydrodynamic outflow capacity of stream λ during time interval τ is thus given by

∆Qout
λ,τ =

{
∆Qλ,τ if Mλ,τ ≤Mcrit

λ,τ
,

∆Qcrit
λ,τ

otherwise.
(A.5)

Likewise, the hydrodynamic inflow capacity can be considered as the maximum

amount of pedestrians that can be received by a stream in case of an infinite traffic

demand. It is equal to the critical cumulative hydrodynamic flow if the stream is in the

free-flow regime, and set equal to the cumulative hydrodynamic flow otherwise. This is,

the cumulative hydrodynamic inflow capacity of stream λ′ during time interval τ is given

by

∆Qin
λ′,τ =

{
∆Qcrit

λ′,τ
if Mλ′,τ ≤Mcrit

λ′,τ
,

∆Qλ′,τ otherwise.
(A.6)

Eq. (A.5) and Eq. (A.6) are similar as in the cell transmission model (Daganzo, 1994),

but defined at the stream- instead of the area-level.

The cumulative hydrodynamic inflow and outflow capacity are used to define the

receiving and sending capacity, respectively. The receiving capacity of stream λ′ during

time interval τ is equal to the cumulative hydrodynamic inflow capacity

Rλ′,τ = ∆Qin
λ′,τ, (A.7)

where a separate variable is defined for notational consistency with the original CTM.

Different from the original CTM, the receiving capacity does not take the area storage

capacity N
jam
ξ

into account. Instead, the storage capacity is considered at the area level

as described below.

The counterpart of the receiving capacity is the sending capacity. The sending ca-

pacity from stream λ to stream λ′ ∈ Θ
ρ

λ
for pedestrian packet ℓ during time interval τ is

given by

Sℓλ→λ′,τ = δ
ρℓ

λ→λ′,τ
min

{

Mℓ
λ,τ,

Mℓ
λ,τ

Mλ,τ

∆Qout
λ,τ

}

. (A.8)

The first term in the curly brackets ensures the conservation of pedestrian flow, i.e., not

more pedestrians may advance than are actually on the emitting stream. The second

term applies when the hydrodynamic outflow capacity does not suffice to advance all

pedestrians present on the stream concerned. In that case, a demand-proportional supply

distribution scheme is applied to determine the fraction of each pedestrian fragment that

is part of the sending capacity.

If the sending capacities exceed the available receiving capacity, they can only be

accommodated partially. Let the candidate inflow to stream λ′ during time interval τ be

given by

Sλ′,τ =
∑

λ′′∈Φ
ρ

λ′

∑

ℓ∈L

Sℓλ′′→λ′,τ, (A.9)
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where Φ
ρ

λ′
is the set of streams that terminate at the start node of stream λ′ and are

part of route ρ.

Taking the constraints at the stream level into account, the candidate transition flow

from stream λ to λ′ during time interval τ associated with pedestrian packet ℓ is expressed

as

Yℓ
λ→λ′,τ =

{
Sℓ
λ→λ′,τ

if Sλ′,τ ≤ Rλ′,τ,

ζℓ
λ→λ′,τ

Rλ′,τ otherwise.
(A.10)

If the candidate inflow to stream λ′ is inferior or equal to the corresponding receiving

capacity, the candidate transition flow is equal to the sending capacity. Otherwise, the

flow disperses and a demand-proportional supply distribution scheme is applied, i.e.,

ζℓλ→λ′,τ =
Sℓ
λ→λ′,τ

Sλ′,τ
. (A.11)

Finally, besides constraints at the stream level, also a storage constraint at the area

level should be considered if a jam density has been defined. Let the candidate inflow to

area ξ′ during time interval τ be given by

Yξ′,τ =
∑

λ′∈Λξ′

∑

λ′′∈Φλ′

∑

ℓ∈L

Yℓ
λ′′→λ′,τ. (A.12)

The actual transition flow from stream λ to λ′ ∈ Λξ′ during time interval τ associated

with pedestrian packet ℓ can then be expressed as

Gℓ
λ→λ′,τ =

{
Yℓ
λ→λ′,τ

if Yξ′,τ ≤ N
jam
ξ′

−Nξ′,τ,

ηℓ
λ→λ′,τ

(
N

jam
ξ′

−Nξ′,τ

)
otherwise.

(A.13)

If the residual storage capacity at the area level is sufficient, all candidate transition flows

are accommodated. Otherwise, a demand-proportional supply distribution is applied,

i.e.,

ηℓ
λ→λ′,τ =

Yℓ
λ→λ′,τ

Yξ′,τ
. (A.14)

If there is no storage capacity at the area level, it holds N
jam
ξ

→ ∞, and thus

Gℓ
λ→λ′,τ

≡ Yℓ
λ→λ′,τ

. This is the case for the large class of fundamental diagrams that

do not define a jam density (see Nikolić et al., 2016, for an overview).

For streams adjacent to origin/destination nodes, source and sink terms need to be

included. The generation term for stream λ : νλ
o → νλ

d
during time interval τ associated

with pedestrian packet ℓ is expressed as

Wℓ
λ,τ =






Xℓ if νλ
o = ν

ρℓ

o , τ = τℓ,

−Mℓ
λ,τ

if νλ
d
= ν

ρℓ

d
,

0 otherwise.

(A.15)

Source/sink areas are assumed to have infinite capacity. Newly added pedestrians that

are unable to advance to a next stream are retained in their origin area until the pedes-

trian traffic situation allows them to do so. Pedestrians reaching their destination are
27



immediately cleared out. If an exit capacity needs to be considered, this may be done

by interposing an area with a corresponding static capacity.

Once the transition flows and generation terms defined in Eq. (A.13) and Eq. (A.15)

are known, a flow balance equation allows to update the accumulation of each pedestrian

packet in every stream using the difference scheme

Mℓ
λ,τ+1 = Mℓ

λ,τ +
∑

λ′∈Φ
ρℓ
λ

Gℓ
λ′→λ,τ −

∑

λ′′∈Θ
ρℓ
λ

Gℓ
λ→λ′′,τ +Wℓ

λ,τ. (A.16)

If the demand and the initial state of the system, i.e., the fragment size of all pedes-

trian packets on all streams at τ = 0, are known, the propagation of pedestrian packets

along their routes can be computed by sequentially applying Eq. (A.16) to all packets

ℓ ∈ L, streams λ ∈ Λ and time intervals τ ∈ T .

Recursion (A.16) is independent of the processing order within a time interval, i.e.,

the order in which streams are updated does not have an influence on the dynamics

of the model. Moreover, Eq. (A.16) guarantees the conservation of each packet and

thus represents the discrete counterpart of the continuity equation that is used in fluid

dynamics.

Appendix B. Stream-based fundamental diagrams

The stream-based fundamental diagram ‘SbFD,’ defined by Eq. (8), belongs to a class

of density-speed relationships for which the walking speed of pedestrian stream λ can be

expressed as

vλ = vfR
iso
ξ

∏

λ′∈Λ

exp(−γλ,λ′kλ′). (B.1)

In Eq. (B.1), the variable vf denotes the free-flow walking speed, Riso
ξ
∈ [0, 1] an isotropic

reduction factor, γλ,λ′ a parameter describing the friction of stream λ′ on stream λ, and

kλ′ the density of stream λ′ (defined as Mλ′/Aξ′ in the loading model, where Aξ′ is the

size of area ξ′ with λ′ ∈ Λξ′).

The isotropic reduction factor Riso
ξ
(kξ) is a function of the area density kξ =

∑
λ∈Λ kλ.

In agreement with the ‘monotonicity’ assumption stated in Eq. (3), it is required that

∂Riso
ξ

∂kξ
≤ 0. (B.2)

The parameter γλ,λ′ is assumed to be independent of the densities of streams λ and λ′, as

well as independent of the properties of any other stream. Typically, γλ,λ′ is a function

of the intersection angle ϕλ,λ′ between streams λ and λ′. It is assumed that the pair-wise

friction between parallel streams is zero, i.e.,

γλ,λ′ = 0 if ϕλ,λ′ = 0. (B.3)

Stream-based fundamental diagrams that can be expressed in the form of Eq. (B.1)

and fulfill Eq. (B.3) are ‘self-consistent.’ This property is illustrated at an example.
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A

B′

B′′

ϕB′,B′′ → 0

(a) Three streams

A B

kB = kB′ + kB′′

(b) Two streams

Figure B.6: Illustration of self-consistency.

Consider a stream configuration as shown in Fig. B.6a, where streams A, B′ and B′′

with kA, kB′ , kB′′ , 0 interact. In the limit case ϕB′,B′′ → 0, the resulting speeds are

equivalent to those obtained for the configuration shown in Fig. B.6b, where the streams

B′ and B′′ are ‘merged’ to a single stream B such that kB = kB′ + kB′′ . This can be

verified by computing the resulting stream speeds for both configurations. Assuming

that ϕB′,B′′ = 0 and ϕA,B = ϕA,B′ , one obtains for stream A

vfR
iso
ξ exp(−γA,B′kB′) exp(−γA,B′′kB′′) = vfR

iso
ξ exp(−γA,BkB), (B.4)

where the LHS corresponds to Fig. B.6a, and the RHS to Fig. B.6b. Eq. (B.4) holds true

since γA,B = γA,B′ = γA,B′′ and kB = kB′ + kB′′ . For stream B, one obtains

vfR
iso
ξ exp(−γB′,AkA) exp(−γB′,B′′kB′′) = vfR

iso
ξ exp(−γB,AkA), (B.5)

which holds true since γB,A = γB′,A and γB′,B′′ = 0.

The self-consistency of fundamental diagrams associated with Eq. (B.1) is notably due

to the exponential form of the product terms, the linearity of the exponent (−γλ,λ′kλ′) in

kλ′ , its independence from any other stream densities, and due to the assumed absence

of inner friction as expressed by Eq. (B.3). Self-consistency is desirable for theoretical

reasons, but also to avoid a recalibration of the model in case parallel streams are merged

(see Fig. B.6). Particular emphasis is given to that property as already in the Berlin case

study multiple parallel streams are present (see diagonal streams in Fig. 3b). If only a

small number of streams with distinct angles are considered, self-consistency may be less

relevant. For instance, the specifications provided by Wong et al. (2010) and Xie and

Wong (2015) cannot be cast in the form of Eq. (B.1).

The SbFD defined in Eq. (8) results from Eq. (B.1) by setting Riso
ξ

= exp(−ϑk2
ξ
) as

well as γλ,λ′ = β(1 − cos(ϕλ,λ′)). We have tested several specifications of the isotropic

reduction term Riso
ξ

, including those proposed by Tregenza (1976) and Weidmann (1992),

as well as a linear specification (Older, 1968; Navin and Wheeler, 1969). This set of

specifications is motivated by the findings of Nikolić et al. (2016). An analysis based

on the case studies discussed in Section 5 shows that the Drake-model performs best

(Fonseca, 2015). This is in line with the results by Wong et al. (2010) and Xie and Wong

(2015), who also use the Drake-model to specify the isotropic reduction term.
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Likewise, we have examined several specifications of the parameter γλ,λ′ that de-

scribes the dependency of the pair-wise stream friction on the intersection angle ϕλ,λ′ .

A comparison with a linear and a piecewise linear model shows that the chosen trigono-

metric specification yields the best performance, at least as far as the AIC and BIC are

concerned. The specification γλ,λ′ = β(1− cos(ϕλ,λ′)) naturally respects Eq. (B.3), and

it is symmetric with respect to the 180◦-plane and 360◦-periodic. It implies that the

friction between streams is maximal for head-on flow, and that the friction grows most

rapidly at an intersection angle of ϕ = 90◦, i.e., when the behavioral regime changes

from ‘leader-follower’ to ‘collision avoidance’ (Bierlaire and Robin, 2009). Within each

of these behavioral regimes, the friction still grows with an increasing intersection an-

gle, but not as much as at the transitional angle ϕ = 90◦, where the slope amounts

to dγ/dϕ = β. Wong et al. (2010) propose the same relationship to describe the γ–ϕ-

dependency, whereas Xie and Wong (2015) consider a specification that is not symmetric

with respect to the 180◦-plane.
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