
A Dynamic Operating System for Sensor Nodes
Chih-Chieh Han, Ram Kumar, Roy Shea, Eddie Kohler and Mani Srivastava

University of California, Los Angeles
{simonhan, roy, kohler}@cs.ucla.edu, {ram, mbs}@ucla.edu

ABSTRACT

Sensor network nodes exhibit characteristics of both em-
bedded systems and general-purpose systems. They must
use little energy and be robust to environmental condi-
tions, while also providing common services that make
it easy to write applications. In TinyOS, the current state
of the art in sensor node operating systems, reusable
components implement common services, but each node
runs a single statically-linked system image, making it
hard to run multiple applications or incrementally up-
date applications. We present SOS, a new operating sys-
tem for mote-class sensor nodes that takes a more dy-
namic point on the design spectrum. SOS consists of dy-
namically-loaded modules and a common kernel, which
implements messaging, dynamic memory, and module
loading and unloading, among other services. Modules
are not processes: they are scheduled cooperatively and
there is no memory protection. Nevertheless, the system
protects against common module bugs using techniques
such as typed entry points, watchdog timers, and primi-
tive resource garbage collection. Individual modules can
be added and removed with minimal system interruption.
We describe SOS’s design and implementation, discuss
tradeoffs, and compare it with TinyOS and with the Maté
virtual machine. Our evaluation shows that despite the
dynamic nature of SOS and its higher-level kernel inter-
face, its long term total usage nearly identical to that of
systems such as Matè and TinyOS.

1 INTRODUCTION

Wireless sensor nodes—networked systems containing
small, often battery-powered embedded computers—can
densely sample phenomena that were previously diffi-
cult or costly to observe. Sensor nodes can be located
far from networked infrastructure and easy human ac-
cessibility, anywhere from the forest canopy [13] to the
backs of zebras [12]. Due to the difficulty and expense
of maintaining such distant nodes, wireless sensor net-
works are expected to be both autonomous and long-
lived, surviving environmental hardships while conserv-
ing energy as much as possible. Sensor network applica-
tions will change in the field as well; data returned from
the network can influence followup experiment design,
and long-lived networks will necessarily be retasked dur-
ing their lifetimes.

All of this argues for a general-purpose sensor network

operating system that cleanly supports dynamic applica-
tion changes. But sensor nodes are embedded systems as
well as general-purpose systems, introducing a tension
between resource and energy constraints and the layers
of indirection required to support true general-purpose
operating systems. TinyOS [15], the state-of-the-art sen-
sor operating system, tends to prioritize embedded sys-
tem constraints over general-purpose OS functionality.
TinyOS consists of a rich collection of software com-
ponents written in the NesC language [8], ranging from
low-level parts of the network stack to application-level
routing logic. Components are not divided into “kernel”
and “user” modes, and there is no memory protection,
although some interrupt concurrency bugs are caught by
the NesC compiler. A TinyOS system image is statically
linked at compile time, facilitating resource usage anal-
ysis and code optimization such as inlining. However,
code updates become more expensive, since a whole sys-
tem image must be distributed [10].

This paper shows that sensor network operating sys-
tems can achieve dynamic and general-purpose OS se-
mantics without significant energy or performance sacri-
fices. Our operating system, SOS, consists of a common
kernel and dynamic application modules, which can be
loaded or unloaded at run time. Modules send messages
and communicate with the kernel via a system jump ta-
ble, but can also register function entry points for other
modules to call. SOS, like TinyOS, has no memory pro-
tection, but the system nevertheless protects against com-
mon bugs. For example, function entry points are marked
with types using compressed strings; this lets the system
detect typing errors that might otherwise crash the sys-
tem, such as when a module expecting a new version of
an interface is loaded on a node that only provides the
old. SOS uses dynamic memory both in the kernel and in
application modules, easing programing complexity and
increasing temporal memory reuse. Priority scheduling
is used to move processing out of interrupt context and
provide improved performance for time-critical tasks.

We evaluate SOS using both microbenchmarks and the
application-level Surge benchmark, a well-known multi-
hop data acquisition program. Comparisons of Surge
versions running on SOS, TinyOS, and Maté Bombilla
virtual machine [14] show comparable CPU utilization
and radio usage; SOS’s functionality comes with only
a minor energy cost compared to TinyOS. Evaluation
of code distribution mechanisms in the same three sys-

Copyright held by the author 
163



tems shows that SOS provides significant energy savings
over TinyOS, and more expressivity than Maté Bombilla.
However, analytical comparisons of the total energy con-
sumed by the three systems over an extended period of
time reveals that general operating costs dwarf the above
differences, resulting in nearly identical total energy con-
sumption on the three systems.

The rest of the paper is structured as follows. Section 2
describes other systems that have influenced the SOS de-
sign. A detailed look at the SOS architecture is presented
in Section 3, including key differences between SOS and
TinyOS. A brief walk through of an SOS application is
presented in Section 4. An in-depth evaluation of SOS,
including comparisons to TinyOS and Maté Bombilla, is
presented in Section 5. Section 6 closes with ending re-
marks and directions for future work.

2 RELATED WORK

SOS uses ideas from a spectrum of systems research in
both general purpose operating system methods and em-
bedded systems techniques.

2.1 Traditional Operating Systems
SOS provides basic hardware abstractions in a core ker-
nel, upon which modules are loaded to provide both
higher level functionality. This is similar to microkernel
abstractions explored by the Mach [19] operating sys-
tem and the Exokernel [6]. Mach modularizes low layer
kernel services to allow easy customization of the sys-
tem. The Exokernel uses a minimal hardware abstraction
layer upon which custom user level operating environ-
ments can be created. SOS also uses a small kernel that
provides interfaces to the underlying hardware at a level
lower than Mach and higher than the Exeokernel.

SOS’s typed communication protocols were inspired
partially by SPIN [2], which makes kernel extensions
safe through the use of type safe languages.

2.2 Sensor Network Operating Systems
TinyOS [9] is the de facto standard operating system
for sensor nodes. TinyOS is written using the NesC lan-
guage [8] and provides an event driven operating envi-
ronment. It uses a component model for designing sen-
sor network applications. At compile time, a component
binding configuration is parsed, elements are statically
bound and then compiled to make a binary image that
is programmed into the flash memory on a sensor node.
TinyOS’s static binding facilitates compile time checks.
Like TinyOS, SOS is event driven and uses a component
model, but SOS components can be installed and modi-
fied after a system has been deployed.

Our experiences working with TinyOS helped to mo-
tivate the development and design decisions of SOS.

As described in section 5.1, approximately 21% of the
Mica2 specific driver code and 36% of the AVR specific
code included in the current SOS distribution is ported
directly from TinyOS.

The need for flexible systems has inspired virtual ma-
chines (VM), mobile agents, and interpreters, for sensor
nodes. One such system is Maté [14]. Maté implements
a simple VM architecture that allows developers to build
custom VMs on top of TinyOS and is distributed with
Bombilla, which demonstrates a VM implementation of
the Surge protocol. Sensorware [3] and Agilla [7] are de-
signed to enable mobile agent abstractions in sensor net-
works. Unfortunately, these approaches can have signif-
icant computational overhead, and the retasking of the
network is limited by the expressibility of the underly-
ing VM or agent system. SOS occupies a middle ground
with more flexibility and less CPU overhead than VMs,
but also higher mote reprogramming cost.

MANTIS [1] implements a lightweight subset of the
POSIX threads API targeted to run on embedded sen-
sor nodes. By adopting an event driven architecture, SOS
is able to support a comparable amount of concurrency
without the context switching overhead of MANTIS.

2.3 Dynamic Code
Traditional solutions to reprogrammable systems target
resource rich devices. Loadable modules in Linux share
many properties with SOS, but benefit from running on
systems that can support complex symbol linking at run
time. Impala [17] approaches the devices SOS targets
by implementing dynamic insertion of code on devices
similar to PDAs. At any given time, Impala middleware
chooses a single application to run based on the state of
application specific and global node state, allowing Im-
pala to execute an application that is the best fit to current
conditions. In contrast to this, SOS both expects and sup-
ports multiple modules executing and interacting on top
of the SOS kernel at the same time. An operating sys-
tem for 8-bit devices developed at the same time as SOS
and supporting modular dynamic code updates is Con-
tiki [5]. Contiki uses runtime relocation to to update bi-
naries loaded onto a node, as opposed to the completely
position independent code used by SOS. This results a
different low layer design choices in Contiki and SOS.

XNP [4] is a mechanism that enables over the air re-
programming of the sensor nodes running TinyOS. With
XNP a new image for the node is stored into an exter-
nal flash memory, then read into program memory, and
finally the node is rebooted. SOS module updates cannot
replace the SOS kernel, but improve on XNP’s energy
usage by using modular updates rather than full binary
system images, not forcing a node to reboot after up-
dates, and installing updates directly into program mem-
ory without expensive external flash access.

164



Low overhead solutions using differential patching are
proposed in [20] and [11]. In these schemes a binary dif-
ferential update between the original system image and
the new image is created. A simple language is used to
encode this update in a compressed form that is then dis-
tributed through the network and used to construct a new
system image on deployed nodes. This technique can be
used at the component level in SOS and, since changes
to the SOS kernel or modules will be more localized than
in tightly coupled systems, result in smaller differentials.

MOAP [22] and Deluge [10] are two protocols that
hove been used to distribute new system images to all
nodes in a sensor network. SOS currently includes a
publish-subscribe scheme that is similar to MOAP for
distributing modules within a deployed sensor network.
Depending on the user’s needs SOS can use MOAP, Del-
uge, or any other code distribution protocol. SOS is not
limited to running the same set of modules or same base
kernel on all nodes in a network, and will benefit from
different types of distribution protocols including those
supporting point-to-point or point-to-region transfer of
data.

3 SYSTEM ARCHITECTURE

In addition to the traditional techniques used in embed-
ded system design, the SOS kernel features dynamically
linked modules, flexible priority scheduling, and a sim-
ple dynamic memory subsystem. These kernel services
help support changes after deployment, and provide a
higher level API freeing programmers from managing
underlying services or reimplementing popular abstrac-
tions. Most sensor network application and protocol de-
velopment occurs in modules that sit above the kernel.
The minimal meaningful sensor network application us-
ing SOS consists of a simple sensing module and routing
protocol module on top of the kernel.

Table 1 presents memory footprints of the core SOS
kernel, TinyOS with Deluge, and Maté Bombilla virtual
machine. All three of these configurations include a base
operating environment with the ability to distribute and
update the programs running on sensor nodes. SOS na-
tively supports simple module distribution and the ability
to add and remove modules at run time. TinyOS is able
to distribute system images and reflash nodes using Del-
uge. The Maté Bombilla VM natively supports the trans-
fer and execution of new programs using the Trickle [16]
protocol. SOS is able to provide common kernel services
to external modules in a footprint comparable to TinyOS
running Deluge and a space smaller than the Maté Bom-
billa VM. Note that RAM usage in SOS is broken into
two parts: RAM used by the core kernel and RAM re-
served for the dynamic memory subsystem.

The following discussion takes a closer look at the
key architectural decisions in SOS and examines them

Platform ROM RAM
SOS Core 20464 B 1163 B
(Dynamic Memory Pool) - 1536 B
TinyOS with Deluge 21132 B 597 B
Bombilla Virtual Machine 39746 B 3196 B

Table 1—Memory footprint for base operating system with ability to
distribute and update node programs compiled for the Mica2 Motes.

Figure 1—Module Interactions

in light of the commonly used TinyOS.

3.1 Modules
Modules are position independent binaries that imple-
ment a specific task or function, comparable in function-
ality to TinyOS components. Most development occurs
at the module layer, including development of drivers,
protocols, and application components. Modification to
the SOS kernel is only required when low layer hardware
or resource management capabilities must be changed.
An application in SOS is composed of one or more in-
teracting modules. Self contained position independent
modules use clean messaging and function interfaces
to maintain modularity through development and into
deployment. The primary challenge in developing SOS
was maintaining modularity and safety without incurring
high overhead due to the loose coupling of modules. An
additional challenge that emerged during development,
described in more detail in section 3.1.4, was maintain-
ing consistency in a dynamically changing system.

3.1.1 Module Structure

SOS maintains a modular structure after distribution by
implementing modules with well defined and generalized
points of entry and exit. Flow of execution enters a mod-
ule from one of two entry mechanisms: messages deliv-
ered from the scheduler and calls to functions registered
by the module for external use. This is illustrated in fig-
ure 1.

Message handling in modules is implemented using a
module specific handler function. The handler function

165



Communication Method Clock Cycles
Post Message Referencing Internal Data 271
Post Message Referencing External Buffer 252
Dispatch Message from Scheduler 310
Call to Function Registered by a Module 21
Call Using System Jump Table 12
Direct Function Call 4

Table 2—Cycles needed for different types of communication to and
from modules in SOS when running on an Atmel AVR microcontroller.
The delay for direct function calls within the kernel is listed as a base-
line reference.

takes as parameters the message being delivered and the
state of the module. All module message handlers should
implement handler functions for the init and final mes-
sages produced by the kernel during module insertion
and removal, respectively. The init message handler sets
the module’s initial state including initial periodic timers,
function registration, and function subscription. The final
message handler releases all node resources including
timers, memory, and registered functions. Module mes-
sage handlers also process module specific messages in-
cluding handling of timer triggers, sensor readings, and
incoming data messages from other modules or nodes.
Messages in SOS are asynchronous and behave some-
what like TinyOS tasks; the main SOS scheduling loop
takes a message from a priority queue and delivers the
message to the message handler of the destination mod-
ule. Inter-module direct function calls are used for mod-
ule specific operations that need to run synchronously.
These direct function calls are made possible through a
function registration and subscription scheme described
in section 3.1.2. Module state is stored in a block of RAM
external to the module. Modules are relocatable in mem-
ory since: program state is managed by the SOS kernel,
the location of inter-module functions is exposed through
a registration process, and the message handler function
for any module is always located an a consistent offset in
the binary.

3.1.2 Module Interaction

Interactions with modules occur via messages, direct
calls to functions registered by a module, and ker * sys-
tem calls into the SOS kernel. The overhead for each of
these types of interactions is presented in table 2. Mes-
saging, detailed in section 3.2, provides asynchronous
communication to a module and enables scheduling by
breaking up chains of execution into scheduled subparts.
Messaging is flexible, but slow, so SOS provides direct
calls to functions registered by modules, which bypass
the scheduler to provide low latency communication to
modules.

Function registration and subscription is the mecha-
nism that SOS uses to provide direct inter-module com-
munication and upcalls from the kernel to modules.

Function Registration Action Clock Cycles
Register a Function 267
Deregister a Function 230
Get a Function Handle 124
Call to Function Registered by a Module 21

Table 4—Cycles needed for the function registration mechanism in
SOS when running on an Atmel AVR microcontroller.

Figure 2—Jump Table Layout and Linking in SOS.

When explicitly registering functions with the SOS ker-
nel, a module informs the kernel where in its binary im-
age the function is implemented. The registration is done
through a system call ker register fn described in table 3
with overheads detailed in table 4. A function control
block (FCB) used to store key information about the reg-
istered function is created by the SOS kernel and indexed
by the tuple {module ID, function ID}.

The FCB includes a valid flag, a subscriber reference
count, and prototype information. The stored prototype
information encodes both basic type information and wh-
ether a parameter contains dynamic memory that needs
to undergo a change of ownership. For example, the pro-
totype {’c’, ’x’, ’v’, ’1’} indicates a function that re-
turns a signed character (’c’) and requires one parame-
ter (’1’). That parameter is a pointer to dynamically al-
located memory (’x’). When a registered function is re-
moved, this prototype information is used by kernel stub
functions described in section 3.1.4.

The call ker get handle described in table 3 is used to
subscribe to a function. The module ID and function ID
are used as a tuple to locate the FCB of interest, and type
information is checked to provide an additional level of
safety. If the lookup succeeds, the kernel returns a pointer
to the function pointer of the subscribed function. The
subscriber should always access the subscribed function
by dereferencing this pointer. This extra level of indirec-
tion allows the SOS kernel to easily replace the imple-
mentation of a function with a newer version by chang-
ing the function pointer in the FCB, without needing to
update subscriber modules.

166



Prototype Description
int8 t ker register fn(sos pid t pid, uint8 t fid, Register function ’func’ with type ’prototype’ as being
char *prototype, fn ptr t func) supplied by ’pid’ and having function ID ’fid’.
fn ptr t* ker get handle(sos pid t req pid, Subscribe to the function ’fid’ provided by
uint8 t req fid, char *prototype) module ’pid’ that has type ’prototype’.

Table 3—Function Registration and Subscription API

Modules access kernel functions using a jump table.
This helps modules remain loosely coupled to the kernel,
rather than dependent on specific SOS kernel versions.
Figure 2 shows how the jump table is setup in memory
and accessed by a module. This technique also allows the
kernel to be upgraded without requiring SOS modules to
be recompiled, assuming the structure of the jump table
remains unchanged, and allows the same module to run
in a deployment of heterogeneous SOS kernels.

3.1.3 Module Insertion and Removal

Loading modules on running nodes is made possible
by the module structure described above and a minimal
amount of metadata carried in the the binary image of a
module.

Module insertion is initiated by a distribution protocol
listening for advertisements of new modules in the net-
work. When the distribution protocol hears an advertise-
ment for a module, it checks if the module is an updated
version of a module already installed on the node, or if
the node is interested in the module and has free program
memory for the module. If either of the above two con-
ditions are true, the distribution protocol begins to down-
load the module and immediately examines the metadata
in the header of the packet. The metadata contains the
unique identity for the module, the size of the memory
required to store the local state of the module, and ver-
sion information used to differentiate a new module ver-
sion. Module insertion is immediately aborted should the
SOS kernel find that it is unable to allocate memory for
the local state of the module.

A linker script is used to place the handler function
for a module at a known offset in the binary during com-
pilation, allowing easy linking during module insertion.
During module insertion a kernel data structure indexed
by the unique module ID included in the metadata is cre-
ated and used to store the absolute address of the han-
dler, a pointer to the dynamic memory holding the mod-
ule state, and the identity of the module. Finally the SOS
kernel invokes the handler of the module by scheduling
an init message for the module.

The distribution protocol used to advertise and propa-
gate module images through the network is independent
of the SOS kernel. SOS currently uses a publish sub-
scribe protocol similar to MOAP.

Module removal is initiated by the kernel dispatching
a final message. This message provides a module a final

opportunity to gracefully release any resources it is hold-
ing and inform dependent modules of its removal. After
the final message the kernel performs garbage collection
by releasing dynamically allocated memory, timers, sen-
sor drivers, and other resources owned by the module.
As described in section 3.1.4, FCBs are used to maintain
system integrity after module removal.

3.1.4 Potential Failure Modes

The ability to add, modify, and remove modules from
a running sensor node introduces a number of potential
failure modes not seen in static systems. It is important
to provide a system that is robust to these potential fail-
ures. While still an area of active work, SOS does pro-
vide some mechanisms to minimize the impact of poten-
tial failure modes that can result from dynamic system
changes. These mechanisms set a global error variable to
help inform modules when errors occur, allowing a mod-
ule to handle the error as it sees fit.

Two potential modes of failure are attempting to de-
liver a scheduled message to a module that does not exist
on the node, and delivering a message to a handler that is
unable to handle the message. In the first case, SOS sim-
ply drops the message addressed to a nonexistent mod-
ule and frees dynamically allocated memory that would
normally undergo ownership transfer. The latter case is
solved by the individual modules, which can choose cus-
tom policies for what to do with messages that they are
unable to handle. Most modules simply drop these mes-
sages, return an error code, and instruct the kernel to col-
lect dynamically allocated memory in the message that
would have undergone a change of ownership.

More interesting failure modes emerge as a result of
intermodule dependencies resulting from direct func-
tion calls between modules, including: no correct im-
plementation of a function exists, an implementation of
a function is removed, an implementation of a function
changes, or multiple implementations of a single func-
tion exist.

A module’s subscription request is successful if there
exists a FCB that is tagged as valid and has the same
module ID, function ID and prototype as that in the sub-
scription. Otherwise the subscription request fails and
the module is free to handle this dependency failure as
it wishes. Actions currently taken by various SOS mod-
ules include aborting module insertion, scheduling a later
attempt to subscribe to the function, and continuing to

167



execute with reduced functionality.
A subscription to a function can become invalid should

the provider module be removed. When the supplier of
a function is removed from the system, SOS checks if
any other modules have registered to use the function.
If the registration count is zero then the FCB is sim-
ply removed from the system. If the registration count
is greater than zero, a control flag for the FCB is marked
as being invalid to prevent new modules from subscrib-
ing and the implementation of the function is redirected
to a system stub function. The system stub function per-
forms expected memory deallocations as encoded in the
function prototype and sets a global error variable that
the subscriber can use to further understand the problem.

Problems can arise after a module has subscribed to
a function if the implementation of the function changes
due to updates to the provider module. Similar to when
a module is removed, functions provided by a module
are marked invalid during an update. When the updated
module finishes installing, it registers new versions of the
provided functions. SOS assumes that a function regis-
tration with the same supplier module ID, function ID,
and prototype of an already existent FCB is an update
to the function implementation, so the existent FCB is
updated and the control flag is returned to being valid.
This automatically redirects subscribers to the new im-
plementation of the function. Changes to the prototype
of a provided function are detected when the new imple-
mentation of the function is registered by the supplying
module. This results in the old FCB remaining invalid
with old subscribers redirected to a system stub and a
new FCB with the same supplier module ID and func-
tion ID but different prototype information being created.
New subscribers with the new prototype information are
linked to the new FCB, while any attempts to subscribe
to the function with the old prototype fail.

It is important to note that when SOS prevents an er-
ror in the situations described above, it typically returns
an error to the calling module. The programmer of the
module is responsible for catching these errors and han-
dling them as they see fit. Providing less intrusive protec-
tion mechanisms is a fascinating and challenging prob-
lem that continues to be worked on as SOS matures.

3.2 Message Scheduling
SOS uses cooperative scheduling to share the processor
between multiple lines of execution by queuing messages
for later execution.

TinyOS uses a streamlined scheduling loop to pop
function pointers off of a FIFO message queue. This cre-
ates a system with a very lean scheduling loop. SOS in-
stead implements priority queues, which can provide re-
sponsive servicing of interrupts without operating in an
interrupt context and more general support for passing

parameters to components. To avoid tightly integrated
modules that carefully manage shared buffers, a result
of the inability to pass parameters through the messag-
ing mechanism, messaging in SOS is designed to handle
the passing of parameters. To mitigate memory leaks and
simplify accounting, SOS provides a mechanism for re-
questing changes in data ownership when dynamically
allocated memory is passed between modules. These de-
sign goals result in SOS choosing a more expressive
scheduling mechanism at the cost of a more expensive
scheduling loop. The API for messaging is SOS is shown
in figure 5.

Figure 3—Memory Layout of An SOS Message Queue

Figure 3 provides an overview of how message head-
ers are structured and queued. Message headers within a
queue of a given priority form a simple linked list. The
information included in message headers includes com-
plete source and destination information, allowing SOS
to directly insert incoming network messages into the
messaging queue. Messages carry a pointer to a data pay-
load used to transfer simple parameters and more com-
plex data between modules. The SOS header provides
an optimized solution to this common case of passing a
few bytes of data between modules by including a small
buffer in the message header that the data payload can be
redirected to, without having to allocate a separate piece
of memory (similar to the mbuf design). SOS message
headers also include a series of flags to describe the prior-
ity of the message, identify incoming and outgoing radio
messages, and describe how the SOS kernel should man-
age dynamic memory. These flags allow easy implemen-
tation of memory ownership transfer for a buffer moving
through a stack of components, and freeing of memory
on completion of a scheduled message.

SOS uses the high priority queue for time critical mes-
sages from ADC interrupts and a limited subset of timers
needed by delay intolerant tasks. Priority queues have al-
lowed SOS to minimize processing in interrupt contexts
by writing interrupt handlers that quickly construct and
schedule a high priority message and then drop out of the
interrupt context. This reduces potential concurrency er-
rors that can result from running in an interrupt context.
Examples of such an errors include corruption of shared
buffers that may be in use outside of the interrupt con-
text, and stale interrupts resulting from operating with

168



Prototype Description
int8 t post short(sos pid t did, sos pid t sid, Place a message on the queue to call function ‘type’ in
uint8 t type, uint8 t byte, uint16 t word, uint8 t flag) module ‘did’ with data ‘byte’ and ‘word’.
int8 t post long(sos pid t did, sos pid t sid, Place a message on the queue to call function ‘type’
uint8 t type, uint8 t len, void *data, uint8 t flag) in module ‘did’ with *data pointing to the data.

Table 5—Messaging API

Prototype Description Cycles
void *ker malloc(uint16 t Allocate memory 69
size, sos pid t id)
void ker free(void* ptr) Free memory 85
int8 t ker change own(void Change ownership 43
*ptr, sos pid t id)
sos pid t Validate memory 1175
ker check memory() (after a crash)

Table 6—Cycles needed for dynamic memory tasks in SOS when run-
ning on an Atmel AVR microcontroller.

interrupts disabled.

3.3 Dynamic Memory
Due to reliability concerns and resource constraints, em-
bedded operating systems for sensor nodes do not always
support dynamic memory. Unfortunately, static memory
allocation results in fixed length queues sized for worst
case scenarios and complex program semantics for com-
mon tasks, such as passing a data buffer down a protocol
stack. Dynamic memory in SOS addresses these prob-
lems. It also eliminates the need to resolve during mod-
ule insertion what would otherwise be static references
to module state.

SOS uses dynamic memory with a collection of book-
keeping annotations to provide a solution that is efficient
and easy to debug. Dynamic memory in SOS uses simple
best fit fixed-block memory allocation with three base
block sizes. Most SOS memory allocations, including
message headers, fit into the smallest block size. Larger
block sizes are available for the few applications that
need to move large continuous blocks of memory, such
as module insertion. A linked list of free blocks for each
block size provides constant time memory allocation and
deallocation, reducing the overhead of using dynamic
memory. Failed memory allocation returns a null pointer.

Queues and data structures in SOS dynamically grow
and shrink at run time. The dynamic use and release of
memory in SOS creates a system with effective temporal
memory reuse and an ability to dynamically tune mem-
ory usage to specific environments and conditions. Self
imposed hard memory usage limits prevent programing
errors that could otherwise result in a module allocating
all of the dynamic memory on a node.

Common memory functions and their clock cycle
overheads are presented in table 6. All allocated mem-
ory is owned by some module on the node. This value
is set during allocation and used by SOS to implement

basic garbage collection and watch for suspect memory
usage. Modules can transfer memory ownership to reflect
data movement. Dynamic memory blocks are annotated
with a small amount of data that is used to detect basic
sequential memory overruns. These features are used for
post-crash memory analysis1 to identify suspect memory
owners, such as a module owning a great deal of sys-
tem memory or overflowed memory blocks. SOS also
supports the use of a hardware watchdog timer used to
force a soft boot of an unresponsive node and triggering
the same post-crash memory analysis. Finally, memory
block annotations enable garbage collection on module
unload.

3.4 Miscellaneous

The SOS kernel includes a sensor API that helps to man-
age the interaction between sensor drivers and the mod-
ules that use them. This leads to more efficient usage
of a node’s ADC and sensing resources. Other standard
system resources include timer multiplexing, UART li-
braries, and hardware management of the I2C bus.

The loosely coupled design used in SOS has resulted
in a platform that is very portable. SOS currently has sup-
port for the Mica2 and MicaZ motes from Crossbow, and
the XYZ Node from Yale. The most difficult portion of
a port tends to be the techniques for writing to program
memory while the SOS core is executing.

Limitations on module development result from the
loose coupling of modules. An example of this is a 4KB
size limitation for AVR module binaries, since relative
jumps used in position independent code on the AVR ar-
chitecture can only jump up to 4KB. Moreover, modules
cannot refer to any global variables of the SOS kernel,
as their locations of may not be available at compilation
time.

4 PROGRAMMING SOS APPLICATIONS

Figure 4 contains a source code listing of the Sam-
ple Send module of the Surge application2. The program
uses a single switch structure to implement the message
handler for the Sample Send module. Using the standard
C programing language reduces the learning curve of
SOS while taking advantage of the many compilers, de-
velopment environments, debuggers, and other tools de-
signed for C. C also provides efficient execution needed
to operate on resource limited 8-bit microcontrollers.

169



01 int8_t module(void *state, Message *msg) {
02 surge_state_t *s = (surge_state_t*)state;
03 switch (msg->type){
04 //! System Message - Initialize module
05 case MSG_INIT: {
06 char prototype[4] = {’C’, ’v’, ’v’, ’0’};
07 ker_timer_start(SURGE_MOD_PID, SURGE_TIMER_TID,
08 TIMER_REPEAT, INITIAL_TIMER_RATE);
09 s->get_hdr_size = (func_u8_t*)ker_get_handle
10 (TREE_ROUTING_PID, MOD_GET_HDR_SIZE,
11 prototype);
12 break;
13 }
14 //! System Message - Timer Timeout
15 case MSG_TIMER_TIMEOUT: {
16 MsgParam *param = (MsgParam*) (msg->data);
17 if (param->byte == SURGE_TIMER_TID) {
18 if (ker_sensor_get_data(SURGE_MOD_PID, PHOTO)
19 != SOS_OK)
20 return -EFAIL;
21 }
22 break;
23 }
24 //! System Message - Sensor Data Ready
25 case MSG_DATA_READY: {
26 //! Message Parameters
27 MsgParam* param = (MsgParam*) (msg->data);
28 uint8_t hdr_size;
29 uint8_t *pkt;
30 hdr_size = (*(s->get_hdr_size))();
31 if (hdr_size < 0) return -EINVAL;
32 pkt = (uint8_t*)ker_malloc
33 (hdr_size + sizeof(SurgeMsg), SURGE_MOD_PID);
34 s->smsg = (SurgeMsg*)(pkt + hdr_size);
35 if (s->smsg == NULL) return -EINVAL;
36 s->smsg->reading = param->word;
37 post_long(TREE_ROUTING_PID, SURGE_MOD_PID,
38 MSG_SEND_PACKET, length, (void*)pkt,
39 SOS_MSG_DYM_MANAGED);
40 break;
41 }
42 //! System Message - Evict Module
43 case MSG_FINAL: {
44 ker_timer_stop(SURGE_MOD_PID, SURGE_TIMER_TID);
45 ker_release_handle(s->get_hdr_size);
46 break;
47 }
48 default:
49 return -EINVAL;
40 }
51 return SOS_OK;
52 }

Figure 4—Surge Source Code

Line 2 shows the conversion of the generic state stored
in and passed from the SOS kernel into the module’s in-
ternal representation. As noted in section 3.1.1, the SOS
kernel always stores a module’s state to allow modules
to be easily inserted at runtime.

An example of the init message handler appears on
lines 5-13. These show the module requesting a peri-
odic timer from the system and subscribing to the MOD-
GET HDR SIZE function supplied by the tree routing

module. This function pointer is used on line 30 to find
the size of the header needed by the underlying routing
layer. By using this function, changes to the underlying
routing layer that modify the header size do not break the
application. Lines 43-47 show the final message handler
releasing the resources it had allocated: the kernel timer
and the subscribed function. If these resources had not
been explicitly released, the garbage collector in the SOS
kernel would have soon released them. Good programing
style is observed on lines 31 and 35 where potential er-
rors are caught by the module and handled.

5 EVALUATION

Our initial performance hypothesis was that SOS would
perform at roughly the same level as TinyOS in terms
of latency and energy usage, despite the greater level

of functionality SOS provides (and the overhead neces-
sary to support that functionality). We also hypothesized
that SOS module insertion would be far less expensive in
terms of energy than the comparable solution in TinyOS
with Deluge. This section tests these hypotheses using
a prototypical multihop tree builder and data collector
called Surge. A baseline evaluation of the operating sys-
tems is also performed.

Benchmarking shows that application level perfor-
mance of a Surge-like application on SOS is compara-
ble to Surge on TinyOS and to Bombilla, an instantiation
of the Maté virtual machine specifically for the Surge
application. Initial testing of CPU active time in base-
line evaluations of SOS and TinyOS showed a significant
discrepancy between the two systems, motivating an in
depth search into the causes of overhead in SOS. This
search revealed simple optimizations that can be applied
to improve both systems and bring their baseline perfor-
mance to almost the same level. The process of remotely
updating an application’s functionality in SOS is more
energy efficient than updates using Deluge in TinyOS,
but less efficient than updates using Bombilla. While our
hypotheses that SOS can more efficiently install updates
than TinyOS with Deluge proves true, further analysis
shows that this difference does not significantly impact
the total energy usage over time and that the three sys-
tems have nearly identical energy profiles over long time
scales. From these results, we argue that SOS effectively
provides a flexible solution for sensor networking with
energy usage functionally equivalent to other state of the
art systems.

5.1 Methodology
We first describe the workings of the Surge application.
Surge nodes periodically sample the light sensor and
send that value to the base station over multi-hop wire-
less links. The route to the base station is determined by
setting up a spanning tree; every node in the tree main-
tains only the address of its parent. Data generated at a
node is always forwarded to the parent in the spanning
tree. Surge nodes choose as their parent the neighbor
with the least hop count to the base station and, in the
event of a tie, the best estimated link quality. The es-
timate of the link quality is performed by periodically
broadcasting beacon packets containing neighborhood
information.

The Surge application in SOS is implemented with
three modules: Sample Send, Tree Routing and Photo-
Sensor. For SOS, a blank SOS kernel was deployed on
all motes. The Sample Send, Tree Routing and Photo-
Sensor modules were injected into the network and re-
motely installed on all the nodes. For TinyOS, the nodes
were deployed with the Deluge GoldenImage. The Surge
application was injected into the network using the Del-

170



Type of Code Percentage
Kernel 0%
Mica2 Specific Drivers 21%
AVR Specific Drivers 36%

Table 7—Approximate number of lines of code (including comments)
used from TinyOS in different parts of SOS.

uge protocol and remotely installed on all the nodes. For
Maté, the Bombilla VM was installed on all the nodes.
Bombilla VM implements the tree routing protocol na-
tively and provides a high-level opcode, Send, for trans-
ferring data from the node to the base station via a span-
ning tree. Bytecode for periodically sampling and send-
ing the data to the base station was injected into the net-
work and installed on all relevant nodes.

In all versions of Surge, the routing protocol parame-
ters were set as follows: sensor sampling happens every
8 seconds, parents are selected and route updates broad-
cast every 5 seconds, and link quality estimates are calcu-
lated every 25 seconds. Therefore, upon bootup, a node
will have to wait at least 25 seconds before it performs
the first link quality estimate. Since the parent is selected
based on link quality, the expected latency for a node to
discover its first parent in the network is at least 25 sec-
onds.

The experiments in section 5.2 use the setup de-
scribed above to examine application level performance
of Surge. Section 5.3 examines the base SOS kernel and
a simple TinyOS application to find the base CPU active
time in the two operating systems when no application
is present. The section continues with an examination of
how the Surge application effects CPU active time. Sec-
tion 5.4 finishes with a numerical examination of the up-
date overhead in SOS, TinyOS and Maté. In an attempt
to isolate operating system specific overhead, the anal-
ysis in section 5.4 does not use Deluge or the module
distribution protocol currently used in SOS.

SOS reuses some of the TinyOS driver code for its
Mica2 target and AVR support. Table 7 shows the ap-
proximate percentage of code reused from TinyOS in
SOS. For these experiments SOS uses nearly direct ports
of the TinyOS CC1000 radio stack, sensor drivers, and
applications. This helps to isolate performance differ-
ences to within the kernel and module framework of
SOS.

5.2 Macro Benchmarks
We first measure the time needed to form a routing tree
and then measure the number of packets delivered from
each node to the base station in a duration of 40 minutes.
These tests act as a macro benchmark to help verify that
Surge is running correctly on the three test platforms.
Since all three systems are executing the same applica-
tion and the CPU is not being heavily loaded, we ex-

pect differences in application performance to be small
enough to be lost in the noise, as in fact they are.

For this experiment, Mica2 motes are deployed in a
linear topology, regularly spaced at a distance of 4 feet
from each other. The transmit power of the radio is set
to -25dBm, the lowest possible transmit power, which
results in a range of approximately 4 feet for our indoor
laboratory environment.

Figure 5 shows the average time it took for a node to
discover its first parent, averaged over 5 experiments. All
three systems achieve latencies quite close to 25 seconds,
the minimum latency possible given the Surge configura-
tion parameters. The differences between the three sys-
tems are mainly due to their different boot routines. The
source of the jitter results from the computation of the
parent being done in a context which is often interrupted
by packet reception.

Figure 5 also shows the average time it takes to de-
liver the first packet from a node to the base station.
Since all three systems implement a queue for sending
packets to the radio, the sources of per-hop latency are
queue service time, wireless medium access delay, and
packet transmission time. Queue service time depends
upon the amount of traffic at the node, but the only vari-
ation between the three systems is due to the differences
in the protocols for code dissemination given the other-
wise lightly loaded network. The medium access delay
depends on the MAC protocol, but this is nearly identi-
cal in the three systems [18]. Finally, packet transmission
time depends upon the packet size being transmitted; this
is different by a handful of bytes in the three systems,
causing a propagation delay on the order of 62.4 µs per
bit [21]. The latency of packet delivery at every hop is
almost identical in the three systems. The small varia-
tions that can be observed are introduced mainly due to
the randomness of the channel access delay.

Finally, figure 5 shows the packet delivery ratio for
the three systems when the network was deployed for 40
minutes. As expected, the application level performance
of the three systems was nearly identical. The slight dif-
ferences are due to the fluctuating wireless link quality
and the different overheads introduced by the code up-
date protocols.

These results verify our hypothesis that the application
level performance of a typical sensor network applica-
tion running at a low duty cycle in SOS is comparable to
other systems such as TinyOS and Maté. The overheads
introduced in SOS for supporting run time dynamic link-
ing and message passing do not affect application perfor-
mance.

5.3 CPU Overhead
We proceed by measuring CPU active time on the SOS
and TinyOS operating systems without any application

171



1 2 3
0

5

10

15

20

25

30
Tree Formation Latency

Hop Count

La
te

nc
y 

(S
ec

)

Ideal
TinyOS
SOS
Mate’

(a) Surge Tree Formation Latency

1 2 3
0

10

20

30

40

50

60

70

80

90

100

Hop Count

D
el

ay
 (M

ill
i−

se
co

nd
s)

Surge App: Delay Measurement

TinyOS
SOS
Mate’

(b) Surge Forwarding Delay

Hop 1 Hop 2 Hop 3
0

10

20

30

40

50

60

70

80

90

100
Surge Packet Delivery Ratio

Trace over 40 minutes (300 Pkts per node)

P
ac

ke
t D

el
iv

er
y 

P
er

ce
nt

ag
e

TinyOS
SOS
Mate’

(c) Surge Packet Delivery Ratio

Figure 5—Macro Benchmark Comparison of Surge Application

activity to examine the base overhead in the two systems.
Bombilla is not examined in these base measurements
since the virtual machine is specific to the Surge appli-
cation. The evaluation is finished by examining the CPU
active time when running Surge on each of SOS, TinyOS,
and Maté. In all three systems, the source code is instru-
mented to raise a GPIO pin in the microcontroller when
the CPU is performing any active operation (executing a
task or interrupt). A high speed data logger is used to cap-
ture the waveform generated by the GPIO pin and mea-
sure the active duration. All experiments are run for 10
intervals of 60 seconds using the same Mica2 motes. We
expect both systems to have nearly identical base over-
heads since the SOS kernel should be nearly as efficient
as the base TinyOS kernel.

To examine the base overhead in SOS we installed a
blank SOS kernel onto a single mote and measured CPU
active time to be 7.40%± 0.02%. In contrast to this, run-
ning the closest TinyOS equivalent, TOSBase, resulted
in a CPU active time of 4.76%±0.01%. This active time
discrepancy came as a great surprise and prompted an
evaluation into the cause of overhead in SOS.

Detailed profiling using the Avrora [23] simulator re-
vealed that the overhead in SOS may be related to the
SPI interrupt used to monitor the radio for incoming
data. The SPI interrupt is triggered every 418µs in both
SOS and TinyOS when the radio is not in a low power
mode, as is the case in the above experiments. Micro-
benchmarking showed that the SPI interrupt handler in
SOS and TinyOS are almost identical. However upon
exit from the SPI interrupt, control is transferred to the
scheduler that checks for pending tasks. On a lightly
loaded system the common case is to perform this check
and go to sleep, since the scheduling queue is usually
empty. Further micro-benchmarking revealed that in the
common case of empty scheduling queues, the SOS
scheduling loop takes 76 cycles compared to 25 cycles in
TinyOS. This additional overhead acquired every 418µs

accounts for the discrepancy in performance between
SOS and TinyOS.

The SOS scheduling loop was then optimized to better
handle this common case reducing the CPU active time
to 4.52% ± 0.02% and resulted in SOS outperforming
TinyOS. For a fair comparison we modified the TinyOS
scheduling loop and post operation 3 to use a similar
scheduling mechanism, reducing the TinyOS CPU active
time to 4.20%± 0.02%. This difference is small enough
that it can be accounted for by two additional push and
pop instruction pairs in the SOS SPI handler that are in-
troduced due to the slight modifications to the radio stack
implementation.

The above active times are summarized in table 8. Of
the most interest are the last two entries, which show that
when both scheduling loops are optimized the base op-
eration overhead of SOS and TinyOS are within a few
percent, as expected.

Having verified that the base operating systems have
very similar overheads, we continue by examining the
CPU active time when Surge is run on SOS, TinyOS and
Maté. Versions of both SOS and TinyOS with optimized
schedulers are used for all three tests and Maté Bom-
billa runs on top of the optimized TinyOS core. Surge is
loaded onto two nodes, and the active time is again mea-
sured by instrumenting the code to activate a GPIO pin
when active and monitoring this pin with a high speed
data logger. The experiment results are shown in Table 9.
This comparison shows that this low duty cycle applica-
tion has less effect on the base performance of SOS than
for TinyOS. The cause of this larger increase for TinyOS
is not yet fully understood. One hypothesis is that the ini-
tial baseline measurement between SOS and TinyOS do
not accurately reflect the same base functionality.

5.4 Code Updates
We now present an evaluation of the energy needed for
propagation and installation of the Surge application. We

172



OS Version Percent Active
Time

SOS Unoptimized 7.40% ± 0.02%

TinyOS Unoptimized 4.76% ± 0.01%

SOS Optimized 4.52% ± 0.02%

TinyOS Optimized 4.20% ± 0.02%

Table 8—CPU Active Time on Base Op-
erating System

OS Version Percent Active Time
SOS 4.64% ± 0.08%

Optimized
TinyOS 4.58 ± 0.02%

Optimized
Maté Bom. 5.13 ± 0.02%

Table 9—CPU Active Time With
Surge

SOS Module Name Code Size
Sample Send 568 bytes
Tree Routing 2242 bytes
Photo Sensor 372 bytes
Energy (mJ) 2312.68
Latency (s) 46.6

Table 10—SOS Surge Remote Installation

begin by looking at installing Surge onto a completely
blank node over a single hop in SOS. Surge on SOS con-
sists of three modules: Sample send, Tree routing, and
Photo Sensor. Table 10 shows the size of the binary mod-
ules and overall energy consumption and the latency of
the propagation and installation process. The energy con-
sumption was measured by instrumenting the power sup-
ply to the Mica2 to sample the current consumed by the
node.

We continue with an analytical analysis of the energy
costs of performing similar code updates in our three
benchmark systems—SOS, TinyOS with Deluge [10],
and Maté Bombilla VM with Trickle [16]. It is impor-
tant to separate operating system-related energy and la-
tency effects from those of the code distribution proto-
col. Overall latency and energy consumption is mainly
due to the time and energy spent in transmitting the up-
dated code and storing and writing the received code to
the program memory.

Communication energy depends upon the number of
packets that need to be transferred in order to propagate
the program image into the network; this number, in turn,
is closely tied to the dissemination protocol. However,
the number of application update bytes required to be
transferred to update a node depends only on the archi-
tecture of the operating system. Therefore, to eliminate
the differences introduced due to the different dissemi-
nation protocols used by SOS, TinyOS, and Bombilla,
we consider the energy and latency of communication
and the update process to be directly proportional to the
number of application update bytes that need to be trans-
ferred and written to the program memory. The design
of the actual distribution protocol used is orthogonal to
the operating system design and SOS could use any of
the existing code propagation approaches [22, 16]; it cur-
rently uses a custom publish/subscribe protocol similar
to MOAP [22].

5.4.1 Updating low level functionality

To test updating low level functionality, we numerically
evaluate the overhead of installing a new magnetometer
sensor driver into a network of motes running the Surge
application. The SOS operating system requires the dis-
tribution of a new magnetometer module, whose binary
is 1316 bytes. The module is written into the program

System Code Size Write Cost Write Energy
(Bytes) (mJ/page) (mJ)

SOS 1316 0.31 1.86
TinyOS 30988 1.34 164.02
Maté VM N/A N/A N/A

Table 11—Magnetometer Driver Update

System Code Size Write Cost Write Energy
(Bytes) (mJ/page) (mJ)

SOS 566 0.31 0.93
TinyOS 31006 1.34 164.02
Maté VM 17 0 0

Table 12—Surge Application Update

memory, one 256-byte page of the flash memory at a
time. The cost of writing a page to the flash memory was
measured to be 0.31 mJ, and 6 pages need to be written
so the total energy consumption of writing the magne-
tometer driver module is 1.86 mJ.

TinyOS with the Deluge distribution protocol requires
the transfer of a new Surge application image with the
new magnetometer driver. The total size of the Surge
application with the new magnetometer driver is 30988
bytes. The new application image is first stored in ex-
ternal flash memory until it is completely received. The
cost of writing and reading one page of the external flash
is 1.03 mJ [21]. Thereafter, the new image is copied
from the external flash to the internal flash memory. This
makes the total cost of installing a page of code into the
program memory 1.34 mJ, and the total energy consump-
tion for writing the updated Surge application 164.02 mJ.

Lastly, the Maté Bombilla VM does not support any
mechanism for updating low level functionality such as
the magnetometer driver. These results are summarized
in table 11.

5.4.2 Updating application functionality

We examine updates to applications by numerically eval-
uating the overhead of updating the functionality of
the Surge application. The modified Surge application
samples periodically, but transmits the value to a base
station only if it exceeds a threshold. The SOS oper-
ating system requires the distribution of a new Sam-
ple Send module with the updated functionality. As be-
fore, TinyOS/Deluge requires the transfer of a new Surge
application image with the modified functionality. How-
ever, the Maté Bombilla VM requires just a bytecode up-

173



date. The total size of the bytecode was only 17 bytes,
and since it is installed in the SRAM, it has no extra cost
over the running cost of the CPU. The results of an analy-
sis similar to that in section 5.4.1 is presented in table 12.

SOS offers more flexibility than Maté; operations such
as driver updates not already encoded in Maté’s high-
level bytecode cannot be accomplished. However, Maté’s
code updates are an order of magnitude less expensive
than SOS’s. TinyOS with Deluge picks the extreme end
of the flexibility/cost trade off curve by offering the
greatest update flexibility at the highest cost of code up-
date. With a Deluge like mechanism, it is possible to up-
grade the core kernel components, which is not possible
using only modules in SOS; but in SOS and Maté, the
state in the node is preserved after code update while it
is lost in TinyOS due to a complete reboot of the system.

The above analysis does not consider how differential
updates described in section 2.3 could impact static and
dynamic systems. There is potential for differential up-
dates to significantly decrease the amount of data that
needs to be transmitted to a node for both systems. It is
also unclear how efficiently a differential update, which
may require reconstructing the system image in external
flash, can be implemented. Differential updates are an
area of research that both SOS and TinyOS could benefit
from in the future.

5.4.3 Analytical analysis of update energy usage

The previous evaluation of CPU utilization and update
costs in SOS, TinyOS, and Maté prompts asking how
significant those factors are in the total mote energy ex-
penditure over time. Application energy usage on a mote
can be divided up into two primary sources: the energy
used to install or update the application, and the power
used during application execution multiplied by applica-
tion execution time. An interesting point of comparison
is to find the time, if any, when the total energy usage
of two systems running the same application becomes
equal. Starting with an update to a node, the total energy
consumption of the node is found using:

Etotal = Eupdate + Paverage × Tlive (1)

Paverage denotes the power consumption of the mote av-
eraged over application execution duration and the sleep
duration (due to duty cycling). Tlive is the time that the
node has been alive since it was updated. Eupdate is the
energy used to update or install the application.

The average power consumption during application
execution depends upon the active time of the applica-
tion, duty cycle of operation, and the power consump-
tion of the hardware platform in various power modes.
The Mica2 power consumption in various modes was ob-
tained from [21] and is summarized in table 13. We first

Mode Active (mW) Idle (mW) Sleep (mW)
Mica2 Power 47.1 29.1 0.31
Duty Cycle(%) TinyOS (mW) SOS (mW) Maté (mW)
100 29.92 29.94 30.02
10 3.271 3.272 3.281
1 0.6057 0.6058 0.6067

Table 13—Average Power Consumption of Mica2 Executing Surge

compute Pawake, the average power consumption of the
Surge application assuming a 100% duty cycle i.e. the
system is operating continuously without sleep:

Pawake = Pactive ×
Tactive

Tactive + Tidle
+ Pidle ×

Tidle

Tactive + Tidle

Table 9 provides the ratio Tactive
Tactive+Tidle

, which can be used
to find Tidle

Tactive+Tidle
. When the system is operated at lower

duty cycles, the average power consumption is given by:

Paverage = Pawake ×DutyCycle+Psleep× (1−DutyCycle)

Table 13 summarizes the average power consumption of
the Surge application at various duty cycles.

Now we compute the energy used during the Surge
application installation, Eupdate, which is the sum of the
energy consumed in receiving the application over the
radio and subsequently storing it on the platform. For the
Mica2 Mote, the energy to receive a byte is 0.02 mJ/byte-
[21]. Using table 12 we can compute the energy required
to update the Surge application on SOS assuming that
communications energy has a one to one correlation with
application bytes transmitted:

Eupdate(SOS) = 0.02
mJ
byte

×566bytes+0.93mJ = 12.25mJ

Similar computations can also be performed for TinyOS
and Maté using the numbers in table 12.

Using the numbers computed thus far, it is possible
to understand the total energy consumption of a system,
Etotal, as a function of the elapsed time Tlive. From equa-
tion 1, it can be seen that energy consumption is linear
with the slope being equal to Paverage with an initial off-
set equal to Eupdate. The average power consumption for
each of the three systems examined is very similar and
results in nearly identical total energy usage over time,
despite the initially significantly different update costs.
For example, by solving the linear equations for the 10%
duty cycle, it is easy to see that TinyOS becomes more
energy efficient than SOS after about 9 days. Similarly,
for a 10% duty cycle, SOS becomes more energy effi-
cient than Maté after about 22 minutes. But looking at
the absolute difference in energy consumed after 30 days
at a 10% duty cylcle, SOS has consumes less than 2 J
more energy than TinyOS and Maté is only about 23 J
beyond SOS. This analysis reveals that, contrary to our

174



initial intuition, differences in both CPU utilization and
update costs are not significant in the total energy con-
sumption of the node over time.

Note that this analysis is only for a single application,
Surge, running under a given set of conditions. Differ-
ent applications and evolving hardware technology will
change the results of the above analysis. Applications
with very high CPU utilization can magnify the effects
of different CPU utilization on Paverage resulting in total
energy variances of 5% to 10% on current mote hard-
ware. Similarly, improvements to duty cycling that re-
duce node idle time can magnify the effects of CPU uti-
lization on Paverage. Hardware innovations that reduce pe-
ripheral energy usage, especially when the CPU is idle,
will also lead to a noticeable discrepancy in total energy
consumption. Only as the above improvements to sys-
tems are made, leading to more energy efficient execu-
tion environments, will energy savings from efficient up-
dates become significant.

5.5 Discussion
This analysis examines energy usage, which provides a
quantifiable comparison of these systems. This section
also shows that these differences are not significant when
taking into account average power consumption resulting
from the different power modes of current mote technol-
ogy. Choosing between operating systems for these sys-
tems should be driven more by the features provided by
the underlying system, such as flexibility of online up-
dates in SOS or full system static analysis in TinyOS,
rather than total system energy consumption. As soft-
ware and hardware technologies advance, the effects of
differing CPU utilization and update costs between sys-
tems will play a more significant role in choosing a sys-
tem.

The results of the experiments performed in this sec-
tion validate the following claims about SOS. First, the
architectural features presented in section 3 position SOS
at a middle ground between TinyOS and Maté in terms
of flexibility. Second, the application level performance
of the SOS kernel is comparable to TinyOS and Maté for
common sensor network applications that do not stress
the CPU. Third, code updates in SOS consume less en-
ergy than similar updates in TinyOS, and more energy
than similar updates in Maté. Fourth, despite different
update costs and CPU active times, the total energy usage
in SOS is nearly identical to that in TinyOS and Maté.

6 CONCLUSION

SOS is motivated by the value of maintaining mod-
ularity through application development and into sys-
tem deployment, and of creating higher-level kernel
interfaces that support general-purpose OS semantics.
The architecture of SOS reflects these motivations. The

kernel’s message passing mechanism and support for
dynamically allocated memory make it possible for
independently-created binary modules to interact. To im-
prove the performance of the system and to provide a
simple programming interface, SOS also lets modules
interact through function calls. The dynamic nature of
SOS limits static safety analysis, so SOS provides mech-
anisms for run-time type checking of function calls to
preserve system integrity. Moreover, the SOS kernel per-
forms primitive garbage collection of dynamic memory
to improve robustness. Fine grain energy usage of SOS,
TinyOS and the Maté Bombilla virtual machine are de-
pendent on the frequency of updates and stressing of the
CPU required for a specific deployment. However, analy-
sis of overall energy consumed by each of the three sys-
tems at various duty cycles shows nearly identical en-
ergy usage for extended deployments. Thus, to choose
between SOS and another system, it is important for de-
velopers to consider the benefits of static or dynamic de-
ployments independently of energy usage.

SOS is a young project under active development and
several research challenges remain. One critical chal-
lenge confronting SOS is to develop techniques that pro-
tect the system against incorrect module operation and
help facilitate system consistency. The stub function sys-
tem, typed entry points, and memory tracking protect
against common bugs, but in the absence of any form
of memory protection it remains possible for a module
to corrupt data structures of the kernel and other mod-
ules. Techniques to provide better module isolation in
memory and identify modules that damage the kernel
are currently being explored. The operation of SOS is
based on the notion of co-operative scheduling, but an
incorrectly composed module can utilize all of the CPU.
We are exploring more effective watchdog mechanisms
to diagnose this behavior and take corrective actions.
Since binary modules are distributed by resource con-
strained nodes over a wireless ad-hoc network, SOS mo-
tivates more research in energy efficient protocols for bi-
nary code dissemination. Finally, SOS stands to benefit
greatly from new techniques and optimizations that spe-
cialize in improving system performance and resource
utilization for modular systems.

By combining a kernel that provides commonly used
base services with loosely-coupled dynamic modules
that interact to form applications, SOS provides a more
general purpose sensor network operating system and
supports efficient changes to the software on deployed
nodes.

We use the SOS operating system in our research and
in the classroom, and support users at other sites. The
system is freely downloadable; code and documentation
are available at:
http://nesl.ee.ucla.edu/projects/sos/.

175



ACKNOWLEDGEMENTS

We gratefully acknowledge the anonymous reviewers
and our shepherd, David Culler. Thanks goes out the
XYZ developers and other users of SOS who have pro-
vided feedback and help to make better system. This ma-
terial is based on research funded in part by ONR through
the AINS program and from the Center for Embedded
Network Sensing.

REFERENCES
[1] ABRACH, H., BHATTI, S., CARLSON, J., DAI, H., ROSE, J.,

SHETH, A., SHUCKER, B., DENG, J., AND HAN, R. Man-
tis: system support for multimodal networks of in-situ sensors.
In Proceedings of the 2nd ACM international conference on
Wireless sensor networks and applications (2003), ACM Press,
pp. 50–59.

[2] BERSHAD, B. N., SAVAGE, S., PARDYAK, P., SIRER, E. G., FI-
UCZYNSKI, M., BECKER, D., EGGERS, S., AND CHAMBERS,
C. Extensibility, safety and performance in the SPIN operat-
ing system. In 15th Symposium on Operating Systems Principles
(Copper Mountain, Colorado, 1995), pp. 267–284.

[3] BOULIS, A., HAN, C.-C., AND SRIVASTAVA, M. B. Design and
implementation of a framework for efficient and programmable
sensor networks. In Proceedings of the First International Con-
ference on Mobile Systems, Applications, and Services (2003),
ACM Press, pp. 187–200.

[4] CROSSBOW TECHNOLOGY, INC. Mote In-Network Program-
ming User Reference, 2003.

[5] DUNKELS, A., GRÖNVALL, B., AND VOIGT, T. Contiki - a
lightweight and flexible operating system for tiny networked sen-
sors. In Proceedings of the First IEEE Workshop on Embedded
Networked Sensors (2004).

[6] ENGLER, D. R., KAASHOEK, M. F., AND O’TOOLE, J. Exok-
ernel: An operating system architecture for application-level re-
source management. In Symposium on Operating Systems Prin-
ciples (1995), pp. 251–266.

[7] FOK, C., ROMAN, G.-C., AND LU, C. Rapid development and
flexible deployment of adaptive wireless sensor network appli-
cations. Tech. Rep. WUCSE-04-59, Washington University, De-
partment of Computer Science and Engineering, St. Louis, 2004.

[8] GAY, D., LEVIS, P., VON BEHREN, R., WELSH, M., BREWER,
E., AND CULLER, D. The nesc language: A holistic approach to
networked embedded systems. In Proceedings of Programming
Language Design and Implementation (2003).

[9] HILL, J., SZEWCZYK, R., WOO, A., HOLLAR, S., CULLER,
D., AND PISTER, K. System architecture directions for net-
worked sensors. In Proceedings of the ninth international con-
ference on Architectural support for programming languages and
operating systems (2000), ACM Press, pp. 93–104.

[10] HUI, J. W., AND CULLER, D. The dynamic behavior of a data
dissemination protocol for network programming at scale. In
Proceedings of the second international conference on Embed-
ded networked sensor systems (2004), ACM Press.

[11] JEONG, J., AND CULLER, D. Incremental network programming
for wireless sensors. In Proceedings of the First IEEE Communi-
cations Society Conference on Sensor and Ad Hoc Communica-
tions and Networks IEEE SECON (2004).

[12] JUANG, P., OKI, H., WANG, Y., MARTONOSI, M., PEH, L.-S.,
AND RUBENSTEIN, D. Energy-efficient computing for wildlife
tracking: Design tradeoffs and early experiences with ZebraNet.
In Proc. 10th International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS-
X) (San Jose, California, Oct. 2002).

[13] KAISER, W., POTTIE, G., SRIVASTAVA, M., SUKHATME,
G. S., VILLASENOR, J., AND ESTRIN, D. Networked Infome-
chanical Systems (NIMS) for ambient intelligence.

[14] LEVIS, P., AND CULLER, D. Mate: A tiny virtual machine for
sensor networks. In International Conference on Architectural
Support for Programming Languages and Operating Systems,
San Jose, CA, USA (Oct. 2002).

[15] LEVIS, P., MADDEN, S., GAY, D., POLASTRE, J., SZEWCZYK,
R., WOO, A., BREWER, E., AND CULLER, D. The emergence
of networking abstractions and techniques in tinyos. In Proceed-
ings of the First Symposium on Networked Systems Design and
Implementation (2004), USENIX Association, pp. 1–14.

[16] LEVIS, P., PATEL, N., CULLER, D., AND SHENKER, S. Trickle:
A self-regulating algorithm for code propagation and mainte-
nance in wireless sensor networks. In Proceedings of the First
Symposium on Networked Systems Design and Implementation
(2004), USENIX Association, pp. 15–28.

[17] LIU, T., AND MARTONOSI, M. Impala: a middleware system for
managing autonomic, parallel sensor systems. In Proceedings of
the ninth ACM SIGPLAN symposium on Principles and practice
of parallel programming (2003), ACM Press, pp. 107–118.

[18] POLASTRE, J., HILL, J., AND CULLER, D. Versatile low power
media access for wireless sensor networks. In Second ACM Con-
ference on Embedded Networked Sensor Systems (2004).

[19] RASHID, R., JULIN, D., ORR, D., SANZI, R., BARON, R.,
FORIN, A., GOLUB, D., AND JONES, M. B. Mach: a system
software kernel. In Proceedings of the 1989 IEEE International
Conference, COMPCON (San Francisco, CA, USA, 1989), IEEE
Comput. Soc. Press, pp. 176–178.

[20] REIJERS, N., AND LANGENDOEN, K. Efficient code distribu-
tion in wireless sensor networks. In Proceedings of the 2nd ACM
international conference on Wireless sensor networks and appli-
cations (2003), ACM Press, pp. 60–67.

[21] SHNAYDER, V., HEMPSTEAD, M., RONG CHEN, B., AND
MATT WELSH, H. Powertossim: Efficient power simulation for
tinyos applications. In Sensor Networks. In Proc. of ACM SenSys
2003. (2003).

[22] STATHOPOULOS, T., HEIDEMANN, J., AND ESTRIN, D. A re-
mote code update mechanism for wireless sensor networks. Tech.
Rep. CENS-TR-30, University of California, Los Angeles, Cen-
ter for Embedded Networked Computing, November 2003.

[23] TITZER, B. L., PALSBERG, J., AND LEE, D. K. Avrora: Scal-
able sensor network simulation with precise timing. In Fourth
International Conference on Information Processing in Sensor
Networks (2005).

NOTES
1Soft reboot of many microcontrollers, including the Atmel AVR,

preserves on chip memory.
2This source code is trimmed for clarity. Complete source code can

be downloaded separately.
3Patch is being submitted to the TinyOS developers should they

wish to optimize for the case of a lightly loaded radio that is not in
a low power mode.

176


