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ABSTRACT - This paper presents a new dynamic file 
organization scheme based on hashing. The hash 
functions used here, being defined by extended 
hash indicator tables (EHITs), are both dynamic 
and perfect. The allocated storage space can be 
enlarged and shrunk without reorganizing the data 
file. Simulation results show'that the storage 
utilization is approximately equal to 70% in an 
experiment where the number of rehash functions 
s=7, the size of a segment r=lO, and the size of 
the key set n varies from 1 to 1000. Since the 
hash functions are perfect, the retrieval opera- 
tion needs only one disk access. 

1. INTRODUCTION 

Hashing is a fast technique for information 
storage and retrieval [12,19,20,22,25]. Its use, 
however, may cause some problems. First of all, 
the user needs to handle key collision problem. 
Secondly, the address space cannot easily be chan- 
ged dynamically. The former problem may be solved 
by the use of perfect hash functions, such as 
those proposed in [1,2,3,5,6,7,9,10,26,28,301, 
where a perfect hash function is defined as a one- 
to-one mapping frcxn the key set into the address 
space. The latter problem may lead to a waste of 
memory if the address space is too large or to a 
poor performance if the address space is too small 
[121. Thus, dynamic allocation of the address 
space is needed. Dynamic hashing means that in 
the hashing scheme the set of keys can be varied; 
i.e., keys can be inserted into or deleted from 
the key set. Insertion of a key may lead to,split 
operations -- each split allocates one segment to 
the address space -- while deletion of a key may 
lead to deallocation of segments which reduces 
address space in use. 

Several dynamic hashing schemes have been 
traduced during the last few years: expandable 
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hashing by Knott 1111, dynamic hashing by Larson 
[131, virtual hashing, linear virtual hashing, and 
trie hashing by Litwin [16,17,181, and extendible 
hashing by Fagin and others [81. The detailed 
operations of these schemes are different, many 
of them use a similar dynamic auxiliary table to 
define or modify the hash functions. The auxiliary 
table is referred to as "index tree" [13], "bit- 
map table" 1161, "prefix tree" [4,111, or "direc- 
tory" [81. These schemes can be divided into two 
classes. One uses overflow area in address space 
and the other does not. Generally, those schemes 
using overflow area, save the memory in the ad- 
dress space but need one or more disk access to 
retrieve a key. Virtual hashing [El and dynamic 
hashing with deferred splitting [241 belong to 
this class, and the expected storage utilization 
of them is about 80%, under suitable conditions. 
The second class are those not using overflow 
area which can retrieve a key with just one disk 
access. However, storage utilization is lower, 
say only about 65-69% under similar conditions. 
Dynamic hashing [131 and extendible hashing 181 
belong to this class. 

In this paper, we design a new dynamic hash 
function belonging to the second class. The 
storage utilization exceeds 69% and the auxiliary 
table, which modifies the hash functions, is re- 
lative smaller. The main idea is to apply the 
hash indicator table (HIT) to define perfect hash 
functions as proposed in t6,71. A modified HIT 
called extended hash indicator table (EHIT) is 
employed as an auxiliary table to set the dynamic 
hash functions. Following is a brief description 
of how to use HIT to define a perfect hash func- 
tion. 

Define Perfect Hash Function by HIT 

In [6,7] a perfect hash scheme that solves 
the key collision problem by using a Series of 
hash functions is proposed. Because the HIT sto- 
res the index of hash functions selected, it can 
define a perfect hash function. The basic model 
of this scheme is shown in Figure 1.1. The per- 
fect hash function h can be defined by HIT as 
follows [6,71. 

h(ki)=hj(ki)=Xi if HIT[hr(ki)J#r for r < j 
and HIT[hj(ki)]=j, 

=undefined otherwise. 
The advantages of the perfect hash functions 

defined by HIT here are that they can be easily 
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Fig. 1.1 The basic model of perfect hash 
functions defined by HIT. 

implemented and they use very small tables. Three 
ways to construct HIT have been proposed. They 
are process-by-function method 161, process-by- 
key method [x81, and branch-and-bound method [30]. 
We shall discuss these methods briefly in Appendix. 
The retrieval algorithm is very simple. We list 
it below: 

Procedure FZETFUEVAL(k,s,HIT,AS); 
//Assume that the hash functions hl,h2,// 
//...,h,, are used to create HIT. Now // 
//we want to retrieve key k.// 
begin 

j:=l; 
while (HIT[hj(k)]#j and jLs) do j:=j+l; 
if j > s then failure 

end. 
else k is stored in AS[hj (k) J 

In evaluating the function value, the number of 
loops executed in the while-statement in the al- 
gorithm is called the "number of internal probes" 
in HIT. The expected number of internal probes 

r-l 
is defined by l/n 1 HIT[i], where n is the number 

i=O 
of keys concerned and r is the size of the address 
space. It is a measure of the retrieval cost. 

In Section 2 we will describe how to use a 
modified scheme to handle dynamic file. Insertion 
and deletion algorithms will be presented. In 
Section 3, the expected performances will be con- 
sidered. We will use independent data to simula- 
te the scheme and to observe the variation of ad- 
dress space. Also we will estimate the utiliza- 
tion of storage and the retrieval costs. 

2. RETRIEVAL AND MAINTENANCE ALGORITHMS 

2.1 Define Dynamic Perfect Hash Function by EHIT 

The model of dynamic perfect hash functions 
in this new file retrieval system is shown in 
Figure 2.1. It consists of an address space (AS) 
in which the keys are stored, and an extended hash 
indicator table .(EHIT) as auxiliary memory. The 
EHIT contains two parts: the distribution tree(DT) 
and HIT. 
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Fig. 2.1 Model of a dynamic perfect 
hash file. 

Assume that the set of keys to be stored at 
a certain time is denoted by (k.), i=1,2,...,n. 
The number of keys, n, is not fixed but varies 
with time. The system is initialized with a node 
and a segment of HIT with predefined size, r. 
Secondary storage space is allocated for one seg- 
ment with capacity r. Each segment of HIT con- 
tains a pointer to the segment of AS in the data 
file. Figure 2.2 illustrates the initial situa- 
tion for a file with one segment. 

KS HIT1 

iit 

ASl 

a 

0 
1 

. 
r-l 

Fig. 2.2 Initial structure of a 
dynamic perfect hash file. 

First some keys are placed into the system 
and HIT is constructed by using the branch-and- 
bound method [30] (see Appendix) to define the 
perfect hash function. 

Sooner or later the segment will overflow, 
I.e., when trying to insert a key into the seg- 
ment, the corresponding HIT cannot be constructed 
successfully. When this happens we split the seg- 
ment into two. Anew segment of address space is 
allocated and the keys are distributed equally 
among the two segments. At the same time the DT 
is updated to record the new situation. If, later, 
one or the other of the two segments becomes 
"full", it splits into two segments, etc. Figure 
2.3 shows the structure of the hash file derived 
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from Figure 2.2 after three splits have occurred. 
The size of the file has been increased to four 
segments. The DT has grown to a binary tree 
with seven nodes. Internal nodes are shown as 
circles and external nodes as squares. Under 
this scheme, the retrieval operation is as fol- 
lows: 

Algorithm DYNAMIC-PETFUEVE(k,s,DT,HIT) 
begin 

//traverse DT// 
//call random number generator// 
fl~...bm:=HANDOM(k:seed) 

: 
while not external node do 

if bi=O 
then goto left-branch else goto right- 
branch; 
i:=i+l 

//get HITj and find hi// 
i:=l; 
while HITj [hi(k) l#i do i:=i+l; 
ifi> s 
then failure else k is stored in 
ASj [hi(k) I; 

end. 

Fig. 2.3 Structure of a dynamic perfect 
hash file after three splits. 

There are mainly two advantages. As one can 
see, the algorithm is very simple. Secondly if 
we can put the EHIT into the core memory, we can 
retrieve a key with only one disk access. 

2.2 Insertion and Growth 

Splitting 

Here is an example to illustrate the beha- 
vior of the splitting in this dynamic hash scheme. 
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Example 1. Let the key set KS, 

KS={AND,END,NIL,SET,AHHAY,BEGIN,CASE,CONST, 
1 . . . , 

be the 36 Pascal's reserved words. The values of 
three hash function and two random numbers are 
listed in the following table: 

-- 
‘$ 
-- - 

“$ FiGi oii 
value 

AND END NIL SET ARRAY BEGIN CASE CONST . . . ----------------e-m 
315 0 1 1 4 0 . . a -) 7- 5T-3 - 'o- --l- -r - -l-- -a 

- - 'B-2 i +F,-o-'5'--3- ->--4- -5 ... 
-- - - -- -- - -- - - -------- 

1100 0 0 0 0 . . . 
bit1 T.dom-- --;,-- -- __-------- 

value 1 1 1' 0 1 11 1 . . . 
bit2 -- --- ------ ---- ---- - --- 

The hash functions hi's are calculated by 

hi(key)=[OPD(chi)+OI?D(chi+l)*i] mod 6 

where OHD(Chi) denotes the ordinal number of the 
ith character of key. When Chi is the last char- 
acter of the key word, ch. resets to the first 
character of the key. Th&+&ndom values are ob- 
tained by calling a random number generator, 
which uses the decimal codes of each key as seed. 

(1) 

(2) 

(3) 

We will process on the keys in the order of 
kl,k2, etc. First, we process kl and show 
the configuration as in Figure 2.4(a). 
After processing the first four keys, the cur- 
rent size of key set is four. We get Figure 
2.4(b) by using the same branch-and-bound 
method to construct HIT as proposed in 1301 
(see Appendix). 
When we want to insert the 5th key ARRAY, we 
cannot define a perfect hashing function in 
only one segment HITl. Then the second 
ment HIT2 is allocated. The keys are di 
buted into these two segments according 
whether the bit's value is 0 or 1. The 

HIT, =. 

H ,H 

KS 

(a) 
HIT. 

1 
1 

4 - 

(b) 

AS, 
I 

seg- 
.stri- 
to 
confi- 

Fig. 2.4 Configuration of the 
dynamic hash file. 
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guration is depicted in Figure 2.4(c). 
(4) After processing the eight keys, the distri- 

bution tree has been split twice, and three 
segments of HIT and AS are allocated. The 
configuration is shown in Figure 2.4(d). 
Notice that the second split causes the HIT1 
to split into HIT1 and HIT3, but HIT2 and 
AS2 are not changed at all. 

KS 

L 

kl . . tlq . 

k8 1 

HIT1 
As1 

HIT,. AS, (m changed) 

ASP (new allocated) 

-Ga 
ARRAY --I 
3 CASE 

(d) 

Fig. 2.4 Configuration of the dynamic hash fi 
(continued) 
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The general algorithm forsplitting is shown, with 
Figure 2.5 below. 

Algorithm SPLIT(ptr) 
begin 

1. get HITi, ASi pointed by ptr 
2. TEMP:=AS: 
3. get a ne; node HITj, a new node for AS. 
4. distributes TEMP into ASi and ASj 3 

5. Using branch-and-bound method to 
construct HITi with ASi and HITj with 
As* 

6. 2 up ate DT 
end. 

HIT, As. 

- 

HITi AS. 1 

Fig. 2.5 HITi splits into HIT, and 1 
HIT.. 

3 

Here we discuss some properties of splitting. 
Let X be a random variable to represent the num- 
ber of keys that are put together into the same 
segment after a split. We have 

Prob(X=x)=2(r$(0.5)x(1-0.5)n-X 

If n=x, 
Prob(X=n)=O.5 n-l 

is the probability that all the n keys will be put 
into the same segment. For example, n=5, 
Prob(x=5)=0.0625. This implies, the probability 
of all the keys being put into the same segment 
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is very small. Decomes empty, then f~s~n1-r~ ana two noaes OK ur 
are deallocated. This means the hash file is 

Let Y be a random variable such that all the 
n keys are put into the same segment after t splits. 

shrinking. The general algorithm of deletion is: 

Then, Algorithm DELETICN(k,DT) 

Prob(Y=t)=O.S("-') (t-l) l (l-0.5"-'), 
begin 

1. traverse DT to find the HIT; 
For example, if n=5, Prob(Y=3)=3.66 x 10 -3 .I. 

, is such that k f Asi 
very small. 2. delete k from ASi, reset HITi 

Insertion 
3. if ASi = empty 

then 3.1 deallocate ASi 
The general insertion algorithm that uses the 3.2 deallocate HITi 

SPLIT procedure described above is listed as follows: 3.3 update DT 

Algorithm INSERT(k,DT,HIT) 
begin 

1. blb2...bm:=RANDOM(k:seed) 
2. traverse the DT depending 

until external node E 
3. get the HITi pointed by E 

on bi 

4. get the ASi pointed by HITi 
5. using the branch-and-bound method re- 

construct HITi 
6. if step 5 done then return 

else call SPLIT 
end. 

2.3 Deletion and Shrinkage 

Deletion of a key may cause a segment of ad. 
dress space to become empty. The hash file can 
be shrunk by 
(1) deallocating the empty segment, 
(2) freeing the corresponding HIT to the free 

storage pool, and 
(3) updating the DT, which eliminates two nodes 

in general. 

In Figure 2.6, when K4 and 1(6 are deleted, AS1 

HIT1 As1 

-I' 
t--1 k-s--+ 
L-J t-s -m-J KS 3 2 

n k3 
k5 

3 

Fig. 2.6. After deleting k4 and kg, HIT1 and AS1 
are deallocated, while the DT is up- 
dated with two nodes eliminated. 
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3. EXPECTED PERFORMANCES 

3.1 Analysis 

In this section we mainly consider the height 
of the DT and the storage utilization of a dynamic 
hash file. Assuming that the file is empty, then 
it is created by n insertions, and the size of 
each segment of AS and HIT is r. We will also 
assume that each hi hashes randomly and that the 
DT is represented by a binary tree using linked 
structure. We shall start by analyzing the num- 
ber of nodes in the DT. Then, we can obtain the 
number of allocated segments, the storage utiliza- 
tion, and the height of the DT immediately. Here 
we adapt the analysis given in [13] to our scheme. 

Dt is a binary tree. The number of nodes on 
level t is 2t, t>O. The probability of the search 
sequence of certain record with key k passing 
through a given node on level t is 

ld, t > 0. - 
The probability that x out of n keys pass through 
the node is then 

P t (x1=(") (1/2t)x(1-1/2t)n-x 
X 

, O<x<n. -- 

The x keys pass a node if the y keys pass is fa- 
ther node first. The conditional probability is: 

c;, (1/2)x(1-1/2)y-x 

=(yx) (1/2)Y, y 2 x. 

From the above probabilities, we obtain the proba- 
bility that a node at level t such that y keys 
pass its father and then x key pass this node is: 

Q,(x)= F Ptel(y) (3 l/2’, _ _ O<x<n, t>O. 
y=r'+l 

Qo(x)=Po(x), t=o. 

where r' is the maximum number of keys in one seg- 
ment. If O<x<r', then a node at level t does not 
split. The-probability is 

r' 
Rt = c Q,(x), t,O. 

x=0 

The probability that a node at level t points to a 
segment of HIT is 1 

R; = c' Q,(x), c-0. _ 
x=1 
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The expected number of nodes at level t which 
point to a segment of HIT is 

Exp(Ri)=(the number of nodes at level t1.R; 
~9.“; t > 0. - 

Then the total number of allocated HIT segments is 
therefore 

m t Exp(T)= c 2 .R; 
t=o 

r' n 
= T 2t * c c 

t=o x=1 y=r'+l 
Pt-l(y) +/2y. 

Then, the expected storage utilization is 

n 
" = r-Exp(T) 

and the expected height of the DT is 

H = O(log2Exp(T)) 

Example 1 (Continued) 

After inserting the file with twelve keys, the 
configuration is shown in Figure 3.1. At this 
time, 

(a) I 
(b) E 
(c) T 
(d) u 
(e) H 

(f) P 

the statistics of this hash file are: 
(number of internal nodes) = 2 
(number of external nodes) = 3 
(number of allocated segments) = 3 
(utilization) = 12/(6 x 3) = 0.75 
(average height of DT) 

=(3 x 2 + 5 x 2 + 4 x 1)/12 = 1.67 
(number of internal probes) 

3 5 
= c c 

j=l i=O 
HITj [i] = 1.58. 

Fig. 3.1 Configuration of the dynamic 
hash file with twelve keys 
inserted. 

3.2 Simulation Results 

Environment and Objectives 

First, we produce fifty thousand independent 
distinct numbers as input data by calling a ran- 
dom number generator. Then we set parameters: 
the number of rehash functions, s, is 3 or 7, the 
size of segment, r, is 5 or 10. The hash file 
considered is created from empty to n=lOOO. When 
n is equal to 10,20,30,...,190,200,300,400,500,.. 
.,lOOO, we calculate the following values: the 
number of internal nodes (I) and external nodes 
(E) of DT, the number of segments (T) of HIT and 
AS, the expected height (H) of DT and the number 
of internal probes (P) in HIT. P and H represent 
the retrieval cost. The simulation experiment is 
programmed in Pascal and run on a CDC Cyber 170/ 
720 computer. 

Results 

(a) Number of nodes in DT 

Figure 3.2 shows the expected number of 1,E 
and T where r=5 and s=3,7. The values are the 
average of 100 tests. From this figure, we ob- 
serve that: 
(1) 

(2) 

\A) 

# 

The expected number of 1,E and T are increased 
in linear proportion smoothy with the number 
of keys. 
In both the cases with s=3 and s=7, the num- 
ber of segments allocated, T, are fewer than 
the number of external nodes E. This means 
some external nodes do not point to a segment 
of HIT, because in some cases all the keys in 
a segment were put together when the split 
occurred. 
With the same n, the 1,E and T in case of s=7 
are smaller than those in case of s=3. This 
means when using a larger number of rehash 
functions, the probability of successfully 
constructing HIT is higher. I.e., the number 

n 
0 0 0 

Fig. 3.2 Expected number of 1,E and T, where r-5 
and s=3,7. 
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of splits is less. 

(b) Utilization 

The expected storage utilization for dif- 
ferent segments size r, and number s of rehash 
functions used has been computed and the results 
are plotted in Figure 3.3. From these results 
we observe that: 

U 

t 
1.0 
0.9 

0.8 
t 

0.6 -e- - - 
0.5d3rs 2 t c - c =: no- 

0.4' 

0.3- 
- 5,133 g:;o 
- 
-s=7 r=5 

0.2 
t 

-A-s=7 r=lO 

Fig. 3.3 Expected storage utilization (U) for 
a dynamic hash file. 

(1) Storage utilization is almost constant, i.e., 
the address space is increased steadily and 
gracefully according to keys actually in- 
serted. 

(2) Given a smaller segment, waste can be avoided. 
With the same s, the utilization is higher 
when r=5 than that when r-10. However, the 
number of nodes in DT is increased in case 
r;5. 

(3) With the same r, the storage utilization of 
s=7 is higher than that of s=3 because we pro- 
vide more rehash functions. One bit must be 
added for each entry of segment HIT, but the 
number of allocated segments is reduced. 
Therefore, the total size of space is not 
greatly increased. For example, when r=5, 
s=7 uses about 158 bits more than s=3 in case 
of n=300; in case of n=lOOO, about 588 bits 
more are used. 

(c) Retrieval Cost 

The expected retrieval cost are the expected 
height of DT, and the expected number of internal 
probes in HIT. For different parameters the re- 
sults are listed in Figure 3.4. From these curves 
we observe that: 
(1) The height of DT is increased smoothly depend- 

ing on the number of keys inserted. 
(2) The number of internal probes in HIT are stea- 

dy- This means that we find the hash function 
Proceedings of the Tenth Intematlonal 
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value in an almost constant time no matter 
how many keys are processed. 

(3) The differences in average, minimum, and 
maximum values in the simulation are small. 
This means the scheme works steadily. 

Fig. 3.4 Expected retrieval cost: height of DT(H) 
and numbers of internal probes (PI. 

4. DISCUSSION AND CONCLUSION 

The main feature of this scheme is that it 
can handle a dynamic key set. We use EHIT to de- 
fine dynamic perfect hash functions. EHIT con- 
tains two parts: distribution tree and HIT. Si- 
mulation results show that when the key set is 
highly dynami'c, say n from 1 to 1000, the height 
of the distribution tree is increased as fast as 
O(logn), and the number of internal probes and 
the storage utilization are constants. 

In practical, if the auxiliary EHIT can be 
placed into the main memory, the retrieval opera- 
tion needs just one disk access to get the .asso- 
ciated data in secondary storage. Simulation re- 
sults show that the size of EHIT is about 484 
bytes in case of n=300, s=7, r=5; 1,623 bytes in 
case of n=lOOO, s=7, r=5. Therefore putting the 
EHIT into the main memory is reasonable. Inser- 
tion (deletion) operations need one read access 
and one write access in case no split (merge) 
occurs. It needs one read access and two write 
access in case a split occurs and only one read 
access if a merge occurs in deletion. 

APPENDIX: TO CONSTRUCT HIT 

Consider the mapping table as follows: 

kl k2 k3 
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(1) 

(2) 

the 

(1) 

(21 

(3) 

Method 1: Process-by-function procedure [6,7] 

Select all the singletons from the first row, 
such as 0 in the following table. An entry 
in row h and column k is a singleton if there 
is no other k' such that h(k')=h(k). 
Select all the singletons from the second 
row not in those columns which were selected 
in the first row, such as 3 and 1 in the fol- 
lowing table. We then accomplish and obtain 
a perfect hash function with HIT=(1,2,0,2). 

Method 2: Process-by-key procedure I281 

Basically, we will process on the keys in 
order of k k ,etc. 1' 2 
We process kl first. Since hl(kl)=2, we 
circle 2 in the first row of the first column 
Secondly, we process k2. Note that k2 has 
the same hash value as kl by applying hl. In 
this case, kl and k2 are collided and both 
need rehashing by h2. 
Finally, we process k3. Since zero is a 
singleton in the first row, we circle it and 
obtain a perfect hash function with HIT=(l, 
2,0,2). 

Example A.1 [Failure for both process-by-func- 
tion and process-by-key methods] 

Consider the following mapping table: 

kl k2 k3 k4 ---------__-_--- 
hl -~-+++- 
h2 ---------------- 

The HIT constructed by process-by-function and 
process-by-key methods are both (0,2,1,1,0). I.e., 

3-2- 
- - - 1 

Therefore it does not define a perfect hash func- 
tion. 

In above example, however, we can find two 
perfect hash functions as defined by HIT=(O,2,1, 
2,2) and HIT=(0,2,2,2,2). I.e., 

- - 2- and ---- 
43-1 4321 

These solutions can be obtained by method 3 in 
the following which is based on branch-and-bound 
technique. 

Method 3: Branch-and-bound procedure [30] 

Given a mapping table MT, the procedure "FINDHIT" 
print all the feasible solutions which define 
perfect hash functions by using branch-and-bound 
technique. The procedure is listed in Figure Al. 
The variables used are defined as follows: 

N is the number of the key set. 
R is the size of the address space. 
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S 
I 

MT 
X 
INDEX 

NEXT 

BACKUP 

is the number of rehash functions. 
is the index of the value in the solution 
vector. 
is the mapping table. 
is the solution vector. 
contains row numbers for the corresponding 
x-values in the mapping table (i.e., the 
index of hash functions). 
NEXT(i) points to the next row to be tried 
in column i. 
is the number of columns to go back in the 
problem states. 

PROCEDURE FINDHIT; 
Var MT:array[l.. S,l..N] of integer; 

X,INDEX,NEXT:array[l..N] of integer; 
HIT:array[l..R] of integer; 
I,K,BACKUP: integer; 

FUNCTION T(I):boolean;//generating the next 
problem states// 

begin T:=false; 
if NEXT[I]G then 

begin IN~EX[I]:=NEXTII];XIIJ:=MT[INDEX 
[II,Il; 

NEXT[I]:=NEXT[I]+l; T:=true end 
end; 

FUNCTION B(I) :boolean;//bounding function// 
begin B:=true; BACKUP:=O; 

for K:=l to I-l do 
if X[K]=X[I] 
then begin B:=false; //violate cons- 

traint (a)// 
if INDEX[K]=INDEX[I] //with same 

hash function// 
then if INDEX[K]=l //hl is used 

in the first row// 
then BACKUP:=I-K//backtrack 

k-i columns// 
else BACKUP:=l//backtrack 

to previous column// 
end 

else if (NEXT[K]>NEXT[II) AND(MT[INDEX 
tI],K]=X[I]] 

then B:=false//violate constraint 
lb) // 

end; 

Begin//main program starts here// 
while not end-of-file do 

begin 
read (MT); //read mapping table// 
for I:=1 TO N DO NEKT[I]:=l, I:=l; 

//initializing// 
while I>0 do 

begin 
if (T(I) and B(I)) 
then if I=N then print (X and HIT) 

//obtain a feasible solution// 
else I:=I+l //consi- 

der the next 
column// 

else begin //actual backtracking 
is executed// 

while BACKUP> 0 do 
begin NEXT[I] :=l; 1:=1-l; 
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BACKUP:=BACKUP-1 end; 
while NEXT[Il S do 

2. Chang, C. c., The Study of an Ordered Minimal 

begin NEXT[I]:=l; 1:=1-l 
Perfect Hashing Scheme, to appear in Comm. 
ACM. 

end; 
end 3. Cichelli, R. J., Minimal Perfect Hash Func- 

end tions Made Simple. Comm. ACM 23, l(Jan. 
end 19801, 17-19. 

end. 4. COffmW, E. G., Jr., and Eve. J. File Stmc- 
Fig. A.1 The Procedure FINDHIT prints all tures Using Hashing Functions. Corn. ACM 13, 

the feasible solutions. 7(July 1970), 427-432. 

Generating the Next Problem State, T 5. Cook, C. R., and Oldehoeft, R. R., A Letter 

The boolean function T(i) is used to test 
Oriented Minimal Perfect Hashing Functions. 

whether (tl,t2 ,...,ti) or corresponding (x1,x2,.. 
ACM Trans. on SIGPLAN NOTICES, 17, 9(Sept. 

-#xi) is in the problem state. If it is true, it 
19821, 18-27 

implies that Xi (where Xi=ht (kill is assigned 6. Du, M. W., Jea, K. F., and Shieh, D. W., The 

from one value of column i ih the MT, and (x1,x2, 
Study of A New Perfect Hash Scheme. =. 
COMPSAC'80, Chicago, Oct. 1980, 341-347. 

. . ..x i-l) have already been chosen. Now the hash 
value vector is extended to i values, and Xi (to 7. Du, M. W., Hsieh, T. M., Jea, K. F., and 
be called the value of current state or current Shieh, D. W., The Study of a New Perfect Hash 
value in short) is considered as a component of Scheme, IEEE Trans. on Software Engineering, 
a feasible solution. SE-g, 3(May 19831, 305-313. 

Bounding Function, B 8. Fagin, R., Nivergelt, J., Pippenger, N., and 

Bounding function B(i) is false for a path 
Strong, H. R., Extendible Hashing - A Fast 

ACM Trans. 
(x1,x2 ,...,Xi) only if the path cannot be extend- 

Access Method for Dynamic Files. 
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Database Syst. 4, 3(Sept. 19791, 315-344. 

function Bi returns a boolean value which is true 9. Jaeschke, G., and Osterburg, G., On Cichelli's 
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