
A DYNAMIC PERFECT HASH FUNCTION DEFINED BY
AN EXTENDED HASH INDICATOR TABLE

W. P. Yang and M. W. Du

Institute of Computer Engineering
National Chiao Tung University

Hsinchu, Taiwan, ROC

ABSTRACT - This paper presents a new dynamic file
organization scheme based on hashing. The hash
functions used here, being defined by extended
hash indicator tables (EHITs), are both dynamic
and perfect. The allocated storage space can be
enlarged and shrunk without reorganizing the data
file. Simulation results show'that the storage
utilization is approximately equal to 70% in an
experiment where the number of rehash functions
s=7, the size of a segment r=lO, and the size of
the key set n varies from 1 to 1000. Since the
hash functions are perfect, the retrieval opera-
tion needs only one disk access.

1. INTRODUCTION

Hashing is a fast technique for information
storage and retrieval [12,19,20,22,25]. Its use,
however, may cause some problems. First of all,
the user needs to handle key collision problem.
Secondly, the address space cannot easily be chan-
ged dynamically. The former problem may be solved
by the use of perfect hash functions, such as
those proposed in [1,2,3,5,6,7,9,10,26,28,301,
where a perfect hash function is defined as a one-
to-one mapping frcxn the key set into the address
space. The latter problem may lead to a waste of
memory if the address space is too large or to a
poor performance if the address space is too small
[121. Thus, dynamic allocation of the address
space is needed. Dynamic hashing means that in
the hashing scheme the set of keys can be varied;
i.e., keys can be inserted into or deleted from
the key set. Insertion of a key may lead to,split
operations -- each split allocates one segment to
the address space -- while deletion of a key may
lead to deallocation of segments which reduces
address space in use.

Several dynamic hashing schemes have been
traduced during the last few years: expandable

the

in-

Permirsion to copy without fee all or part of thts material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very Large
Data Base Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Tenth International

Conference on Very Large Data Bases.

hashing by Knott 1111, dynamic hashing by Larson
[131, virtual hashing, linear virtual hashing, and
trie hashing by Litwin [16,17,181, and extendible
hashing by Fagin and others [81. The detailed
operations of these schemes are different, many
of them use a similar dynamic auxiliary table to
define or modify the hash functions. The auxiliary
table is referred to as "index tree" [13], "bit-
map table" 1161, "prefix tree" [4,111, or "direc-
tory" [81. These schemes can be divided into two
classes. One uses overflow area in address space
and the other does not. Generally, those schemes
using overflow area, save the memory in the ad-
dress space but need one or more disk access to
retrieve a key. Virtual hashing [El and dynamic
hashing with deferred splitting [241 belong to
this class, and the expected storage utilization
of them is about 80%, under suitable conditions.
The second class are those not using overflow
area which can retrieve a key with just one disk
access. However, storage utilization is lower,
say only about 65-69% under similar conditions.
Dynamic hashing [131 and extendible hashing 181
belong to this class.

In this paper, we design a new dynamic hash
function belonging to the second class. The
storage utilization exceeds 69% and the auxiliary
table, which modifies the hash functions, is re-
lative smaller. The main idea is to apply the
hash indicator table (HIT) to define perfect hash
functions as proposed in t6,71. A modified HIT
called extended hash indicator table (EHIT) is
employed as an auxiliary table to set the dynamic
hash functions. Following is a brief description
of how to use HIT to define a perfect hash func-
tion.

Define Perfect Hash Function by HIT

In [6,7] a perfect hash scheme that solves
the key collision problem by using a Series of
hash functions is proposed. Because the HIT sto-
res the index of hash functions selected, it can
define a perfect hash function. The basic model
of this scheme is shown in Figure 1.1. The per-
fect hash function h can be defined by HIT as
follows [6,71.

h(ki)=hj(ki)=Xi if HIT[hr(ki)J#r for r < j
and HIT[hj(ki)]=j,

=undefined otherwise.
The advantages of the perfect hash functions

defined by HIT here are that they can be easily

Singapore, August, 1994

245

Core\ Disk
-I-

t
HIT r------

El
1
2
3
. . .

r

I As i
c

1
2

ih
3
. . .

I
I
I r

L ------ -1

Fig. 1.1 The basic model of perfect hash
functions defined by HIT.

implemented and they use very small tables. Three
ways to construct HIT have been proposed. They
are process-by-function method 161, process-by-
key method [x81, and branch-and-bound method [30].
We shall discuss these methods briefly in Appendix.
The retrieval algorithm is very simple. We list
it below:

Procedure FZETFUEVAL(k,s,HIT,AS);
//Assume that the hash functions hl,h2,//
//...,h,, are used to create HIT. Now //
//we want to retrieve key k.//
begin

j:=l;
while (HIT[hj(k)]#j and jLs) do j:=j+l;
if j > s then failure

end.
else k is stored in AS[hj (k) J

In evaluating the function value, the number of
loops executed in the while-statement in the al-
gorithm is called the "number of internal probes"
in HIT. The expected number of internal probes

r-l
is defined by l/n 1 HIT[i], where n is the number

i=O
of keys concerned and r is the size of the address
space. It is a measure of the retrieval cost.

In Section 2 we will describe how to use a
modified scheme to handle dynamic file. Insertion
and deletion algorithms will be presented. In
Section 3, the expected performances will be con-
sidered. We will use independent data to simula-
te the scheme and to observe the variation of ad-
dress space. Also we will estimate the utiliza-
tion of storage and the retrieval costs.

2. RETRIEVAL AND MAINTENANCE ALGORITHMS

2.1 Define Dynamic Perfect Hash Function by EHIT

The model of dynamic perfect hash functions
in this new file retrieval system is shown in
Figure 2.1. It consists of an address space (AS)
in which the keys are stored, and an extended hash
indicator table .(EHIT) as auxiliary memory. The
EHIT contains two parts: the distribution tree(DT)
and HIT.

Proceedings o? the Tenth International

Conference on Very Large Data Bases.

Fig. 2.1 Model of a dynamic perfect
hash file.

Assume that the set of keys to be stored at
a certain time is denoted by (k.), i=1,2,...,n.
The number of keys, n, is not fixed but varies
with time. The system is initialized with a node
and a segment of HIT with predefined size, r.
Secondary storage space is allocated for one seg-
ment with capacity r. Each segment of HIT con-
tains a pointer to the segment of AS in the data
file. Figure 2.2 illustrates the initial situa-
tion for a file with one segment.

KS HIT1

iit

ASl

a

0
1

.
r-l

Fig. 2.2 Initial structure of a
dynamic perfect hash file.

First some keys are placed into the system
and HIT is constructed by using the branch-and-
bound method [30] (see Appendix) to define the
perfect hash function.

Sooner or later the segment will overflow,
I.e., when trying to insert a key into the seg-
ment, the corresponding HIT cannot be constructed
successfully. When this happens we split the seg-
ment into two. Anew segment of address space is
allocated and the keys are distributed equally
among the two segments. At the same time the DT
is updated to record the new situation. If, later,
one or the other of the two segments becomes
"full", it splits into two segments, etc. Figure
2.3 shows the structure of the hash file derived

Singapore, August, 1984

246

from Figure 2.2 after three splits have occurred.
The size of the file has been increased to four
segments. The DT has grown to a binary tree
with seven nodes. Internal nodes are shown as
circles and external nodes as squares. Under
this scheme, the retrieval operation is as fol-
lows:

Algorithm DYNAMIC-PETFUEVE(k,s,DT,HIT)
begin

//traverse DT//
//call random number generator//
fl~...bm:=HANDOM(k:seed)

:
while not external node do

if bi=O
then goto left-branch else goto right-
branch;
i:=i+l

//get HITj and find hi//
i:=l;
while HITj [hi(k) l#i do i:=i+l;
ifi> s
then failure else k is stored in
ASj [hi(k) I;

end.

Fig. 2.3 Structure of a dynamic perfect
hash file after three splits.

There are mainly two advantages. As one can
see, the algorithm is very simple. Secondly if
we can put the EHIT into the core memory, we can
retrieve a key with only one disk access.

2.2 Insertion and Growth

Splitting

Here is an example to illustrate the beha-
vior of the splitting in this dynamic hash scheme.

Proceedings o? the Tenth International
Conference on Very Large Data Bases.

247

Example 1. Let the key set KS,

KS={AND,END,NIL,SET,AHHAY,BEGIN,CASE,CONST,
1 . . . ,

be the 36 Pascal's reserved words. The values of
three hash function and two random numbers are
listed in the following table:

--
‘$
-- -

“$ FiGi oii
value

AND END NIL SET ARRAY BEGIN CASE CONST . . . ----------------e-m
315 0 1 1 4 0 . . a -) 7- 5T-3 - 'o- --l- -r - -l-- -a

- - 'B-2 i +F,-o-'5'--3- ->--4- -5 ...
-- - - -- -- - -- - - --------

1100 0 0 0 0 . . .
bit1 T.dom-- --;,-- -- __--------

value 1 1 1' 0 1 11 1 . . .
bit2 -- --- ------ ---- ---- - ---

The hash functions hi's are calculated by

hi(key)=[OPD(chi)+OI?D(chi+l)*i] mod 6

where OHD(Chi) denotes the ordinal number of the
ith character of key. When Chi is the last char-
acter of the key word, ch. resets to the first
character of the key. Th&+&ndom values are ob-
tained by calling a random number generator,
which uses the decimal codes of each key as seed.

(1)

(2)

(3)

We will process on the keys in the order of
kl,k2, etc. First, we process kl and show
the configuration as in Figure 2.4(a).
After processing the first four keys, the cur-
rent size of key set is four. We get Figure
2.4(b) by using the same branch-and-bound
method to construct HIT as proposed in 1301
(see Appendix).
When we want to insert the 5th key ARRAY, we
cannot define a perfect hashing function in
only one segment HITl. Then the second
ment HIT2 is allocated. The keys are di
buted into these two segments according
whether the bit's value is 0 or 1. The

HIT, =.

H ,H

KS

(a)
HIT.

1
1

4 -

(b)

AS,
I

seg-
.stri-
to
confi-

Fig. 2.4 Configuration of the
dynamic hash file.

Singapore, August, 1984

guration is depicted in Figure 2.4(c).
(4) After processing the eight keys, the distri-

bution tree has been split twice, and three
segments of HIT and AS are allocated. The
configuration is shown in Figure 2.4(d).
Notice that the second split causes the HIT1
to split into HIT1 and HIT3, but HIT2 and
AS2 are not changed at all.

KS

L

kl . . tlq .

k8 1

HIT1
As1

HIT,. AS, (m changed)

ASP (new allocated)

-Ga
ARRAY --I
3 CASE

(d)

Fig. 2.4 Configuration of the dynamic hash fi
(continued)

Procerdlngs of the Tenth Intematlonal

Conterence on Vsry Large Dsta Bases.

.e.

The general algorithm forsplitting is shown, with
Figure 2.5 below.

Algorithm SPLIT(ptr)
begin

1. get HITi, ASi pointed by ptr
2. TEMP:=AS:
3. get a ne; node HITj, a new node for AS.
4. distributes TEMP into ASi and ASj 3

5. Using branch-and-bound method to
construct HITi with ASi and HITj with
As*

6. 2 up ate DT
end.

HIT, As.

-

HITi AS. 1

Fig. 2.5 HITi splits into HIT, and 1
HIT..

3

Here we discuss some properties of splitting.
Let X be a random variable to represent the num-
ber of keys that are put together into the same
segment after a split. We have

Prob(X=x)=2(r$(0.5)x(1-0.5)n-X

If n=x,
Prob(X=n)=O.5 n-l

is the probability that all the n keys will be put
into the same segment. For example, n=5,
Prob(x=5)=0.0625. This implies, the probability
of all the keys being put into the same segment

Singapore, August, 1984

248

is very small. Decomes empty, then f~s~n1-r~ ana two noaes OK ur
are deallocated. This means the hash file is

Let Y be a random variable such that all the
n keys are put into the same segment after t splits.

shrinking. The general algorithm of deletion is:

Then, Algorithm DELETICN(k,DT)

Prob(Y=t)=O.S("-') (t-l) l (l-0.5"-'),
begin

1. traverse DT to find the HIT;
For example, if n=5, Prob(Y=3)=3.66 x 10 -3 .I.

, is such that k f Asi
very small. 2. delete k from ASi, reset HITi

Insertion
3. if ASi = empty

then 3.1 deallocate ASi
The general insertion algorithm that uses the 3.2 deallocate HITi

SPLIT procedure described above is listed as follows: 3.3 update DT

Algorithm INSERT(k,DT,HIT)
begin

1. blb2...bm:=RANDOM(k:seed)
2. traverse the DT depending

until external node E
3. get the HITi pointed by E

on bi

4. get the ASi pointed by HITi
5. using the branch-and-bound method re-

construct HITi
6. if step 5 done then return

else call SPLIT
end.

2.3 Deletion and Shrinkage

Deletion of a key may cause a segment of ad.
dress space to become empty. The hash file can
be shrunk by
(1) deallocating the empty segment,
(2) freeing the corresponding HIT to the free

storage pool, and
(3) updating the DT, which eliminates two nodes

in general.

In Figure 2.6, when K4 and 1(6 are deleted, AS1

HIT1 As1

-I'
t--1 k-s--+
L-J t-s -m-J KS 3 2

n k3
k5

3

Fig. 2.6. After deleting k4 and kg, HIT1 and AS1
are deallocated, while the DT is up-
dated with two nodes eliminated.

Proceedings of the Tenth International
Conference on Very Large Data km%

end.

3. EXPECTED PERFORMANCES

3.1 Analysis

In this section we mainly consider the height
of the DT and the storage utilization of a dynamic
hash file. Assuming that the file is empty, then
it is created by n insertions, and the size of
each segment of AS and HIT is r. We will also
assume that each hi hashes randomly and that the
DT is represented by a binary tree using linked
structure. We shall start by analyzing the num-
ber of nodes in the DT. Then, we can obtain the
number of allocated segments, the storage utiliza-
tion, and the height of the DT immediately. Here
we adapt the analysis given in [13] to our scheme.

Dt is a binary tree. The number of nodes on
level t is 2t, t>O. The probability of the search
sequence of certain record with key k passing
through a given node on level t is

ld, t > 0. -
The probability that x out of n keys pass through
the node is then

P t (x1=(") (1/2t)x(1-1/2t)n-x
X

, O<x<n. --

The x keys pass a node if the y keys pass is fa-
ther node first. The conditional probability is:

c;, (1/2)x(1-1/2)y-x

=(yx) (1/2)Y, y 2 x.

From the above probabilities, we obtain the proba-
bility that a node at level t such that y keys
pass its father and then x key pass this node is:

Q,(x)= F Ptel(y) (3 l/2’, _ _ O<x<n, t>O.
y=r'+l

Qo(x)=Po(x), t=o.

where r' is the maximum number of keys in one seg-
ment. If O<x<r', then a node at level t does not
split. The-probability is

r'
Rt = c Q,(x), t,O.

x=0

The probability that a node at level t points to a
segment of HIT is 1

R; = c' Q,(x), c-0. _
x=1

Singapore, August, 1984

249

The expected number of nodes at level t which
point to a segment of HIT is

Exp(Ri)=(the number of nodes at level t1.R;
~9.“; t > 0. -

Then the total number of allocated HIT segments is
therefore

m t Exp(T)= c 2 .R;
t=o

r' n
= T 2t * c c

t=o x=1 y=r'+l
Pt-l(y) +/2y.

Then, the expected storage utilization is

n
" = r-Exp(T)

and the expected height of the DT is

H = O(log2Exp(T))

Example 1 (Continued)

After inserting the file with twelve keys, the
configuration is shown in Figure 3.1. At this
time,

(a) I
(b) E
(c) T
(d) u
(e) H

(f) P

the statistics of this hash file are:
(number of internal nodes) = 2
(number of external nodes) = 3
(number of allocated segments) = 3
(utilization) = 12/(6 x 3) = 0.75
(average height of DT)

=(3 x 2 + 5 x 2 + 4 x 1)/12 = 1.67
(number of internal probes)

3 5
= c c

j=l i=O
HITj [i] = 1.58.

Fig. 3.1 Configuration of the dynamic
hash file with twelve keys
inserted.

3.2 Simulation Results

Environment and Objectives

First, we produce fifty thousand independent
distinct numbers as input data by calling a ran-
dom number generator. Then we set parameters:
the number of rehash functions, s, is 3 or 7, the
size of segment, r, is 5 or 10. The hash file
considered is created from empty to n=lOOO. When
n is equal to 10,20,30,...,190,200,300,400,500,..
.,lOOO, we calculate the following values: the
number of internal nodes (I) and external nodes
(E) of DT, the number of segments (T) of HIT and
AS, the expected height (H) of DT and the number
of internal probes (P) in HIT. P and H represent
the retrieval cost. The simulation experiment is
programmed in Pascal and run on a CDC Cyber 170/
720 computer.

Results

(a) Number of nodes in DT

Figure 3.2 shows the expected number of 1,E
and T where r=5 and s=3,7. The values are the
average of 100 tests. From this figure, we ob-
serve that:
(1)

(2)

\A)

The expected number of 1,E and T are increased
in linear proportion smoothy with the number
of keys.
In both the cases with s=3 and s=7, the num-
ber of segments allocated, T, are fewer than
the number of external nodes E. This means
some external nodes do not point to a segment
of HIT, because in some cases all the keys in
a segment were put together when the split
occurred.
With the same n, the 1,E and T in case of s=7
are smaller than those in case of s=3. This
means when using a larger number of rehash
functions, the probability of successfully
constructing HIT is higher. I.e., the number

n
0 0 0

Fig. 3.2 Expected number of 1,E and T, where r-5
and s=3,7.

Proceedings of the Tenth lnternatlonal

Conference on Very Large Data Ba(Hu).
Singapore, August, 1994

250

of splits is less.

(b) Utilization

The expected storage utilization for dif-
ferent segments size r, and number s of rehash
functions used has been computed and the results
are plotted in Figure 3.3. From these results
we observe that:

U

t
1.0
0.9

0.8
t

0.6 -e- - -
0.5d3rs 2 t c - c =: no-

0.4'

0.3-
- 5,133 g:;o
-
-s=7 r=5

0.2
t

-A-s=7 r=lO

Fig. 3.3 Expected storage utilization (U) for
a dynamic hash file.

(1) Storage utilization is almost constant, i.e.,
the address space is increased steadily and
gracefully according to keys actually in-
serted.

(2) Given a smaller segment, waste can be avoided.
With the same s, the utilization is higher
when r=5 than that when r-10. However, the
number of nodes in DT is increased in case
r;5.

(3) With the same r, the storage utilization of
s=7 is higher than that of s=3 because we pro-
vide more rehash functions. One bit must be
added for each entry of segment HIT, but the
number of allocated segments is reduced.
Therefore, the total size of space is not
greatly increased. For example, when r=5,
s=7 uses about 158 bits more than s=3 in case
of n=300; in case of n=lOOO, about 588 bits
more are used.

(c) Retrieval Cost

The expected retrieval cost are the expected
height of DT, and the expected number of internal
probes in HIT. For different parameters the re-
sults are listed in Figure 3.4. From these curves
we observe that:
(1) The height of DT is increased smoothly depend-

ing on the number of keys inserted.
(2) The number of internal probes in HIT are stea-

dy- This means that we find the hash function
Proceedings of the Tenth Intematlonal

Conterence on Very Large Date Bases.

value in an almost constant time no matter
how many keys are processed.

(3) The differences in average, minimum, and
maximum values in the simulation are small.
This means the scheme works steadily.

Fig. 3.4 Expected retrieval cost: height of DT(H)
and numbers of internal probes (PI.

4. DISCUSSION AND CONCLUSION

The main feature of this scheme is that it
can handle a dynamic key set. We use EHIT to de-
fine dynamic perfect hash functions. EHIT con-
tains two parts: distribution tree and HIT. Si-
mulation results show that when the key set is
highly dynami'c, say n from 1 to 1000, the height
of the distribution tree is increased as fast as
O(logn), and the number of internal probes and
the storage utilization are constants.

In practical, if the auxiliary EHIT can be
placed into the main memory, the retrieval opera-
tion needs just one disk access to get the .asso-
ciated data in secondary storage. Simulation re-
sults show that the size of EHIT is about 484
bytes in case of n=300, s=7, r=5; 1,623 bytes in
case of n=lOOO, s=7, r=5. Therefore putting the
EHIT into the main memory is reasonable. Inser-
tion (deletion) operations need one read access
and one write access in case no split (merge)
occurs. It needs one read access and two write
access in case a split occurs and only one read
access if a merge occurs in deletion.

APPENDIX: TO CONSTRUCT HIT

Consider the mapping table as follows:

kl k2 k3

Singapore, August, 1994

251

(1)

(2)

the

(1)

(21

(3)

Method 1: Process-by-function procedure [6,7]

Select all the singletons from the first row,
such as 0 in the following table. An entry
in row h and column k is a singleton if there
is no other k' such that h(k')=h(k).
Select all the singletons from the second
row not in those columns which were selected
in the first row, such as 3 and 1 in the fol-
lowing table. We then accomplish and obtain
a perfect hash function with HIT=(1,2,0,2).

Method 2: Process-by-key procedure I281

Basically, we will process on the keys in
order of k k ,etc. 1' 2
We process kl first. Since hl(kl)=2, we
circle 2 in the first row of the first column
Secondly, we process k2. Note that k2 has
the same hash value as kl by applying hl. In
this case, kl and k2 are collided and both
need rehashing by h2.
Finally, we process k3. Since zero is a
singleton in the first row, we circle it and
obtain a perfect hash function with HIT=(l,
2,0,2).

Example A.1 [Failure for both process-by-func-
tion and process-by-key methods]

Consider the following mapping table:

kl k2 k3 k4 ---------__-_---
hl -~-+++-
h2 ----------------

The HIT constructed by process-by-function and
process-by-key methods are both (0,2,1,1,0). I.e.,

3-2-
- - - 1

Therefore it does not define a perfect hash func-
tion.

In above example, however, we can find two
perfect hash functions as defined by HIT=(O,2,1,
2,2) and HIT=(0,2,2,2,2). I.e.,

- - 2- and ----
43-1 4321

These solutions can be obtained by method 3 in
the following which is based on branch-and-bound
technique.

Method 3: Branch-and-bound procedure [30]

Given a mapping table MT, the procedure "FINDHIT"
print all the feasible solutions which define
perfect hash functions by using branch-and-bound
technique. The procedure is listed in Figure Al.
The variables used are defined as follows:

N is the number of the key set.
R is the size of the address space.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

252

S
I

MT
X
INDEX

NEXT

BACKUP

is the number of rehash functions.
is the index of the value in the solution
vector.
is the mapping table.
is the solution vector.
contains row numbers for the corresponding
x-values in the mapping table (i.e., the
index of hash functions).
NEXT(i) points to the next row to be tried
in column i.
is the number of columns to go back in the
problem states.

PROCEDURE FINDHIT;
Var MT:array[l.. S,l..N] of integer;

X,INDEX,NEXT:array[l..N] of integer;
HIT:array[l..R] of integer;
I,K,BACKUP: integer;

FUNCTION T(I):boolean;//generating the next
problem states//

begin T:=false;
if NEXT[I]G then

begin IN~EX[I]:=NEXTII];XIIJ:=MT[INDEX
[II,Il;

NEXT[I]:=NEXT[I]+l; T:=true end
end;

FUNCTION B(I) :boolean;//bounding function//
begin B:=true; BACKUP:=O;

for K:=l to I-l do
if X[K]=X[I]
then begin B:=false; //violate cons-

traint (a)//
if INDEX[K]=INDEX[I] //with same

hash function//
then if INDEX[K]=l //hl is used

in the first row//
then BACKUP:=I-K//backtrack

k-i columns//
else BACKUP:=l//backtrack

to previous column//
end

else if (NEXT[K]>NEXT[II) AND(MT[INDEX
tI],K]=X[I]]

then B:=false//violate constraint
lb) //

end;

Begin//main program starts here//
while not end-of-file do

begin
read (MT); //read mapping table//
for I:=1 TO N DO NEKT[I]:=l, I:=l;

//initializing//
while I>0 do

begin
if (T(I) and B(I))
then if I=N then print (X and HIT)

//obtain a feasible solution//
else I:=I+l //consi-

der the next
column//

else begin //actual backtracking
is executed//

while BACKUP> 0 do
begin NEXT[I] :=l; 1:=1-l;

Singapore, August, 1984

BACKUP:=BACKUP-1 end;
while NEXT[Il S do

2. Chang, C. c., The Study of an Ordered Minimal

begin NEXT[I]:=l; 1:=1-l
Perfect Hashing Scheme, to appear in Comm.
ACM.

end;
end 3. Cichelli, R. J., Minimal Perfect Hash Func-

end tions Made Simple. Comm. ACM 23, l(Jan.
end 19801, 17-19.

end. 4. COffmW, E. G., Jr., and Eve. J. File Stmc-
Fig. A.1 The Procedure FINDHIT prints all tures Using Hashing Functions. Corn. ACM 13,

the feasible solutions. 7(July 1970), 427-432.

Generating the Next Problem State, T 5. Cook, C. R., and Oldehoeft, R. R., A Letter

The boolean function T(i) is used to test
Oriented Minimal Perfect Hashing Functions.

whether (tl,t2 ,...,ti) or corresponding (x1,x2,..
ACM Trans. on SIGPLAN NOTICES, 17, 9(Sept.

-#xi) is in the problem state. If it is true, it
19821, 18-27

implies that Xi (where Xi=ht (kill is assigned 6. Du, M. W., Jea, K. F., and Shieh, D. W., The

from one value of column i ih the MT, and (x1,x2,
Study of A New Perfect Hash Scheme. =.
COMPSAC'80, Chicago, Oct. 1980, 341-347.

. . ..x i-l) have already been chosen. Now the hash
value vector is extended to i values, and Xi (to 7. Du, M. W., Hsieh, T. M., Jea, K. F., and
be called the value of current state or current Shieh, D. W., The Study of a New Perfect Hash
value in short) is considered as a component of Scheme, IEEE Trans. on Software Engineering,
a feasible solution. SE-g, 3(May 19831, 305-313.

Bounding Function, B 8. Fagin, R., Nivergelt, J., Pippenger, N., and

Bounding function B(i) is false for a path
Strong, H. R., Extendible Hashing - A Fast

ACM Trans.
(x1,x2 ,...,Xi) only if the path cannot be extend-

Access Method for Dynamic Files.

ed to reach an answer node, i.e., the bounding
Database Syst. 4, 3(Sept. 19791, 315-344.

function Bi returns a boolean value which is true 9. Jaeschke, G., and Osterburg, G., On Cichelli's
if the ith x can be selected in the column i of Minimal Perfect Hash Functions Method. Comm.

the mapping table MT, and can satisfy the constr- ACM 23, 12(Dec. 1980), 728-729.
aints: 10. Jaeschke, G., Reciprocal Hashing: A.Method

(a) Xi#Xj for all ifj, 1 2 i, j 2 n. for Generating Minimal Perfect Hashing Func-
(b) Xifdj where dj=ht(hj), xi=ht(ki), xj=ht, (kj), tions, Comm. ACM 24, 12(Dec. 19811, 829-833.

if t < t'. 11. Knott, G. D., Expandable Open Addressing Hash
Table Storage and Retrieval. Proc. ACM

Thus the candidates for position i of the solution SIGFIDET Workshop on Data Description, Access,
vector X(l..n) are those values which are generated and Control, 1971, 186-206.
by T(i) and satisfy B(i). If i=n, we obtain a
feasible solution and then print it. 12. Knuth, D. E., The Art of Computer Programming,

Vol. 3, Sorting and Searchinq. Addison-Wesley,
Example A.2 [Branch-and-bound method to construct Reading, Mass., 1973.
HIT]

13. Larson, P. A., Dynamic Hashing. BIT
Consider the following mapping table:

18,
(19781, 184-201.

kl k2 k3 k4 14. Larson, P. A., Linear Hashing with Partial
---------_-_---_

h112 1 Expansions. Proc. 6th Conf. on Very Large
1 ----------------

h 3 0 2 4 Data Bases, Montreal, Oct. 1980, 224-232.
2 _--_-^-_---_----

15. Larson, P. A., Performance Analysis of Linear
The size of the solution space is 16. By Hashing with Partial Expansions. ACM Trans.

using the procedure FINDHIT, two feasible solu- on Database Systems, 7, 4(Dec. 1982), 566-
tions are obtained as 587.

--2- md --a- 16. Litwin, W., Virtual Hashing: A Dynamically
30-4 3-24 Changing Hashing. Proc. 4th Conf. on Very

with H1T=(2,0,1,2,2) and HIT=(2,0,2,2,2) respec- Large Data Bases, West Berlin, Sept. 1978,

tively. The first solution is the optimal with 517-523.

retrieval cost equal to 1.75. 17. Litwin, W., Linear Hashing: A New To01 for
File and Table Addressing. Proc. 6th Conf.

REFERENCES on Very Large Data Bases, Montreal, Oct. 1980,

1. Anderson, M. R., and Anderson, M. G. Comments 212-223.

on Perfect Hashing Functions: A Single Probe 18. Litwin, W., Trie Hashing: Res. Rep. MAP-I-
Retrieving Method for Static Sets. Comm. ACM 014, I.R.I.A. Ls Chesnay, France, 1981.
22, 2(Feb. 1979), 104.

Proceedings of the Tenth International
Conference on Very Large Data Bases.

253

Singapore, August, 1984

19. Maurer,
Scatter
35-37.

26.

20. Maurer,
Method.
5-19.

w. D., An Improved Hash Code for
Storage. Comm. ACM 11, l(Jan. 19681,

W. D., and Lewis, T. G., Hash Table
Computing Surveys 7, l(Mar. 19751,

27.

21. Mendelson, H., Analysis of Extendible Hashinq. 28.
IEEE Trans. on Software Engineering, SE-8, . _.-..
G(Nov. 19821, 611-619.

22. Morris, R., Scatter Storage Techniques. Comm.
ACM 11, l(Jan. 19681, 38-44.

23. Ramamohanarao, K., and Lloyd, J. W., Dynamic
Hashing Schemes. The Computer Journal, 25,
4(1982), 478-485.

24. Scholl, M., New File Organization Based on
Dynamic Hashing. ACM Trans. on Database
Systems, 6, l(March 19811, 194-211.

25. Severance, D. G., Identifier Search Mechanisms:
A Survey and Generalized Model. Computing
Surveys 6, 3(Sep. 19741, 175-194.

29.

30.

31.

Proceedings of the Tenth lnternetional
Conference on Very Large Data Basea.

Sprugnoli, R., Perfect Hashing Functions: A
Single Probe Retrieving Method for Static
Sets. Comm. ACM 20, ll(Nov. 19771, 841-850.

Tamminen, M., Extendible Hashing with Over-
flow. Information Processing Lett. 15, 5
(Dec. 1982), 227-232.

Yang, W. P., Du, M. W., and Tsay, J. C.,
Single-Pass Perfect Hashing for Data Storage
and Retrieval. Proc. 1983 Conf. on Informa-
tion Sciences and Systems, Baltimore, Mary-
land, May. 1983, 470-476.

Yang, w. P., and Du, M. W., Expandable Single-
Pass Perfect Hashing. Proc. of National
Computer Symposium, Taiwan, Dec. 1983, 210-
217.

Yang, W. P., and Du, M. W., A Branch-and-
bound Method to Construct Perfect Hash Func-
tions from a Set of Mapping Functions. Re-

- search Report of NCl'U, Jan. 1984.

Yao, A, C., A Note on the Analysis of Extendi-
ble Hashing, Information Processing L&t. 11,
2(1980), 84-86.

Singapore, August, 1984

254

