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Abstract—This paper presents a dynamic power reduction
technique for incremental ∆Σ (I-∆Σ) modulators. The technique
makes use of the unequal weighting of the digital reconstruction
filter. The underlying idea is that the input signal samples are not
equally weighted in the higher order reconstruction filter. Thus,
it is possible to increase the non-idealities of the I-∆Σ modulator
during the runtime of a single Nyquist conversion, thereby saving
power. This principal idea is verified by an example design, where
the input-referred noise of the first integrator is dynamically
increased, which allows for improved efficiency. The proposed
technique is readily applicable to every state-of-the-art I-∆Σ

modulator. Furthermore, it is shown that this property can
also be used to switch a single-bit DAC into a multibit DAC
during runtime, thereby greatly improving the achievable SQNR
without suffering from the DAC non-linearity. The prototype
I-∆Σ modulator is manufactured in a 180 nm CMOS technology
and achieves a DR/SNDR = 91.5/86.6 dB for a sampling rate
of 200 kS/s while consuming l.l mW from a 3 V supply, while
the dynamic power reduction method accounts for 30% power
savings.

Index Terms—ADC, biomedical, delta sigma, discrete time,
dynamic power reduction, slicing

I. INTRODUCTION

In many sensor applications, such as in high-channel count

biomedical applications as presented in [1], analog-to-digital

converters (ADCs) feature resolutions exceeding 14 bits. These

ADCs must be capable of being multiplexed between individ-

ual channels without memory and thus without inter-sample

interference. Therefore, they need to provide true sample-

to-sample conversion at Nyquist-rate. SAR ADCs offer the

best efficiency for a huge range of sampling frequencies and

resolutions in the recent state of the art. But to achieve high

resolution (e.g. ≥ 14 bits) and high linearity (e.g. ≥ 90 dB),

almost exclusively noise-shaping and mismatch-error-shaping

have been used. However, these techniques introduce memory

to the system and thus ADCs making use of these tech-

niques can not be multiplexed. Similarly, freely-running ∆Σ
modulators dominate the state of the art in efficiency for

high-resolution designs. Again, they use noise-shaping and

have memory by their loop and decimation filters and thus

can not be multiplexed nor do they offer true Nyquist-rate

sample-to-sample conversion. However, there are solutions as

presented in [2], [3] using freely-running ∆Σ modulators in

multiplexed operation. Still, they come with drawbacks like

decreased power efficiency or increased crosstalk and inter-

sample interference. Another candidate for high-resolution,

yet true Nyquist-rate conversion, is the incremental Delta-

Sigma (I-∆Σ) ADC. It still features similar properties like
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Fig. 1. Block diagram of a 1st order modulator including input-referred noise
en[k] with variance σ2[k].

the freely-running ∆Σ ADC, as oversampling and noise-

shaping. In contrast, the regular reset of its filters makes

true Nyquist-rate operation possible. While offering Nyquist-

rate conversion capabilities, I-∆Σs are less power efficient

than freely-running ∆Σ modulators. Although [4] proposes

an eighth-order cascaded incremental ADC that can outper-

form conventional ∆Σs in terms of SQNR for OSRs in the

single-digit range, I-∆Σs usually require higher oversampling

for most common modulator architectures. Consequently, all

measures to enhance the efficiency of I-∆Σ ADCs are highly

desired.

This paper proposes a dynamic power reduction scheme

as shown in [5], where non-idealities can be successively

increased during a single Nyquist-rate conversion. This allows

for a successively reduced power during every single conver-

sion step. While it is applicable to all non-idealities within

the I-∆Σ modulator, this paper proves the concept with a

dynamically increased input-referred noise of the input stage.

The paper is organized as follows: Section II gives an

introduction to the concept of dynamically increased non-

idealities in I-∆Σ ADCs and Section III presents simulation

examples. Subsequently, Section IV gives an insight into the

circuit-level implementation of this proof of concept. Finally,

Section V and VI present measured results of the implemented

design and conclude the paper.
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II. THEORY OF DYNAMICALLY INCREASED

NON-IDEALITIES IN I-∆Σ MODULATORS

This section provides a mathematical description of the

signal behavior of I-∆Σ ADCs to understand the concept of

dynamic power reduction.

A. Weighting Function of the Reconstruction Filter

The considerations of the signal weighting are done in terms

of a first order discrete-time I-∆Σ ADC with feedforward

path, also referred to as low-distortion path [6] as shown in
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Fig. 1. Here, k denotes the k-th clock cycle during the n-th

Nyquist-rate conversion. The whole structure, comprising the

modulator as well as the reconstruction filter, is periodically

reset at the end of the M -th clock cycle (k = M ), where M
is the oversampling ratio (OSR). This gives the I-∆Σ ADC

the possibility to be used in multiplexed environments.

Shortly before the reset, only the last value of the output

of the digital reconstruction filter Dn is stored. Consequently,

every Nyquist-rate conversion consists of M cycles running

at the internal sampling rate fs, whereas the decimated output

of the reconstruction filter is only running at Nyquist-rate fN.

Referring again to Fig. 1, the non-idealities are modeled as

input-referred error en[k] with variance σ2[k]. It will be shown

afterwards that this variance can also be made time varying by

increasing this input-referred noise during runtime. Extending

the findings from [7], the signal content contained in the

decimated digital output sample Dn of the reconstruction filter

for the n-th Nyquist-rate conversion can be calculated as:

Dn =

M∑

k=1

dn[k] · w∗[k], (1)

where dn[k] is the output of the I-∆Σ modulator during the

n-th Nyquist-rate conversion. Here, w∗[k] are the normalized

filter weights for a generic reconstruction filter as a function

of cycle k. According to [7], the output of the quantizer dn[k]
can be determined by the finite length convolution of length

M as:

dn[k] = [(un[k]+ en[k]) ∗ stfmod[k]]M +[q[k] ∗ntfmod[k]]M ,
(2)

where stfmod[k] and ntfmod[k] are the impulse responses

of the modulator’s signal-and noise transfer functions, re-

spectively. As the error sequence en[k] is already input-

referred, it is indistinguishable from the input signal un[k]
from the modulator’s perspective. The power of the input

signal contained in the digital output sample Dn of the n-th

Nyquist-rate conversion can be calculated by means of (1) and

(2) as linear superposition is applicable.

Referring again to Fig. 1, the decimated output Dn of the

n-th Nyquist-rate conversion consists of a signal as well as

an input-referred error component and quantization noise. A

very common reconstruction filter for I-∆Σ modulators is the

chain-of-integrators (CoI) filter. Without the loss of generality,

a CoI filter is used throughout this paper. The filter non-

normalized weights wCoI[k, L, d] for a CoI filter of order L

with input-to-output delay d, can be calculated as follows:

wCoI[k, L, d] =
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0 , else
(3)

Here, d is the input-to-output delay. To remove the scaling due

to the reconstruction filter, the filter weights should be divided

by the normalization factor NF that can be obtained as:

NF =
M∑

k=1

wCoI[k, L, d] = wCoI[1, L+ 1, d]. (4)
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Fig. 2. Logarithmic plot of the normalized filter weight wCoI∗[k] for a 1st
to 4th order CoI filter.

A logarithmic plot of the normalized weighting (w∗

CoI =

wCoI/NF) of a delay-less CoI filter of first to fourth order,

given an exemplary OSR of M = 150, is shown in Fig. 2.

It can clearly be observed that a first order filter features

equal weighting for all cycles. In contrast, for higher order

filters, the signal weighting is shifted more and more towards

early cycles. This property can be used to loosen requirements

on the modulator non-idealities towards the end of a conver-

sion cycle, thereby possibly saving power without suffering

from a radical drop in performance. Before simulating this

approach in Section III, in the following the influence of circuit

noise on I-∆Σ ADCs is shortly investigated to be able to

compare the analysis with simulations thereafter.

B. Noise Performance of I-∆Σ Modulators

The noise performance is a decisive factor for the power

consumption of any I-∆Σ modulator. In the following, it

is analyzed how non-equal weighting of the reconstruction

filter influences the achievable SNR. As a discrete-time I-∆Σ
modulator is realized, the noise of a switched-capacitor (SC)

input stage, as depicted in Fig. 3, is investigated. An in-depth

analysis of the noise behavior of SC circuits is performed in

[8]. In the following, this is slightly extended by also taking

the 1/f noise into account and also by adopting the results to

discrete-time I-∆Σ modulators.

Equation (5) shows the input-referred noise of a commonly

used stray-insensitive SC integrator. In [8], this is derived from

the sampling switch noise and the OTA’s input-referred noise

during the two operation phases of the SC integrator:

v2Cs =
kBT

Cs
(1 +

2Rswgm
1 + 2Rswgm

) +
SOTA,th

4τ2
︸ ︷︷ ︸

v2

OTA,th

+v2OTA,1/f , (5)

where kB is the Boltzmann constant, T is the absolute tem-

perature and Cs is the sampling capacitor. Rsw is the on-

resistance of the sampling switches. The input impedance seen

towards the OTA’s virtual ground can be approximated with

1/gm derived at hands of the equivalent circuit shown in top
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Fig. 3. Schematic of stray-insensitive SC integrator including non-overlapping
clocks and equivalent circuit of a single-stage OTA.

left of Fig. 3 under the assumption that RL is large. SOTA,th is

the input-referred power spectral density of the thermal noise

of the OTA. The time constant during phase Φ2, namely τ2 is

given by

τ2 = (
1

gm
+ 2Rsw)Cs. (6)

In addition, the input-referred 1/f noise of the OTA v2OTA,1/f
has been added to (5), since we later investigate both noise

sources using the proposed dynamic increase of non-idealities.

While [8] shows that the input-referred thermal noise is filtered

by the low-pass characteristic of the OTA, this is not the

case for the 1/f noise, if - as usually the case - the 1/f

corner frequency is lower than 1/τ2. Therefore, the 1/f noise

contribution of the OTA is seen one by one on the sampling

capacitor.

Since the dynamic reconfiguration of the I-∆Σ modulator

will have a large impact on the noise contribution in the circuit

implementation, in the following the OTA noise is derived and

evaluated within the SC integrator and the I-∆Σ ADC as well.

For a simple CMOS OTA, i.e. a differential stage with current

mirror load [8], and assuming all devices are identical and

operated in strong inversion, the input-referred noise power

spectral density becomes:

SV,tot ≈
16kBT

3gm1
︸ ︷︷ ︸

SOTA,th

+
2KF

C2
ox ·W1L1 · f

︸ ︷︷ ︸

SOTA,1/f

,
(7)

where KF is a technology dependent factor, Cox denotes the

oxide capacitance per area and W1,L1 are the width and

length of the input transistor pair, respectively. To obtain the

1/f noise power v2OTA,1/f , which was introduced in (5), one

has to integrate SOTA,1/f :

v2OTA,1/f =
2KF · ln(f2/f1)
C2

ox ·W1L1
, (8)

TABLE I
EXTRACTED THERMAL NOISE PENALTY FACTOR NP

L
M

25 50 75 100 150 200

1 1.0 1.0 1.0 1.0 1.0 1.0

2 1.3 1.3 1.3 1.3 1.3 1.3

3 1.7 1.8 1.8 1.8 1.8 1.8

4 2.2 2.2 2.2 2.3 2.3 2.3

where f1 is a chosen lower bound and f2 can be approximated

with fc, which is the 1/f noise cutoff frequency. Using (5), (6),

and (7), v2OTA,th can be obtained as:

v2OTA,th =
SOTA,th

4τ2
=

4kBT

3Cs
(

1

1 + 2Rswgm
). (9)

Plugging this in (5) yields:

v2Cs ≈
kBT

Cs
(
7/3 + 4Rswgm
1 + 2Rswgm

)

︸ ︷︷ ︸

v2

Cs,th

+
2KF · ln(fc/f1)
C2

ox ·W1L1
︸ ︷︷ ︸

v2

OTA,1/f

. (10)

As explained later, it is valid to assume a modulator with unity

STF, the calculated input-referred noise power of the input

stage of the I-∆Σ modulator v2Cs can directly be transferred

to the output of the ADC. Then, the following integral must

be solved:

D2
noise =

v2Cs,th

fs

∫ 0.5

−0.5

|
M∑

k=1

w∗

CoI [k] · e−j2πfk|2df + v2OTA,1/f

≈ np

M
· 2kBT

Cs
(1 +

1/6

1 + 2Rswgm
) +

2KF · ln(fc/f1)
C2

ox ·W1L1
.

(11)

This can either be done analytically or numerically. The second

part of (11) is a simplified version of the analytical solution,

where np is called thermal noise penalty factor [7]. The factor

np has been calculated for different values of OSR and filter

orders. The result are shown in Table I. It can directly be

seen that the noise penalty is weakly dependent on the OSR

but strongly dependent on the chosen architecture, which sets

the filter order L. From (11) it becomes clear that the power

of the white noise is reduced by the factor np/M . Thus, it

takes advantage of the oversampling nature of the I-∆Σ ADC,

but in contrast to a freely-running one, np corresponds to the

penalty for the Nyquist-rate operation. In a proper design, the

1/f noise corner can be assumed to be below the maximum

signal bandwidth and therefore it fully contributes to the noise

power without being affected by the digital filter. Therefore, it

is up to the designer to reduce the effect of 1/f noise to meet

the overall noise requirements.

What is used later for the dynamic increase of noise in the

I-∆Σ is the possibility from (11) of scaling the input-referred

thermal noise power by linearly scaling the sampling capacitor

and the 1/f noise by linearly scaling the input pair of the OTA.

III. SIMULATION EXAMPLE

This section gives simulation examples that investigate

different sources of non-idealities. Thereby, we investigate

the dynamic increase of noise, for which the analysis in the
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TABLE II
SCALING COEFFICIENTS OF THE EXAMPLE MODULATOR

c1 c2 c3 a1 a2 a3

0.2393 0.4309 0.155 9.752 8.942 5.916

previous section gave the circuit level foundation, and which

is also being used for the prototype implementation in Section

IV. In addition, it is shown that the dynamic increase of

non-idealities can also be extended to other error sources.

Therefore, also settling errors and DAC non-linearity errors

are investigated. The example 3rd order CIFF modulator is

depicted in Fig. 4. The used scaling coefficients are shown

in Table II. As the feedforward path is not present in this

modulator, the freely-running STF would show slight out-of-

band peaking. As the resulting out-of-band peaking mainly

affects thermal noise, it is of interest how this relates to the

digital output. To answer this, Fig. 5 shows a comparison

between the transfer function of the reconstruction filter and

the STF of the entire ADC before decimation. Having a look

at the absolute difference between both curves, as shown in

red, it becomes clear that it is valid to assume STF≈ 1 as

the modulator shows very limited influence on the STF. For

the following simulations an OSR=150 has been chosen such

that the results are clearly not limited by quantization noise.

A simulation without noise leads to an SQNR≈ 99 dB for a

sinusoidal input with an amplitude of -6 dBFS.

A. Dynamic Increase in Noise

It is investigated using a Simulink model, how an increase

in the noise over runtime affects the performance of the

exemplary I-∆Σ ADC. Therefore, the input-referred noise

voltage is increased (×2 or ×4, respectively) during runtime

and the expected value of the SNR is calculated for comparison

using (11). It is worth mentioning that the SQNR remains

unaffected by this technique. The power of thermal and 1/f

noise have been chosen such that the noise contributed to the

digital output is equal for both components: v2th = v2OTA,1/f
to allow for a noise limited SNR≈ 89 dB assuming again a

sinusoidal input signal with an amplitude of -6 dBFS. Now,

the noise power is increased after a certain amount of cycles

during a single Nyquist-rate conversion. Thereby, the SNR of

the ADC is affected according to (1), (2), and (11), where

the variance of the input-referred noise becomes now time-

dependent. However, it can be shown that the resulting PSD of

the noise is still white. Fig. 6 shows this effect of increasing the

input-referred noise power during runtime. The three shown

simulations are with a constant input-referred noise as well

as with a doubled and quadrupled input-referred noise after

cycle 1≤ k <M = 150. Additionally, the expected values from

(1), (2), and (11) are indicated. It can be observed that even

increasing the noise power by a factor of four towards the end

of a conversion does barely affect the SNDR. Furthermore,

the matching between theory and simulation is good.

B. Dynamic Increase of Settling Errors

The required settling accuracy of SC integrators for high-

resolution applications sets strict requirements on slew-rate

(SR) and gain-bandwidth (GBW) of the implemented OTAs.

As the non-idealities of the first integrator in the integrator

chain are not shaped by a preceding stage, the linearity

requirement of this stage has to be approximately the same

as the linearity requirement of the entire modulator. Therefore

the first integrator stage is usually designed with highly linear

switches and an OTA with very high gain, SR and GBW,

respectively. As the most dominant power source in this

integrator is the OTA, its non-idealities during the settling

process shall be discussed in the following.

The settling of the OTA can roughly be divided into three

phases. The first settling phase is dominated by the finite SR of

the OTA. Here, the output is linearly charged, as the maximum

current available is sunk into the integration capacitor. As soon

as the settling process due to GBW limitations is slower than

the SR limited settling, an exponential settling behavior can

be observed. If enough time is given for settling, the integrator

will settle to a final value within a certain distance to the ideal

value determined by the finite DC gain. As the time for slewing

and exponential settling is highly signal-dependent, harmonic

distortion may arise from it if SR and GBW are not chosen

sufficiently large. According to [9], this error is exponentially

dependent on the input of the first integrator consisting of input

and feedback signal, respectively. As for any ∆Σ modulator,

this signal is the difference between input signal and feedback

signal. As it makes calculations cumbersome, simulations

are preferred over an analytical expression to investigate the

effects of a dynamic increase in settling errors over runtime

on the overall accuracy. Fig. 7 depicts the achieved SNDR for

a dynamic reduction of SR and GBW of the first integrator

during a single Nyquist-rate conversion cycle of the exemplary

I-∆Σ ADC. For this purpose, all circuit-noise sources are

turned off. The input amplitude has been chosen as 0.5 FS.

The initial SR and GBW have been chosen such as to allow

almost ideal SNDR = SQNR, which is shown as a reference in

Fig. 7. After a given time instant k < M during a Nyquist-

rate conversion, the SR and GBW have been divided by a

factor of two and four, respectively. This is shown in the

blue and red curves. Even though it can again be seen that

a worsening of the SR and GBW towards the end of a

conversion cycle has a decreasingly minor effect, it is obvious

that the potential savings are limited, since a severe drop

in performance can still be seen even when the switch-off

instant is rather late. This is due to strong harmonic distortion

as well as quantization-noise-folding. Thus, for the proposed

dynamic power saving technique, a circuit technique would be

required which allows to increase input-referred noise without

significantly affecting the SR and GBW specification. This

will be solved in Section IV.

C. Dynamic Increase of Non-Linearities of the Feedback DAC

Before going to the prototype implementation of the pro-

posed technique using dynamic noise increase for a dynamic

power saving, yet another non-ideality and its behavior for its

dynamic increase is investigated.

Even though it is later not used due to fast prototyping

reason, we still present it here to show the generality and the
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Fig. 6. Calculated (solid) and simulated (crossed) degradation in SNR due
to a dynamic increase (×2 or ×4) in thermal noise after cycle k.

potential of the presented technique. The usage of multibit

quantization within ∆Σ modulators is highly beneficial in

terms of stability, SQNR and maximum stable amplitude.

Besides the higher complexity for the multibit quantizer

and feedback DAC, the major drawback of a multibit DAC

is the non-linearities that result from component mismatch.

Linearization techniques have been used to reduce the in-
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Fig. 7. SNDR for dynamic reduction of SR and GBW to 100% (Reference),
50% and 25%, respectively.
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Fig. 8. SNDR for first making use of a single-bit DAC and then after k cycles
making use of a 4b DAC with mismatch.

fluence of harmonic distortion [10], [11], though they are

less effective as in freely-running ∆Σ modulators. Therefore,

it is proposed here to use the presented dynamic increase

of non-idealities in I-∆Σ ADCs in the context of multibit

operation. If the non-linearity of the DAC is only present

at later cycles, its influence on the overall SNDR should be

minor as compared to when it is present all the time. In
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order to allow such a scenario, various possibilities could

be approached; in the shown example, a single-bit operation

of the exemplary I-∆Σ modulator is used during the early

cycles. Therefore, no harmonic distortion originates in these

early cycles. During later cycles, the single-bit operation is

changed into a multibit operation, where we left the scaling

coefficients (for the sake of simplicity) constant and only

dynamically switch in a multibit quantizer and a multibit

DAC. The 4b DAC is simulated with a relative component

mismatch of 0.1 %, 0.5 %, and 1 %. Very interestingly, it can

be seen in Fig. 8, that the high non-linearity severely drops

the achievable SNDR of the I-∆Σ, if the multibit operation

is started very early. For a late multibit operation, the non-

linearity does not affect the output performance anymore, but

the better resolution now yields further suppression of the

quantization error. Given a certain DAC non-linearity, a sweet

spot can be found, which maximizes the achievable SNDR.

The earlier the DAC non-linear contribution from the multibit

DAC starts, the more it is weighted by the reconstruction

filter. This degrades the maximum achievable SNDR by the

commonly known harmonic distortion as well as mixing of

quantization noise. The later the multibit DAC is switched in,

the less effective the residual quantization noise is reduced.

Thus, a sweet spot appears. Obviously, the smaller the non-

linearity contribution from the multibit DAC, the earlier it

is possible to switch in the multibit-DAC without seeing the

performance degradation. This moves the sweet spot to earlier

switching points, effectively decreases the quantization noise

more and thus increases the maximum achievable SNDR. As

a reference, the SNDR of an ideal DAC is shown in Fig. 8.

It can be seen that for a small mismatch (≈0.1 %) nearly no

degradation in performance is visible anymore if the point

of multibit activation is chosen to be k = 125. As stated in

[12], conventional linearization techniques like DEM/DWA

become inefficient in I-∆Σ ADCs. Therefore, [12] presents

an adaptive DEM algorithm, called smart-DEM to solve this

shortcoming. However, digital effort is required to linearize

the implemented multibit DAC. The implementation proposed

in our paper gives the designer the huge advantage, that a non-

linear multibit DAC (and a power hungry multibit quantizer)

only need to be activated for a short period before the end

of every single Nyquist-rate conversion. Moreover, nearly

no degradation in the SQNR performance can be observed

compared to the case where a multibit DAC is used from the

beginning on. Furthermore, significantly worse matching can

be allowed for the multibit DAC in this case. Already for

relative mismatches between 0.5 % and 0.1 %, the performance

is very close to the ideal performance in our case. This means

that no calibration techniques are needed. This proves another

superior implementation possibility for the proposed technique

of dynamic increase of non-idealities in I-∆Σ.

IV. IMPLEMENTATION EXAMPLE

In this section, a prototype implementation in a 180 nm

CMOS process is presented using the dynamic increase of

non-idealities and thus the decrease of power. The prototype

increases the input-referred noise during every single Nyquist-

rate conversion. This has been chosen as the reduction of GBW

Cint,s

Cs,s

Φ1 Φ2

Φ1Φ2

vin

vn2,eq

SSlice,2

SSlice,1

Cint,s

Cs,s

Φ1 Φ2

Φ1Φ2

vin

vn1,eq

reset

reset

vout

Fig. 9. Slicing technique using two SC integrators.

and SR in the SC I-∆Σ modulator has a strong impact on the

performance, even when the non-ideality is increased late in

the conversion cycle as was seen in Fig. 7. A pure single-

bit implementation was chosen for rapid prototyping of the

design even though a future implementation will surely use

the presented approach in Section III-C.

Looking into (9), this could be achieved by dynamically

reducing the tail-current of an OTA in order to reduce its

gm. The drawback of this solution is that also bias points

of transistors within the OTA are affected. This sets bounds

to the range in which the current can be varied. It would

also have a significant impact on SR and GBW, which -

according to Section III-B - should be kept rather constantly

high. Another way of increasing the noise contribution of an

OTA, and thereby saving power, is the so called slicing method

as presented in [5]. This technique yields advantages over the

switched-biasing technique and is analyzed in the next section.

A. The Integrator Slicing Technique

A schematic illustration of the slicing technique is shown

in Fig. 9. Here, the outputs of two SC integrators can be

connected by two switches that can be enabled/disabled by

the control signal SSlice,1 and SSlice,2. For now it is assumed

that both integrator paths are perfectly matching. During the

sampling phase Φ1, the input voltage vin is sampled to the

sliced sampling capacitors denoted by Cs,s. As already derived

in Section II, noise originating from the on-resistance of the

switches is sampled to the capacitor Cs,s. In the integration

phase Φ2, again noise contributed by the switches and the OTA

can be modeled as a voltage across the capacitor. Therefore,

the rms-noise voltage stored on each capacitor can be cal-

culated from (10). Reviewing this equation, it becomes clear

that slicing the integrator into two slices yields an increased

noise power of a factor of two for each slice as the sampling

capacitor and the widths of all transistors within the amplifier

are divided by two, which in turn doubles the effective thermal

noise and 1/f noise. It should be noted at this point that all
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small-signal properties of the sliced integrator like SR, GBW,

and DC-gain are the same as for the original integrator. This

is valid, if the assumption that the load of the OTAs are sliced

in the same way or that the non-sliced load is negligible holds

true. The noise voltage as well as the signal voltage can also be

represented by charge stored on the sliced sampling capacitor

Cs,s. During the integration phase, this charge is transferred

to the sliced integration capacitor Cint,s. For the following

calculation it can be assumed that the negative terminals of

both OTAs are shorted. Ideally, there will be no current flowing

across this connection as both OTAs provide virtual ground.

As the signal charge stored on both capacitors Cs,s is strongly

correlated, this charge adds up: QCs,vin = 2 ·Qvin. Whereas

noise charges are strongly uncorrelated as the noise originates

from different parts of the circuits and therefore only add up

in an rms-sense: QCs,n =
√
2 ·Qvcs. The net charges to be

transferred can now be calculated as:

QCs,signal = 2 · Cs,s · vin (12)

and

QCs,noise = Cs,s ·
√

v2n1,eq + v2n2,eq =
√
2 · Cs,s · vn,eq (13)

under the assumption that v2n1,eq = v2n2,eq= v2n,eq . This means,

by taking two integrators in parallel instead of one, the overall

SNR is increased by a factor of two. This could be extended to

an arbitrary number of slices. Every doubling of the number of

stages yields 3 dB improvement in SNR. This technique can

then be used to dynamically increase the noise power over

time. This is achieved by choosing the number of slices such

that the normal noise requirements are fulfilled as long as

all slices are active, consequently e.g. the summed sampling

capacitors S·Cs,s is chosen such that the noise requirements of

the overall I-∆Σ ADC are met with respect to (11) without any

dynamic modification. Now the noise power can be increased

during run-time by deactivating slices as illustrated in Section

IV. Thereby, the OTAs in the deactivated slices are turned off

and consequently save power.

While implementing the slicing technique, mismatch be-

tween the individual integrator paths needs to be taken into ac-

count as cross currents between slices are caused by different

voltages at their outputs. A mismatch between capacitors that

set the scaling coefficients can be one source of a potentially

problematic mismatch error. Another one is a difference in

offset between OTA slices. This offset can be modeled as

a voltage source at the non-inverting terminal of the OTAs.

Therefore, the offset directly refers to the output of the OTAs.

If there is a mismatch between the integrators, the OTAs force

currents into the output of the other ones. Thus, it must be

made sure, that these error sources are small enough to not

noticeably affect the performance nor the power consumption.

The switches SSlice,1 and SSlice,2 from Fig. 9 have been

added to prohibit any disturbance of the yet active integrators

during deactivation of slices. Furthermore, the on-resistance of

these switches prohibit an excessive current flow due to offset

mismatches between the OTAs. It should be noted that the on-

resistance of these switches must not be chosen excessively

large as this negatively affects the time constant with which

the sampling capacitor of the second stage can be charged.

Nevertheless, the requirements on these switches are relaxed.

One reason is that the switch is changing its state from on

to off only once per Nyquist-rate cycle. This usually happens

towards later cycles, where the weighting of the non-idealities

is reduced as previously shown. Another reason is that every

non-linear contribution as well as noise is suppressed by the

preceding integrator.

B. Selection of Slicing Parameters

In the following it is investigated how the slicing parameters

can be selected in order to achieve an improvement in the

efficiency of the modulator. At this point it is worth mentioning

that the benefit of the proposed technique is highly dependent

on the properties of the I-∆Σ modulator. Therefore, a general

quantitative statement is not possible as the ADC performance

is dependent on many factors like the choice of architecture,

quantizer resolution, OSR, the order of the reconstruction

filter, design margin as well as the number of slices, only to

name a few. An optimization of the whole ADC and its respec-

tive parameters including the slicing technique is theoretically

possible. However, precise knowledge of the influence of all

desired parameters on the ADC performance is necessary. This

requires precise modeling of the ADC down to the circuit-

level. Therefore, the optimization has been restricted to the

slicing instants only, whereas the ADC structure has been

readily designed beforehand. Nevertheless, making use of the

slicing technique will yield improvement in the modulator’s

efficiency. However, as the noise in such a sliced integrator

can be gradually increased, the degrees of freedom are related

to the number of integrator slices and the number of cycles

M . If S is the number of integrator slices, the overall power

consumption of the sliced integrator Pint during a single

Nyquist-rate conversion cycle can be calculated as:

Pint =
Pmax

S ·M

S−1∑

i=0

(S− i) · ki, (14)

where Pmax is the power consumed by the integrator when

all slices are active. ki denotes the number of cycles between

two switching actions. k0 is then the number of cycles, where

no slice is deactivated, k1 the number of cycles, where one

of S slices is deactivated, and kS−1 is the number of cycles,

where only one active slice is left over. Therefore,

S−1∑

i=0

ki = M (15)

holds true. The total noise power at the output of the recon-

struction filter according to (1) and (2) can be calculated as

Pnoise = D2
noise ·

M∑

i=1

p[i] · w∗[i]2 (16)
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where D2
noise is the noise power without slicing derived in (11)

and

p[i] =







S

S
, ...,

S

S
︸ ︷︷ ︸

k0

,
S

S − 1
, ...,

S

S − 1
︸ ︷︷ ︸

k1

, ...,
S

1
, ...,

S

1
︸ ︷︷ ︸

kS−1







, i = 1...M

(17)

Thus, k0 cycles long, the noise is as designed, k1 cycles long,

it is dominated by S − 1 slices, and finally kS−1 cycles long

the noise originates from only one slice. Note that in (14) and

(16) not all slices are necessarily switched off at the same

time instant. In contrast to the simplified simulation in Fig. 6,

where the noise was being increased in one shot. The time

instants for disabling the individual slices can obviously be

chosen independently.

In the presented I-∆Σ ADC prototype, the number of slices

has been set to four. This is a compromise of slicing flexibility

and thus potential power savings on the one hand and sizing

of transistors and switching overhead on the other hand. For

instance, the switches used in the input sampling network

are implemented as bootstrapped switches as presented in

[13]. Already for small sizes of the pass transistor, the circuit

overhead is large as the transistors in combination with the

capacitor are an area penalty and the size of the additional

components is, to a first order, independent of the size of the

passing device. This means that slicing the integrator does not

keep the same area but will always require more area. Also,

every individual slice needs its own control signals which

complicates the layout.

Having chosen the number of slices, the number of possible

deactivation cycles is still huge. The curve in Fig. 10a shows

the expected power savings according to (14). Fig. 10b shows

the expected drop in SNR for the same configuration as in

Fig. 10a calculated with (16). The crosses in both figures mark

measured results for the respective configuration as performed

with the protoype that is described lateron. It can be seen that

theory matches very closely to the measurement. As the targets

like small SNDR penalty and large power savings contradict

each other, an optimization criterion has to be found. In this

design, the Schreier FoM has been chosen as optimization

criterion as it includes both properties:

FoMS = (SN)DR + 10 · log10(
BW

Power
). (18)

Modifying (18) with the help of (14) and (16), yields an

expression for the change in the FoM as a function of the

slicing instants:

∆FoM = − 10 · log10(
∑M

i=1 p[i] · w∗[i]2
∑M

i=1 w
∗[i]2

)

+ 10 · log10(
S ·M

∑S−1
j=0 (S − j) · kj

).

(19)

Omitting the constant terms in (19), the following is obtained:

∆FoM∗ = −10 · log10(
M∑

i=1

p[i] · w∗[i]2 ·
S−1∑

j=0

(S − j) · kj)

(20)
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Fig. 10. Power savings and SNR drop due to the proposed slicing method.

From (20) it can be seen that the maximum improvement

of the FoM can be achieved by minimizing the following

function:

f(M,S, k0...S−1) =

M∑

i=1

p[i] · w∗[i]2 ·
S−1∑

j=0

(S − j) · kj . (21)

This can either be achieved by sweeping across all possible

switching combinations of k0 to kS−1 and select the set

of parameters that minimizes (21) or one can solve this

optimization problem analytically by means of the method of

Lagrange multipliers [14], for example. This will be explained

in the following.

The goal is to minimize f(M,S, k0...S−1) under the condi-

tion that

g(M,k0...S−1) = k0 + ...+ kS−1 −M = 0. (22)

Using (21) and (22), the Lagrange-function:

L(k0...S−1, λ1) = f(M,S, k0...S−1) + λ1 · g(M,k0...S−1)
(23)
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can be constructed. In the following M and S are assumed

to be fixed. Now the partial derivatives of (23) have to be

calculated and equated to zero:

∇k0...S−1,λ1
L(k0...S−1, λ1)

!
= 0. (24)

The equation system resulting from the operation performed in

(24) must be solved to obtain the optimal switching instants.

This can be done numerically. In case of multiple solutions

to the equation system, the different solutions have to be

plugged into (21) and the set of switching instants yielding

the minimum has to be chosen. An optimal sequence that

maximizes the Schreier FoM for S = 4, L = 3, M = 150 yields

an improvement of about 2 dB while the SNR drops by nearly

0.9 dB. It should be noted that distortion remains unaffected by

the slicing technique, since GBW, SR and DC gain of the OTA

as well as the time-constant of the SC sampling circuit remain

unaffected under ideal conditions. For the example design,

the following slicing parameters: k0,1,2,3 = 40, 30, 10, 70 have

been chosen.

C. Architectural Decisions

The presented prototype I-∆Σ ADC is developed for an

already existing neural interface [1]. The targeted conversion

rate is 200 kS/s to be able to multiplex between multiple

electrodes. The conversion speed makes it possible to convert

the analog voltage of ten electrodes with a single ADC. As the

neural signals are known to have a wide dynamic range, the

ADC should accommodate this range. Therefore, the design

specifications target a dynamic range of 90 dB. The chosen

modulator architecture is depicted in Fig. 4. A simple feed-

forward architecture, as in Fig. 4, has been chosen since this

reduces the swing of the integrators, thereby increasing lin-

earity. Furthermore, a third order modulator has been selected

as it offers a very good tradeoff between maximum stable

amplitude (MSA) and achievable SQNR for a given OSR. A

discrete-time implementation is used, as the already existing

neural recorder is realized in SC technique. The coefficients

have been chosen by means of a genetic algorithm as used

for www.sigma-delta.de [15]. For a dynamic range of 90 dB

an SQNR of at least 100 dB is targeted. This results in a

required oversampling ratio of M = 150. Therefore, the internal

sampling rate is set to be 30 MHz. A single bit quantizer

has been selected due to its inherent linearity. Reconfiguration

into a multibit converter as outlined in Section III-C was not

implemented to achieve a rapid prototyping. For the sake of

simplicity, the reconstruction filter is a 3rd order CoI (CoI3)

filter.

A simplified circuit-level diagram of the implemented mod-

ulator is depicted in Fig. 11. As the SC sampling network is

located at the input of the modulator, all errors directly affect

the performance of the overall system. This means there are

tight constraints in terms of noise and linearity on this network.

Therefore, bottom-plate sampling has been employed as shown

in Fig. 11 to mitigate the influence of signal-dependent charge

injection that can cause harmonic distortion as well as an

increased noise floor. As for all recent publications on low-to-

medium speed, high-resolution ∆Σ ADCs, the most dominant

power consumer is the first integrator stage. This is because

constraints like linearity and noise performance are tightest

there. Thus, it is expected that approximately 80% of the

overall power are consumed in this stage. Later stages benefit

from the noise-shaping property of the previous stages and

thus are relaxed in terms of power consumption.

Therefore, the slicing technique has only been applied to

the first integrator as depicted in Fig. 11. The loading due

to the second integrator and the SC adder is negligible even

for the case of a single slice being active. A number of

four slices has been selected as a compromise between area

efficiency and power savings. On the bottom of Fig. 11 the

non-overlapping clock phases as well as the control signals

for enabling/disabling the individual integrator slices 1a-d

are shown. It should be noted that the original non-sliced

integrator has been designed for the overall noise requirements

and has only then been sliced into four integrators with

quartered component sizes. Also the size of the input sampling

capacitors Cs,s per slice has been reduced by a factor of four as

compared to the original integrator. To not alter the integrator

scaling coefficients, also the feedback capacitors Cint,s have

been sliced by four. The OTA has been split as well. To achieve

this, the width of every single transistor has been reduced to

a quarter of the previous size.

D. Circuit Design

A dominant source of harmonic distortion is the signal-

dependent variation of on-resistance of the sampling switches.

To linearize the switches, the gate-source voltage of the

switches is made independent of the input signal by bootstrap-

ping. The implementation used for the bootstrapped switches

is the one presented in [13]. As the second and third stages

are relaxed in terms of linearity due to the shaping of the first

stage, simple transmission gates are used here. Furthermore,

bottom-plate sampling is used in all integrator stages to reduce

sensitivity towards parasitic capacities and to further miti-

gate signal-dependent charge injection. Unfortunately, many

transistors are already minimum size after optimization of

the original bootstrapped switch. Therefore, it has not been

possible to split every single component of the switches,

leading to an overhead in chip area.

A folded-cascode with SR enhancement has been chosen

for the first OTA. A simplified schematic of a single amplifier

slice is depicted in Fig. 12. The continuous-time common-

mode feedback circuit is not shown for the sake of simplicity.

Additionally, the control signals a and a, as shown in Fig. 11,

for disabling the sliced amplifier are denoted. For accurate

settling, the required GBW as well as the SR of the OTA

must be chosen carefully. The modeling as well as effects on

the performance are described in [9]. Extensive simulations

have shown that a large SR is beneficial for improved settling

and thereby reduces harmonic distortion. Furthermore, a high

SR can even be traded in for GBW. A folded-cascode which

is similar to the one presented in [16] has been selected due to

the high SR as well as for its simplistic structure that leads to a

very efficient performance. However, to additionally boost the

SR, a modification on the original structure has been carried
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Fig. 12. Implemented folded-cascode amplifier with SR enhancement. The switchable biasing is shown for slice 1a (cf. Fig. 11). The continuous-time
common-mode feedback is not shown for the sake of simplicity.

out as can be seen in Fig. 12. In addition to the original

structure the tail current sources have been replaced by Mn,1

and Mn,2. The gates of these transistors are now driven with

the input signal. Though, it must be made sure in the design

that these devices are chosen small enough to achieve a small

quiescent current in the settling point. The achieved DC gain of

the folded-cascode is 70 dB. The GBW at an effective load of

400 fF during integration phase is 210 MHz while maintaining

a phase margin of 70◦, respectively. The maximum achievable

SR for a full-scale input is up to 2700 V/µs, respectively.

The second and third integrators are realized as telescopic

amplifiers. The requirements in terms of load, swing, GBW,

SR and noise performance are relaxed thanks to the noise-

shaping property of the previous stages. The second OTA

yields a DC gain of 70 dB with a GBW of 150 MHz with an an

effective load of 30 fF. The OTA of the last integrator achieves

the same DC gain with a GBW of 100 MHz and an effective

load of 38 fF. The summer stage is realized by a passive SC

adder network. The capacitors are chosen close to minimum

Fig. 13. Power distribution of the individual components of the modulator.

size in order to form a small load for the OTAs. The single-

bit decision is performed by means of a strong-arm latch. The

power distribution of the overall system is depicted in Fig. 13.

The overall power consumption of the system without slicing

is 1.65 mW. The power consumption of the 2nd and 3rd inte-
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grator including sampling networks as well as the OTAs sums

up to approximately 200µW. The clocking network including

the generation of the non-overlapping clocks consumes 5%

of the overall power, meaning 82.5µW. Quantizer, adder and

reference generation for the first integrator contribute another

100µW. This leaves 1.27 mW of power consumption for the

first integrator. Employing the slicing technique using the set

of parameters k0,1,2,3 = 40, 30, 10, 70 the power consumed in

the first integrator can be cut down by 43% which is equivalent

to a power saving in the entire modulator of 33% as shown in

red. The expected SNR and SNDR from simulation without

making use of the slicing technique are 89.2 dB and 89 dB,

respectively. The simulated SFDR is dominated by the third

harmonic and equals 105.2 dB.

V. MEASUREMENT RESULTS

The presented design was fabricated in a 180 nm CMOS

technology. A photograph of the chip can be seen in Fig. 14.

Without making use of the slicing technique, the modulator

consumes 1.65mW from a 3V supply. The CoI3 filter is

implemented on an FPGA that has been used to control the

slices, the reset as well as to perform the readout. Choosing the

slicing parameters (k0,1,2,3 = 40, 30, 10, 70), the power con-

sumption can be reduced to 1.098 mW, while only 0.7 dB and

0.8 dB loss in SNR and SNDR (respectively) are measured.

The measured spectra with and without slicing are shown in

Fig. 15a and 15b, respectively. Though, it has previously been

stated that no changes in the spectrum except for the noise

floor are expected by making use of the slicing technique, a

change in the harmonics can be observed on (absolutely) low

level. It could not be clarified what the origin of this change

is. However, the drop in SNR is in perfect agreement with

the theoretical expectation whereas the superior linearity is

barely affected. Furthermore, it can be seen that the noise floor

is dominated by the 1/f noise of the modulator. Techniques

like CDS or chopping were not implemented in this proof-

of-concept IC. The MSA, measured for a 13 kHz sinusoid,

is shown in Fig. 16 with the same slicing configuration.

The achieved SNR/SNDR/DR are 88.2/86.6/91.5 dB. The mea-

sured SFDR exceeds 97 dB over the complete inband. At fre-

quencies close to the Nyquist-frequency, the SFDR is assumed

to be limited by the used signal source [5], by comparing it to

reference measurements of a commercial 24-bit ADC. Though,

the modulator is intended to be used for multiplexed input sig-

nals, which furthermore reduces the maximum allowable input

frequency per channel, consequently improving the SFDR to

almost 105 dB at low frequencies. The presented IC achieves

a Schreier FOM of 171.1 dB. Table III summarizes this work

and gives a comparison to state-of-the-art designs. Considering

efficiency, Nyquist-rate capability, measured performance at

Nyquist-frequency as well as area consumption, the presented

design competes well with the state of the art.

VI. CONCLUSION

This paper describes an I-∆Σ ADC, which makes use

of a dynamic power saving scheme, the so-called ”slicing

technique”, which provides a superior performance in terms

Fig. 14. Chip photograph of the prototype IC [5].
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(a) Measured spectrum without the use of the slicing technique.
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(b) Measured spectrum with the use of the slicing technique.

Fig. 15. Measured spectra with and without the use of the slicing technique
using 14 k samples averaged across 50 measurements with an input signal of
-4 dBFS at 13 kHz [5].

of the Schreier FoM. This technique can be applied to any

state-of-the-art I-∆Σ modulator. This technique is especially

suitable for discrete-time modulators. A test chip implemented

in a 180 nm CMOS technology node achieves a DR of 91.5 dB

and an SNDR of 86.6 dB while making use of the slicing

technique, thereby consuming 1.1 mW leading to a state-of-

the-art Schreier FoM of 171.1/166.2 dB, respectively.
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TABLE III
COMPARISON TO THE STATE OF THE ART

[17] [18] [19] [20] [21] [22] [23] This work

Architecture SAR SAR CT ∆Σ Zoom Zoom I-∆Σ I-∆Σ I-∆Σ
Nyquist-rate capability

√ √
X

√
X

√ √ √

Technology[nm] 40 180 40 160 160 160 180 180

Resolution[bits] 16 18 16 20 20 14 16 15

Total sampling capacitance[pF] 2x16 - - 2x10.2 2x13.5 1x0.5 2x3.2 2x0.35

Area[mm2] 0.074 3.87 0.053 0.375 0.25 0.45 0.5 0.363

Power Supply[V] 2.5/1.1 5/1.8 1.2 1.8 1.8 1 1.5 3

Power [µW ] 101 30520 4.5 6.3 280 20 34.6 1098

fs,nyq [kS/s] 80 5000 10 0.025 2 1.334 2 200

SNDR [dB] 84.8 100 93.5 119.8 118.1 81.9 96.8 86.6

SFDR [dB] 107 - 102.5 - 120.3 - - 101.3

FOMs [dB] 170.8 179.9 184/187 182.7 185.8 157.1 174.6 171.1

Fig. 16. Measured SNR/SNDR of the I-∆Σ as a function of the input
amplitude [5].
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