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ABSTRACT This paper develops a dynamic maintenance strategy for a system subject to aging and

degradation. The influence of degradation level and aging on system failure rate is modeled in an additive

way. Based on the observed degradation level at the inspection, repair or replacement is carried out upon the

system. Previous researches assume that repair will always lead to an improvement in the health condition

of the system. However, in our study, repair reduces the system age but on the other hand, increases the

degradation level. Considering the two-fold influence of maintenance actions, we perform reliability analysis

on system reliability as a first step. The evolution of system reliability serves as a foundation for establishing

the maintenance model. The optimal maintenance strategy is achieved by minimizing the long-run cost rate

in terms of the repair cycle. At each inspection, the parameters of the degradation processes are updated with

maximum a posteriori estimation when a new observation arrives. The effectiveness of the proposed model

is illustrated through a case study of locomotive wheel-sets. The maintenance model considers the influence

of degradation and aging on system failure and dynamically determines the optimal inspection time, which

is more flexible than traditional stationary maintenance strategies and can provide better performance in the

field.

INDEX TERMS Aging and degradation process, dynamic maintenance strategy, locomotive wheel-sets,

prescriptive maintenance, sequential schedule.

I. INTRODUCTION

With the increasing integration of systems, maintenance

strategies are placing more emphasis on techno-economic

than technological considerations. Existing maintenance

strategies include time-based maintenance, where mainte-

nance actions are performed at failure (corrective mainte-

nance) or based on system age (age-based maintenance), and

condition-based maintenance, where maintenance decisions

are provided based on the health condition of the system.

Prescriptive maintenance has gained popularity in recent

years. It extends the concept of failure prediction [1], [2] by

predicting maintenance measures and prescribing a course of

actions based on the historical and incoming real-time data.

Prescriptive maintenance strategies are updated based on the

The associate editor coordinating the review of this manuscript and
approving it for publication was Yu Wang.

observed/predicted degradation parameters and system state,

whereas in conventional time-based maintenance, decisions

only rely on historical data without considering updates.

In this paper, we develop a dynamic maintenance model

able to sequentially determine the optimal inspection time

based on the system health condition and provide flexible

maintenance advices.

Reliability modeling serves as the foundation of mainte-

nance optimization. Traditional reliability models are con-

structed using failure data. In recent decades, with increased

product reliability, it has become difficult to obtain fail-

ure data within a feasible time period, but sensors make

degradation data available during system operation. As a

result, degradation models are taking the place of failure-

data-based reliability models. Degradation models can be

either continuous or discrete. In a discrete degradation model,

the system condition is divided into a finite number of states,
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which is usually characterized by a Markov or semi-Markov

chain [3]–[7]. The disadvantage of Markov or semi-Markov

models lies in the arbitrary classification of the system states

and fails to fully characterize its degradation evolution.

Increasingly improved sensing technologies enable accu-

rate monitoring of the system state, prompting the use of

a continuous degradation model. Usually, the continuous

degradation processes are described by stochastic process

models or general path models [8]–[10]. The Lévy pro-

cess is frequently used because of its mathematical prop-

erties and explicit physical interpretations, among which

the Gamma process, Wiener process, and inverse Gaussian

process have widely appeared in the reliability and mainte-

nance literature. Although the Wiener process is extensively

used for reliability modeling and maintenance optimization

(e.g., [11]–[14]), it is a non-monotone process and fails to

describe several deterioration processes in practice, such as

the crack growth or wear process. On the other hand, with the

property of monotonic independent increments, the Gamma

process and inverse Gaussian process can overcome this

disadvantage [15]–[17]. Reference [18] provided a compre-

hensive survey of the use of the Gamma process in reliability

and maintenance strategies. In [17], the inverse Gaussian pro-

cess was investigated as a degradation model and the physical

mechanism was interpreted as a limiting compound Poisson

process. Novel BN/DBN-based methodologies are developed

for degradation modeling of components and systems [19].

In spite of the popularity of degradation models in relia-

bility and maintenance modeling, an implicit assumption of

the existing studies is that a failure occurs when the degrada-

tion level exceeds a specific threshold (soft failure). Yes this

assumption is increasingly challenged since many systems

fail before hitting the failure threshold in reality [20]–[24].

For locomotive wheels, usually the diameter of a wheel indi-

cates the degradation level, where a soft failure is defined

when the diameter reduces to a pre-specified threshold. How-

ever, during operation, wheels are reprofiled occasionally

because of the increased roughness, even if the wheel diam-

eter remains above a tolerance level. Various factors exert

impacts upon the roughness of the wheels, including the

weather conditions, surface smoothness of the track and run-

ning speed; any of these may cause sudden failure before the

failure threshold is reached [25], [26]. Reduction of the wheel

diameter through reprofiling also exacerbates the roughness.

Another example is automobile tires. An automobile tire

may fail suddenly because of a puncture before the wear

reaches the failure threshold [27]. Reference [28] reported

the limitation of the degradation-threshold failure model in

the presence of continuous monitoring. When the system is

subject to continuous monitoring, maintenance actions can

always be implemented before the degradation level reaches

the failure threshold, and this erroneously indicates that the

system will never fail.

Motivated by the limitation of the degradation-threshold

failure mechanism and the maintenance practices used for

locomotive wheel-sets, we propose a maintenance strategy

that considers the impact of degradation and catastrophic

failure. It is well recognized that system failure is depen-

dent on both degradation and age [28]–[30]. Reference [29]

proposed a class of degradation-threshold-shock models that

take advantage of degradation information and failure data.

Reference [28] developed a condition-based maintenance

strategy under continuous monitoring; they proposed respec-

tively an additive and a multiplicative model to describe

the relationship between system failure rate and degradation

level.

In this paper, we develop a maintenance model that jointly

incorporates the effect of both aging and degradation. In this

model, the degradation level and system age have an additive

impact on system failure rate. At inspection, replacement is

carried out if the degradation level of the system hits a toler-

ance threshold and repair is implemented otherwise. Repair

influences the system health condition in such a way that it

reduces the system age to 0, but increases the degradation

level. The degradation level and parameters are updated at

inspections when new observation arrives. The maintenance

strategy determines the optimal inspection time based on the

updated degradation parameters and the degradation level

after repair/replacement.

Our work differs from previous research in three aspects.

First, we use a continuous stochastic process to describe

system degradation, and we incorporate the joint influence

of degradation and aging on system failure rate in an additive

way. Second, we formulate a dynamic maintenance model as

opposed to the static maintenance models in the literature;

the parameters of the degradation process and the subsequent

maintenance decisions are updated upon the arrival of new

inspection data. Third, the effect of preventive maintenance

action is twofold in our model: a reduction in system age and

an increase in degradation level.

The rest of the article is organized as follows. Section II

characterizes the degradation process and investigates system

reliability. Section III describes the maintenance schedule

and formulates a cost model as the maintenance criterion.

Section IV discusses the procedure for estimating and updat-

ing parameters. A case study of locomotive wheel-sets is

presented in Section V to illustrate the proposed maintenance

strategy. Finally, Section VI provides the concluding remarks

and future research directions.

II. DEGRADATION PROCESS AND

RELIABILITY EVALUATION

A. SYSTEM DEGRADATION

Consider a system subject to a monotonic deterioration pro-

cess. Without maintenance actions, the system is assumed

to follow a stationary Gamma degradation process, which

has been widely used in degradation modeling due to the

property of monotonic independent increments. Denote X (t)

as the degradation level at time t , X (t) ∼ Ga (t; α, β), where

α is the shape parameter and β is the scale parameter. The

degradation increment at any two time epochs t and l (t > l),,
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1X (t − l) = X (t)−X (l), follows a Gamma distribution with

the probability density function (pdf)

f (x; α(t − l)β) = βα(t−l)

Ŵ (α(t − l))
xα(t−l)−1e−βxI{x>0} (1)

where Ŵ (·) is the complete gamma function, and I{x>0} is the
indicator function.

B. RELIABILITY EVALUATION

The system may experience sudden failure in addition to the

continuous degradation process, where both system age and

degradation level contribute to the increase of failure rate.

Traditional age-based maintenance strategies fail to capture

the heterogeneity of the operating systems since the failure

rate is only dependent on system age. For example, for loco-

motive wheels operating in different environments, such as

the track condition, weather, and running speed, they may

suffer heterogeneous failure rates even with identical age.

Hence, modeling the failure rate as a function of system age

and degradation level can better describe the failure mech-

anism of real systems. Note that the impact of degradation

lies in increasing the failure rate, while itself will not lead

to system failure. Let λ (t,X (t)) denote the failure rate at

time t and system degradation level X (t). Conditioned on the

degradation path till time t , X t0 = {X (s), 0 ≤ s ≤ t}, system
reliability is given as

R
(

t|X t0
)

= exp

(

−
∫ t

0

λ (s,X (s)) ds

)

(2)

Denote Tf as the time to failure. The expectation of system

reliability is expressed as

R̄ (t) = P
{

Tf > t
}

= E

[

exp

(

−
∫ t

0

λ (s,X (s)) ds

)]

(3)

In general, numerous forms of λ (t,X (t)) can be employed

as long as it can capture the influence of system age and

degradation level on the failure rate. In presence of historical

data and physical mechanism, the specific form of λ (t,X (t))

can be determined in detail. For simplicity, an additive model

is used [28],

λ (t,X (t)) = λ1 (t) + λ2 (X (t)) (4)

Equation (4) implies the influence of system age and degra-

dation level on the failure rate in an additiveway. In particular,

λ1(t) describes the age-dependent failure rate, and λ2(X (t))

depends on the degradation level.

For the failure rate λ2(X (t)), we assume a linear function

in terms of the degradation level X (t), λ2 (X (t)) = γX (t),

where γ is a positive constant, scaling the impact of degra-

dation level. Given the initial degradation level x0 and the

linear formula of λ2(X (t)), the system reliability is expressed

as follows.

Proposition 1: For a system subject to an age- and

degradation-dependent degradation process with an additive

effect, system reliability is given as

R̄ (t; x0) = exp

(

−
∫ t

0

λ1(s) + γ x0 + α log (1+γ s/β) ds

)

FIGURE 1. Evolution of system age and degradation level at maintenance
actions.

Proof of the proposition is provided in the appendix. Note

that the time to failure Tf can be regarded as the first instance

of a doubly stochastic process, with a stochastic intensity

λ (t,X (t)) that depends on both the degradation level and

system age [29], [31].

Corollary 1: If the age-dependent failure rate is constant,

λ1(t) = λ0, system reliability is then given as

R̄(t; x0)=exp(−(λ0+γ x0) t−α ((β/γ +t) log (1+γ t/β)−t))

Corollary 1 can be readily obtained from the reliability

function of Proposition 1.

III. MAINTENANCE SCHEDULING

In the proposed maintenance model, the system is subject

to three maintenance actions, namely, inspection, repair, and

replacement. Repair is implemented preventively to prevent

the system from failure or correctively to restore the system

from failure. Unlike the existing imperfect repair models,

in the proposed model, the influence of repair is twofold.

On one hand, repair reduces the system age but on the other

hand, increases the degradation level. In the present main-

tenance of locomotive wheels, the wheels are transported

to the maintenance station for repair. During repair, they

are reprofiled to restore them from anomaly. The reprofiling

process diminishes the diameter of thewheels. In other words,

the re-profiling process during repair increases the degrada-

tion level. In this paper the sudden failure is referred to as an

anomaly during operation.

Motivated by the current practice of maintenance on

locomotive wheels, repair or replacement has to be imple-

mented at each inspection because of the high setup cost.

In other words, inspection is always accompanied by repair

or replacement. Inspection provides the observation of the

degradation level before and after repair. Replacement is car-

ried out when the observed degradation level hits a tolerance

level. For illustrative purpose, we sketch the evolution of sys-

tem age and degradation level at maintenance in Fig. 1. Note

that the system age used in this paper follows the literature on

imperfect maintenance [32]–[34].
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Adynamicmaintenance strategy is developed in this paper,

wherein maintenance decisions have to be made at each

inspection, including the time for the next inspection ti, and

repair or replacement upon the system. Denote X−
i as the

degradation level before the ith repair and X+
i the degradation

level after repair. Let Yi be the increment of degradation

level at the ith repair. Yi is assumed to be independent of the

degradation levelX−
i and follows aGaussian distributionwith

mean µ and variance σ 2, Yi ∼ N
(

µ, σ 2
)

. With the above

definition, we have

X+
i = X−

i + Yi

X−
i+1 = X+

i + 1X (ti)

Let πi ∈ {0, 1} denote the maintenance action at the

ith inspection, where πi = 1 stands for replacement, and

πi = 0 indicates repair. Replacement is carried out upon

the system when the degradation after repair reaches a

pre-specified tolerance level, i.e.,

P
(

x−
i + Yi < ζ

)

> η

where ζ is the threshold for replacement and η the tolerance

level. Since Yi follows a Gaussian distribution, it follows that

8

(

ζ − µ − x−
i

σ

)

> η

The maintenance action at the ith inspection can be

obtained with simple algebra, given as

πi =
{

0, if x−
i ≥ ζ − 8−1 (η) · σ − µ

1, otherwise
(5)

Besides the maintenance actions at inspections, the deci-

sion maker will also have to determine the time for the

next inspection, ti, given the degradation level after repair

or replacement, X+
i . In addition, at each inspection where

new degradation data arrive, the degradation parameters and

system state are updated based on the arrival of new observa-

tions. It is difficult to obtain a stationary optimal maintenance

decision, since all possible observation values have to be con-

sidered ahead of time [35]. As an approximation, we achieve

the optimalmaintenance decision byminimizing the expected

average cost within a repair cycle.

The approximation model has two advantages. First, com-

pared to a stationary maintenance model, the computational

burden is significantly reduced. Second, the proposed one-

repair-cycle optimization provides more flexibility for the

optimal maintenance strategy. Although we can theoretically

obtain the optimal inspection time based on the degradation

process and observations, yet in practice, the actual mainte-

nance time is influenced by the workload of the system and

may deviate from the optimal maintenance time. In terms of

actual maintenance time, the proposed model can be applied

with a tiny modification of the repair cycle. The system

should be maintained as close as possible to the optimal time

to reduce the maintenance cost.

At the ith inspection, given the degradation level after

repair, X+
i , the expected cost per unit time is provided as

CR
(

ti; x+
i

)

= E

[

ci + cp · 1{Tf ≥ti} + cc · 1{Tf <ti} + cdTd

ti

]

=
ci + cpR̄(ti; x+

i ) + cc
(

1 − R̄(ti; x+
i )
)

+ cdE [Td ]

ti
(6)

where ci, cp, and cc denote respectively the cost of inspection,

preventive repair and corrective repair, cd is the downtime

per unit time, 1{·} is the indicator function, ti is the time

interval between the ith and (i + 1)th inspection, and Td is

the downtime. The expected downtime within the interval ti
can be obtained by conditioning on the degradation path X

ti
0

and is given as

E [Td ] = E

[∫ ti

0

(

1 − exp

(

−
∫ t

0

λ (s,X (s)) ds

))

dt|X ti0
]

(7)

A detailed derivation of the equation is provided in the

appendix. Numerical approaches like Monte Carlo integra-

tion can be employed to evaluated Equation (7). The optimal

inspection time t∗i can be obtained as

t∗i = argmin
ti

CR
(

ti; x+
i

)

(8)

For the system degrades over time with small variance,

we can approximate the expected downtime E [Td ] as

E [Td ]≈
∫ ti

0

(

1 − R̄(t; x+
i )
)

dt (9)

and the expected average cost CR
(

ti; x+
i

)

as

CR
(

ti; x+
i

)

≈
ci + cc − (cc − cp)R̄(ti; x+

i ) + cd
∫ ti
0

(

1 − R̄(t; x+
i )
)

dt

ti
(10)

For a degradation process with small variance, given the

degradation level after reprofiling, x+
i , the expected remain-

ing useful life is denoted as ν = −
∫∞
0 tdR̄(t; x+

i ). In Fig. 2,

we plot the evolution of inspection time (repair or replace-

ment time) to illustrate the maintenance scheduling process.

The system is inspected (together with repair or replace-

ment) at epoch si. After repair or replacement, the decision

maker needs to decide the operating interval before the next

inspection time (ti).

FIGURE 2. Sketch of maintenance schedule.

Corollary 2:When a degradation process with small vari-

ance satisfies ν > (ci + cc)/cd , the expected average cost
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CR (ti) decreases with ti, for ti → 0+, and increases with ti
for ti → ∞.

A detailed proof of the corollary is given in the appendix.

Corollary 2 indicates the existence of the optimal inspection

time, t∗i . For ν > (ci + cc)/cd , when ti varies from zero

to infinity, the expected cost per unit time CR (ti) shows a

decreasing trend at the beginning and then an increasing time,

thus implying that t∗i exists.

Based on the previous discussion, the maintenance sched-

ule is summarized as follows:
1) Determine initial input: initial degradation level,

x0 = 0, and let i = 0.

2) Calculate the optimal inspection time, t∗i =
argmin

ti

CR
(

ti; x+
i

)

.

3) At the ith inspection time, judge whether the degrada-

tion level hits the tolerance level, x−
i ≥ ζ − 8−1 (η) ·

σ − µ. If so, replace the system and return to Step 1.

Otherwise, repair takes place; let i = i+ 1 and jump to

Step 4.

4) Given the degradation level after repair, x+
i+1, calculate

the next inspection time,

t∗i+1 = argmin
ti+1

CR
(

ti+1; x+
i+1

)

and go to Step 3.

5) Output the optimal inspection time, t∗i , for i =
0, 1, 2, . . ..

IV. PARAMETER UPDATE AT INSPECTION

In this paper, it is assumed that the degradation level of

the system is accurately observed, with no measurement

error. The scale and shape parameters are updated at each

inspection, when newly arrived data are observed. Let θ =
(α, β)T be the set of distribution parameters. Suppose that

the prior distribution of θ is a bivariate Gaussian distribution,

θ ∼ N
(

µθ , 6
)

, where

µθ =
(

µα, µβ

)T
and 6 =

(

σ 2
α ρσασβ

ρσασβ σ 2
β

)

Denote p(θ ) as the pdf of prior distribution. It follows that

p(θ ) =
exp

(

− 1
2

(

θ − µθ

)T
6−1

(

θ − µθ

)

)

√
2π |6|

The prior distribution parameter, µθ , is obtained with

historical data, by using the maximum likelihood estima-

tion (MLE). Asymptotic methods are used to evaluate the

uncertainty of the prior distribution. Under reasonably large

sample sizes, the estimators of MLE can be well approxi-

mated by a multivariate Gaussian distribution. Denote θ̂ as

the MLE estimator of θ . The asymptotic prior distribution

of θ̂ is denoted as θ̂ ∼ N
(

θ , [I (θ )]−1
)

, where I (θ ) is the

Fisher information assessed at θ . Therefore, it is reasonable

to approximate 6 by [I (θ )]−1, 6 = [I (θ )]−1. A detailed

description of the estimation procedure using the prior dis-

tribution parameters µθ and 6 is provided in the appendix.

Based on Bayes’ theorem, the posteriori distribution of θ is

expressed as

f (θ |x) ∝ f (x|θ )p(θ ) (11)

where f (x|θ ) is the sampling distribution of the dataset x.

Maximum a posteriori probability (MAP) estimation is used

to estimate the distribution parameters θ , giving the mode of

the posteriori distribution. The MAP estimate θ̃ is formulated

as follows,

θ̃ = argmax
θ

f (θ |x) = argmax
θ

L(θ )p(θ ) (12)

where L(θ ) is the likelihood function of the dataset. Since θ =
(α, β)T , the bivariate normal distribution is formulated as

p(α, β) = 1

2πσασβ

√

1 − ρ2
exp

(

− 1

2(1 − ρ2)
q(α, β)

)

where

q(α, β)

=
[

(α − µα)2

σ 2
α

+
(

β − µβ

)2

σ 2
β

−
2ρ (α − µα)

(

β − µβ

)

σασβ

]

Taking logarithm algebra leads to

ln p(α, β) = − ln

(

2πσασβ

√

1 − ρ2

)

− 1

2(1 − ρ2)
q(α, β)

Suppose the dataset contains I units and J time records for

each unit. Denote τj as the jth time record, j = 1, 2 . . . ., J ,

and xij as the degradation increment of the ith unit in time

interval τj, i = 1, 2, . . . , I . Maximizing the posteriori distri-

bution f (θ |x) is equivalent to maximizing

h(α, β)= l(α, β)+ln p(α, β)

=
I
∑

i=1

J
∑

j=1

(ατj−1) ln(xij)+I
J
∑

j=1

ατj ln(β)

− β

I
∑

i=1

J
∑

j=1

xij−I
J
∑

j=1

ln
(

Ŵ(ατj)
)

− 1

2(1−ρ2)
q(α, β)−ln

(

2πσασβ

√

1 − ρ2

)

(13)

where l(α, β) is the log-likelihood of the MAP estimation for

the dataset. By taking the derivatives of α and β, it follows

that

∂h

∂α
= I ln(β)

J
∑

j=1

τj +
I
∑

i=1

J
∑

j=1

τj ln(xij) − I

J
∑

j=1

ϕ(ατj)τj

− 1

2(1 − ρ2)

[

2 (α − µα)

σ 2
α

−
2ρ
(

β − µβ

)

σασβ

]
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and

∂h

∂β
=
Iα

J
∑

j=1

τj

β
−

I
∑

i=1

J
∑

j=1

xij

− 1

2(1 − ρ2)

[

2
(

β − µβ

)

σ 2
β

− 2ρ (α − µα)

σασβ

]

The MAP estimates, θ̃ =
(

α̃, β̃

)T
, can be obtained as the

roots of ∂h/∂α = 0 and ∂h/∂β = 0, expressed as

α̃, β̃ ∈
{

α, β : ∂h

∂α
= 0,

∂h

∂β
= 0

}

However, since a Gaussian distribution is not a conjugate

prior of a Gamma distribution, we cannot achieve a closed

form of the mode of the posteriori distribution. As an alter-

native, numerical methods, e.g., Newton’s method, can be

employed to compute the MAP estimate of θ̃ . Let g (θ) =
(g1(θ ), g2(θ ))

T , where g1(θ ) = ∂h/∂α and g2(θ ) = ∂h/∂β.

Under the framework of Newton’s method, the iteration equa-

tion is formulated as

θn+1 = θn − J(θn)
−1g (θn) (14)

where J (θ) is the Jacobian matrix,

J (θ) =







∂g1(θ )

∂α

∂g1(θ )

∂β
∂g2(θ )

∂α

∂g2(θ )

∂β







and

∂g1(θ )

∂α
= −I

J
∑

j=1

ϕ1(ατj)τ
2
j − 1

(1 − ρ2)σ 2
α

∂g1(θ )

∂β
= ∂g2(θ )

∂α
=
I

J
∑

j=1

τj

β
+ ρ

(1 − ρ2)σασβ

∂g2(θ )

∂β
= −

Iα
J
∑

j=1

τj

β2
− 1

(1 − ρ2)σ 2
β

V. APPLICATION IN LOCOMOTIVE WHEEL-SETS

A case study on the wheel-sets of a heavy haul locomotive

is employed to illustrate the proposed maintenance strategy.

During operation, the locomotive wheel-sets may suffer an

anomaly and are sent to the maintenance station for reprofil-

ing. The anomaly includes increased roughness, asymmetry

of wheel-sets and so on. Reprofiling can restore the wheels to

the normal state but will reduce the wheel diameter, which is

used as the degradation index. There are multiple indexes to

measure the degradation level of wheel-sets, but the diameter

is most commonly used. Therefore, we use wheel diameter as

the degradation indicator and develop maintenance strategies

accordingly. Fig. 3 shows the process of reprofiling.

FIGURE 3. Reprofiling process.

TABLE 1. Measurements of wheel diameters of bogie 195904.

Two bogies, coded as 195904 and 195905, are employed

to illustrate the maintenance strategy. Each bogie consists of

six wheel-sets; their diameters are presented in Table 1 and

Table 2. The tables show the variation of the wheel diameters

before and after reprofiling in terms of the running distance.

The data used for illustration were provided by a Swedish

company, which were collected in a maintenance station

where the wheel-sets were being inspected.

Over the life cycle of the wheels, natural wear

and reprofiling contribute to the decrease of the wheel

diameter [36], [37]. Natural wear occurs when the wheels are

in operation and is modeled as a Gamma degradation process

in this paper. Various factors contribute to natural wear,

including weather, smoothness of the tracks, running speed

and cracks. From Table 1 and Table II, we can find that the

natural wear is actually the difference between the diameter

after reprofiling and the diameter at the next inspection.

For illustration, Fig. 4 presents the variation of natural wear

with respect to the running distance of bogie 195904. Note

that in the current example, the degradation level refers to

the diameter of a wheel, and the operation time denotes

the running distance. In the subsequent analysis, the data

in Table 1 will be used to estimate the prior distribution and

the data in Table 2 will serve for estimation of the MAP and

update of the degradation parameters.

A. MAINTENANCE UNDER FIXED

DEGRADATION PARAMETERS

Parameters of the Gamma process can be estimated

from the degradation data using maximum likelihood
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TABLE 2. Measurements of wheel diameters of bogie 195905.

FIGURE 4. Plot of natural wear.

estimation (MLE). From the data in Table 1, the scale parame-

ter and the shape parameter are estimated as α̂ = 0.0592, β̂ =
0.4419, and the associated covariance matrix is obtained as

6̂ = [I (θ )]−1 =
[

2.6 20

20 172

]

× 10−4

For simplicity, the age-dependent failure rate is assumed

as constant, λ1(t) = λ0, where λ0 = 0.0005. The scaling

parameter on the degradation level is set as γ = 0.001. With

the abovementioned parameters, we present the variations in

system reliability in Fig. 5.

FIGURE 5. Variations of system reliability.

For a perfect wheel, the initial diameter is 1250mm, and

replacement is implemented on the wheel when the diameter

tails off to below 1150mm. In this case, the threshold for

replacement is set as ζ = 100mm. The tolerance level is

given as η = 0.95 for the purposes of illustration. However,

in Table 1, we can find that the initial diameter does not

exactly match 1250mm; it averages at 1247mm. The differ-

ence between the ideal and the measured diameter is due to

an error of production and measurement. Thus, the initial

degradation level is set as x0 = 3. It is assumed that the degra-

dation increment caused by reprofiling follows a Gaussian

distribution, with the parameters estimated as µ̂ = 11.87

and σ̂ = 4.667. From Equation (5), we get the threshold for

replacement, and the decision at inspection is given as

πi =
{

0, if x−
i ≥ 80.45

1, otherwise

While the wheel is sent to the maintenance station

for reprofiling, one has to determine the next inspection

time in addition to the maintenance actions. According to

Equation (6), Fig. 6 presents the variation of the cost rate in

terms of the inspection time ti; in the figure, the maintenance-

related cost is set as ci = 10, cp = 70, cc = 100, and

cd = 10. The optimal inspection time is obtained at t∗i =
49.8, and the minimal cost rate is given as CR∗ = 3.05. The

result implies that the optimal running distance is 49,800km

given the wheel diameter at 1247mm. In current practice,

the optimal inspection time is advised by the manufacturers,

but this strategy fails to capture the heterogeneity of the

operating environment and the initial diameter of wheel-sets.

In current maintenance practice, it is suggested by the manu-

facturer that the average running distance between reprofiling

should be 40,000km regardless of the heterogeneity in wheel

conditions. However, our model suggests that maintenance

engineers should dynamically inspect the wheel-sets based

upon the present health condition, rather than a fixed value.

Since the optimal inspection time is dependent on the cur-

rent wheel conditions, we are interested to investigate the

influence of the degradation levels after reprofiling on the

optimal inspection time t∗i and the associated cost rate CR∗.
We sketch the variation of the optimal inspection time and

cost rate with respect to the degradation level x+
i in Fig. 7.

The figure presents an increasing trend of the optimal cost

rate in terms of the degradation level after reprofiling. This is
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FIGURE 6. Cost rate vs inspection time.

FIGURE 7. t∗

i
and CR∗ vs degradation level after reprofiling.

due to the fact that an increased x+
i makes the system more

prone to failure.

FIGURE 8. Sensitivity analysis on cd , ci , cp, cc .

Sensitivity analysis is conducted to investigate the effect

of cost parameters on the optimal inspection time, t∗i , and the
associated cost rate, CR∗. Fig. 8 presents the results. As can

be observed,CR∗ always increases with cost. This is intuitive,
since a high cost item lead to a higher cost rate. In addition,

t∗i shows a decreasing trend with the downtime cost, cd ,

and the corrective repair cost, cc, and an increasing trend

FIGURE 9. Histogram of t∗

i
and CR∗, and associated fitted normal pdf

curves.

with the preventive repair cost, cp and the inspection cost,

ci. The system is less likely to fail under higher downtime

and corrective repair costs, as this leads to a conservative

strategy, i.e., a shorter inspection interval. In contrast, for a

high ci and cp, maintenance actions are postponed to reduce

the frequency of inspection and the likelihood of preventive

repair.

Next, we investigate the influence of parameter estima-

tion uncertainty on the optimal maintenance decision. The

maximum likelihood estimator asymptotically follows a mul-

tivariate normal distribution, θ̂ ∼ N
(

θ , [I (θ )]−1
)

, as θ̂

will converge to θ with increased sample size. Therefore,

we employ N

(

θ̂ ,

[

I (θ̂ )
]−1

)

to approximate the parameter

distribution under large sample sizes. Samples that character-

ize the uncertainty of MLE can be obtained by drawing from

the distribution N

(

θ̂ ,

[

I (θ̂ )
]−1

)

. Using this distribution

generates 1000 samples, with an optimal inspection time t∗i
and an associated expected cost rate CR∗ for each sample.

Fig. 9 plots the histogram of t∗i and CR∗ and the associated

fitted normal pdf curves. The mean of t∗i is achieved as 49.76,
and the standard deviation is 1.3907. For CR∗, the mean and

standard deviation are obtained as 3.06 and 0.0679. The small

standard deviation of t∗i and CR∗ indicates the effectiveness

of MLE.

B. MAINTENANCE WITH UPDATED PARAMETERS

At each inspection where new observations arrive, the dis-

tribution parameter θ will be updated. The prior distribution

of θ is obtained using the MLE. Maximum a posteriori esti-

mation is employed to update the parameters with the arrival

of new observations. Data from Table 2 serve as the new

arrivals and are used for updating. It should be noted that
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TABLE 3. Update of parameters at inspections.

TABLE 4. Iteration of Newton’s method for the sixth wheel-set.

we update the six wheel-sets of Table 2 separately; i.e., the

distribution parameters of each wheel-set are estimated only

by the prior information and the associated observations.

With the MAP procedure presented in Section IV, we can

compute the updated parameters, as shown in Table 3. Unlike

the estimates using MLE, the estimates using MAP vary for

different wheel-sets, thus describing the heterogeneity of the

wheel-sets. In addition, variations of θ at each inspection

indicate the flexibility and power of incorporating the new

information.

Since the Gaussian distribution is not a conjugate prior,

a closed-form solution of Equation (12) cannot be achieved.

Therefore, we use Newton’s method to compute the estimates

from MAP. The initial guess of Newton’s method is identical

to the prior distribution, θ0 = (0.0592, 0.4419). Following

the iteration procedure in Equation (14), we can obtain the

updated parameters given the observed data at each inspec-

tion. Taking the sixth wheel-set for example,Table 4 presents

the variation of the parameters at each iteration. It can be

observed that the estimates converge quickly, mostly in two

iterations, indicating that the updated estimates are closed

to the initial guess. At each inspection, given the current

degradation level and the updated parameters, the optimal

subsequent inspection time can be achieved by minimizing

the average cost rate in Equation (6).

C. COMPARISON WITH CONTINUOUS MONITORING

This section presents a case where the degradation level

of the system can be continuously monitored. Compared

with the discrete inspection in Section III, under continuous

monitoring, repair or replacement is carried out immediately

if the system is found to have failed. Therefore, no downtime

is considered in this scenario. In addition, the inspection cost

is suppressed since the system is under continuous monitor-

ing. The maintenance strategy under continuous monitoring

works as follows: given the degradation level after repair x+
i ,

the system is repaired preventively at time Ti or correctively

at failure Tf . The corresponding cost rate is given as

CR
(

Ti; x+
i

)

=
cp +

(

cc − cp
) (

1 − R̄(Ti; x+
i )
)

E
[

min{Ti,Tf }
] (15)

where the expected cycle length E
[

min{Ti,Tf }
]

is given as

E
[

min{Ti,Tf }
]

= E

[∫ Ti

0

(

1 − F(t|XTi0 )
)

dt|XTi0
]

Upon repair, the system age is reduced to 0, while the

degradation level increases. In other words, after repair or

replacement, the system age is reduced to 0. Therefore, in the

subsequent repair cycle, the system age will always start from

0. In Equation (15), the reliability function performs differ-

ently in terms of the repair or replacement (the degradation

level x+
i differs).

For a degradation process with small variance,

E
[

min{Ti,Tf }
]

can be approximated as E
[

min{Ti,Tf }
]

≈
∫ Ti
0 R̄(t; x+

i )dt . [38] states that the optimal maintenance strat-

egy for the above problem is a control limit strategy, with the

optimal repair time expressed as

T ∗
i = inf

{

t ≥ 0, λ
(

t,X (t); x+
i

)

≥ CR∗/
(

cc/cp − 1
)}

Since the optimal expected one-cycle cost rate is depen-

dent on the associated repair time, T ∗
i , an iterative algorithm

is proposed for computation purposes [38], [39]. Although

the iterative algorithm works well for a deterministic or

discrete degradation process, it cannot be applied for a

continuous degradation process, as the hazard rate func-

tion λ
(

t,X (t); x+
i

)

is randomized by X (t). Therefore,

we resort to a one-directional search algorithm to obtain

the optimal repair time, T ∗
i . In fact, Equation (15) can be

rewritten as

CR
(

Ti; x+
i

)

= cp
1 + (K − 1)

(

1 − R̄(Ti; x+
i )
)

E
[

min{Ti,Tf }
]

where K is the cost ratio, K = cc/cp. The optimal repair time

is dependent on K , instead of cc or cp separately, while the

optimal expected cost rate, CR∗, is related to both cc and cp.
Under the present cost setting, cp = 70 and cc = 100,

the optimal repair time, T ∗
i , approaches to infinity, implying

that the system is repaired only at failure, and the optimal

maintenance decision is reduced to a block-based mainte-

nance strategy. The repair cost is close to the replacement

cost, and this diminishes the effect of preventive repair.

To investigate the influence of cost parameters, in Fig. 10,

we show the variation of the optimal cost rate and the

associated repair time with respect to cc and cp under
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FIGURE 10. Influence of cc and cp under continuous monitoring.

continuous monitoring. The variation trend of T ∗
i and CR∗

is similar to that found in discrete inspection.

VI. CONCLUSION

This paper presents a dynamic maintenance strategy for sys-

tems subject to aging and degradation. During operation,

the system goes through an aging and degradation process,

which affects the failure rate of the system in an additive

way. System reliability is analyzed as a first step, followed

by a maintenance model evaluated based on the expected cost

rate within a repair cycle. A dynamic maintenance strategy is

proposed, where the degradation parameters are updated and

the optimal subsequent inspection time is provided at each

maintenance action. The proposed maintenance model has

two advantages compared with the existant time-based pre-

ventive maintenance models. First, it incorporates the effects

of both the aging and degradation. Second, it permits decision

makers to dynamically determine the optimal inspection time

and the associatedmaintenance actions based on the observed

degradation level and the operating history, thereby adapting

to heterogeneous operating conditions. Application of the

model to a case study of locomotive wheel-sets shows its

effectiveness.

Future research can take two directions. First, it is assumed

in this study that the degradation level of the system can

be perfectly inspected, but in reality, observations are usu-

ally contaminated by noise. In future research, filtering

approaches, such as the Kalman filter and its variants, and

particle filters, can be employed to estimate the degradation

level and the parameters of interest. Second, the optimal

maintenance strategy is achieved based on the criterion of the

average cost rate. However, if the cost parameters are sub-

ject to high uncertainty, i.e., cost items cannot be accurately

evaluated, criteria that are independent of the cost parameters,

such as availability, reliability, and remaining useful lifetime,

could be applied.

APPENDIX

A. PROOF OF PROPOSITION 1

Consider the degradation-dependent failure rate λ2 (X (t)).

Based on the scaling property of the Gamma process, it fol-

lows that λ2 (X (t)) = γX (t) ∼ Ga (t; α, β/γ ) The Gamma

process belongs to the class of Lévy processes, where the

Lévy measure of λ2 (X (t)) is given as

v(dy) = y−1α exp(−βy/γ )dy

The theorem (Corollary 3.3) of [31] indicates that a reliability

function with an increasing Lévy failure rate process can be

transformed to one with a deterministic failure rate,

h(t) =
∫ ∞

0

[

1 − exp(−tx)
]

v(dx)

Then it follows that,

E

[

exp

(

−
∫ t

0

λ2 (X (s)) ds

)]

= exp

(

−γ x0t −
∫ t

0

ds

∫ ∞

0

α exp(−βy/γ )y−1

· (1 − exp (−(t − s)y) dy)

)

= exp

(

−γ x0t −
∫ t

0

α log

(

β/γ + t − s

β/γ

)

ds

)

= exp

(

−γ x0t −
∫ t

0

α log

(

β/γ + s

β/γ

)

ds

)

Combined with the additive model of Equation (4), system

reliability is provided as

R̄ (t) =E

[

exp

(

−
∫ t

0

λ1 (s) + λ2 (X (s)) ds

)]

= exp

(

−
∫ t

0

λ1 (s) ds

)

· E
[

exp

(

−
∫ t

0

λ2 (X (s)) ds

)]

= exp

(

−
∫ t

0

λ1(s) + γ x0t + α log

(

β + γ s

β

)

ds

)

which completes the proof.

B. DERIVATION OF EQUATION (7)

Let Ts be the smaller of the inspection time and the time to

failure, Ts = min
{

ti,Tf
}

. It follows that

E [Ts] = ti
(

1 − E
[

F(ti|X ti0 )|X
ti
0

])

+E

[∫ ti

0

tdF(t|X ti0 )|X
ti
0

]

= E

[∫ ti

0

(

1 − F(t|X ti0 )
)

dt|X ti0
]

Since downtime only occurs when the system fails before

inspection/repair, we have

Td = max
{

ti − Tf , 0
}
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By definition, Td can be rewritten as Td = ti − Ts. Its

expectation is readily obtained as

E [Td ] = tiF(ti) −
∫ ti

0

tdF(t)

= E

[∫ ti

0

F(t|X ti0 )dt|X
ti
0

]

= E

[∫ ti

0

(

1 − exp

(

−
∫ t

0

λ (s,X (s)) ds

))

dt|X ti0
]

C. PROOF OF COROLLARY 2

Denote the expected cost in a repair cycle as

CT (ti; x+
i ) = ci + cp +

(

cc − cp
) (

1 − R̄(ti; x+
i )
)

+ cd

∫ ti

0

(

1 − R̄(ti; x+
i )
)

Obviously, CT (ti; x+
i ) > 0 for ti ∈ (0, ∞). By taking the

derivative of the expected average cost in Equation (10) with

respect to ti, we have

CR′ (ti; x+
i

)

=
tiCT

′(ti; x+
i ) − CT (ti; x+

i )

t2i

When ti approaches zero from the right, ti → 0+, we clearly
have lim

ti→0
CR′ (ti; x+

i

)

< 0. When ti approaches infinity,

it follows

lim
ti→∞

tiCT
′(ti) − CT (ti)

= lim
ti→∞

cd

(

ti
(

1−R̄(ti; x+
i )
)

−
∫ ti

0

(

1 − R̄(ti; x+
i )
)

)

−ci−cc
= cdν − ci − cc

If ν > (ci + cc)/cd , we have lim
ti→∞

CR′ (ti; x+
i

)

> 0, which

completes the proof.

D. ESTIMATION OF THE PRIOR DISTRIBUTION

Denote N as the number of units and M the number of time

records of the historical data. Denote τ̄j as the jth time record,

j = 1, 2 . . . .,M , and x̄ij as the degradation increment of the

ith unit in time interval τ̄j, i = 1, 2, . . . ,N . The likelihood

function is expressed as

L(α, β) =
N
∏

i=1

M
∏

j=1

f (x̄ij|α, β)

=
N
∏

i=1

M
∏

j=1

βατ̄j

Ŵ
(

ατ̄j
) x̄

ατ̄j−1

ij e−β x̄ij

and the log-likelihood function is given as

l(α, β) = N

M
∑

j=1

ατ̄j ln(β) +
N
∑

i=1

M
∑

j=1

(ατ̄j − 1) ln(x̄ij)

− β

N
∑

i=1

M
∑

j=1

x̄ij − N

M
∑

j=1

ln
(

Ŵ(αtj)
)

(A1)

Let the derivative of β be 0,

∂l

∂β
=
Nα

M
∑

j=1

τ̄j

β
−

N
∑

i=1

M
∑

j=1

x̄ij = 0

It follows that

β̂ =
Nα

M
∑

j=1

τ̄j

N
∑

i=1

M
∑

j=1

x̄ij

(A2)

Taking the derivative of α leads to

∂l

∂α
= N ln(β)

M
∑

j=1

τ̄j +
N
∑

i=1

M
∑

j=1

τ̄j ln(x̄ij) − N

M
∑

j=1

ϕ(ατ̄j)τ̄j

(A3)

where ϕ(·) is the digamma function,

ϕ(z) = Ŵ′(z)

Ŵ(z)

Substituting Equation (A2) into Equation (A3), and letting

the derivative be zero leads to

N

M
∑

j=1

ϕ(ατ̄j)τ̄j − N ln (α)

M
∑

j=1

τ̄j

= N



ln



N

M
∑

j=1

τ̄j









M
∑

j=1

τ̄j − Nln





N
∑

i=1

M
∑

j=1

x̄ij





M
∑

j=1

τ̄j

+
N
∑

i=1

M
∑

j=1

τ̄j ln(x̄ij) (A4)

Equation (A4) can be solved via numerical methods,

e.g., Newton’smethod. Based on the estimated α̂, the estimate

of β can be readily obtained from Equation (A2).

The Fisher information matrix is obtained by taking

the second derivation of α and β. It follows that

I (θ ) =





















N

M
∑

j=1

ϕ1(ατ̄j)τ̄
2
j −

N
M
∑

j=1

τ̄j

β

−
N

M
∑

j=1

τ̄j

β

Nα
M
∑

j=1

τ̄j

β2





















where ϕ1(·) is the trigamma function,

ϕ1(z) = dϕ(z)

dz

The covariance matrix 6̂ can be readily obtained

as 6̂ = [I (θ )]−1.
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NOTATION

X (t) Degradation level at time t

Ga(t; α, β) Gamma process with shape parameter α and

scale parameter β

1X (t − l) Degradation increment between time t and l

λ(t,X (t)) System failure rate

R̄ (t) Expected system reliability at time t

λ1(t) Age-related failure rate

λ2(X (t)) Degradation-dependent failure rate

Tf Time to failure

X−
i Degradation level before the ith repair

X+
i Degradation level after the ith repair

Yi Degradation increment at the ith repair

π ∈ {0, 1} Maintenance decision: replacement (πi = 0)

or repair (πi = 1)

ζ Threshold for replacement

η Tolerance level of degradation after repair

ti Time interval between the ith and (i+ 1)th

inspection

CR Long-run cost rate

ci, cp, cc Cost of inspection, preventive repair

and corrective replacement

cd Downtime cost per unit time

Td Downtime

θ = (α, β)T Set of degradation parameters

p(θ ) pdf of prior distribution

f (θ |x) Posteriori distribution of θ given the dataset x

I (θ ) Fisher information evaluated at θ

θ̂ MLE estimate of θ

θ̃ MAP estimate of θ

L(θ ) Likelihood function
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