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Market-oriented reverse auction is an e�cient and cost-e	ective method for resource allocation in cloud work
ow systems since
it can dynamically allocate resources depending on the supply-demand relationship of the cloud market. However, during the
auction the price of cloud resource is usually �xed, and the current resource allocation mechanisms cannot adapt to the changeable
market properly which results in the low e�ciency of resource utilization. To address such a problem, a dynamic pricing reverse
auction-based resource allocation mechanism is proposed. During the auction, resource providers can change prices according to
the trading situation so that our novel mechanism can increase the chances of making a deal and improve e�ciency of resource
utilization. In addition, resource providers can improve their competitiveness in the market by lowering prices, and thus users
can obtain cheaper resources in shorter time which would decrease monetary cost and completion time for work
ow execution.
Experiments with di	erent situations and problem sizes are conducted for dynamic pricing-based allocation mechanism (DPAM)
on resource utilization and themeasurement of Time∗Cost (TC).�e results show that ourDPAMcanoutperform its representative
in resource utilization, monetary cost, and completion time and also obtain the optimal price reduction rates.

1. Introduction

Work
ow model is o�en used to manage complex business
applications. A work
ow is de�ned as a collection of tasks
which are handled in a speci�c order [1, 2]. A work
owman-
agement system needs to allocate and execute tasks e�ciently
to meet users’ needs. Cloud computing uses a pay-as-you-
go model which provides virtually unlimited computational
resources at lower costs with better reliability and delivers the
resources by means of virtualization technologies [3]. Cloud
work
ow systems are work
ow systems deployed on cloud
computing environment to gain unlimited resources includ-
ing computation, storage, and network [4].

Resource allocation for cloud work
ow systems has
receivedmuch attention. Allocating cloud resources to work-

ow is an NP-hard problem and needs to consider the overall
performance of system especially monetary cost and com-
pletion time [5]. Resource allocation mechanism includes
conventional methods and market-oriented methods [6, 7].

Conventional methods require global knowledge and com-
plete information. Users pay for the resources based on
reserved price. In contrast, market-oriented methods can
o	er incentives to participants and the methods decide the
price based on the values that users can get from the resources
[8].

Di	erent from conventional counterparts, market-ori-
ented methods assume that providers and users are rational
and intelligent. And resource allocation depends on many
factors including supply-demand relationship and resource
price. Auction is a powerful tool to allocate resources in the
market. Generally speaking, auction is a protocol that allows
participants to indicate their interests in di	erent resources
and use these indications of interest to determine both
resource allocation and price [9]. Reverse auctionmethod is a
typical auction. In conventional auction, there are one seller
andmultiple buyers. As for reverse auction, there aremultiple
sellers and only one buyer [10]. �e user sends the speci�ca-
tion of resource requirement to the cloud broker and requests
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resources. �e cloud broker transfers the speci�cation to
all cloud providers. �e cloud providers sell resources with
proper price and capabilities. And then the users select the
optimal resources according to some criteria, for example,
Quality of Service [11, 12]. In general, reverse auction is
used to prevent the occurrence of trading fraud and achieve
dynamic pricing and automatic procurement [11]. In the
most relevant literature [12], the authors propose Biobjective
Scheduling Strategy (BOSS) based on reverse auction to
allocate resources for tasks of work
ows and each task starts
an auction and gets a resource to minimize the monetary
cost and completion time. However, the resource price is
�xed during the auction, so that some providers with weaker
competitiveness may lose the auction all the time. �is leads
to low e�ciency of resource utilization, which decreases the
allocation equilibrium of tasks on resources in the cloud
market.

In this paper, we �rstly present a dynamic pricing strategy
to change resource prices according to the trading situation
and then present a DPAM mechanism to improve the
e�ciency of resource utilization. Changing resource price is
a common and e�cient way to increase competitiveness [13].
In the dynamic pricing strategy, the resource price changes
according to the trading situation.�ose providers who have
strong competitiveness (i.e., higher chance of winning in
historic auctions) in the market o�en keep resource prices
unchanged during an auction. But for those who have weak
competitiveness, decreasing the resource price with a certain
rate is an e	ective way to increase the winning chances.
�erefore, changing prices can increase the chance of win-
ning an auction and gaining more revenue for providers
with weaker competitiveness. In the meantime, the users can
gain cheaper resources. In DPAM,many providers with weak
competitiveness use dynamic pricing strategy to increase
winning chances and revenue, so that resource utilization
of the cloud market increases. Meanwhile, cloud work
ows
will be executed timely with less monetary cost. In our
experiment, the measurement of TC is employed to evaluate
the performance of our proposed strategy.

In our previous preliminary work, a dynamic pricing
strategy in reserve auction was presented to change resource
prices according to the trading situation, and then a novel
DPAM was proposed to improve the e�ciency of resource
utilization [14]. Based on this work, we have further inves-
tigated the resource allocation based on reverse auction and
made the following substantial extensions in this paper:

(i) In problem analysis, a real world stock trading work-

ow is given and resource allocation processes of
BOSS and DPAM are described based on this exam-
ple. �e process illustrates the di	erence of pricing
mechanism between BOSS and DPAM.

(ii) In evaluation, �rstly the performance of BOSS and
DPAM on resource utilization and the measurement
of TC with di	erent problem sizes are tested. �en
simulation on DPAM with di	erent price reduction
rates evaluates its performance on resource utilization
and TC.

Dynamic pricing based allocationmechanism is designed
to improve resource utilization and decrease monetary cost
and completion time. In summary, this mechanism has three
major advantages:

(i) In reverse auction, dynamic pricing strategy is more
e	ective to increase the revenue of providers with
weak competitiveness and decrease users’ cost than
�xed pricing. Providers with weak competitiveness
decrease the price to increase the chance of winning
auction and gaining more revenue. Simultaneously,
users who choose the resource with lower price will
have less monetary cost.

(ii) Dynamic pricing based allocation mechanism can
improve resource utilization for providers. Providers
change resource prices to sell more resources accord-
ing to dynamic pricing strategy especially for those
withweak competitiveness.�is brings higher resour-
ces utilization because more resources are chosen.

(iii) Dynamic pricing based allocation mechanism can
decrease monetary cost and completion time for
users. More price-competitive resources will appear
in the market because of increasing competition
among providers. So users can easily obtain cheaper
and more resources and hence decrease monetary
cost and completion time.

�e rest of the paper is organized as follows. Section 2
describes some related research. In Section 3, we show
an example to analyze the problem. Section 4 proposes a
dynamic pricing strategy, and Section 5 presents dynamic
pricing-based allocationmechanism. In Section 6, traditional
mechanism and ours are evaluated. Finally, Section 7 con-
cludes the paper and discusses our future work.

2. Related Work

Resource allocation has become an important task to pro-
vide e�cient and economical resources in cloud computing
environment [15]. Wood et al. [16] propose an approach for
dynamic allocation of resources by de�ning a unique metric
based on the consumption of the three resources: CPU, net-
work, andmemory. Görlach and Leymann propose amethod
for dynamic provisioning of services in clouds in order to
optimize the distribution of services [17]. However, their
proposed approaches are not e�cient and economic because
the allocation of resource does not consider market situation.

Market-oriented resource allocation has received much
attention as it is a signi�cant problem of large-scale dis-
tributed systems. In [18], authors present amodel for resource
allocation in grid using market-oriented concepts including
commodity market, posted price modeling, and contract net
models bargaining modeling. Mao and Humphrey explore
the cloud autoscaling framework for resource allocation.�e
goal is to ensure that all jobs �nish before their respective
deadlines while running on these resources which consume
the least amount of money [19]. In [20], in order to e	ectively
manage resource allocation and work
ow execution, Wang
et al. design a mechanism which responds to the user’s
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continuous work
ow requests and schedules their execution.
In [21, 22], a lot of heuristic methods are presented to solve
the problem in services systems. �ese heuristic methods
consider the optimization algorithm from the aspects of cost,
deadline, and reliability which can improve the performance
of the algorithm. Ludwig presents a heuristic program for
resource allocation on utility computing infrastructure. �is
heuristic program optimizes the number of resources allo-
cated to tasks of work
ow and speeds up the executionwithin
a limitation of budget [23]. In [24], the authors propose a
resource allocation approach to better match the resource
allocated to the job with the cloud’s residual resource.

Auction [25, 26] is a popular method to solve resource
allocation problem. In [27, 28], the authors present auction-
based mechanisms to determine optimal resource price,
taking into account the user’s budget and time constraints.
Prasad G et al. present a combinatorial auction mechanism
to allocate multiple resources in one auction [6]. However,
they consider the pricing model of only one seller. Reverse
auction is a popular auction in which the roles of buyer
and seller are reversed [29]. In an ordinary auction buyers
compete to obtain goods or service by o	ering increasingly
higher prices [30]. In the reverse auction [31], the sellers
typically decrease prices to compete against each other and
obtain business from the buyer. �e authors employ reverse
auction to select the optimal resource based on available
information to maximize their own pro�ts [32]. A cloud
resource allocation approach based reverse auction [33] is
presented to select suitable cloud resource providers for users.

However, these methods do not focus on the pricing
mechanism of the resource allocation. Resource pricing is
an important aspect in resource allocation. In [34], authors
mention Commodity Market which means that the sellers
set the price for merchandise and the buyers pay money to
get it. �e price is predetermined by the seller and does not
change over time based on supply-demand relationship. But
�xed pricing is not suitable for the changeablemarket of cloud
resources.

Dynamic pricing has gained wide attention from both
industry and academia in the cloud computing. Amazon EC2
[35] has introduced a “spot pricing” scheme where the spot
price is set according to resource supply anddemand. Because
�xed pricing does not re
ect the dynamic changes of supply
and demand, a dynamic scheme for allocation of multiple-
type resources [36] is proposed to increase the percentages
of successful buying and selling. In [12], authors introduce
a pricing model and a truthful mechanism for scheduling
single tasks considering two objectives: completion time and
monetary cost based on reverse auction. However, they do
not consider the competitiveness among providers which
leads to the fact that the losers may always lose auction
because they do not try to improve their competitiveness.
To solve this problem, we propose dynamic pricing based
scheduling mechanism for allocating resources e�ciently, in
which providers who lose an auction will decrease resource
price in order to win so as to gain more revenue.

A: stock issuance

B: �xed auction

C: continuous auction

D: formation of price chart

DA

B

C

Figure 1: Stock trading work
ow.

Table 1: Characteristic of tasks.

Task Workload

A 6

B 4

C 5

D 7

Table 2: Characteristics of resources.

RN CA RP SP

1 1 0.09 0.14

2 1.4 0.14 0.20

3 1.2 0.12 0.17

RN: resource number, CA: computation ability, RP: reserve price, and SP:
starting price.

3. Problem Analysis

In this section, a stock trading work
ow is given to explain
the di	erence of pricing mechanism between the BOSS
mechanism and ours. Stock trading is a typical process in the
market. At �rst, stock exchange starts with stock issuance and
then price formation process follows. During this process,
�xed auction and continuous auction happen simultaneously.
At last, price chart is generated.

As shown in Figure 1, stock trading work
ow contains
four tasks. �e execution sequence of tasks partially depends
on relation. �e succeeding tasks start only when their pre-
decessor tasks �nish. Table 1 indicates the workload of each
task. Table 2 shows some characteristics of three resources
including resource number, computation ability, reserve
price, and starting price. Here, computation ability is the
computation speed of CPUs, the reserve price is the lowest
price of resource during the auction, and the starting price is
the �rst resource price when auction starts.

3.1. Resource Allocation Process of DPAM. For the BOSS
mechanism [12], tasks start an auction according to the spe-
ci�c order to select the resource with the minimum product
of completion time and total monetary cost. And providers
give their bids ���� = (CA�, SP�) which indicate computa-
tion ability and starting price of resource �. �e work
ow
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Table 3: Resource allocation process of BOSS.

RN ST ET CT MC TC WR

(a) First auction

1 0 6.00 6.00 0.84 5.04

22 0 4.29 4.29 0.86 3.67

3 0 5.00 5.00 0.85 4.25

(b) Second auction

1 4.29 4.00 8.29 0.56 4.64

22 4.29 2.86 7.15 0.57 4.08

3 4.29 3.33 7.62 0.57 4.32

(c) �ird auction

1 4.29 5.00 9.29 0.70 6.50

32 7.15 3.57 10.72 0.71 7.66

3 4.29 4.17 8.46 0.71 5.99

(d) Last auction

1 8.46 7.00 15.46 0.98 15.15

22 8.46 5.00 13.46 1.00 13.46

3 8.46 5.83 14.29 0.99 14.17

RN: resource number, ST: start time, ET: execution time, CT: completion
time, MC: monetary cost, TC: Time ∗ cost, and WR: winner.

completion time is the time required for executing the whole
work
ow under the partially ordered relation of tasks. �e
total monetary cost of work
ow is the sum of all tasks’ mon-
etary cost.�e task’s monetary cost only covers the execution
cost on the allocated resource. It is assumed that there is
no additional cost while moving execution from one cloud
provider to another. Once a task is assigned to one resource,
it will be executed on this resource until its completion and
cannot be reallocated to a cheaper or better resource during
its execution. �e resource allocation process of BOSS is
shown in Table 3.

In Table 3, the start time is the larger one between the
resource’s free time and predecessor tasks’ �nish time. �e
execution time is calculated as the workload divided by com-
putation ability. �e completion time is the sum of the start
time and the execution time. �e measurement of TC is the
product of completion time and monetary cost. Tasks select
the resource with the minimum TC. In Table 3(a), task A
selects resource 2 as the winner, because its TC is the mini-
mum. Similarly, task B selects resource 2 as the winner in the
second auction and task C selects resource 3 as the winner in
the third auction. In the last auction, task D selects resource 2
as the winner. From the tables, the completion time is 13.46
which is the completion time of last task D on resource 2.�e
total monetary cost of all tasks is 0.86 + 0.57 + 0.71 + 1.00 =3.14.�e product of completion time and total monetary cost
is 42.2644.

3.2. Resource Allocation Process of DPAM. In ourmechanism,
the resource price can be dynamically changed to improve
providers’ competitiveness. If one provider wins an auction,
resource price will be kept unchanged. Otherwise, resource
price will be decreased at a certain rate in the next auction.
However, during any auction, the resource price cannot be

Table 4: Resource allocation process of DPAM.

RN CP ST ET CT MC TC WR

(a) First auction

1 0.14 0.00 6.00 6.00 0.84 5.04

22 0.20 0.00 4.29 4.29 0.86 3.67

3 0.17 0.00 5.00 5.00 0.85 4.25

(b) Second auction

1 0.11 4.29 4.00 8.29 0.45 3.71

32 0.20 4.29 2.86 7.15 0.57 4.08

3 0.14 4.29 3.33 7.62 0.45 3.46

(c) �ird auction

1 0.09 4.29 5.00 9.29 0.45 4.16

12 0.16 4.29 3.57 7.86 0.57 4.49

3 0.14 7.62 4.17 11.79 0.57 6.68

(d) Last auction

1 0.09 9.29 7.00 16.29 0.63 10.22

22 0.14 9.29 5.00 14.29 0.70 10.00

3 0.12 9.29 5.83 15.12 0.70 10.59

RN: resource number, CP: current price, ST: start time, ET: execution time,
CT: completion time, MC: monetary cost, TC: Time∗ cost, andWR: winner.

lower than its reserve price. Resource allocation process of
DPAM is shown in Table 4. Here the price reduction rate is
set as 20%.

At �rst, task A starts an auction and three resources give
their bids (CA,CP). As shown in Table 4(a), the current
price is the resource price of current auction. Task A selects
resource 2 as the winner, because its TC is the minimum. So
resource 1 and resource 3 lose the auction and they decrease
the current prices by 20% inTable 4(b). In the second auction,
task B selects resource 3 as the winner. �en resource 1 and
resource 2 decrease their current price by 20% as shown in
Table 4(c). Similarly, task C selects resource 1 as the winner
and task D selects resource 2. From Table 4, the completion
time of the work
ow is 14.29 which is the completion time of
last task. �e total monetary cost of all tasks is 0.86 + 0.45 +0.45 + 0.70 = 2.46. �e product of completion time and total
monetary cost is 35.1534.

3.3. Comparison of BOSS and DPAM. In this subsection,
resource prices and the winner of each auction are compared
between BOSS and DPAM as shown in Table 5.

In Table 5, the winners of BOSS are 2, 2, 3, and 2. But the
winners of DPAM are 2, 3, 1, and 2. In BOSS, resource price is
always �xed and resource 1 with low competitiveness is never
used. However, in DPAM resource 1 becomes new winner by
dynamic pricing strategy which brings higher resource uti-
lization. Resource utilization shows the allocation of tasks on
resources (see Formula (2)). �erefore, resource utilization
of DPAM is 1/[(2 − 4/3)2 + (1 − 4/3)2 + (1 − 4/3)2]/3 =9/2, which is bigger than resource utilization of BOSS (1/[(3 − 4/3)2 + (1 − 4/3)2 + (0 − 4/3)2]/3 = 9/14). �e reason
is that these providers which never become winner in BOSS
may win the auction in DPAM. �is means more providers
win the auction and sell their resources.
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Figure 2: Gantt charts of resource allocation and task execution.

Table 5: Comparison of BOSS and DPAM.

RN PB PD WB WD

(a) First auction

1 0.14 0.14

2 22 0.20 0.20

3 0.17 0.17

(b) Second auction

1 0.14 0.11

2 32 0.20 0.20

3 0.17 0.14

(c) �ird auction

1 0.14 0.09

3 12 0.20 0.16

3 0.17 0.14

(d) Last auction

1 0.14 0.09

2 22 0.20 0.14

3 0.17 0.12

RN: resource number, PB: price of BOSS, PD: price of DPAM, WB: winner
of BOSS, and WD: winner of DPAM.

�eGantt charts of BOSS and DPAM are depicted in Fig-
ure 2.�e charts show tasks execution order and the resource
executes on which task. In Figure 2(a), only resources 2 and
3 are used. While in Figure 2(b) all resources are used. It
is easy to draw that DPAM has higher resource utilization
than BOSS. In DPAM resource price is dynamic, so resource
with weak competitiveness decreases price to improve com-
petitiveness until it wins one auction. However, in BOSS the
resource with low competiveness may never win any auction.

4. Dynamic Pricing Strategy

As the number of cloud resource providers increases in
reverse auction, they compete against each other tomaximize
their revenue. So an e	ective pricing strategy is necessary

for providers to increase their competitiveness. Firstly, two
propositions are described to prove that the dynamic pricing
strategy can improve the revenue of providers and also
decrease the monetary cost of users. �en dynamic pricing
strategy is proposed.

Proposition 1. Dynamic pricing strategy can increase the
revenue of provider with weak competitiveness.

Proof. Assume that provider A and provider B have the
resources with same computation ability. Resource price of A
is�A and resource price of B is�B, where�A < �B. So provider
B will lose auction because his competitiveness is weaker
than A. If the resource price is �xed, competitiveness of B is
always weaker than A and then provider B would never win
an auction. Otherwise, if resource price is dynamic, provider
B can decrease the price from�B to��B which is lower than�A.
�en B can win auction and hence increase revenue because
its competitiveness is higher than that of A. Hence, the
dynamic pricing strategy can increase the revenue of provider
with weak competitiveness.

Proposition 2. Dynamic pricing strategy can decrease user’s
monetary cost.

Proof. Assume that provider A and provider B have the
resources with same computation ability. Resource price of
A is �A and resource price of B is �B, where �A < �B. User
will select A’s resource because its resource price is lower. If
resource price is �xed, user will always select A’s resource and
monetary cost is �A. Otherwise, if resource price is dynamic,
provider B must decrease the price from �B to ��B to win

the auction. Here ��B is lower than �A. So user will select B’s

resource and monetary cost is ��B. Hence, dynamic pricing
strategy can decrease user’s monetary cost.

Each provider sets reserve price, starting price, and price
reduction rate for a resource. When one task starts auction,
providers join the auction and give their bids with computa-
tion ability and price. A�er one auction �nishes, providers
change or do not change the resource price according to
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transaction situation. If providers want to increase com-
petitiveness and win auctions, they will change their price
according to the dynamic pricing strategy in Formula (1):

�cur�

A

=
{{{{{{{{{

�cur
A , if A is winner,

�cur
A ⋅ (1 − �) , if A is loser and �cur

A ⋅ (1 − �) > �res
A ,

�res
A , if A is loser and �cur

A ⋅ (1 − �) < �res
A ,

(1)

where �cur
A refers to the current resource price of provider A.�res

A refers to the reserve price of resource. � denotes the price
reduction rate. In the strategy, if provider A is the winner, its
resource price will still be �cur

A in the next auction. Otherwise,
if provider A is the loser and �cur

A ⋅ (1 − �) > �res
A , its resource

price will be �cur
A ⋅ (1 − �) in the next auction. �e resource

price will be �res
A , if �cur

A ⋅ (1 − �) < �res
A .

In conclusion, dynamic pricing strategy is e�cient during
the auction. Providers decrease the prices to increase the
chance of winning auctions in order to gain more revenue.
Simultaneously users choose the resources with lower prices
and spend less monetary cost.

5. Dynamic Pricing Based Allocation
Mechanism (DPAM)

In this section, �rstly resource utilization (Formula (2))
and evaluation value TC (Formula (3)) are de�ned and
then novel dynamic pricing based allocation mechanism is
proposed. In the auction-based cloud market, the purpose
of providers is to sell resources at the most proper price so
as to gain the highest revenue. And the purpose of users
is to execute work
ows with shortest completion time and
lowestmonetary cost. In thismechanism, users select the best
resource according to the product of completion time and
monetary cost. And the provider with the minimum product
will be the winner. A�er each auction, providers change their
resource price according to current trading situation. If their
competitiveness is weak and loses the auction, they usually
decrease the price in certain rate to increase competitiveness.
Otherwise, if they win, it is e	ectively to keep the price
unchanged or increased.

Resource utilization shows the allocation equilibrium of
tasks on resources. It is described by variance of winning auc-
tion times for each provider. Resource utilization is inversely
proportional to variance. Especiallywhen the variance is zero,
resource utilization is optimal.

������������������� = 1/∑�1 (���� − ���)2
� , (2)

where � is the amount of resources. ���� refers to winning
times of resource � and ��� is the average value of winning
auction times of all providers.

During auction, a task selects the resource with the
minimumTCas thewinner. TC�� is the product of completion
time andmonetary cost of task � on resource �. In [12], authors
use the measurement TC to measure the BOSS with other

mechanisms. �ere are two reasons for using TC as a mea-
surement: (1) it presents the whole evaluation of completion
time and monetary cost for work
ow execution; (2) the
truthfulness of the BOSS mechanism depends on TC. So we
use the measurement TC in order to make a more accurate
comparison with BOSS.

TC�� = (��� + "��#�����������$� )

∗ (������ ∗ "��#�����������$� ) .
(3)

Each task starts execution only when its predecessor tasks
have �nished according to the partially ordered relation of
tasks. ��� refers to the start time of task � executing on resource�. It equals the latest time when its predecessor tasks have
�nished and simultaneously resource � is idle. "��#����� is
the workload of task �; ������$� and ������ are computation

ability and price per time unit of resource �, respectively. So"��#�����/������$� is the time required for task � on resource�. And (��� + "��#�����/������$�) refers to the �nishing time

of task � on resource �. (������ ∗ "��#�����/������$�) is the
monetary cost required for task �.

In Algorithm 1, there are � tasks and � resources (lines(1)-(2)). Each user starts an auction in order and calculates
the product of completion time and monetary cost for
every resource (lines (3)–(10)) and then selects the resource
with the minimum product (line (11)). �en user pays to
the winner (line (12)). At last, all providers change price
according to dynamic pricing strategy and join the next
auction (line (13)).

When work
ows are submitted and tasks start auctions,
providers give their bids to compete for the opportunity of
providing resources. In the auction, providers change price
and increase chances of selling resource, so that they can gain
more revenue and higher resource utilization. In addition,
users always select the optimal resource, so the product of the
completion time and monetary cost of executing tasks is the
minimum.

6. Evaluation

In this section, experiments are conducted for evaluation of
the performance of BOSS and DPAM on resource utilization
and the measurement of TC with di	erent situations and
problem sizes. Moreover, the performance of DPAM on
resource utilization (see Formula (2)) and TC with di	erent
price reduction rates is veri�ed. Firstly, experiment setup is
given (see Section 6.1). Secondly, simulation of speci�c work-

ow is described for evaluating BOSS and DPAM (see Sec-
tion 6.2). �irdly, we conduct experiments with the medium
problem size and evaluate BOSS and DPAM with di	erent
situations and the performance of DPAMwith di	erent price
reduction rates (see Section 6.3). At last, both from di	erent
situations and di	erent problem sizes, simulation results
show the performance of BOSS and DPAM and the per-
formance of DPAM with di	erent price reduction rates (see
Section 6.4).
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Input: work
ows and resources
Output: allocation of tasks on resources
(1) ���#� ← [�]; /∗ Assign the tasks to ���#� list with partially relation ∗/
(2) ��������� ← [�]; /∗ Assign the resources to ��������� list ∗/
(3) � = 1;
(4) While � ≤ � do
(5) ����*��# ← ��ℎ ���#;
(6) � = 1;
(7) While � ≤ � do
(8) ������������ ← ��ℎ ���������;
(9) *:� ← :��������*:�(����*��#, ������������);

/∗ calculate TC of ����*��# on ������������ (Formula (3)) ∗/
(10) End
(11) "����� ← ��������;��ℎ?��*:(*:�);

/∗ select the optimal resource with the minimum TC ∗/
(12) ����*��# pays to "�����;
(13) all providers �ℎ��@�A����;

/∗ change resource price (Formula (1)) ∗/
(14) End

Algorithm 1: Dynamic pricing based allocation mechanism.

Table 6: Problem size classi�cation.

Small Medium Large

1 ≤ � ≤ 40 50 ≤ � ≤ 100 200 ≤ � ≤ 3001 ≤ � ≤ 10 10 ≤ � ≤ 50 80 ≤ � ≤ 120

6.1. Experiment Setup. �e simulation environment runs on
a PC with the following con�gurations: 2 CPU cores, 4GB
RAM, and Microso� Windows 7 OS. �e work
ows are
classi�ed into three situations: balanced, semibalanced, and
unbalanced [12]. Task workload follows normal distributionB(1000000, 1000).�e resource ability is set from 200 to 1200
with an arithmetic sequence and the common di	erence is
quotient of 1000 divided by task amount.�e resource price is
set from the real Amazon Web Services price (https://aws
.amazon.com/). In BOSS resource price is set from 0.14 to
0.84 per time unit. In DPAM, to implement dynamic pricing
strategy, all resources have starting prices and reserve prices.
�e starting price is set from 0.14 to 0.84 and reserve price is
set from 0.1 to 0.6, respectively.

In simulation of speci�c cloud work
ows, the work
ow
has 10 tasks and the amount of resources is 7. �e price
reduction rate for DPAM is 10%. In simulation of general
cloud work
ows, they are classi�ed into small, medium, and
large by problem size besides di	erent situations. Problem
size classi�cation is shown in Table 6, where � is amount of
tasks and � is amount of resources. In addition, the price
reduction rate is set from 0 to 1 in step of 0.1.

6.2. Simulation of Speci�c Work�ows. In speci�c experiment,
speci�c work
ows are used to verify whether DPAM per-
forms better than BOSS on resource utilization and TC.

As shown in Figure 3(a), resource utilization of DPAM
is always higher than that of BOSS. DPAM can improve
resource utilization compared with BOSS. �is is because

providers with low competitiveness change their resource
prices and then these resources have more chances to be sold.

In Figure 3(b), three di	erent situations of TCs of DPAM
are all lower than those of BOSS. �is means that it takes
shorter time and lower monetary cost for work
ow execu-
tion. In DPAM, providers decrease their resource prices to
improve the competitiveness. So users can get the resource
with shorter completion time or lower monetary cost.

6.3. Simulation of General Work�ows with Di	erent Balanced
Situations. In this section, two experiments are conducted
on general work
ows with di	erent balanced situations. �e
problem size is medium. �e �rst experiment simulates
BOSS and DPAM to evaluate their performance on recourse
utilization and TC (see Figure 4). �e second experiment
simulates DPAM with di	erent price reduction rates to
evaluate its performance on resource utilization and TC (see
Figure 5).

6.3.1. Resource Utilization and TC of BOSS versus DPAM.
As shown in Figure 4(a), resource utilization of DPAM is
always higher thanBOSS.�is indicates thatDPAMperforms
better in resource utilization. In DPAM, more resources are
sold by changing prices especially for resources with lower
competitiveness. �ese resources are never sold in BOSS.
Figure 4(b) shows that TC of DPAM is lower than that
of BOSS. DPAM brings shorter completion time and lower
monetary cost. �e reason is that resource price is dynamic
and then there are more resources with higher computation
ability and lower price.

6.3.2. Resource Utilization and TC of DPAM with Di	erent
Price Reduction Rates. Figure 5 shows resource utilization
and TC of DPAM with di	erent price reduction rates.
In Figure 5(a) resource utilization is constant when price
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Figure 3: Resource utilization and TC of BOSS versus DPAM for speci�c work
ow.
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Figure 4: Resource utilization and TC of BOSS versus DPAM for general work
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Figure 7: Resource utilization and TC of BOSS versus DPAM in semibalanced situation.

reduction rate is bigger than 0.2. �is is because the resource
price is equal to the reserve price when price reduction rate is
high enough. As shown in Figure 5(b), TC of work
ows with
all situations decreases when price reduction rate is not zero.
It is easy to draw that DPAM is better than BOSS.

6.4. Simulation of General Work�ows with Di	erent Problem
Sizes. In this subsection, another two sets of experiments
conducted on general work
ows with di	erent problem
sizes and balanced situations are described. �e �rst set of
experiments simulates BOSS and DPAM to evaluate their
performance on recourse utilization and TC (see Figures
6–8). �e second set of experiments simulates DPAM with
di	erent price reduction rates to evaluate the performance on
resource utilization and TC (see Figures 9–11).

6.4.1. Resource Utilization and TC of BOSS versus DPAM.
Figures 6–8 present the performance of BOSS and DPAM
on resource utilization and TC from di	erent balanced
situations and di	erent problem size. In Figures 6(a), 7(a),
and 8(a), resource utilization of balanced work
ow is higher
that of unbalanced work
ow. �is is because more tasks

in balanced work
ow are executed in parallel and many
resources are used. In three situations, resource utilizations
of DPAM are all higher than that of BOSS. Figures 6(b), 7(b),
and 8(b) show that TC of DPAM is always lower than that
of BOSS. �e reason is that the resource with lower price or
higher computation ability is selected as winner.

6.4.2. Resource Utilization and TC of DPAM with Di	erent
Price Reduction Rates. Figures 9(a), 10(a), and 11(a) show that
resource utilization changes only when price reduction rate is
lower than 0.3. �is indicates that it is not necessary to make
price reduction rate too high.�e reason is that resource price
cannot be smaller than reserve price. Figures 9(b), 10(b), and
11(b) show that TC decreases when resource price reduces in
some rates. AndTCof large problem sizework
ows decreases
apparently than other sizes. �is is because dynamic pricing
brings more competitive resources with lower price and
higher ability.

In overall terms, the performance of DPAM on resource
utilization and TC with di	erent situations is better than
BOSS shown in Figure 4. �e performance of DPAM on
resource utilization and TC with di	erent problem sizes is
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Figure 11: Resource utilization and TC with di	erent rates in unbalanced situation.

shown in Figures 6–8. In DPAM, many providers with weak
competitiveness use dynamic pricing strategy to increase
chances of making a deal and gain more revenue, so resource
utilization of market increases. Meanwhile, work
ows can
execute timely with less cost. So the performance of DPAM
on resource utilization and TC is better than that of BOSS.
Moreover, the performance of DPAM on resource utilization
and TC with di	erent price reduction rates is shown in
Figures 5 and 9–11. Resource utilization and TC are invariant
when price reduction rate is higher than 0.2. �is is because
resource price cannot be lower than the reserve price. In
addition, performance of TC and resource utilization is
always better when price reduction rate is bigger than zero.

7. Conclusion and Future Work

In this paper, we proposed a dynamic pricing strategy to
improve resource providers’ competitiveness in the cloud
market. A novel dynamic pricing based allocation mecha-
nismwas presented to allocate resources for cloudwork
ows.
With our mechanism, resource providers can change the
price to increase the possibility of selling resources and gain
more revenue, which improves resources utilization. �e
users select the best resource with the minimum TC (Time ∗
Cost), which ensures shorter completion time and lower
monetary cost. Finally, we evaluated our mechanism and
compared with the representative BOSS strategy. �e results
showed that our mechanism can achieve high resources uti-
lization, shorter completion time, and lower monetary cost.
With the dynamic pricing strategy, providers can decrease
their resource price to improve competitiveness.

In future, increasing price will be involved in dynamic
pricing strategy. It is a good way for those resource providers
who have sharply higher competitiveness to increase price to
gain more revenue. At the same time, we will use the stan-
dard scienti�c datasets to run experiments besides random
data. �is will increase the credibility of the results of the
experiment and be more scienti�c to re
ect the performance
of the DPAM mechanism. In addition, besides completion
time and monetary cost, we will consider adding other QoS

criteria such as reliability, response time, and service provid-
ers’ reputation.
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