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Abstract: To achieve bike sharing relocation 1  through travellers’ spontaneous 

behaviour, an innovative dynamic pricing strategy with negative prices is introduced in 

dockless bike sharing systems. In normal situation, users pay a positive price to 

operators for using a bike. However, when imbalanced distribution of bikes occurs in 

the system, users who cycle from the oversupplied area to undersupplied area will 

receive monetary reward from the operator, i.e., negative pricing applies. A user 

equilibrium dynamic traffic assignment model is developed to capture travellers’ mode-

path choice behaviour in response to the proposed dynamic pricing strategy. Travellers 

can use either a single travel mode (e.g. walk, bike and bus) or combined mode (e.g. 

bike+bus, walk+bus, walk+bike) to complete their trips. The user equilibrium travel 

pattern is formulated as a variational inequality problem and then solved by a path-flow 

swapping algorithm. Two numerical examples are conducted to demonstrate that the 

proposed dynamic pricing strategy with negative price is effective in terms of attracting 

users as well as achieving a more balanced bike repositioning, especially when the 

number of bikes provided in the system is limited. Compared to free price strategy, the 

proposed strategy has better performance from both profit and network performance 

aspects.  

Keywords: dynamic pricing strategy, negative price, dockless bike sharing, dynamic 

user equilibrium, bike relocation/repositioning 

1 Introduction 

Dockless bike sharing has recently become increasingly popular around the world. 

Users can unlock a public bike through scanning a smart phone application and park it 

at any allowed place after using it. As an emerging market, operators are trying to seize 

the market share by offering extremely low or even free price. For example, in 

Singapore, the two main operators, ofo and mobike, use a similar pricing strategy with 

zero deposit and low-price season ticket passes (S$1.5 for two months and S$5 for six 

months). This strategy quickly gains a large number of users and ensures market 

domination for both operators. Till March 2018, the number of public bikes has 

increased from the initial 1,000 to approximately 100,000 in Singapore within 1 year 

(Lim, 2018). 

Due to the one-way use characteristic, there is an issue of imbalanced distribution of 

bikes over time and space, especially during peak period. For example, most of the 

                                                             
1 The bike relocation mentioned in this paper is also referred as bike repositioning in the literature. 
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users cycle from residential area to the nearest transit stations in the first-mile trip stage 

in the morning. Subsequently, bikes in residential area are quickly out of stock and the 

latter arrival users could not have the access to bikes. In this case, the level of user 

satisfaction may drop significantly as they cannot receive the service on time. Operators 

usually utilise dedicated relocation vehicles (e.g., light trucks) to move the bikes from 

oversupply area to undersupply area. Due to the reasons of limited resources (e.g. 

manpower, budget, vehicle capacity) and high relocation cost ($3 per bike (DeMaio, 

2009)), this approach could not fundamentally solve the imbalance problem in dockless 

bike sharing system. 

In this study, we propose a dynamic pricing strategy to guide the users’ cycling 

behaviour so as to achieve the objective of a more balanced relocation of bikes in the 

system. Normally, users need to pay a positive price to the operator for the service. 

However, if the users park the bikes at an undersupplied area, wherein the ratio of the 

available bikes to the real-time demand is below certain threshold value, a radical 

negative price is adopted, i.e., the operator will even offer the users monetary incentives. 

With such a negative pricing scheme, existing bike users might adjust their routing 

choices while new users might be attracted from their original travel modes to use bike. 

Both decisions will contribute to the objective of a more balanced bike relocation. To 

test the performance of the proposed pricing strategy, a dynamic traffic assignment 

model is developed with user equilibrium principle to reflect the users’ behaviour 

choice and estimate network flow distribution. The flow assignment results could be 

used for assessing the effect of the proposed pricing strategy from both profit and 

network performance aspects. This study has the following novel significant 

contributions: 

(1) We introduce a dynamic pricing scheme with negative prices into bike sharing 

system. Indeed, to our best knowledge, this would be the first attempt to 

theoretically investigate the application of negative pricing scheme in an urban 

transportation problem. 

(2) This is one of the first few studies to deal with the bike relocation problem using 

user-based approach in dockless bike sharing system while most of the existing 

solutions to bike relocation problems applied operator-based approach. 

(3) A dynamic traffic assignment model and its solution algorithm are developed to 

capture travellers’ mode-path choice behaviour in response to the proposed 

dynamic pricing strategy. 

(4) A systematic comparison among the traditional positive price strategy, free 

price strategy and the proposed strategy with negative prices is analysed.  

The rest of the paper is organised as follows: Section 2 briefly reviews the literature on 

the problem of bike sharing relocation and pricing strategy; Section 3 lays the modelling 

foundation as well as the definition of negative price strategy. Path travel disutility is 

formulated in Section 4, followed by the detailed DTA model and solution algorithm 

in Section 5. Section 6 gives two numerical examples to illustrate the performance of 

the model and the effect of the negative price strategy. Discussions and conclusions are 

summarised at last in Section 7. 

2 Literature review 



3 

 

There are two types of approaches to solve the bike relocation problem: user-based 

approach and operator-based approach. The user-based approach is to guide the users 

to leave their bikes at specific areas to balance the bike distribution in the system. The 

operator-based approach is to relocate the bikes by operators using relocation vehicles 

(e.g. small truck). The operator-based approach is commonly used in practice, which is 

indeed a vehicle routing problem or pickup and delivery problem. Various models and 

algorithms have been developed to describe and solve the operator-based problem 

(Raviv et al., 2013; Chemla et al., 2013a; Dell'Amico et al., 2014; Forma et al., 2015; 

Erdoğan et al., 2015; Schuijbroek et al.,2017; Shui and Szeto, 2018; Szeto and Shui, 

2018; Ho and Szeto, 2014; Ho and Szeto, 2017, Kadri et al., 2016, Szeto et al., 2016).  

Most of the existing studies dealt with the station-based bike sharing system. 

Nevertheless, very few researches worked on the relocation problem for the recently 

emerging dockless bike sharing system; meanwhile, they all applied the operator-based 

relocation approach. For example, Reiss and Bogenberger (2015 and 2016) used Global 

Positioning System (GPS) data to obtain an optimal bike distribution model and an 

operator-based relocation strategy was given. Pal and Zhang (2017) presented a Novel 

Mixed Integer Linear Program for tackling static rebalancing with single and multiple 

vehicles. Caggiani et al. (2018) developed a comprehensive dynamic bike relocation 

framework including a prediction and relocation Decision Support System.  

In the literature, very few studies have been carried out to solve the bike relocation 

problem using user-based approaches, in either station-based bike sharing system or 

dockless bike sharing system. The Paris Vélib’ system provides static incentives to 

users who return their bicycles to given stations (Laporte et al., 2015). Chemla et al. 

(2013b) and Pfrommer et al. (2014) proposed dynamic pricing strategies to encourage 

users to return bikes to empty nodes. Singla et al. (2015) extended the model of 

Pfrommer et al. (2014) by incorporating a crowdsourcing mechanism by providing 

users with alternative choices to pick or return bikes in exchange for monetary 

incentives. Dötterl et al. (2017) developed an event-driven agent architecture to predict 

the future demand with situation-aware incentives. Reiss and Bogenberger (2017) 

found that the user-based approach could save cost for the operator and maintain a 

balanced bike distribution in the system. However, existing studies have shown that the 

effect of user-based relocation approach is not as significant as the operator-based 

relocation approach in real operation (Pfrommer et al., 2014; Reiss and Bogenberger, 

2017). The reason is that traditional user-based approach applies low cost pricing 

strategy, which may not be sufficient to induce the travellers to alter their travel 

behaviour. Therefore, this study introduces a new concept of negative price to achieve 

the objective of a more balanced bike relocation.  

Generally, travellers need to pay a positive price for using a bike. Traveller is willing 

to pay as long as the positive utility from the received service could offset the disutility 

of making the payment. From the operators’ point of view, the price floor is determined 

by the marginal cost, that is, the price can at least make a positive contribution. 

Normally, the marginal cost for a mature transport service (e.g. bus, metro) is greater 

than zero, i.e., the price of using this service is positive. The phrase of “negative price” 

was first introduced in the studies of good storage (Working, 1949; Wright and 

Williams, 1989). The price of certain good will decrease after it has been stored for 

some time. People still choose to store them although they might suffer loss. 
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Researchers concluded that the storage leads to a negative price.  Different from its 

initial definition of price drop after storage, negative price now has been defined as the 

phenomenon that customers acquire a good or service with even extra payment from 

sellers. Unlike below-cost price or free price, customers do not need to pay anything; 

instead, they receive the good or service as well as payment from seller. Some early 

studies also pointed out that the price of the good or service could be zero or negative 

from theoretical point of view (Dantzig et al., 1979; Brihaye et al., 2014). In application, 

the negative price strategy was firstly and mainly applied in energy field. In Germany, 

parts of the electricity production stemmed from wind power. As wind is an intermitting 

energy source, the generated power reacts strongly to the stochastic wind power infeed 

(Nicolosi, 2010). As the power could not be stored, when the demand is lower, the 

power supplier suffered from huge cost to quickly adjust the status of equipment to 

reduce the power generation. Until 2008, power supplier started to pay negative price 

to customers who consume the power when the power generation exceeds the demand. 

It has been verified that negative price strategy is a valid method to reduce power 

supplier’s loss (Brandstätt et al., 2011; Simon, 2016). Another application of negative 

price is in internet field. Microsoft launched a Bing Cashback programme in 2008 that 

allowed advertisers to bid for search advertisements by offering a percentage of sales 

back to users (Fried, 2010). However, this programme was terminated in 2010 as the 

contributions from users do not achieve the desired range of vision. In this study, we 

investigate the feasibility of negative price concept in dockless bike sharing system. 

Facing unbalanced distribution in the system, operators offer rewards to the users who 

cycle from oversupplied area to undersupplied area. This strategy could achieve bike 

relocation as well as operation cost reduction, and thus bring a positive contribution.   

When the negative pricing strategy is introduced in the dockless bike sharing system, it 

will significantly affect customers’ travel choice behaviour. Dynamic traffic 

assignment (DTA) model is one of the key methods to support the evaluation of 

different pricing strategies in a network context. DTA was first proposed by Merchant 

and Nemhauser (1976) in considering time varying flows. Various DTA methods (e.g. 

analytical models, simulation models, and cell models) have been developed and 

applied in transportation analysis (Lo and Szeto, 2004; Szeto and Lo, 2006; Wang and 

Du, 2016; Liu and Geroliminis, 2017; Liu and Szeto, 2019; Zhang and Liu 2019). One 

major application of DTA is the evaluation of dynamic road pricing strategies (Lu et 

al., 2008; Zheng et al., 2012; Zhang et al., 2013). Some researchers have tested the 

effect of different pricing strategies in taxi market (Ciari et al., 2015; Qian et al., 2017; 

Long et al., 2017). Recently, Li et al. (2018) examined the different pricing strategies 

in free-floating car-sharing scheme and found that rental price has significant 

implications for travel demand management. Xu et al., (2018) also pointed out the 

demand for car-sharing service is elastic with respect to the trip price. These studies all 

followed the traditional pricing strategy with positive price at any time. The application 

of DTA model in bike sharing system is mainly in the area of fleet allocation. Usually, 

a time-space network is constructed to describe the dynamic bike-sharing demand 

(Ghoshe t al, 2017; Lu, 2016; Regue and Recker, 2014; Shui and Szeto, 2018; Yan et 

al, 2017; Caggiani et al., 2018), while the fleet allocation is formulated as mixed integer 

programme. The usage of DTA model to discuss the influence of pricing strategy has 
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not been fully discussed in the literature. This study would find out whether the 

proposed pricing strategy is feasible and effective in dockless bike sharing system. 

3 Basic considerations 

3.1 Assumptions 

Some assumptions are made prior to the modelling as follows: 

A1. The study time horizon [0, T] is discretised into a finite set of equal duration time 

intervals, i.e.,  . Let Δ be the duration of each time interval . 

A2. The study focuses on first/last mile trip, where three common travel modes are 

considered including walk, bike and bus. Travellers all have the access to dockless 

public bikes and do not own their private bikes.  

A3. Travellers may use one or up to three modes in a trip. In other words, maximum 

two transfers are allowed.  

A4. The heterogeneity of traveller is considered in terms of a discrete set of value of 

time (VOT). 

A5. Bus runs on dedicated bus lanes so that bus travel time is fixed according to the 

timetable and is not affected by other modes.  

A6. Bidirectional flow on walk and bike links are considered in a separate way. There 

is no mixed-traffic flow on all links.  

A7. All travellers will check the bike availability and price before making a mode-path 

choice. They can reserve any available bike regardless the distance. The reservation 

follows first-reserve-first-use principle.  

A8. There are limited number of bikes provided in the network. If there are no bikes 

available, travellers at this location could only choose to walk or take bus.  

A9. All travellers who take the negative price reward will follow the rules to return the 

bikes on time. 

3.2 Notation 

Primary notation used in this study are defined in Table 1 as follows: 

Table 1 Notations 

Sets 
N Set of nodes 
T Set of total time 

  Set of Origin-Destination (OD) pairs 

  Set of paths 

 Set of links 

  Set of links going out of node ,   

  Set of incoming links of node ,  

 Set of travel mode,   

Indices 

{ }1 2 3 ,T，，， T TD× =

W

P

L

( )A i i ( ) ( ){ },A i i j= ÎA

( )B i i ( ) ( ){ },B i j i= ÎA

M { },  ,  M M walk bike bus=
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  OD pair,  

  Path   

  Travel link,   

  Nodes 
 Origin and destination nodes of w 

,  Origin and destination nodes of bike stage  

  Travel mode,   

  Time intervals 

  Passenger groups according to value of time 
Parameters 

  Value of time for group k 

  Comfort loss-time conversion coefficient 

  Comfort loss of mode m per time 

  Large value, to impose extremely high cost for the case with no 
available bikes 

  Normal positive price of renting bike  

 Supply of bikes 

  Tolerance level 
Variables 

  Disutility of w via p for group k at time  

  Disutility of group k on link l at time t 

  Indicator variable: traveller of w depart at  via p and entry link l at , 
equal to 1; otherwise 0  

 Time cost of mode m for group k on link l at time t 

 Monetary cost of mode m for group k on link l at time t 

 Comfort cost of mode m for group k on link l at time t 

 Free flow time of mode m on link l 

 Flow of mode m on link l at time t 

  threshold value of bike supply at node i at time t below which 
undersupply is defined 

  threshold value of bike supply at node i at time t above which 
oversupply is defined 

 value of bike supply at node i at time t  

  Flow for group k of w via p at time t 

  Minimum disutility for group k of w via p at time t 

  Inflow of w via p on link l at time t 

  Outflow of w via p on link l at time t 

  Flow of w departing at time t 

  Flow of w arriving at time t 

,w w¢ w WÎ

, ,p p p¢ , ,p p p P¢ Î

, , ,l l l l
+ -

¢ , , ,l l l l L
+ -

¢ Î

,i j
,r s
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r

bike
s
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bikeQ
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LU t

( ), , ,w p l t td
¢ t t¢

( ),l k

m
T t

( ),l k

m
G t

( ),l k

m
C t

0,

l

m
t

( )l

m
x t

( )1

i

th
tF ，

( )2

i

th
tF ，

( )i

bike
tF

( ), ,w p kf t

( ), ,w p k t*
G

( ), ,w p lu t

( ), ,w p lv t

( )wf t

( )w
e t



7 

 

  Cumulative flow of mode m for group k of w via p by time t 

  Travel time of mode m on link l depart at time t 

 

3.3 Multimodal Supernetwork 

Supernetwork is abstracted from a normal network, wherein the hierarchy of real 

network and the virtual connection among the network are both included. In this study, 

a multimodal transportation supernetwork is constructed. Firstly, the study area is 

divided into certain number of traffic analysis zones (TAZs), where each TAZ is 

connected with real road links. As users can park the bikes at any location in the 

dockless bike sharing system, the size of one TAZ is usually selected to encapsulate 

one or several buildings within the field of human vision. Secondly, supplementary 

virtual links are added to the real transportation network to support the full description 

of travel behaviour, such as access link, transfer link as well as the weight on each link. 

Accordingly, an illustrative transportation network as in Figure 1 could be expanded 

and represented by a supernetwork as shown in Figure 2, wherein the solid lines 

represent the running links and the virtual links represent the access and transfer links. 

The weight on each link could be various attributes, such as travel time, monetary cost, 

comfort loss.  

 

Figure 1 Study Area 

 

Figure 2 Supernetwork 

( ), ,w p k

mE t
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A path in supernetwork is called superpath. Not all superpaths can describe actual travel 

routes. For example, travellers will not have unlimited transfers in one trip. Based on 

the assumptions in this study, a superpath is defined to be feasible only if it has 

maximum two transfers and no two continuous transfer links between one OD pair is 

allowed. For example, in Figure 2, path 1-4-24-17-18-19 is a feasible superpath 

between OD pair (1,10) while path 1-4-26-29-17-18-19 is not a feasible superpath 

between OD pair (1,10) as there are two continuous transfer links 26 and 29.  

3.4 Negative price scheme 

As mentioned above, negative price strategy in this study means that user could get 

monetary reward from operator.  The negative price scheme is only applicable when 

users cycle from oversupply area to undersupply area so that the bike relocation is 

achieved in the system. Three statuses are defined for each TAZ in the study area, i.e., 

undersupply, normal and oversupply: 

(1) 

Therefore, the dynamic pricing scheme in this study is proposed as: user will pay a 

positive price if the status of the origin TAZ or destination TAZ is normal; Negative 

price applies when the status of the origin TAZ is oversupply and the destination TAZ 

is undersupply. To illustrate the performance of the proposed strategy, two common 

pricing strategies are also considered as the comparison benchmarks: traditional fixed 

pricing strategy where the price is a constant positive value, and free pricing strategy. 

For simplification purpose, we abbreviate the proposed negative price strategy as NP, 

traditional positive price strategy as PP, and free price strategy as FP in the rest of the 

paper.  

The negative price value is assumed to be dependent on the level of undersupply or 

scarcity degree of bikes at the destination nodes. Hereby, we propose a simple linear 

relationship between the negative price and the level of undersupply of bikes. The 

structure of the pricing scheme can be schematically depicted in Figure 3. Basically, if 

the bike trip starts from an oversupplied location to an undersupplied one, the negative 

price will apply; otherwise, the normal positive price will be adopted. Bounded by a 

maximum value, the negative price is set to be linear with respect to the level of 

undersupply.  

( )

( ) ( )

( ) ( ) ( ) ( )
,1

,2 ,1 ,2

,

, , , ,

,

i i

bike th

i i i i

bike th th th

undersupply if t t

status i t oversupply if t t t t i N

normal otherwise

ì F £F
ï

= F >F "F <F Îí
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Figure 3 Negative price scheme 

Based on the above analysis, the dynamic pricing scheme with negative price can be 

proposed as follows: 

 
 (2) 

Here, when users cycle bikes from an oversupplied area to an undersupplied area, a 

negative price applies, wherein the value of negative price is set to be determined by 

the level of undersupply at the destination TAZ (i.e., ) and the 

predefined maximum negative price . That is, to determine the negative price, 

it is required to know the supply of bikes , as well as the defined threshold 

value of undersupply . It is noted that, the real-time information of bike supply 

can be easily obtained in practice from the GPS data. On the other hand, the key is to 

determine how to set the threshold value for undersupply. It is not difficult to 

understand that the threshold value for undersupply is highly related to the bike travel 

demand. In practice, the bike demands at different locations could be estimated by 

adopting prediction methods, such as the Auto Regressive Conditional 

Heteroscedasticity (ARCH) model, based on the historical and real-time data. In the 

proposed negative pricing scheme in this study, we set the threshold value for 

undersupply by assuming a simple linear relationship with the predicted demand value 

of , i.e., . Herein, the parameter  could be determined based 

on the specific objectives, e.g., attracting more users or maximising fare revenue. In 

practice, other than applying rigorous optimisation modeling approach, one can obtain 

the optimal value of the parameter  by conducting a simple sensitivity analysis 

approach.  

Proposition 1 With a sufficient number of bikes in market, NP will reduce to PP. 
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( )

( ) ( )

( )

( ) ( )

( ) ( )
,1 ,2

,1.1

,
=

,

bike bike bike bike

bike bikebike

s s r r

bike th bike thneg

bike s ss

bike bike thth

pos

bike

t t t t
g t

G t t tt

g otherwise

ì é ù ìF -F F >Fï
× "ï ê ú í

F £ FFí ê ú ïîë û
ï
î

( ) ( )

( )
,1

.1

bike bike

bike

s s

bike th

s

th

t t

t

F -F

F

( )neg

bikeg t

( )bike
s

bike
tF

( ),1
bike
s

th
tF

( , )Q i t ( ) ( , )i

th t Q i t fF = + f

f



10 

 

Proof.  From Eq. (2), it is known that negative price occurs when the relationship 

between bike supply and the threshold values at the origin and destination area satisfies

, . The threshold values  and  are 

highly relevant to dynamic bike travel demand at certain location. As the bike supply 

level in the market goes up,  will increase and therefore the probability of 

fulfilling negative price condition  will reduce. If the bike supply in 

the market is sufficiently large, the negative price conditions would not be satisfied, i.e., 

the proposed NP scheme defined in (2) will reduce to PP.  

Essentially, two types of behaviour changes might happen if NP is adopted: One is the 

change of travel mode, that is, the non-cycling travel mode users would use bikes and 

end the trips at the undersupply TAZ. The other one is the change of travel path, that is, 

the existing bike users would use another path and end the trip at the undersupply TAZ. 

For example, in Figure 4, node 1 is the origin node and node 3 is the destination node. 

For the travellers who usually take bus from node 1 to node 3, after NP is adopted, they 

might choose to cycle from node 1 to node 2 and then take bus from node 2 to node 3, 

as the reward from negative price scheme might offset the incurred extra travel disutility. 

Similarly, for an existing bike user from node 1 to node 3, he/she might park the bike 

at node 2 and then walk or take bus from node 2 to node 3, if reward from negative 

price could offset the added disutility. Both of these travel behaviour changes 

mentioned above can contribute to the bike relocation. In this case, operators are able 

to reduce the operation cost for bike relocation. The achieved real-time relocation 

through travellers’ spontaneous travel behaviour could also improve the level of service, 

and thus bring new users and increase revenue.  

 

Figure 4 A super path with three nodes 

Proposition 2 Under NP, for the first type of behaviour change, i.e., switching from 

non-cycling mode to cycling mode, one bike will at least serve two users. If the 

maximum NP value is set to be not greater than PP fare, non-negative fare revenue 

could be obtained.  

Proof. Under NP, if a traveller changes travel mode, he/she will relocate a bike from 

an oversupplied area to an undersupplied area where demand is larger than supply. Then, 

another user will be able to ride this bike to other places. In this case, this bike will be 

used by at least two travellers. If the traveller selects his/her original non-cycling travel 

mode, the bike sharing service operator achieve zero fare revenue. If mode switching 

occurs, from Eq. (2), the fare revenue for the first trip is subject to NP scheme 

( ), while the second trip follows PP ( ). In 

this case, the total direct fare revenue can be rewritten as 

. If , the fare revenue must 

be positive. 
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Proposition 3 Under NP, for the second type of behaviour change, i.e., the travel path 

adjustment, more users would be served and positive fare revenue will be obtained with 

nevertheless smaller amount of fare revenue.  

Proof. Under NP, if a traveller decides to change path, he/she must switch from a path 

with positive price to a path with negative price. The original fare revenue is . The 

new trip after changing would apply negative pricing, which means that the new 

destination is undersupplied. In this case, the bike will be used by another user with 

positive price, and more users would be served as compared with PP. The new fare 

revenue is . As , we have 

. If it is assumed , 

fare revenue would be positive, but it is still less than original fare revenue. 

A set of illustrative examples with three scenarios is given to demonstrate the 

effectiveness of NP as compared to traditional PP scheme and FP scheme. Assume the 

original travel modes in three scenarios are all under PP, where traveller travels from 

node 1 to node 3 passing node 2 as shown in Figure 3. Node 1 is in the status of 

oversupply, while node 2 undersupply and node 3 normal. Two links share the same 

distance in three scenarios. Three strategies are given for three scenarios: FP(1-2-3) 

represent the scenario that the whole network is under FP, i.e., with free charge; FP (1-

2) is that link connecting node 1 and node 2 is under FP while the other link is under 

PP; NP (1-2) is that link connecting node 1 and node 2 is under NP while the rest link 

is still under PP. The highly possible travel decisions under different pricing strategies 

are listed in Table 2. From Table 2, it could be concluded that FP (1-2-3) cannot achieve 

bike relocation while FP (1-2) and NP (1-2) are able to do so. The behaviour adjustment 

in Scenario A belongs to the second type change, i.e., path changing, while Scenarios 

B and C apply mode switching. In Scenario B, the original travel mode is walking from 

node 1 to node 3. When FP is offered from node 1 to node 2, travellers are not likely to 

choose to use bike as they need to take extra effort (disutility) to cycle. However, if 

extra reward is given, travellers may choose cycling from node 1 to node 2 as the reward 

might offset their added disutility from using bike. Therefore, NP (1-2) is more effective 

than FP (1-2-3) and FP (1-2) in terms of attracting travellers to cycle and thus achieving 

a more balanced relocation. In reality, NP and FP could directly attract large number of 

users in a short time and indirectly reduce the advertisement cost. With the huge number 

of users, ancillary revenue other than fare revenue could be generated. Unlike below-

cost price, free price and negative price have highly likelihood to let users overvalue 

the service because humans naturally fear of loss. Free price and negative price will not 

lead to any loss while below cost price still have a risk of loss.  

Table 2 Highly possible travel behaviour under different pricing strategies  

Scenario PP(original) FP (1-2-3) FP (1-2) NP (1-2) 

A bike:1-2-3 bike: 1-2-3 
bike:1-2-3  

or bike:1-2 bus 2-3 

bike:1-2-3  

or bike:1-2 bus 2-3 

pos

bikeg
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or bike 1-2 walk 2-3 or bike 1-2 walk 2-3 

B walk:1-2-3 
walk:1-2-3 

or bike:1-2-3 
walk:1-2-3  

walk:1-2-3  

or bike:1-2 walk 2-3 

C bus:1-2-3 
bus:1-2-3  

or bike:1-2-3 
bus:1-2-3  

bus:1-2-3 

or bike:1-2 bus 2-3 

 

4 Path travel disutility   

Based on the assumption that the travel disutility on each link is independent, the 

generalised path travel disutility could be calculated by summing up the corresponding 

link disutility on this path as follows: 

 
 (3) 

For each link, the link travel disutility includes three components, travel time, monetary 

cost and comfort loss (discomfort). Travel time consists of walking time, cycling time, 

in-vehicle time and waiting time. Considering the weight of each component, the link 

travel disutility could be expressed as: 

 
 (4) 

where ,  and  are weight parameters,  . 

In a multimodal network with consideration of the combined travel mode, there are 

three types of travel links, i.e., running links, transfer links and access links. Running 

links include walk links, bike links and bus links. For simplification purpose, the 

monetary cost on bike and bus links is moved to the connected access link.  

4.1 Walk link disutility 

Pedestrian walks on the walk link without being affected by other modes. The 

interaction of bi-direction pedestrian flow on walk link is considered. Travel time for 

walking is calculated as in Wu and Lam (2003). There is no monetary cost on walk link. 

Comfort loss (discomfort) on walk link is directly related to the travel time. Thus, three 

components in walk link disutility are calculated by: 

 
 (5) 

where  and  represent the two directions on link l.  , ,  and  are 

parameters to be calibrated with observed data. 

 
 (6) 

 
 (7) 
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Similarly, cyclists do not share the bike link with pedestrians or bus passengers. The 

interaction of bi-direction cyclist flow on bike link is also considered in the travel time 

calculation. The monetary cost is assumed to be dependent on the supply and demand 

interaction at the departure time, and not relevant with the travel time. Thus, the 

monetary cost on bike link can be transferred to the connected access link. As cycling 

is a human-powered travel mode, comfort loss on bike link is closely related to the 

travel time. Then, the three components in bike link disutility are given by: 

 
 (8) 

 
 (9) 

 
 (10) 

4.3 Bus link disutility 

Bus service is assumed to follow strictly the running time on timetable, which is not 

affected by other modes. Assuming that a flat fare ticket structure applies, one can move 

the monetary cost on bus link to the connected access link. Besides the travel time, 

passengers may feel discomfort on the bus due to the crowded environment in peak 

period. Then, the three components in bus link disutility could be obtained as follows: 

 
 (11) 

 
 (12) 

 
 (13) 

where  is bus capacity and  is capacity of link l. 

4.4 Transfer link disutility 

Travel time on transfer link includes transfer walking time and transfer waiting time. 

Transfer walking time is approximately equal to the ratio of transfer walking distance 

to the average walking speed. Transfer waiting time is incurred only for transfer from 

walk or bike link to bus link, which is equal to half of bus headway. There is no 

monetary cost on transfer link. Comfort loss on transfer link is decided by the transfer 

walking time. The three components in transfer link disutility are expressed as follows: 

 
 (14) 

 
 (15) 

 
 (16) 
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Travel time on access link is zero if the access link is connected to walk or bike link, 

and equal to half of the bus headway if the access link is connected to bus link. 

Monetary cost on access link could be bike rental fee or bus fare cost. There is no 

comfort loss on access link. The three components in access link disutility are expressed 

as follows: 

 
 (17) 

 
 (18) 

 
 (19) 

where , . 

Bike rental fee follows the dynamic pricing scheme, which can be expressed as follows: 

 
 (20) 

Here, when bike supply is zero, a prohibitively large value of cost for using bikes is 

imposed. is a constant coefficient to represent contrast preference from negative price. 

According to the theory of loss aversion, when people face the same amount of gains 

and losses, losses are more intolerant than gains. The disutility that comes from losses 

is 2.25 times of the utility from gains (Tversky and Kahneman, 1992).  

5 Model and algorithm 

5.1 Dynamic user equilibrium principle  

According to assumption A4, we consider k classes of travellers with different values 

of time. The dynamic user equilibrium condition is defined as: for each class k and each 

OD pair at each time interval, the total travel disutility for all superpaths that are being 

used equal to the minimal total super path travel disutility. It could be formulated as: 

 
 (21) 

 
 (22) 

 
 (23) 

5.2 Dynamic network constraints 

Five types of constraints are given according to the model requirements. First, the basic 

definitional constraints are expressed as: 
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 (25) 

 
 (26) 

 
 (27) 

Second, at the origin and destination nodes, flow conservation constraints satisfy:  

 
 (28) 

 
 (29) 

where  denote the m mode flow of class k departing at origin node to destination 

node at time t, and  denote the m mode flow of class k arriving at destination 

from origin at time t. For all the other nodes，flow conservation constraints can be 

written as: 

 
 (30) 

Third, flow propagation constraints entail: 

 (31) 

 
 (32) 

Fourth, nonnegativity constraints are: 

 
 (33) 

 
 (34) 

 
 (35) 

 
 (36) 

 
 (37) 

Last, boundary and bike constraints include: 

 
 (38) 

 
 (39) 
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 (40) 

 
 (41) 

 
 (42) 

5.3 Variational inequality model  

The dynamic traffic flow pattern satisfying network constraint set (24)-(42) is indeed a 

multi-class generalised travel-disutility-based dynamic user equilibrium superpath 

choice state as described in the variational inequality problem (43). 

 
 (43) 

where the feasible region is Ω={(24)-(42)}. 

Theorem 1 There is at least one solution to variational inequality (43). 

Proof. A standard theorem in the theory of variational inequalities indicates that: if the 

feasible region Ω is compact and the mapping function of the problem are continuous, 

there exists at least one solution to VI formulation (43).  

First, as the feasible region Ω={(24)-(42)} of VI formulation (43) consists of a set of 

linear constraints, thus the region is compact. Second, due to the imbalanced 

distribution of bikes at each TAZ, the travel disutility value during calculation is 

unsmooth, but the travel disutility function is still continuous. If the interval length is 

infinitely close to zero (i.e., continuous-time), the link inflows will be continuous with 

path inflows vector. Then the existence of the dynamic user equilibrium solution can 

be guaranteed in principle. 

Due to the inclusion of 0-1 integer variables , the disutility calculated by Eq. 

(3) are non-linear and non-convex. In addition, strict monotonicity of the path disutility 

is not ensured as it is highly dependent on the structure of supernetwork. Therefore, the 

solution uniqueness of VI formulation (43) cannot be guaranteed.  

In real situation, the time interval length is hardly to be infinitely close to zero. The 

violation of the solution existence requirement might lead to the non-existence of 

solution. Moreover, the unbalanced distribution of demand and supply will lead to the 

unsmooth property of travel disutility function. As of the discrete time assumption, the 

disutility value may also not be small enough to ensure the existence of the proposed 

dynamic user equilibrium. Thus, we adopt the tolerance-based dynamic user 

equilibrium principle proposed by Szeto (2003), and therefore formulations (21)-(23) 

and (43) could be converted as: 
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(45) 

where the feasible region is Ω={(24)-(42)}. When , (45) is equivalent to (43). 

When , it is reasonable in real situation, where the travel disutility of all used 

paths between the OD pair are within an acceptable tolerance from the minimum OD 

path disutility. 

Inference 1 There is at least one solution to variational inequality (45). 

Proof. Szeto (2003) has proved that the tolerance-based principle is a generalisation of 

the traditional dynamic user equilibrium principle. That is, if , (45) will be reduced 

to (43). It is a relaxation of (43), so the solution exists. 

5.4 Solution algorithm 

A path-flow swapping algorithm is developed to solve the proposed model. The 

solution algorithm starts with initialised flows on the feasible path and available bikes 

in each TAZ. The detailed steps are described as follows: 

Step 0: Set up the parameters and load the multi-state super networks for all modes, t=1. 

Step 1: Identify the feasible path sets using enumeration method, in which the paths 

longer than 3 times of the shortest path or with superfluous transfer times are excluded. 

Step 2: Load the demand at time t on the network. 

Step 3: Assign the demand stochastically on feasible paths, in which the constraints 

(28)-(29), (33)-(37), and (38)-(42) are satisfied.  

Step 4: Calculate the real time traffic volume on each link at time t and bike supplies at 

each node based on the constraints (24)-(27) and (30)-(32).   

Step 5: Calculate the travel time, monetary cost and comfort loss on each link based on 

Eqs. (5)-(20). 

Step 6: Calculate the travel disutility on each link based on Eq. (4). 

Step 7: Calculate the travel disutility on each feasible path based on Eq. (3). 

Step 8: Convergence test. If the following convergence condition 

 is satisfied, the algorithm stops, record the traffic 

volume on the network at time t’, update the number of bikes in each TAZ, update t, 

t=t+1, and return to Step 2; otherwise, continue. Herein,   and  denote the 

vectors of traffic flow indicator and path disutility at iteration a respectively, is 

the minimum path disutility at iteration a.  

Step 9: Update current traffic flows, using:  
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where , and  .  and 

are given as flow adjustment parameters;  is the path flow vector at iteration a. 

Considering the constraints (40)-(42), update the number of bike at each TAZ, a=a+1, 

return to Step 4. 

During the path-flow adjustment process, the manipulated conditions,  , 

and  (Nagurney and Zhang, 1997; 

Huang and Lam, 2002) hold and direct the process to an convergence state within 

tolerance limit. 

5.5 Profit analysis  

One intrinsic question arises is whether the operator can still gain profits or not after 

introducing the proposed pricing strategy. We consider a general profit definition, 

which includes not only the fare revenue, but also the user value. User value is 

important when a new service enters the market. Operators might be willing to lose 

money at the initial stage of service operation if they can attract more users and 

dominate the market. After the initial promotion stage, the operator can adjust the 

operational goal to pursue fare revenue maximisation. Therefore, a set of 

comprehensive profit optimisation model is developed for both initial promotion stage 

and the normal operation stage. At the initial promotion stage, the main decision 

variable is the total bikes investment, i.e., what is optimal bike supply to the market, 

while the main operational goal is to attract maximum number of users with limited 

resources. Therefore, the maximisation profit objective function could be expressed as: 

 
 (46) 

where  is the overall profit, and is the optimal number of bikes, 

.  is the number of registered users who have paid the deposit. 

The first item on the right-hand side describes the total user value in the market, where 

 is the unit user value. The second item represents the total deposit revenue, where 

 is the deposit per user. The third item depicts the total bike cost, where  is the cost 

per bike. The constraints of model objective function (46) are (3)-(42). 

After the initial promotion stage, there will be a huge number of stable existing users 

in the market. Few potential new users will be attracted, even though the price 

promotion continues. Operators could adjust the operational goal to achieve fare 

revenue maximisation. At this normal operation stage, the bike investment and new 

deposit income are nearly zero due to the few new users. In this case, the operators seek 

to find out the optimal pricing scheme and bike supplies so as to maximise the total 

profit, wherein the objective function could be expressed as:  

 
 (47) 
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The first item on the right side is the profit from user deposit, where is the interest 

from one user deposit.  is the number of registered users who have paid the deposit. 

The second item is the fare revenue, where  and 

  is the dynamic traffic equilibrium solution of (42) that is related to  

and  . The third item covers the bike depreciation expense and operation cost, 

which is assumed to be positively related to the number of bikes, .  

The constraints of objective function (47) are (3)-(42).  

The primary objective of the above analysis is to present model formulation for the 

dockless bike sharing service providers to find the optimal operation strategy if the 

proposed negative pricing scheme is applied. Two formulated models are introduced 

for different stages of service operation as the service providers’ objective changes as 

time advances. One can notice that, the forumated models are indeed in the format of 

bi-level programming formulation, which is very hard to be solved to its global optimal 

solutions. In this study, while we propose this model formulation on finding optimal 

operation strategy in presence of negative pricing scheme, the development of the 

efficient solution algorithms to obtain quality solutions is left to be addressed in the 

future studies. In practice, when high solution quality is not required, one can be 

recommended to apply sensitivity analysis approach to obtain a good solution result. 

6 Numerical examples 

Two numerical examples are presented to illustrate the effect of the proposed negative 

pricing strategy on bike relocation, travel behaviour and network performance.  

6.1 Numerical results for test example 1 

The first example is designed to show the effect of the proposed pricing strategy onto 

achieving a more balanced bike relocation. For illustration purpose, we conduct the 

numerical example in a simple network with three nodes and links as shown in Figure 

5. The number on each link represents the travel distance. Traffic flow over time is 

uniformly distributed in the network as shown in Table 3, where the node in business 

area only has inflow demand, the node in residential area only has outflow demand, and 

the rest node at metro station has both inflow and outflow demand. Average speed, bus 

ticket price, headway information and a series of discomfort conversion parameters for 

different modes are set to be the same as in Meng et al. (2014). VOT parameters are 

adopted from Zhang et al. (2017). Bi-directional flow travel time equation is adopted 

from Wu and Lam (2003). Other parameters are set as follows: k=1, VOT=10, , 

， ， ， ， ,  and 

. Traffic departures from 0 to 60 min. 
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Figure 5 Example 1 network 

Table 3 OD demand of example 1 

O                         D Business Area Residential Area Metro Station 

Business Area 0 0 0 

Residential Area 1 traveller /min 0 2 travellers /min 

Metro Station 1 traveller /min 0 0 

 

Figure 6 shows the number of bike trips and bike trip accumulation at metro station 

over time. Three different pricing strategies, i.e., negative pricing, free pricing and 

normal positive pricing, are tested and compared in this example. One can observe that 

the number of bike trips under three pricing strategies are identical, as well as the bike 

trip accumulation. It is because the travel disutility of bike is the lowest as compared to 

other alternative modes. In this study, while the travel disutility is determined by many 

factors including travel time, monetary cost, and comfort loss, comfort loss, the 

differential monetary cost under the three pricing strategies would not change the fact 

that cycling is the most favourite travel mode in this tested example. However, the 

dynamic and spatial bike departures and arrivals, as well as the bike supply in the 

network, are significantly different under different pricing strategies, as will be 

analysed in the following discussions. 
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Figure 6 The number of bike trips and bike trip accumulation departure from metro 

station over time 

 

(a) Negative Price    (b) Free Price 

 

(c) Positive Price 

Figure 7 The detailed supply, demand and actual trip numbers at metro station over 

time 

The detailed supply, demand and actual bike trip numbers are given in Figure 7. One 

can observe that the supply is always above the real demand. However, the supply lines 

under three different pricing strategies are different. The number of available bikes 

continuously decreases at the beginning stage. As the time advances, the number of 

inflow bike arrivals would exceed the outflow bike departures and the number of bikes 

starts to increase. The arrival rates at the metro station under different pricing strategies 

are displayed in Figure 8. As the initial number of bikes in residential area is limited, 

the bikes that flow from residential area to metro station would reduce to zero and the 

number of bikes at metro station would decrease. It should be noted that, the time points 

when the bike supply starts to switch from increasing to decreasing for the three pricing 

strategies are different. The switching time under NP or PP is later than that with FP. 

According to Figure 8, the number of bike arrivals under FP is less than that for NP and 

PP. Specifically, the number of bike arrivals under NP does not continuously decrease 

as under PP, due to the extra bike arrivals stimulated by NP.   



22 

 

 

Figure 8 The number of bike trips and bike trip accumulation arrival at metro station 

over time 

Next, we want to further analyse the extra bike arrivals when negative pricing scheme 

is applied. As in Table 3, the demand from node B to node M is 0. The new bike arrivals 

must be from node R. Figure 9 shows the departure and arrival information at node R. 

One can notice that the bike departure from node R is still positive, while at the same 

time there are no available bikes under FP and PP at node R. The total bike departures 

are even higher than the initial supply of 50 bikes. As R has been set as an outflow node, 

the extra bikes at node R demonstrate that some travellers have changed their travel 

behaviour to park bike at node R under NP and the bike is later used by another traveller 

from node R to node M. All of these have clearly illustrated the effectiveness of the 

negative pricing in terms of a more balanced bike relocation. 

            

                      (a) Departure                                                      (b) Arrival 

Figure 9 The number of bike trips and bike trip accumulation at residential area 

It seems that FP scheme could be a good substitute of NP scheme as free charging is 

able to attract bike users and requires no additional cost from operators. The results 

from this numerical example can provide some direct comparisons between the two 

pricing strategies. Figure 9 can explain why the number of bike arrivals under FP at 

node M is smaller than that under NP. Under FP, the number of travellers using bike 

sharing is more than it under NP. Travellers who originally walk from node R to node 

B will change to use bike under FP. Under NP, as the node B is in the status of 
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oversupply, there is no monetary reward from node R to B. Those travellers will remain 

to walk from node R to node B. However, according to Table 3, there are positive travel 

demand from node M to node B. The supply at node M is sufficient at the very 

beginning. Thus, there is positive bike flow from node M to node B under FP. However, 

under NP there is no bike arrival at node B at certain time intervals (e.g., from 35 to 45 

and from 57 to 60). This is because traveller has changed his/her path to park the bike 

at node R, according to Figure 9 and Figure 10. In other words, under NP, traveller will 

cycle from M to R and change to other modes to arrive at B, due to triggered negative 

price from node M to node R. For travellers, although the total trip distance and total 

travel time increase, the monetary reward from NP can offset the increased disutility. 

For operators, travellers contribute to achieve a more balanced bike relocation, which 

can save the operation cost substantially.  

 

Figure 10 The number of bike trips and bike trip accumulation arrival at business area 

Figure 11 shows the bike flow evolution on each link over time. First, under PP, there 

are bike flows only on link M-B and link R-M, which is equal to the demand according 

to Table 3. The demand from node R to node B does not select to cycle because the 

short trip distance is more suitable for walking. As of the sufficient supply at node M, 

the bike flow on link M-B is stable. Since the supply at node R is not sufficient, when 

all bikes are used, the link flow R-B becomes to zero. Second, under FP, bike flow on 

link M-B does not change over time. It is also because of the sufficient supply at node 

M. The bike flow on link R-M is similar to the situation under PP, which first increases 

to peak value, then stabilizes for a while before it decreases in the end. The stable period 

at peak value in Figure 11(d) under FP is shorter than that under PP due to the bike flow 

on link R-B as shown in Figure 11(c). This is in line with the above conclusion obtained 

from Figures 9 and 10. It reflects that when the number of shared bikes is limited, FP 

could only speed up the bike usage rate but further enlarge the gap between supply and 

demand at the same time, which indeed cannot improve the service quality of the bike 

sharing system. Furthermore, FP attracts the short-distance travel demand, which is 

more suitable for walking. It is indeed a waste of resources and can even deteriorate the 

level of service.  Last, when NP implemented, bike flow on link M-B fluctuates over 

time as shown in Figure 11(a), which indicates the successful bike relocation and 
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repeated use of bikes within the peak hour. Basically, NP attracts and diverts some bike 

flow on link M-B to link M-R to support the bike supply at node R. Compared to FP, 

NP induces higher utilization rate for the shared bikes through a more balanced 

relocation achieved by the bike users. Also, NP does not increase the traffic flow in the 

network.  

  

(a) Link M-B                                                     (b) Link M-R   

 

 (c) Link R-B                                                   (d) Link R-M 

Figure 11 The bike flow changes on each link over time 

In addition, we conduct the sensitivity analysis of the threshold values and the results 

are illustrated in Figure 12(a) and (b). Firstly, we assume a fixed threshold value at 

origin node and seek to know how the threshold value at destination node affects the 

system performance in terms of total trip number and fare revenue.  From Figure 12, 

one can observe that, as threshold value at destination node increases, the NP condition 

tends to be fulfilled more easily. Thus, the total number of trips goes up  while the total 

fare revenue grows up first and then reduces due to the large amount of negative reward. 

If maximum fare revenue is to be achieved, the optimal threshold value at destination 

node could be easily obtained from the sensitivity analysis. In addition, we want to find 

how threshold value at trip origin node would affect the service operation performance. 

To do so, we assume fixed threshold value at destination node. It can be observed that, 

when threshold value at origin node increases, the NP condition becomes more difficult 

to be satisfied, and thus the total bike trips and the total fare revenue reduce. 
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(a)                                                                       (b) 

Figure 12 The influence of threshold values on bike trips and fare revenue 

The previous analysis is based on the parameter setting that VOT equals to 10 dollars 

per hour  for all travellers. Figure 13 is depicted to show how the total amount of bike 

trips and fare revenue change after different VOT values. As VOT reduces, more 

travellers prefer to using bike. The increasing bike demands would result in more 

negative reward and thus renders the total fare revenue first increases before it goes 

down. In example 1, when all the travellers have the same VOT (VOT=10), the total 

bike trips are 230 units and the total fare revenue is 78.7 units.  When we consider 

different classes of travellers, as categorized by different VOT values (VOT=20, 10, 7), 

we can obtain the model results that the total amount of bike trips is 236 and the total 

fare revenue is 79.6. 

 

Figure 13 The influence of VOT on bike trips and fare revenue 

6.2 Numerical results for test example 2 

The second example is designed to illustrate the performance of NP in a more 

complicated network. A benchmark network Sioux Falls network is applied. The 

network parameter and population data are extracted from Chakirov and Fourie (2014).  

Three type of land use characteristics are classified: residential area, business area, and 
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metro station as shown in Figure 14. The traffic flow among OD is calculated based on 

Gravity model in Table 4. Assume the departure time are randomly distributed within 

the range of [1,60] minutes, T=75, , k=3. Three types of VOTs are considered 

with the value of 20, 10 and 7. Other parameters are same as above.  

 

Figure 14 Simplified Sioux Falls network (the numbers on link denotes the link 

distance) 

Table 4 OD demand of example 2 

O                            D Business Area Residential Area Metro Station 

Business Area 0 0 0 

Residential Area 2140 travellers 0 4291 travellers 

Metro Station 3541 travellers 0 0 

 

The computational experiments are run in MatlabR2017b on a notebook with an Intel 

Core i5-4210U, 1.7 GHz under Windows 10 Professional with 4 GB memory. When 

the program is complete, the running time for example 2 is 1943.07 seconds. Figure 15 

shows the convergence of the solution algorithm.  

=0.05e
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Figure 15 The convergence of the solution algorithm 

 

Figure 16 The number of bike trips and bike trip accumulation departure over time  

Figure 16 shows the number of bike trips and bike trip accumulation in the network 

over time. At the beginning, the number of bike trips are quite high under all three 

strategies. When time advances, the bikes run out in high demand area, and the number 

of bike trips quickly drop under PP and FP. Consequently, the bike trip accumulation 

become stable under PP and FP.  However, due to relocation feature of NP, bikes can 

be quickly re-supplied in undersupply area. The number of bike trips is always at a high 

level when NP is applied. The bike trip accumulation is even two times more than that 

under FP and PP. 

Figure 17 presents the number of bike trips and bike trip accumulation in each type of 

area. As shown in Figure 17(a), the number of bike trips and bike trip accumulation in 

residential area have the same trend with Figure 16. Specifically, under FP, the number 

of bike trips is extremely high in the beginning and reduces to 0 after certain time period. 

Under NP, there are more bikes relocated from residential area, as can be observed in 

Figure 17(b). NP obviously attracts more travellers to park bikes at undersupplied 

residential area. More specifically, there are 11 bikes arriving at residential area under 

PP. The number is 56 under FP, and 593 under NP. According to Figure 16, the total 

bike usage is about 1000 under PP or FP. The 593 bikes will be reused by travellers 
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from residential area to other places. The number of bike trips under NP has increased 

by about 50%. Figures 17(c) and (d) show the specific information at node 15 in 

residential area. 50 bikes run out quickly under FP or PP. However, about 230 bikes 

depart from node 15 under NP in the whole period, where 180 of them come from the 

relocation effect according to Figure 17(d).  

Figures 17(e) and (f) give the number of bike trips and bike trip accumulation in 

business area. Figures 17(g) and (h) present the detailed information at one specific 

node in business area. According to Table 4, the demand in business area is 0. The bike 

departure number under PP and FP are both zero. Under NP, there are about 600 bikes 

out of business area while the total bikes in the network are1200. It reflects that NP can 

achieve more than 50% bike relocation.  

  

            (a) Residential area departure                     (b) Residential area arrival 

 

         (c) Residential node 15 departure                  (d) Residential node 15 arrival 

 

           (e) Business area departure                              (f) Business area arrival 
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            (g) Business node 8 departure                       (h) Business node 8 arrival 

Figure 17 The number of bike trips and bike trip accumulation over time 

To describe the bike flow status in entire network, the dynamic bike flow rates on each 

link are calculated. The number of bike flow are divided into six groups: 1-40, 41-80, 

81-120, 121-160, 161-200, and 201+. After classification, the results are shown in 

Figure 18. One can observe that FP easily leads to traffic congestion on bike links as it 

has the highest flow group (201+), as FP can quickly attract huge number of travellers 

to use bike. Although the total number of bike trips is similar with it under PP, the 

departure time of bike trips under FP is relatively concentrated. Under NP, though the 

total number of bike trips is greater than it under PP or FP, the trips are more evenly 

distributed in both time and space dimensions. Figure 19 shows the network 

performance under three pricing strategies. The average travel speed under FP is the 

slowest while the average travel speed under PP and NP are similar. The average travel 

distance under PP is the longest as the travellers who have paid the bike sharing service 

will fully utilise the bike to achieve door to door transport. Consequently, the number 

of average used links is maximum. Travellers might choose to cycle even if the trip 

distance is quite small under FP. Therefore, the average trip distance under FP is shorter 

than that under PP. Travellers will change their paths and modes under NP to relocate 

the bikes, which decreases the average trip distance. Indeed, the number of used links 

and the average trip distance are both the smallest for NP implementation.  

 

Figure 18 Link-time base on flow groups 
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Figure 19 Network performance under three pricing strategies 

Next, we would like to investigate the performances of the three pricing strategies from 

operators’ perspective. Assuming there are 50 bikes at each node provided at the 

beginning, we plot the bike usage and fare revenue under different pricing strategies in 

Figure 20. Under FP, the total number of bike trips is only half of that under NP. Besides, 

the fare revenue is the least for FP, while the number of used bikes is maximum, which 

requires highest initial investment on bikes supply from operators.  In this example, NP 

has better performance than FP in any performance indicator. Compared to PP, NP also 

performs better in terms of total bike trips. However, the fare revenue under NP is less 

than that under PP. It should be noted that the total fare revenue is parameter sensitive.  

In the proposed dynamic pricing strategy, the threshold value of negative price is 

determined by the real time ratio of supply to demand, which is a time related function 

Eq. (22). In this example, the threshold value is set as a fixed value . If the 

parameter  increases, higher fare revenue can be achieved, up to the requirement 

of the operators.  

 

Figure 20   Bike usage and fare revenue under different pricing strategies 

Next, we seek to find out the optimal number of bikes and fare revenue in initial 

promotion stage when different pricing strategies are applied. Some other parameters 

are set as follows: user value is 1000 RMB, deposit fee is 200 RMB /user, bike cost is 

1500 RMB /bike (CEIBS, 2017). The relationship between the number of bikes and 
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fare revenue is shown in Figure 21(a). In this example, the fare revenue from FP is 

always 0, which is the minimum among the three pricing schemes. The fare revenue 

from NP is less than PP in this example. The maximum objective function value under 

NP is indeed very close to that under FP. However, the required number of bikes is only 

1127 with the budget of 1.17 million, which is only one third of the budget under FP.  

 

(a)                                                                    (b) 

Figure 21 The relationship between the number of bikes and revenue and value 

7 Conclusions  

In this study, a new pricing strategy is proposed with negative price for dockless bike 

sharing service. Operator pay the users who cycle from the oversupplied area to 

undersupplied area. This pricing strategy could achieve bike relocation through 

stimulating travellers’ behaviour changes. Travellers’ choice behaviour is formulated 

by a user equilibrium dynamic traffic assignment model, in which traveller are allowed 

to use single or combined travel mode to complete the first/last mile trip by using walk, 

bike or bus. Two numerical examples are designed to test the influence of introducing 

the proposed pricing strategy as compared to the traditional PP and FP.  

The first example illustrates that FP and NP can both attract more users due to the low 

cost compared to PP. FP will increase the supply and demand gap when bike supply is 

insufficient. NP can guide the travellers to change their modes or paths to achieve a 

more balanced bike relocation. It also demonstrates that the proposed dynamic traffic 

assignment model can capture the dynamic supply-demand interactions in bike sharing 

system. The second example is conducted to illustrate the operation performance under 

different pricing strategies. With limited resources in initial promotion stage, NP 

performs better than FP and PP in various aspects, such as user attraction and fare 

revenue. While this is the first attempt to provide a theoretical justification of negative 

pricing scheme in a dockless bike sharing system, many assumptions have been made 

to ensure the problem to be more simplified and tractable, which at the same time bring 

limitations to the research outcomes. These assumptions are expected to be relaxed in 

the future studies to further analyse the optimal negative pricing scheme in the practical 

operation of dockless bike sharing system.  

Acknowledgement  

This research is partly supported by the Singapore Ministry of Education (MOE) AcRF 

Tier 2 Grant MOE2016-T2-1-044. 



32 

 

Reference  

Brandstätt, C., Brunekreeft, G., & Jahnke, K. (2011). How to deal with negative power 

price spikes?—Flexible voluntary curtailment agreements for large-scale integration of 

wind. Energy Policy, 39(6), 3732-3740. 

Brihaye, T., Geeraerts, G., Krishna, S. N., Manasa, L., Monmege, B., & Trivedi, A. 

(2014, September). Adding negative prices to priced timed games. In International 

Conference on Concurrency Theory (pp. 560-575). Springer, Berlin, Heidelberg. 

Caggiani, L., Camporeale, R., Ottomanelli, M., & Szeto, W. Y. (2018). A modeling 

framework for the dynamic management of free-floating bike-sharing systems. 

Transportation Research Part C: Emerging Technologies, 87, 159-182. 

CEIBS. (2017). Mobike- dockless bike sharing. Access from 

http://cn.ceibs.edu/node/10622 

Chakirov, A., & Fourie, P. J. (2014). Enriched sioux falls scenario with dynamic and 

disaggregate demand. Arbeitsberichte Verkehrs-und Raumplanung, 978. 

Chemla, D., Meunier, F., & Calvo, R. W. (2013a). Bike sharing systems: Solving the 

static rebalancing problem. Discrete Optimization, 10(2), 120-146. 

Chemla, D., Meunier, F., Pradeau, T., Calvo, R. W., & Yahiaoui, H. (2013b). Self-

service bike sharing systems: simulation, relocation, pricing. 

Chen, Y., & Wang, H. (2018). Pricing for a last-mile transportation system. 

Transportation Research Part B: Methodological, 107, 57-69. 

Ciari, F., Balac, M., & Balmer, M. (2015). Modelling the effect of different pricing 

schemes on free-floating carsharing travel demand: a test case for Zurich, 

Switzerland. Transportation, 42(3), 413-433. 

Dantzig, G. B., Eaves, B. C., & Gale, D. (1979). An algorithm for a piecewise linear 

model of trade and production with negative prices and bankruptcy. Mathematical 

Programming, 16(1), 190-209. 

Dell'Amico, M., Hadjicostantinou, E., Iori, M., & Novellani, S. (2014). The bike 

sharing rebalancing problem: Mathematical formulations and benchmark instances. 

Omega, 45, 7-19. 

DeMaio, P. (2009). Bike-sharing: History, impacts, models of provision, and future. 

Journal of Public Transportation, 12(4), 41-56. 

Dötterl, J., Bruns, R., Dunkel, J., & Ossowski, S. (2017, September). Towards dynamic 

rebalancing of bike sharing systems: An event-driven agents approach. In Portuguese 

Conference on Artificial Intelligence (pp. 309-320). Springer, Cham 

Erdoğan, G., Battarra, M., & Calvo, R. W. (2015). An exact algorithm for the static 

rebalancing problem arising in bicycle sharing systems. European Journal of 

Operational Research, 245(3), 667-679. 

Forma, I. A., Raviv, T., & Tzur, M. (2015). A 3-step math heuristic for the static 

relocation problem in bike-sharing systems. Transportation Research Part B: 

Methodological, 71, 230-247. 



33 

 

Fried, I. (2010). Microsoft kills Bing Cashback. CNET. Access from: 

https://www.cnet.com/news/microsoft-kills-bing-cashback/ 

Ghosh, S., Varakantham, P., Adulyasak, Y., & Jaillet, P. (2017). Dynamic repositioning 

to reduce lost demand in bike sharing systems. Journal of Artificial Intelligence 

Research, 58, 387-430. 

Ho, S. C., & Szeto, W. Y. (2014). Solving a static relocation problem in bike-sharing 

systems using iterated tabu search. Transportation Research Part E: Logistics and 

Transportation Review, 69, 180-198. 

Ho, S. C., & Szeto, W. Y. (2017). A hybrid large neighborhood search for the static 

multi-vehicle bike-relocation problem. Transportation Research Part B: 

Methodological, 95, 340-363. 

Huang, H. J., & Lam, W. H. (2002). Modeling and solving the dynamic user 

equilibrium route and departure time choice problem in network with queues. 

Transportation Research Part B: Methodological, 36(3), 253-273. 

Kadri, A. A., Kacem, I., & Labadi, K. (2016). A branch-and-bound algorithm for 

solving the static rebalancing problem in bicycle-sharing systems. Computers & 

Industrial Engineering, 95, 41-52. 

Laporte, G., Meunier, F., & Calvo, R. W. (2015). Shared mobility systems. 4or, 13(4), 

341-360. 

Li, Q., Liao, F., Timmermans, H. J., Huang, H., & Zhou, J. (2018). Incorporating free-

floating car-sharing into an activity-based dynamic user equilibrium model: a demand-

side model. Transportation Research Part B: Methodological, 107, 102-123. 

Liu, W., & Geroliminis, N. (2017). Doubly dynamics for multi-modal networks with 

park-and-ride and adaptive pricing. Transportation Research Part B: Methodological, 

102, 162-179. 

Liu, W., & Szeto, W. Y. (2019). Learning and managing stochastic network traffic 

dynamics with an aggregate traffic representation. Transportation Research Part B: 

Methodological. https://doi.org/10.1016/j.trb.2019.03.021 

Lim, A. (2018). Shared-bicycle operators to be licensed to curb indiscriminate parking. 

Straits Times. Access from: http://www.straitstimes.com/singapore/transport/shared-

bicycle-operators-to-be-licensed-to-curb-indiscriminate-parking   

Long, J., Szeto, W. Y., Du, J., & Wong, R. C. P. (2017). A dynamic taxi traffic 

assignment model: A two-level continuum transportation system 

approach. Transportation Research Part B: Methodological, 100, 222-254. 

Lo, H. K., & Szeto, W. Y. (2002). A cell-based variational inequality formulation of 

the dynamic user optimal assignment problem. Transportation Research Part B: 

Methodological, 36(5), 421-443. 

Lu, C. C. (2016). Robust multi-period fleet allocation models for bike-sharing 

systems. Networks and Spatial Economics, 16(1), 61-82. 

Lu, C. C., Mahmassani, H. S., & Zhou, X. (2008). A bi-criterion dynamic user 

equilibrium traffic assignment model and solution algorithm for evaluating dynamic 



34 

 

road pricing strategies. Transportation Research Part C: Emerging 

Technologies, 16(4), 371-389. 

Meng, M., Shao, C. F., Wong, Y. D., & Zhang, J. (2014). Multimodal network 

equilibrium with stochastic travel times. Mathematical Problems in Engineering, 2014. 

Merchant, D. K., & Nemhauser, G. L. (1978). A model and an algorithm for the 

dynamic traffic assignment problems. Transportation science, 12(3), 183-199. 

Nagurney, A., & Zhang, D. (1997). Projected dynamical systems in the formulation, 

stability analysis, and computation of fixed-demand traffic network equilibria. 

Transportation Science, 31(2), 147-158. 

Nicolosi, M. (2010). Wind power integration and power system flexibility–An 

empirical analysis of extreme events in Germany under the new negative price 

regime. Energy Policy, 38(11), 7257-7268. 

Pal, A., & Zhang, Y. (2017). Free-floating bike sharing: solving real-life large-scale 

static rebalancing problems. Transportation Research Part C: Emerging Technologies, 

80, 92-116. 

Pfrommer, J., Warrington, J., Schildbach, G., & Morari, M. (2014). Dynamic vehicle 

redistribution and online price incentives in shared mobility systems. IEEE 

Transactions on Intelligent Transportation Systems, 15(4), 1567-1578. 

Qian, X., Zhang, W., Ukkusuri, S. V., & Yang, C. (2017). Optimal assignment and 

incentive design in the taxi group ride problem. Transportation Research Part B: 

Methodological, 103, 208-226. 

Raviv, T., Tzur, M., & Forma, I. A. (2013). Static relocation in a bike-sharing system: 

models and solution approaches. EURO Journal on Transportation and Logistics, 2(3), 

187-229. 

Regue, R., & Recker, W. (2014). Proactive vehicle routing with inferred demand to 

solve the bikesharing rebalancing problem. Transportation Research Part E: Logistics 

and Transportation Review, 72, 192-209.  

Reiss, S., & Bogenberger, K. (2015, September). GPS-Data analysis of Munich's free-

floating bike sharing system and application of an operator-based relocation strategy. 

In Intelligent Transportation Systems (ITSC), 2015 IEEE 18th International Conference 

on (pp. 584-589). IEEE. 

Reiss, S., & Bogenberger, K. (2016). Validation of a relocation strategy for Munich's 

bike sharing system. Transportation Research Procedia, 19, 341-349. 

Reiss, S., & Bogenberger, K. (2017). A relocation strategy for Munich's bike sharing 

system: combining an operator-based and a user-based scheme. Transportation 

Research Procedia, 22, 105-114. 

Schuijbroek, J., Hampshire, R. C., & Van Hoeve, W. J. (2017). Inventory rebalancing 

and vehicle routing in bike sharing systems. European Journal of Operational Research, 

257(3), 992-1004. 

Simon, H. (2016). Negative prices – A new phenomenon. The Journal of Professional 

Pricing. Q4, 18-21. 



35 

 

Shui, C. S., & Szeto, W. Y. (2018). Dynamic green bike relocation problem–A hybrid 

rolling horizon artificial bee colony algorithm approach. Transportation Research Part 

D: Transport and Environment, 60, 119-136. 

Singla, A., Santoni, M., Bartók, G., Mukerji, P., Meenen, M., & Krause, A. (2015, 

January). Incentivizing users for balancing bike sharing systems. In AAAI (pp. 723-

729). 

Szeto, W. Y., & Lo, H. K. (2006). Dynamic traffic assignment: properties and 

extensions. Transportmetrica, 2(1), 31-52. 

Szeto, W. Y., Liu, Y., & Ho, S. C. (2016). Chemical reaction optimization for solving 

a static bike relocation problem. Transportation Research Part D: Transport And 

Environment, 47, 104-135. 

Szeto, W. Y., & Shui, C. S. (2018). Exact loading and unloading strategies for the static 

multi-vehicle bike relocation problem. Transportation Research Part B: 

Methodological, 109, 176-211. 

Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative 

representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297-323. 

Wang, D. Z., & Du, B. (2016). Continuum modelling of spatial and dynamic 

equilibrium in a travel corridor with heterogeneous commuters—A partial differential 

complementarity system approach. Transportation Research Part B: 

Methodological, 85, 1-18. 

Working, H. (1949). The theory of price of storage. The American Economic 

Review, 39(6), 1254-1262. 

Wright, B. D., & Williams, J. C. (1989). A theory of negative prices for storage. Journal 

of Futures Markets, 9(1), 1-13.  

Wu, Z., & Lam, W. (2003). Combined modal split and stochastic assignment model for 

congested networks with motorized and nonmotorized transport modes. Transportation 

Research Record: Journal of the Transportation Research Board, (1831), 57-64. 

Xu, M., Meng, Q., & Liu, Z. (2018). Electric vehicle fleet size and trip pricing for one-

way carsharing services considering vehicle relocation and personnel 

assignment. Transportation Research Part B: Methodological, 111, 60-82. 

Yan, S., Lin, J. R., Chen, Y. C., & Xie, F. R. (2017). Rental bike location and allocation 

under stochastic demands. Computers & Industrial Engineering, 107, 1-11. 

Zhang, F., & Liu, W. (2019). Responsive bus dispatching strategy in a multi-modal and 

multi-directional transportation system: A doubly dynamical approach. Transportation 

Research Part C: Emerging Technologies. https://doi.org/10.1016/j.trc.2019.04.005 

Zhang, J., Wang, D. Z., & Meng, M. (2017). Analyzing customized bus service on a 

multimodal travel corridor: an analytical modeling approach. Journal of Transportation 

Engineering, Part A: Systems, 143(11), 04017057. 

Zhang, K., Mahmassani, H. S., & Lu, C. C. (2013). Dynamic pricing, heterogeneous 

users and perception error: Probit-based bi-criterion dynamic stochastic user 



36 

 

equilibrium assignment. Transportation Research Part C: Emerging Technologies, 27, 

189-204. 

Zheng, N., Waraich, R. A., Axhausen, K. W., & Geroliminis, N. (2012). A dynamic 

cordon pricing scheme combining the Macroscopic Fundamental Diagram and an 

agent-based traffic model. Transportation Research Part A: Policy and Practice, 46(8), 

1291-1303. 

  



37 

 

Appendix  

Proof. We first prove the necessity that the ideal dynamic user equilibrium superpath 

choice conditions Eqs. (21) - (23) imply variational inequality (43). For any path p, a 

feasible inflow at time t is 

 
 (A1) 

Multiplying ideal dynamic user equilibrium super path choice condition Eq. (21) by the (43), it 

leads to 

 
 (A2) 

Subtracting Eq. (22) from Eq. (A2), one can obtain 

 
 (A3) 

Summing up Eq. (A3) for all paths p and all OD pairs, it follows that 

 
 (A4) 

where the flow conversation equation 

 
 (A5) 

holds for each OD pair at each time interval t. Integrating Eq. (A5) from 0 to T, we can obtain 

variational inequality (43). 

Next, we prove the sufficiency that any solution  to (43) satisfies ideal dynamic user 

equilibrium super path choice conditions Eqs. (21)-(23). We know that the first and third ideal 

dynamic user equilibrium super path choice conditions Eqs. (21)-(23) hold by definition. Thus, 

we need to prove that the second ideal dynamic user equilibrium super path choice condition 

Eq. (22) also holds. 

Assume that the second ideal dynamic user equilibrium super path choice condition Eq. 

(22) does not hold only for a path  for OD pair during time interval 

  

 
 (A6) 

Since the Eq. (22) holds for all paths other than path  for OD pair  at any time 

interval t and for OD pair  at any time interval , it follows that 

 
 (A7) 

Note that all other terms in the above equation vanish because of Eq. (22). For each OD 

pair w, we can always find one minimal actual travel time path   for travellers 
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departing origin at time t, where path  was evaluated under the optimal inflow pattern 

. For this path , Eq. (21) becomes an equality by definition. It follows that 

 
 (A8) 

Next, we need to find a set of feasible path inflows satisfying: 

 
 (A9) 

We consider all the departure flows for all OD pairs at each time interval t. For 

each OD pair w at each time t, we assign OD departure flow to the minimal 

travel time path  , which was evaluated under the optimal flow pattern . 

This generates a set of feasible path inflow patterns  in which Eq. (A9) is 

always satisfied because flows are not assigned to paths with non-minimal travel times 

evaluated under the optimal path inflow pattern . Summing equations (A9) 

for all paths p and all OD pairs w, it follows that 

 
 (A10) 

Integrating the above equation for time period [0, T], we have 

 
 (A11) 

We subtract Eq. (A6) from Eq. (A11) and obtain 

 
 (A12) 

where the flow conversation equation 

 
 (A13) 

holds for each OD pair w at each time interval t so that the second term vanishes. The 

above equation contradicts variational inequality problem (43). Therefore, any optimal 

solution  to variational inequality (43) satisfies Eq. (22). Since we proved the 

necessity and sufficiency of the equivalence of variational inequality Eq.(43) to Eqs. 

(21)-(23), the proof is complete. 
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