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ABSTRACT

Material flow modeling constitutes an important approach to predicting and understanding the flows
of materials through the anthroposphere into the environment. The new “Dynamic Probabilistic Ma-
terial Flow Analysis (DPMFA)” method, combining dynamic material flow modeling with probabilistic
modeling, is presented in this paper. Material transfers that lead to particular environmental stocks
are represented as systems of mass-balanced flows. The time-dynamic behavior of the system is cal-
culated by adding up the flows over several consecutive periods, considering changes in the inflow to
the system and intermediate delays in local stocks. Incomplete parameter knowledge is represented
and propagated using Bayesian modeling. The method is implemented as a simulation framework in
Python to support experts from different domains in the development of their application models.
After the introduction of the method and its implementation, a case study is presented in which the
framework is applied to predict the environmental concentrations of carbon nanotubes in Switzer-
land.

SOFTWARE AVAILABILITY

The simulation framework is available as a software package via PyPI, the Python Package Index at:
https://pypi.python.org/pypi/dpmfa-simulator

1 INTRODUCTION

The quantification of the environmental concentration of an anthropogenic pollutant is a crucial step
toward the determination of risks for humans and ecosystems emerging from the application of new
materials. While direct, quantitative measurements are often not feasible, the representation of ma-
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terial flows that lead to those concentrations provides means for an indirect assessment. The
knowledge about these flows is the starting point for multimedia environmental fate models, which
regard systems as sets of clearly separated, distinguishable compartments and allow the investiga-
tion of material transfers between them (MaclLeod et al. 2010). "Multimedia" in this context refers to
the fact that multiple environmental media (air, surface water, groundwater, soil) are considered
parts of the system under study.

In general, material flow modeling approaches are well suited to investigate a large range of anthro-
pogenic pollutants. For the assessment of the arising environmental stocks, the relevant flow pro-
cesses need to be investigated. Depending on the pollutant and the scope of the investigation, this
may include the material production, the application and use in different products, subsequent
waste handling processes, and flows between environmental media. Different scopes of a study can
introduce further aspects such as geographical distribution or a more detailed subdivision of (e.g.
technical) processes.

Existing mass flow modeling approaches such as material flow analysis (MFA) (Baccini et al. 1991) re-
gard systems of stocks and flows using mass equations to derive dependent system dimensions. They
are supported by the software tool Stan (TU Vienna 2012) for general flow modeling purposes and
the Umberto software (ifu Hamburg GmbH 2014) for material flows in the domain of corporate envi-
ronmental management. These programs (STAN and Umberto) also support uncertainty representa-
tion and propagation, but are restricted to a set of given distribution functions. They also support a
period-based time representation. However, the update of the system state is determined by an ex-
plicit definition of the flow model for every period and not based on an underlying set of rules (e.g.,
for the residence times in stocks).

In environmental modeling, however, often considerable uncertainties exist about the volume of a
flow, the rates with which the total amount divides into partial flows, and the particular pathways
they take. Available data sources may be based on imprecise, incomplete or even contradictory as-
sumptions. The explicit representation of these uncertainties and their propagation through the
model can lead to more meaningful simulation results, thus allowing more reliable predictions of the
resulting environmental concentrations. Bayesian modeling provides a technique for representing
and propagating incomplete system knowledge and translates uncertainty about the true value of a
system variable to the model as a probability distribution for the model parameter in question. It
represents the modelers’ assumptions about the true value, which can vary both concerning the type
and the parameters of the probability distribution. Based on the given distributions, the distributions
of the dependent values are then inferred using Monte-Carlo (MC) simulation. Money et al. (2012)
proposed a Bayesian network of several stages for forecasting environmental concentrations of na-
noparticles.

The probabilistic material flow analysis (PMFA) approach was developed by Gottschalk and col-
leagues (Gottschalk et al. 2010). They built a flow model that includes a complete assessment of un-
certainties in all model parameters. It applies Bayesian modeling to propagate incomplete knowledge
about the absolute inflow to the system and the internal dependencies between the downstream
flows. Over a large sample size, steady states of flows are calculated, each based on a sampled set of
random values. From that the resulting absolute material flows are determined. PMFA has mainly
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been applied for assessing environmental flows of nanomaterials (Gottschalk et al. 2009, Gottschalk
et al. 2010, Gottschalk et al. 2011, Sun et al. 2014).

The simulation of systems over significant periods enables the estimation of absolute stock volumes.
This includes, in particular, systems with time-dependent inflows and residence times in stocks. To
represent time-dependent residence times, dynamic models become necessary because the release
of one period depends on the inflows of several previous periods and the delay characteristic of the
stock. Such models partially include dynamic system behaviors, such as the scaling of a flow of a ref-
erence year to estimate annual flows for previous periods and add up those inflows to a stock to ob-
tain absolute volumes (Gottschalk et al. 2009) or the calculation of flows over subsequent periods
based on clocked releases defining rates from the absolute stock of a well-mixed reactor (Walser et
al. 2014). These models provide a probabilistic material flow representation and a limited represen-
tation of changes over time. However, time-dependent external material inflows and material re-
lease from stocks as functions with varying residence times and release rates are not included.
Moreover, in the studies mentioned above, special-purpose models were developed for particular
cases. These studies do not provide a general method of how to model systems of this type, nor do
they provide a conceptual and operational framework to support the modeling and evaluation pro-
cess.

Outside the field of probabilistic modeling, many material flow modeling methods are in use that
provide means to represent dynamic system behavior over time. Miiller et al. (2014) present a survey
on a large range of these methods, focusing on the uncertainty handling of these methods. While a
large share of the methods do not consider uncertainty at all (>50%), there are some that use sensi-
tivity analysis (37 %), Gaussian error propagation (6%) or parameter ranges (5%), but none supports
full Bayesian uncertainty representation and propagation.

Dynamic Bayesian networks that are mainly used to learn and reproduce time-dependent system be-
havior (Daly et al. 2011) process uncertain knowledge in a time-dynamic model. However, this ap-
proach focuses on variances in state transitions and does not include flow-specific behavior.

To summarize, what is missing is a method for investigating the development of environmental
stocks of a pollutant by building a model which satisfies the following requirements:

* ltrepresent a system of mass balanced dependent flows,

* it considers changing material releases and intermediate delays in local stocks over a signifi-
cant time horizon, and

* it provides means to represent and process incomplete parameter knowledge.

In (Bornhoft et al. 2013) we investigated several existing methods regarding their capabilities for
meeting these requirements in more detail and revealed that no existing method fulfills these re-
quirements. In the present article, we present a modeling approach that merges the advantages of
the existing techniques of probabilistic material flow modeling with the existing approaches to dy-
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namic material flow modeling. The combined method forms the basis for a software framework that
supports the development, implementation, and simulation of dynamic probabilistic material flow
models. We will describe how we implemented this framework as a software package using the Py-
thon language (Python Software Foundation 2014) to support experts in building specific models in

their field of application.

Finally, we will demonstrate the application of the framework using a realistic case study. This case
includes the implementation of a model to investigate the system of flows of engineered Carbon
Nanotubes (CNT) in Switzerland. Due to their toxic properties to humans and ecosystems, CNTs pose
potential risks (Savolainen et al. 2010). Sun et al. (2014) presented a steady-state model to assess the
inflows to different environmental compartments based on data for the year 2012. However, CNTs
are very stable and accumulate in the environment over time. Moreover, they are usually applied in
products with long lifetimes, which leads to significant material amounts bound in use stocks. A dy-
namic model is therefore needed to provide a more detailed and adequate system representation.
Based on this example application, the new approach is discussed in more detail regarding general
functionality and its opportunities and limitations.

2 DESCRIPTION OF THE METHOD

We propose a new method that combines the advantages of the existing approaches to probabilistic
and dynamic material flow modeling: dynamic probabilistic material flow analysis (DPMFA). It aims to
close the gap in existing techniques for exposure assessment by providing means to model and simu-
late systems of complex, dependent material flows, consider the dynamic behavior of the system
over time, and explicitly represent and propagate incomplete parameter knowledge. For that pur-
pose, a set of components is provided as building blocks for the model. These components need to
be instantiated and linked together to represent the investigated system, and to allow simulation

and evaluation.

We first outline the main idea of the approach, describing the basic structure of the models, the sim-
ulation processes and how the elements of the previously introduced modeling methods are com-
bined. The implementation of the framework as a software package in Python is described on that

basis in a second step.

Each DPMFA model is an abstraction and idealization of an original system of flows in the techno-
sphere and the ecosphere. The model is reduced to the parts and aspects that determine the behav-
ior investigated. Following the scope of the simulation study, the system is first subdivided into a set
of compartments. They constitute the static model structure and structure the system into spatially
or logically separated units (e.g., as in Figure 1). The actual breakdown depends on the objective and
the scope of the study. All material inflows, transfers, accumulations, and releases refer to these
compartments.
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Figure 1: Pathways of material flows of anthropogenic pollutants from the technosphere via different product categories, waste incin-
eration and sewage treatment plants to the ecosphere. Specific system compartments and flow dependencies need to be implemented
for each particular material and scope.

Simulation experiments need to be performed with the model to assess material stocks and flows
over time. Based on the results of these experiments, conclusions about the processes of the original
system are drawn. The general simulation mechanism for investigating the flows between the com-
partments is structured as a 3-layer process (see Figure 2). On the first — the Bayesian — layer, param-
eter uncertainty about the flow dependencies between the system compartments and the absolute
annual inflow is represented by Bayesian probability distributions. These uncertainties are then
propagated through the model for the entire simulation time using Monte-Carlo techniques.

The second layer refers to the time-dynamic model behavior. Time is represented as a sequence of
successive periods (usually years). For each period within the time horizon of the simulation, the ex-
ternal inflows to the model, the material accumulation in stocks, and their local material releases are
determined and added up.

To enable this, the third layer provides a mechanism that calculates the absolute material flows for a
period based on absolute material releases and the flow matrix, taking all transfer dependencies into
account.
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Figure 2: Dynamic Probabilistic Material Flow Analysis —structure of the simulation process

2.1 STATIC STRUCTURE

The static model structure consists of a set of persistent entities. They represent the local relations of
the compartments and are assembled to derive the global system behavior. The basic model compo-
nents are flow, stock, and sink compartments and external inflows.

* A flow compartment includes material inflows and relative outflows of a delimited spatial of
logical system area.

* Astock compartment is a component with a temporary total or partial material accumulation
and later re-release of the material. Stock compartments include local material in- and out-
flows and provide a delay function that determines material accumulations and releases

* Asink compartment is a component with permanent material accumulations.

* An external inflow is a source that implies a time-dependent exogenous input to a stock or

flow compartment (e.g., through production or import).

The dynamic model behavior emerges from the interplay of these static components over time.

2.2 MATERIAL FLOWS

The calculation of absolute values for the material transfers is derived from existing material flow
analysis approaches using a classical Leontief model (Leontief 1986). It represents the material flows
of one period as immediate and simultaneous. While exogenous inflows to the system are defined as
absolute material inflow values to a compartment, endogenous flows from a compartment are de-
fined by transfer coefficients (TC). The transfer coefficient T Cjs defines the relative mass flow m from

compartment j to s as a proportion of the sum of all inflows to compartment j (Eq. 1).
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To determine the absolute flows of the model, all transfer coefficients are assembled to the flow ma-

trix A (Eq. 2).
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Eq. [2]

The flow rates from one compartment to another are read diagonally from top to left. The compart-

ments C; to C,,, represent immediate flow dependencies, compartments Cp, ;1 to C, sinks. The abso-

lute material inflows to the system are expressed as an input vector I (Eq. 3).
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Eq. [3]
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This vector comprises the sum of the current external inflows and the releases from the model stocks
to all compartments C; to C,, as elements g;to g,. Solving the System (Eq. 4) for an unknown column
vector X leads to a steady state of flows.

AX =1 Eq. [4]

The column vector X determines the inflows to the compartments with which the stocks are incre-
mented. If the sum of each column of a flow compartment in the coefficient matrix is zero and the
entire inflow is allocated to the sink columns as a non-zero value, the system is mass-balanced. All
material inflows are distributed to the sinks based on the relative local flow dependencies.

2.2.1 FLow COMPARTMENTS

In the model, the relative transfer dependencies are bound to flow compartments, which represent
points in the system where material flows are gathered and split up. Several transfers can be bound
to one flow compartment. Each transfer includes a target compartment and a transfer coefficient.
The combination of all outgoing transfer coefficients from a compartment enables to ensure a mass-
balanced system. Therefore, the outgoing transfers from each compartment need to sum up to 1 to
create a global balance. To assemble the flow matrix (Figure 3) the outgoing TCs from the flow com-
partments are transformed into the columns of the matrix.

G
.02 -0.2

Cn® 0Z2_ Comp. G, G
- C -0.5

Comp. C; % Comp. C; ’
% Cy -0.3

Comp. Cy ;

C, 0

Figure 3: Outgoing TCs from Compartment 1. The set of TCs corresponds to the
respective column of the flow matrix (Eq. 2).

2.3 TIME-DYNAMIC BEHAVIOR

Time advancement is represented in the model as a series of subsequent periods T, to T;, of equal
length. In each period, the model-wide material flows are determined and used to update the stocks
and sinks:

* First, the external inflows and the material releases from stocks are determined (Figure 2,
Box 4).
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* Second, the flows of the period are determined based on the inflows and releases (Figure 2,
Box 6) by assigning the respective material inflows to the input vector I (Eg. 3) and by solving
the flow matrix of the system (Eq. 4).

* Finally, the stocks and sinks are incremented with their particular inflows from the solution
vector X (Figure 2, Box 5).

Once the model is simulated over the required time interval, the total material in a sink at the end of
this interval can be predicted.

2.3.1 EXTERNAL INFLOWS

Material inflows from an external source to a system compartment are defined as absolute material
inputs for a particular system compartment and period. A time dynamic development of these in-
flows is either represented by a list defining an input volume for each period or as a function of time
over all periods. The particular inflow of a period to a particular model compartment C; is added to
the inflow vector I at the element g;.

2.3.2 STOCK COMPARTMENTS

Stock compartments represent material flows through system areas, where at least a part of the ma-
terial transfer is not immediate.

Therefore, the stock compartments include:

* A set of transfer coefficients that determine the proportions of the material leaving the com-
partment to particular subsequent compartments; this is analogous to the Flow Compart-
ments (Figure 3). However, due to residence times >0 of the material in stock, the periodic
outflow to a stock compartment does not match its inflow. For a consistent definition of the
relative proportions of the outgoing flows, the TCs are here defined as the relative ratio to
the total outflow of a stock compartment.

* Avrelease function releaseFct(t) that defines relative times and proportions for the materi-
als (re-) release based on the time of the material inflow ¢,.

The release function defines the residence times and the rates with which materials that enter the
stock compartment are released again. For the calculation, the immediate release in period 0 and
those in later periods are treated in different ways. The portion immediately released is included to
the flow matrix A. Therefore, the outgoing TCs from the stock are multiplied with the immediate re-
lease rate releaseFkt(ty) and added to the flow matrix as column, in just the same way as the TCs
from the flow compartments. The portion of the material that is released with some delay is treated
as described below.
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To determine the dynamic development of the stored amounts in stock and the time-dependent ma-
terial releases, a stock compartment includes the following elements:

* An Inventory displaying the current, absolute stocked amounts. To enable the evaluation of
the stocked values, the inventory is modeled as a list, recording the stock for all periods.

* A ReleaselList that includes the scheduled material releases for the future periods

During the calculation of the flows of period i, the following steps are performed in stock compart-
ment .

I At the beginning of the period T;:
a) Transfer the stocked amount from the previous period to the current period as the initial
value (Eq. 5). (This step is omitted in the first period):

Inventory(T;) = Inventory (Ti_1) Eq. [5]

b) Determine the total release from the stock for the period(Eg. 6) and reduce the inventory by
that value (Eq. 7):

currentRelease = Releaselist(T;) Eq. [6]

Inventory (T;) = Inventory(T;) — currentRelease Eq. [7]

c) For each outgoing TCj; from stock compartment j, include the portion of the current release

to the inflow vector I (Eq. 8):

1(gs) = 1(gs) + currentRelease x TCj Eq. [8]

Il. After calculation of the global flows (Figure 2, Box 6) the stock compartment is updated with the
respective material inflow from the solution vector X:
a) Add the not-immediately released portion to the inventory (Eq. 9):

Inventory(T;) = Inventory(T;) + X(s) = (1 — releaseFct(ty)) Eq. [9]

b) Schedule the material releases for the future periods (Eq. 10):
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For each k from1tom:
ifi+k<n
ReleaseList(T; ;) Eqg. [10]
= ReleaseList(T;,) + X(s) = releaseFct(k)

2.4 UNCERTAINTY REPRESENTATION AND PROCESSING

In exposure assessment modeling, incomplete knowledge may concern the point in time, the loca-
tion or the extent of a flow. This uncertainty is mainly epistemic, which means it relates to a general
lack of knowledge about the true value of a system variable. Such uncertain variables are represent-
ed using (Bayesian) likelihood distributions, which include all plausible values and assign normalized
probability densities. The dependent system variables (e.g. a stock at a particular time) are calculated
using Monte-Carlo simulation, i.e., the model is repeatedly evaluated over a large sample size m. For
each single run i € m, all uncertain parameters are assigned a random number from the associated
parameter distributions (Figure 2, Box 1). With this parameter setting, the model is calculated over
all periods as described above (Figure 2, Box 2). As a result, the dependent model variables (e.g.
stocks) are available as an mXn matrix. Based on that representation, statistical evaluations and vis-

ualizations can be performed (Figure 2, Box 3).

The parameter distributions are either regarded as parametric distribution functions or as non-
parametric distributions. Depending on the origin of the available data, there may by samples from
direct observations, results of previous simulation steps, or probability distribution functions repre-
senting the assumed characteristics of the distribution. Since it is possible to sample random values
from either variant for the Monte-Carlo simulation, both are suitable for representing uncertain
knowledge about absolute inflows and transfer coefficients in the model.

The representation of uncertainty in transfer coefficients and external inflows has some important
characteristics. For modeling TCs the mass balance of the system needs to be preserved. While in a
deterministic mass balanced flow model the sum of the outgoing TCs from one flow compartment or
stock have to sum up to 1, in the probabilistic case the marginal distributions for the model parame-
ters have to be chosen in such a way that their expected values sum up to 1.

Moreover, in the simulation process, the dependent random values are adjusted after sampling to
avoid combinations violating mass balance constraints. The modeler can chose to do so either by a
normalization factor over all involved TCs or — in the case of transfer coefficients from underlying in-
formation of strongly differing reliability — by defining an order of priority to first adjust the parame-
ter values based on the least reliable data.

The external inflow to a particular compartment over time can be represented either as a list of sin-
gle probability distributions for each period or by one marginal distribution representing an uncertain
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base value and a deterministic growth function. The two variants imply different underlying assump-
tions. The use of a common base value for all periods emphasizes the inter-periodic dependencies
while the absolute value is not exactly known. Expressed as a list of single inflows, the random sam-
ples for the periods are assumed to be independent. They implicitly show variant behavior and in-
creasing degrees of freedom of the model with the number of simulated periods and thus a growth
of the complexity of model behavior for longer time spans.

2.5 |MPLEMENTATION OF THE METHOD

Based on the DPMFA method, a software framework was developed to support the design and use
(i.e., the simulation) of dynamic probabilistic material flow models. It is designed as a Python (2014)
package and utilizes the SciPy library (Jones et al. 2001) for statistical computation and in particular
the NumPy package (van der Walt et al. 2011) for matrix representation and calculation.

The program package implements the principle of separation of model and experiment (Page et al.
2005). At its core, it provides the infrastructure to perform simulation experiments using the Simu-
lator class. This class is provided as a black-box component and is used unchanged by a modeler
working with the package. The modeler implements the system-specific logic by assembling prede-
fined components. These are provided as white-box components that the modeler has to adapt to fit
the particular behavior of the system under study.

2.5.1 SIMULATOR

The Simulator performs experiments to generate and evaluate the Model behavior. As part of
the simulation process — as described by our overall simulation algorithm above (Fig. 2) — the model
parameters specified under uncertainty are assigned random values from the underlying Bayesian
probability distributions. Statistical evaluations of the observations over sufficiently large sample siz-
es approximate the distribution of the variables under the assumptions of the marginal distributions.
For each of these parameter sets, the model is simulated over the total investigated time span.

In an iteration over all periods, the Simulator determines the external inflows to the system and
the local inflows from the stocks. These flows are then distributed to the different model compart-
ments by solving the flow matrix of the model — which is assembled from the internal flow depend-
encies — with the current inflow vector. Based on the inflows, the model stocks and sinks are updat-
ed. During the experiment, the Simulator keeps track of the values of model variables (e.g., the

amount of material in a stock).

All of these values are logged in the form of a matrix over all samples and periodic values for later
statistical evaluation. To facilitate an aggregated evaluation, categories can be assigned to the model
compartments. After a simulation experiment is executed, the Simulator provides several func-
tions for a category-based evaluation, e.g., to provide total material inflow or outflow or the total
material stocked.

2.5.2 MOoDEL

Bornhoft et al. 2016 — A dynamic probabilistic material flow modeling method.
12



The model builder implements a specific simulation model by customizing and combining basic mod-

el components:

* Model Compartments representing system entities, which all material flows, accumula-

tions, and releases are related to,

* Transfers defining the internal, relative flow dependencies,

* TLocalReleases defining the residence times of materials from Stocks and the release

rates, and

* ExternalInflowsrepresenting exogenous inputs to the system.

An overview of the model structure is shown in Figure 4 as a class diagram. The diagram illustrates

the model composition and the hierarchy of the included component types. The Compartments

are specified by subclasses. FlowCompartments are branches of a flow within one period;

Sinks mark the material accumulation at an endpoint of a flow process, and Stocks represent

material flows that are delayed for a particular period of time and later transferred further.

<<abstract>>
Compartment

1.n

/<]

N

o voder &

1.n

<<abstract>>

Externalinflow

A

1 Ll.n| <<abstract>>
. Flow External External
Sink @ —
Compartment Transfer ListInflow Function Inflow
D\ /Y/ /ﬁ V\ ) )
Stock Const Stochastic
T Transfer Transfer 1.n <<abstract>> 1
? 1 SinglePeriod
Inflow
<<abstract>> Random Aggregated
LocalRelease Choice Transfer
Transfer
/ % & FixedValue Stochastic Random
Fixed | | Inflow Inflow Choice
ixedRate List Function Inflow
Release Release Release

Figure 4: UML diagram; composition of the DPMFA model structure

Different Transfer types are used to model flow dependencies as relative transfer coefficients to

particular subsequent target Compartments. ConstTransfers define deterministic values as

transfer coefficients. StochasticTransfer, RandomChoiceTransfer, and Aggregated-

Transfer use probability distributions to represent incomplete knowledge about the true values of

transfer coefficients. Random values are sampled for those Transfers during the simulation pro-

cess. StochasticTransfers are parameterized with probability distribution functions and re-

spective parameter lists. RandomChoiceTransfers hold lists of values to draw randomly from.

AggregatedTransfers allow weighted combinations of the previously stated Transfers.
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All transfers are bound to sources, which can either be FlowCompartments or Stocks. To en-
sure the mass balance of the system, the local transfer coefficients for the relative outflows from
such a source have to sum up to 1. This adjustment step is performed after the random values are
sampled from the underlying probability distributions. The modeler can either chose to apply a nor-
malization of the corresponding transfers or to define a prioritization to adjust the random numbers
from the least credible underlying data. Combinations of both approaches are feasible as well.

Stocks represent delayed flow processes. The model builder defines their particular release times
and rates as LocalRelease strategies. The target compartments and the relative transfer coeffi-
cients are defined as Transfer objects the same way as for FlowCompartments. To implement
LocalReleases, their subclasses need to be implemented. FixedRateRelease defines con-
stant rates for all following periods, L.i stRelease an explicit list of all future release rates, and
FunctionRelease gives a mathematical function for the particular rates and periods.

ExternalInflows are implemented as ExternallListInflow to define explicit inflow
amounts for each period or as ExternalFunctionInflow with a (growth) function on a base
value. To define the base value or the individual values for the list, the model builder has to define
SinglePeriodInflows. These can be either deterministic FixedvalueInflows or a probabil-
ity distribution function, namely StochasticInflow or RandomChoiceInflow from a given

sample.

3 EXAMPLE APPLICATION OF THE METHOD

The capabilities of the DPMFA method and the corresponding Python package are illustrated by ap-
plying them to a case study of practical relevance. Here, we modeled the flows of carbon nanotubes
(CNT) in Switzerland to predict current and future material stocks in the technosphere and the envi-
ronment. CNTs appear to be a useful and challenging example application because of their stability
and toxicological properties as well as a lack of analytical methods for a direct measurement of envi-
ronmental concentrations (Wick et al. 2011). CNT technology is relatively new, and there is a strong
increase in current and expected production volumes. Moreover, a large proportion of the produced
material is used in long-lasting applications such as polymer composites, which leads to the devel-
opment of significant use stocks.

The CNT flows were previously modeled using MFA (Mueller et al. 2008) and PMFA (Gottschalk et al.
2009, Sun et al. 2014). The investigated flows include the production of the CNTs, their application in
different product categories, their release during the life cycles of the products to technical and envi-
ronmental system compartments, and the subsequent environmental fate, namely their final accu-
mulation as a pollutant.

The model was simulated on a standard laptop® with an Intel i5-4200U CPU @1.6 GHz processor and
8 Gb memory.

' HP EliteBook 840 G1

Bornhoft et al. 2016 — A dynamic probabilistic material flow modeling method.
14



3.1 THE STATIC CASE

The basic structure of the model, as shown in Figure 5, is derived from a steady-state model that we
developed earlier to predict CNT flows in Switzerland (Sun et al. 2014). This model includes 31 com-
partments and sinks and 80 transfers, where all TCs are modeled using parameter distributions. Fig-
ure 6 exemplarily shows the sewage treatment efficiency as one of those distributions. This distribu-
tion determines the proportion of CNTs from waste water that are bound to Sewage Treatment Plant
(STP) sludge. The distribution is the result of combining several sources of uncertain evidence. It sup-
ports a range of values between 0 and 100% with a high likelihood of between 82% and 97%.

Landfill Air
Production .-
Manufacture
Consumption
[ PMC Wet scrubber
Filter Soil
r—| Burning
1 wip) ] e N |
\p'\ias'(ev\u'aterE»fv l
(I ¥ N Sewage
"= treatment —T—— Surface
le!
— |: STP sludge —— water
Overflow
Elimination je——m7-
L | Recycling Sediment

Figure 5: Simplified pathways of CNTs to the environment. CNT production, distribution to different product categories and category-
specific release are pooled in PMC. Technical waste and waste water treatment processes are pooled as well.
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Figure 6: Likelihood function of the CNT removal efficiency in sewage treatment plants (STP)

In Sun et al. (2014) the model was originally implemented as a special-purpose application using the
R programming language. From that work, we adopted the subdivision of the system into particular
compartments and the probability distribution functions that define the transfer coefficients of the
flow dependencies between the compartments. This static model will now be re-built and extended
to a dynamic model to demonstrate our new approach.

We first re-implemented the static model using our approach to cross-check the consistency be-
tween the two approaches for the static case. To facilitate the cross-check, we created a determinis-
tic version of the model by replacing the parameter distributions with their expectation values and
then implemented the deterministic version both in R (as the original model of Sun et al. 2014) and in
Python using the new package. With that, it was possible to compare the basic functionality of the
flow calculations of the two implementations.

Then we re-implemented the stochastic version of the original model of Sun et al. (2014) using the
new Python package as well. The purpose was to check the influence of the randomness of the un-
derlying probability distributions on the simulation results. For the stochastic version, we used the
same probability distributions as Sun et al. (2014) did. We simulated 50'000 runs which was consid-
ered a sufficient sample size (see the Discussion and Outlook section for a discussion of sample sizes)

Table 1 shows the material inflows to the model sinks as simulation results; in columns 1 and 2 for
the deterministic versions of the model in R and using the new Python package, respectively, and in
column 3 for the probabilistic version.
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Table 1: Simulation results — model sinks in tons of CNT/year: Comparison of the mean values of the inflows to the model sinks for 2012.
The left column shows the results of the deterministic model in R, using the expectation values of the parameter distributions from Sun
et al. 2014. The middle column shows the results of the same deterministic model implemented using the new package. The right col-
umn shows the simulation outcome of the probabilistic version of the model implemented with the new package (mean values).

Deterministic model | Deterministic model, Probabilistic model, im-

based on (Sun et al. | implemented using plemented using the new

2014), implemented | the new simulation simulation package (mean

inR package values)

Elimination 7.83 7.82 7.82
Landfill 0.96 0.96 0.97
Soil 0.14 0.15 0.15
Sediment 0.03 0.03 0.03
Cement Plant 0.01 0.01 0.01
Recycling 3.10 3.10 3.08
Export 0.87 0.86 0.87
Sum 12.94 12.94 12.93

The agreement between the simulation results was high. Small discrepancies between the two de-
terministic implementations can be explained by small numerical errors caused by differences in the
underlying algorithms, i.e., for solving the flow matrix, or in number representation. But all in all, the
two implementations can be seen as almost equivalent. Differences between the deterministic and
the probabilistic model can be explained by the stochastic error, introduced by the randomness of
the probabilistic model, which is small due to the large sample size.

In previous works by Gottschalk et al. (2009, 2010, 2011) and Sun et al. (2014), we focused on the
mode value to represent a sample by its most probable single value. Here we mainly use the mean
value of the sample. This has some advantages because the mean values show a system of balanced
flows. Also, mean values are more robust, especially on small and scattered samples. The computa-

Ill

tion of a “real” mode value can be performed only for a discrete set of different values. For continu-
ous variables, the maximum of a density function of the sample, such as the Gaussian kernel-density
estimator (Scott 1992), are often used instead. Depending on the used estimator and its parameters,
different maximum values are chosen. However, both the mean value and the mode value represent
only a single aspect of a probability sample (Figure 7). For more comprehensive insights, the sample

itself or at least several dimensions of it have to be considered.
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Figure 7: CNT inflow to sediment compartment in the static model:
Density function, mode and mean value of the sample

3.2 THE DYNAMIC CASE

We extended the static model to a dynamic one by applying historical production volumes as model
inflows for previous periods and projections for future periods. This extension demonstrates the ad-
vantage of the DPMFA package. It enables the assessment of the absolute material amount in a stock
from the sum of the preceding material flows.

The modeled time span begins in 2003 to cover the significant time period in which CNT have been
applied on the industrial scale. The annual production volumes are derived from Sun et al. (2014) and
Piccinno et al. (2012). Missing values for past and future periods are estimated using a quadratic re-
gression function (Figure 8). To represent uncertainty about the true production volumes, a standard
deviation (SD) is assumed that complies with the relative SD in the sample of the system input from
the Sun data. This is implemented as ExternalListInflow of single StochasticInflows us-

ing normal distributions with a respective parameterization.

50 T
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Figure 8: Annual production volumes in tons/y; the value for 2012 is taken from Sun et al. (2014), previous years from the survey by Pic-
cinno et al. (2012). Future and missing values were estimated using a quadratic regression function.

CNTs applied in some products have a considerable residence time. This constitutes material stocks
with releases after a delay period. Polymer composites, consumer electronics, and automotive have
been identified as product categories forming significant intermediate stocks of CNTs (Sun et al.
2014). The delay period of consumer electronics is approximated by a list of relative circulation times
of computer notebooks (Stiftung Entsorgung Schweiz et al. 2014) as ListRelease. The mean cir-

culation time in the automotive industry is modeled as a normal distribution with a mean of 11.9
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years (Kraftfahrt-Bundesamt 2013) and a standard deviation of 5 years. For polymer composites, a
mean delay of 7 years is assumed and approximated by a normal distribution with a mean of 7 and
an SD of 3 years. The material releases from both stocks are modeled using a FunctionRelease.

3.3 SIMULATION RESULTS

The dynamic model was investigated for the period from 2003 to 2025 to predict its material stocks
and flows over time. The environmental concentrations of CNTs in soil were determined for the years
2014 and 2025 as examples. Afterward, a second scenario was simulated to investigate the assump-
tion of an immediate production stop of CNTs from 2015 on. Both scenarios were run over a sample
size of 50’000 simulation runs. The computation of each took approximately 8:30 minutes. In the first
scenario, growing production volumes (Figure 8) were assumed.

The change of the amount of CNTs in the soil compartment over time is shown in Figure 9a. Each in-
dividual curve represents the progress of the material amount in the compartment for one random
set of parameter values from the underlying probability distributions, so areas of a high density of
curves indicate values with a high likelihood. In the diagram, the number of curves was limited to 500
to increase the clarity of the representation. However, the mean values and quantiles stated still re-
fer to the full sample. For the years 2014 and 2025, each of the samples of CNTs accumulated in the
soil compartment were projected to a density distribution, from which mean and mode values, as
well as quantiles, were derived (Figure 9b). Based on the mean values and the significant mass of
natural and urban soil of 6.25E+12 kg in Switzerland (Sun et al. 2014), the predicted environmental
concentration in soil is 74 ng/kg for 2014 and 486 ng/kg for 2025.

Soil sink
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Figure 9a,b: Amount of CNT in soil over time; each gray curve represents a random set of parameter values. For the years 2014 and 2025
the sample is projected to a density function.
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Besides the growth of the amount of material stocked (and with it the environmental concentration),
the uncertainty about the true values increases over time as well. While for 2014 the range between
the 15% and the 85% quantile is approximately 0.16 tons, for 2025 it is 1.02 tons. The distribution of
the CNTs among the different stocks for the years 2012 and 2014 is presented as mean values of the
respective samples in Tables 2 and 3 (columns 1 and 2).

Table 2 shows the in-use stocks of CNTs for the years 2012 and 2014 and for both scenarios in 2025.
Table 3 shows the accumulated amounts for the model sinks of the technosphere and environmental
media. Currently, a large part of the material is still bound in products (in-use stock) — 36.47t(2012),
55.50t (2014) — while only 18.91t (2012) and 33.51t (2014) have been further transferred. This
means that in 2012 a share of 65.85% (62.35% in 2014) of the mass that entered the system has not
yet been released to the environment. The material that is released from the product categories
leaves the system to a large extent via export (3.86t) and recycling (15.57t). Waste incineration and
sewage treatment eliminate 10.74t, and subsequently, 2.59t are bound in landfills. The release to
the environment has resulted in an amount of 0.46t in soils and 0.22t in sediments (2014) so far. The
progress of the stocked material in “polymer composites” as a compartment of the technosphere
and in “landfill” as a model sink are pictured in Figure 10a and Figure 10b, respectively.
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Figure 10a,b: Growth Scenario — CNTs bound in products containing polymer composites as stock of the technosphere (a) and in landfills
(b) over time.

The second scenario investigates the system under the assumption of an immediate production stop
from the year 2015 on. This leads to a peak of CNTs bound in the technosphere and a subsequent
steady release (Figure 11a,b).
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Figure 11a,b: Production stop in 2015 scenario — CNTs bound in products containing polymer composites as stock of the technosphere
(a) and in landfills (b) over time.

The simulation results of the projected “growth”-scenario show a strong increase of both the amount
of CNTs bound in polymer composites products and in landfill over time. The development of the ma-
terial amounts in landfill is delayed relative to the material stock in polymer composites and shows a
significant increase in the years from 2020 on. In the “production stop” scenario, the amount of CNTs
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bound in polymer composites slowly runs out, leaving only 5.09t in 2025. The total amount in landfill
stabilizes at an amount of 7.63t at the end of the time considered, and the predicted soil concentra-
tion is 192 ng/kg. Both scenarios show relatively little uncertainty about the product stocks. In con-
trast, the spread between the 15% and 85% quantiles of the landfill stock is approximately the same
as the mean value. Outliers even reach roughly three times the mean amount.

Table 2: Mean values (in tons) of the samples of CNTs bound in the technosphere in different product categories, predicted values for
2012 and 2014, and predictions for 2025 under the assumption of growing production volumes or of an immediate production stop in
2015.

2012 2014 2025
Growing Prod. Stopped Prod.
Polymer Composites 30.60 46.47 172.72 5.09
Consumer Electronics 4.00 6.08 22.86 0.96
Automotive 1.87 2.95 12.84 1.78
Sum 36.47 55.50 208.42 7.83

Table 3: Mean material amounts in sinks in tons, predicted values for 2012 and 2014 and predictions for 2025 under the assumption of
growing production volumes or an immediate production stop in 2015.

2012 2014 2025
Growing Prod. Stopped Prod.
Elimination 5.14 10.74 109.49 61.11
Landfill 1.47 2.59 18.19 7.63
Soil 0.27 0.46 3.04 1.20
Sediment 0.13 0.22 1.11 0.29
Cement Plant 0.05 0.07 0.37 0.09
Recycling 9.51 15.57 84.64 24.79
Export 2.34 3.86 21.75 6.80
Sum 18.91 33.51 238.59 101.91

4 DIscUSSION AND OUTLOOK

Dynamic probabilistic material flow modeling (DPMFA) as a new approach to material flow modeling
provides a method for indirectly assessing material accumulations in stocks — both in the techno-
sphere and in the environment — considering a variety of dependent partial flows and epistemic un-
certainties. The simulation package to support the modeling process also provides components to
represent local system behavior and a simulation environment to investigate dependent variables
such as stocks at a particular time.
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The suitability of the method and that of the Python package supporting it for modeling and simulat-
ing these systems were illustrated through their application to predicting stocks of engineered CNTs
in the environment. This is an exemplary case and the new method is applicable virtually to all MFA
and dynamic MFA modeling cases, e.g., the ones reviewed by Miiller et al. (2014), if and when the
modelers want to consider the uncertainties for all relevant model parameters.

The DPMFA method enables the assessment of environmental concentrations, exposure to humans
and ecosystems, and emerging risks. Moreover, the implementation of the example model showed
that in the case of CNTs, delayed material transfers and the existence of intermediate stocks in the
technosphere have a large impact on estimated current and future environmental concentrations.
Whereas it was possible before to perform such simulations with traditional dynamic material flow
models, it was so far not possible to fully include the uncertainties of the model parameters. Consid-
ering the intermediate stocks enables a closer investigation of the actual material amounts released
to the environment and the prospective future releases. Within the scope of exposure assessment
modeling, the new DPMFA method represents a significant step forward compared to established
MFA methods because it allows consideration of a large range of different types of uncertainty for all
relevant model parameters. The modeler can choose freely whether to use distributions, functions,
or discrete data to describe the uncertainty of all parameters, thus making full use of the available
data while representing the varying quantities and qualities of uncertainty as adequate as possible.

The time representation as a series of subsequent periods of equal length is an abstraction from the
continuous nature of the flows in the real system. There are two good reasons for this abstraction.
First, it enables efficient computation. Second, it corresponds to the way most data is available — as
time series, namely as periodic (e.g., annual) values. Given that a continuous model would introduce
assumptions (by implicit interpolation) that are often not warranted by data, this would induce a po-
tential discretization error that would be rather inherent to the data than explicitly introduced during
the modeling process.

The implementation of our approach as a Python package was chosen because it leads to several ad-
vantages. As a package on language level, it provides great flexibility for representing specific system
characteristics, e.g., by implementing particular distribution functions for specific behaviors. The
modeler is supported with virtually any parametric or non-parametric distribution function. As a
tradeoff, programming skills are required. However, as Python is a language that is easy and conven-
ient to learn, this disadvantage remains limited. At the same time it allows the modeler to embed the
model into a larger project and to utilize the functionality of further associated libraries, e.g., for the
preparation and management of large amounts of data with pandas (McKinney 2014) or for plotting
and evaluating simulation output with matplotlib (Hunter et al. 2007).

To ensure the computability also of larger models, the method accepts some limitations. The pack-
age does not support the representation of uncertainty about the time of a particular release from
stock. However, material amounts in environmental stocks depend primarily on the total inflow to
the system and the proportion transferred to the compartment. Especially for longer observation pe-
riods, the exact duration of a delay process has comparatively little impact on the total amount
stored. Accordingly, uncertainty about these processes has only little influence and is therefore con-
sidered less relevant. Moreover, the transfer coefficients describing the relations between flows are
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considered stable over the investigated time (simulation length). Under this assumption, the model
complexity mainly depends on the number of included model compartments and flow dependencies.

In general, the required computational effort to simulate a DPMFA model can be a limiting factor re-
garding model complexity, simulation length, time granularity, and desired precision of the simula-
tion outcome. The used sample size of 50.000 illustrates a realistic, rather large sample, which leads
to results that are stable between different simulation experiments. The computation of the model
did not pose particular difficulties. In Gottschalk et al. (2010) the model stability of a PMFA model is
discussed based on the match of significant numbers of the model output with the deterministic
counterpart of the model as well as in between two simulation experiments of the same sample size.
To estimate the required sample size for a particular precision of the results general estimations for
Bayesian computation can be applied (e.g. Carlin et al. (2000)).

For the given scope of the method — the assessment of environmental stocks and flows under sub-
stantial uncertainties — the simulation package was shown to be suitable. Considering a much higher
degree of detail either of the system representation or the time resolution might be desirable in
some cases. However, a particular degree of detail of the model only makes sense if it is not consid-
erably exceeded by the existing uncertainties.

As probabilistic — Bayesian — prediction models, our models represent incomplete knowledge about
the true value of a parameter as probability distributions. To ensure to comprise the true parameter
value, also wrong, but plausible values are included. Instead of a validation of the model in terms of
confirming or rejecting it, it can be improved by proving or rejecting some of the assumptions made,
which reduces the incorporated uncertainty.

Future work could provide additional components that are adapted to particular application do-
mains. Moreover, the modeling process could be enhanced by higher-level modeling constructs, in
particular for hierarchical modeling and graphic model representation. Also, while the actual pro-
cessing of uncertain knowledge about material flows is clear, support for the modeler in the formula-
tion of a probability distribution based on heterogeneous, diverse, and incomplete knowledge about
a system variable could be improved.
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