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A Dynamic Programming Algorithm for Constructing
Optimal Prefix-Free Codes with Unequal Letter Costs

Mordecai J. Golin,Member, IEEE, and G̈unter Rote

Abstract—We consider the problem of constructing prefix-free
codes of minimum cost when the encoding alphabet contains
letters of unequal length. The complexity of this problem has been
unclear for thirty years with the only algorithm known for its so-
lution involving a transformation to integer linear programming.
In this paper we introduce a new dynamic programming solution
to the problem. It optimally encodesn words in O (nC+2) time,
if the costs of the letters are integers between1 and C: While
still leaving open the question of whether the general problem is
solvable in polynomial time, our algorithm seems to be the first
one that runs in polynomial time for fixed letter costs.

Index Terms—Dynamic programming, Huffman code, optimal
code.

I. INTRODUCTION

I N this paper we present a new algorithm for construct-
ing optimal-cost prefix-free codes when the letters of the

alphabet from which the codewords are constructed have
different lengths (costs). This algorithm runs in polynomial
time when the costs are fixed positive integers, improving upon
the previously best known algorithm which ran in exponential
time even for fixed letter costs.

Assume that messages consist of sequences of characters
taken from an alphabet of source symbols and are trans-
mitted over a channel admitting anencoding alphabet

containing characters. The length of letter,
symbolizing its cost or transmission time, is length
A codeword is a string of characters in , i.e.,
The lengthof is the sum of the lengths of
its component letters

length

As an example, consider the Morse-code alphabet
If length and length then
length
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Codeword is a prefix of codeword
(with ) if and for

all A set of codewords
is prefix-free if no codeword is a prefix of another
codeword

A prefix-free code assigns a codeword to each of the
source symbols, such that the set is

prefix-free. For example, the codes
and are prefix-free, whereas
the code is not, because is a prefix of . A
prefix-free code is uniquely decipherable, which is obviously
a very desirable property of any code that is to be used.
However, uniquely decipherable codes need not necessarily
be prefix-free.

Let be the probabilities with which the source
symbols occur; these are also the probabilities with which
the respective codewords will be used. The numberis also
called theweight or frequencyof codeword The cost of
the code is

length

This is the expected length of the string needed to transmit
one source symbol.

Given integer costs and proba-
bilities theOptimal Coding Problem
is to find a code containing prefix-free codewords with
minimum cost

As an application, consider the case ofrunlength-limited
codes, which is of importance for storage of information on
magnetic or optical disks or tapes. The stored information can
be viewed as a sequence of bits, but for technical reasons,
it is desirable that the length of a contiguous block of zeros
between two successive ones (arun of zeros) be bounded
from above and below [20], [22]. For example, consider the
common case of -codes. We can model this in our
framework by combining each one-digit with the preceding
block of zeros into a single character of our encoding alphabet

with associated lengths . Usually, the source
symbols are taken as the symbolsand with probabilities

One can now take blocks of successive
input bits and treat them as one source symbol. This gives

source symbols with equal probabilities
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assuming that different input bits are distributed uniformly
and independently.

If and then the length of codeword is
just the number of characters it contains; if then
length is the number of bits in , e.g.,length
A minimum-cost binary code of this type is known as a
Huffman codeand there is a very well known time
greedy algorithm due to Huffman [21] for finding such a code.
This greedy algorithm cannot be adapted to solve the general
optimal coding problem (in the next section we will see why).
In fact, the only known solution for the general problem seems
to be the one proposed by Karp when he formulated it in 1961
[14]. He recast the problem as an integer linear program, which
he solved by cutting plane methods; this approach does not
have a polynomial time bound.

Since then, different authors have studied various aspects
of the problem such as finding bounds on the cost of the
solution [1], [13], [19] or solving the special case in which
all codewords are equally likely to occur for all
[5]–[7], [11], [15], [18], and [23], but not much is known about
the general problem, not even if it is NP-hard or solvable in
polynomial time. The only efficient algorithms known find ap-
proximately minimal codes but not the actual minimal ones [9].

In this paper we describe a dynamic programming approach
to the general problem. In fact, our algorithm may be viewed as
a dynamic programming solution of the integer programming
formulation of Karp [14, Theorem 3]. Our approach is to
construct a weighted directed acyclic graph with a polynomial
number of vertices and arcs and demonstrate that an optimal
code corresponds to a shortest path between two specified
vertices in the graph. Finding an optimal code, therefore,
reduces to a shortest path calculation.

We first describe an algorithm that is easy to understand and
runs in time where is the largest
letter cost. We then improve the running time to
For this second algorithm, some effort is required to prove its
correctness.

While our algorithms do not settle the long-standing ques-
tion of the problem’s complexity they appear to be the first
solutions that run in polynomial time for fixed letter costs.

The two algorithms are both extremely simple and easy to
implement; the bulk of the paper is devoted to deriving them
and proving their correctness. The reader interested primarily
in code is invited to skip directly to Figs. 5 and 6.

The rest of the paper is structured as follows: in the next
section we describe the problem in detail, showing how it can
be transformed into a problem on trees. We then explain why
the standard Huffman encoding algorithm fails in the general
case. In Section III we introduce the procedure of truncating a
tree at a given level, which allows us to transform the problem
into shortest path construction on graphs. In Section IV we
describe the improved algorithm. We conclude in Section V by
describing implementation experiences, some open problems,
and areas for future research.

Recently, Bradford, Golin, Larmore, and Rytter [2] found a
faster algorithm for the binary case , using techniques
for finding minima in monotone matrices. The algorithm needs
only time.

Fig. 1. Two codetrees for five codewords using the three-letter alphabet
� = f�1; �2; �3g with respective letter costsc1 = c2 = 1 and c3 = 2:

Part (a) encodes the set of wordsW = f�1�1; �1�2; �1�3; �2; �3g; and
part (b) encodes the setW = f�1�1; �1�2; �2�1; �2�2; �3g:

A shorter preliminary version of this paper was presented at
the 22nd International Colloquium on Automata, Languages,
and Programming in Szeged, Hungary [10].

II. SOME FACTS CONCERNING CODES AND TREES

Throughout the remainder of the paper it will be assumed
that the numbers are fixed positive integers
and are fixed positive reals.

Let be a prefix-free set of codewords.
We will find it convenient to follow the standard practice and
represent by an ordered, labeled tree By an ordered tree
we mean one in which the children of a node are specified in
a particular order. Each node in can have up to children,
carrying distinct labels from the set of letters To build
perform the following for each : start
from the root and draw the path consisting of an edge labeled

followed by an edge labeled followed by an edge labeled
, an so on, until all characters have been processed. The

th edge leaving a node corresponds to writing characterin
the codeword. See Fig. 1.

This process will construct a tree corresponding to;
the tree will have leaves, each of which corresponds to a
codeword in Note that a codeword cannot correspond to
an internal node. This is because if the node corresponding
to appeared on a path leading from the root to a node
corresponding to another codeword then would be a
prefix of , contradicting the prefix-free property. Also, note
that this correspondence is reversible; every tree withleaves
will correspond to a different prefix-free set ofcodewords.

We draw our trees so that the verticallength of an edge
labeled is Such trees are also calledlopsided treesin
the literature. Thedepthof a node , denoted bydepth ,
is the sum of the lengths of the edges on the path connecting
the root to the node. The root has depth. Note that if
represents a code and a leaf represents then our
definitions imply thatdepth length As usual, the
heightof a tree is the maximum depth of its leaves.

As an example, in Fig. 1(a) the codeword is mapped to
the leaf associated with depth length ,
and the tree has height. When we draw trees in this way,
edge labels can be inferred from the edge lengths. (When
several characters have the same length, we can assign labels
arbitrarily without affecting the quality of the code.) In the
sequel, we will therefore omit edge labels in the figures.
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Suppose now that is a tree with leaves. Label the
leaves as is the codeword assigned to the
th input symbol, having probability Define the cost of the

tree under the labeling to be its weighted external path length

cost depth

The following lemma is easy to see:

Lemma 1: Let be a fixed tree with leaves. If is a
labeling of the leaves such that

depth depth depth (1)

thencost is minimum over all labelings of the tree.
Proof: We want to find a permutation which min-

imizes the inner product of two vectors and
depth where the entries of the second vector

may be arbitrarily permuted. It is well known that the mini-
mum is achieved by permuting one vector into increasing order
and the other one into decreasing order, see [12, p. 261].

This lemma implies that in the optimal cost labeling the
deepest node is assigned the smallest probability, the next
deepest node the second smallest probability, and so on, up to
the shallowest node which is assigned the highest probability
(see Fig. 1). Such a code is called amonotone code, cf. Karp
[14, Sec. IV].

Since we are interested in minimum-cost trees we will
restrict our attention to monotone codes. Thuscost can
be defined without specifying a labeling of the leaves because
the labeling is implied by

The Optimal Coding Problem is now seen to be equivalent
to the following tree problem: given and

find a tree with leaves with minimum
cost over all trees with leaves, i.e.,

cost cost has leaves

From here on we will restrict ourselves to discussing the
tree version of the problem in place of the original coding
formulation.

For example, in Fig. 1, we have For
the probabilities

the tree in Fig. 1(a) has minimum cost; for the probabilities

the tree in Fig. 1(b) has minimum cost. The corresponding
codes are the optimal codes for those probabilities.

Optimal trees have another obvious property:

Lemma 2: In an optimal tree, every internal node has at
least two children.

Proof: By contracting the edge between a node and its
only child we would get a better tree.

Before continuing, it is instructive to examine why the
Huffman encoding algorithm for the case
cannot be adapted to work in the general case. Recall that
the Huffman encoding algorithm works by constructing the
optimal tree from the leaves up. It assumes that it is given a
collection of nodes with associated probabilities

It takes the two leaves with
lowest probability and combines them to form a new node with
probability that it adds to the set while throwing
away the two nodes it combined (for the rest of the algorithm
those nodes will always appear as children of). It then
recurses on the new set of probabilities, stopping when
the set contains only one node. A more complete description
of the algorithm can be found in most introductory textbooks
on algorithm design, e.g., [21].

Why does this algorithm work? Lemma 1 tells us that
and can always be assigned to two deepest nodes in an
optimal tree. In the standard Huffman case of

a node and its sibling have the same depth and, in particular,
the deepest node’s sibling is also a deepest node. Therefore,
there is a minimum cost labeling of the optimal tree in which
the leaves assigned weights and are siblings of each
other. Algorithmically, this implies that these two leaves can
be combined together as in the Huffman algorithm.

In the general case when , however, the deepest and
second deepest node are not necessarily siblings, and thus
and cannot be combined, cf. Figs. 2 or 3.

III. A SIMPLE ALGORITHM FOR FULL TREES

We saw above that building the trees from the bottom up
in a straightforward greedy fashion does not work. Instead,
we have to consider many possible partial solutions, using a
dynamic programming approach. In contrast to the bottom-up
approach of the Huffman algorithm, we construct the trees
from the top down, expanding them level by level. This,
however, is not a necessary feature of our algorithm, it is
only for ease of exposition.

We construct a graph whose size is polynomial inand
whose arcs encode the structural changes caused by expanding
a tree by one level; the cost of an arc will be the cost added
to the tree by the corresponding expansion. Trees will then
correspond to paths in the graph with the cost of a tree being
the cost of the associated path. An optimal-cost tree will
correspond to a least cost path between specified vertices in
the graph and will be found using a standard single-source
shortest path algorithm.

Before proceeding we must address a small technical point.
Recall that we had reduced the Optimal Coding problem to the
problem of finding a tree with leaves and minimal external
path length.

A tree is called afull tree if all of its internal nodes have
the full set of children. For example, if any optimal
tree must be full, by Lemma 2. Unfortunately, if this is
no longer the case. See Fig. 2(a).
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Fig. 2. A case in whichr = 3; (c1; c2; c3) = (1; 1; 2). (a) An optimal tree
T which is not full. (b) The augmented treeFill (T ):

For convenience, we will first present an easier version of
the algorithm which assumes that the tree we are searching
for is full.

Definition 1: Let be a tree. ByFill we denote the full
tree with the same set of internal nodes asIn other words,
to every internal node which has less thanchildren, we add
the appropriate number of children. These new leaves (the set
Fill are called themissing leavesof

SinceFill may have more than leaves, we extend the
definition of the cost of a tree by padding the sequence

with sufficiently many zeros. This means that onlyleaves
are selected with positive probability, and the remaining leaves
are ignored in the computation of the cost.

We clearly havecost Fill cost , because we
can obtain an assignment forFill with the same cost as
cost by giving probability to the missing leaves. See
Fig. 2(b). The restriction to full trees is therefore no loss of
optimality.

To bound the size ofFill we use the fact of Lemma 2
that every internal node of an optimal treehas at least two
children. Therefore, has at most internal nodes. A
full tree with internal nodes has
leaves. The full tree that results from augmenting an optimal
tree thus has at most leaves.

We therefore recast the problem of finding the optimal
tree for leaves, and thus the optimal coding problem, as
follows: given and , set

for and find the full tree with leaves
, with minimum cost, i.e.,

cost cost has leaves

It is this problem that we address now. After finding such a
tree and peeling away its-probability nodes we will be left
with the optimal-coding tree for leaves.

We start by examining the structure of trees and how they
can change as we expand them level by level. The basic tool
we use is the truncated tree:

Definition 2: Let be a tree and a nonnegative integer.
The th-level truncation of is the treeTrunc containing
the root of along with all other nodes in whose parents

Fig. 3. A full treeT with depth6, having seven internal nodes and 15 leaves.
Each internal node hasr = 3 children, and(c1; c2; c3) = (1;1; 3):

have depth at most.

Trunc root depth parent

Fig. 3 gives a full tree and Fig. 4 shows its truncations to
various levels.

We will also need the following definition.

Definition 3: The tree is an -level tree if all internal
nodes satisfy depth

The following are some obvious statements about trunca-
tion.

Lemma 3:

• Trunc is an -level tree.
• If is an -level tree thenTrunc
• If is a full tree thenTrunc is also a full tree.
• Trunc has at most as many leaves as

The idea behind our algorithm will be to build full trees
from the top down. Given a tree with height we will start
from a tree with just the root and successively build the-
level trees Trunc where is the tree
containing only the root and its children and

We will find that building from will not require
knowing all of but only a) thetotal number of leaves with
depth at most in and b) the number of leaves of on
each level (There are no leaves beyond
depth ) To capture this information we introduce the
concept of a signature.

Definition 4: Let be an -level tree. The-level signature
of is the -tuple

sig

in which is a leaf,depth is the
number of leaves in with depth at most, and

depth

Even though the way in whichsig is computed depends
on the truncation level , the signature itself contains no
information identifying the value of Also note that the
truncation operation cannot increase the total number of leaves
in the tree; so, if is a tree with at most leaves and
sig Trunc then
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Fig. 4. The treesT0; T1; T2; and T3 for r = 3; (c1; c2; c3) = (1; 1; 3): The dotted horizontal line is thesig level. Note that
Trunc3(T ) = Trunc4(T ) = Trunc5(T ) = Trunc6(T ) = T , with sig

4
(T ) = (11; 3; 1; 0); sig

5
(T ) = (14; 1; 0; 0); andsig

6
(T ) = (15; 0; 0; 0):

Suppose is the th-level truncation of some code tree
for symbols withsig How much
information concerning can be derived from ?

First note that the nodes on levels are the same in
and ; that is, if is a node withdepth , then

is a leaf in if and only if the corresponding node is a
leaf in therefore has exactly leaves with depth
We cannot say anything similar for a node in with depth
greater than; we know it is a leaf in but the corresponding
node in might be an internal node. By Lemma 1, the
largest probabilities in are assigned to the highest leaves
in which are the highest leaves in All that is known
concerning the remaining probabilities is that they will
be assigned to nodes in that have depth greater thanThis
leads us to the following definition.

Definition 5: Let be an -level tree with sig
For , the th-level cost of is

cost depth (2)

where are the highest leaves of ordered by
depth. For , we define

cost depth

The first term in the sum (2) reflects the cost of the paths
to the leaves which have already been assigned, whereas
the second term reflects only part of the cost for reaching the
remaining leaves, namely, only the part until level

Definition 6: Let be a valid signature,
i.e., Set to be the

minimum cost of a tree with signature More
precisely,

cost is an -level tree

andsig

If is an -level tree withsig
and then, because for , we find that
cost cost Also, contains at least
nodes. Since we may restrict ourselves to trees which have at
most nodes the cost of the optimal tree is exactly the
minimal cost of where the minimum is
taken over all tuples in which and

An optimal tree is one that realizes this cost.
To find this minimum value and its corresponding signature

(and the tree with the signature that has that value) we use
a dynamic programming approach to fill in the table.
We will therefore investigate how truncated trees can be
expanded level by level. Suppose that is an -level tree
with sig and is some -level
tree withTrunc How can differ from ?

By the definition ofTrunc , the two trees must be identical
on levels through in that they contain the same nodes on
those levels and a node is a leaf or internal inif and only
if the corresponding node is respectively a leaf or internal
in Furthermore, the two trees contain exactly the same
nodes on level because the parents of those nodes are
on level or higher. The only difference between the trees
on level is the status of the nodes on that level. In

, all of these nodes are leaves. In, some number of
them might be internal with of them being leaves. Since

, there are essentially possible -level
trees with Trunc , a different tree corresponding
to each possible value of Once is fixed, the number of
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nodes on levels through are also fixed since all
such nodes are either nodes inor children of the internal
nodes at level of

This motivates the following definition:

Definition 7: Let be an -level tree with sig
Let The th expansion of

at level is the tree

Expand

constructed by making of the leaves at level of
internal nodes with children.

Note that the definition does not specifywhich of the
leaves become internal nodes inExpand For our

purposes, however, this does not matter. Although different
choices result in different trees, the number of leaves at each
level is fixed, and more importantly, all resulting trees have the
same cost. A formal statement of this fact requires a notion
of equivalence between trees.

Definition 8: Two trees and are equivalentif they
have the same number of leaves at every level. We write this
as

The following lemma summarizes the obvious properties of
this relation.

Lemma 4:

• All trees which may result as theth expansion of at
level are equivalent. In other words,Expand is
unique up to equivalence.

• If , then Expand Expand ,
provided that the expansions are defined.

• If are two -level trees, thensig sig
• If , thencost cost , for any

In order to describe the transformation of signatures
affected by expansion, we need thecharacteristic vector

associated to an alphabet with length vector
: for is the number of that

are equal to For example,

gives

gives

and

gives

Lemma 5: Suppose is an -level tree with sig
Let Expand be its th expan-

sion at level Then is an -level tree with

sig

(3)

where vector addition and multiplication by the scalaris
carried out componentwise (see Example 1 below), and

cost cost (4)

Proof: Equation (3) follows directly from the discussion
preceding the definition: on levelsthrough has exactly
the same leaves as On level has leaves.
The first entry insig is therefore Nodes
appearing on level of , for , were either
in tree or are one of the children on that level whose
parents are on level There are exactly of
these. Finally, the only nodes appearing on level of

are the children of the internal nodes on level
The proof of (4) follows from a similar analysis. Suppose

; otherwise, has obviously the same cost as
The shallowest leaves in are exactly the same as the
shallowest leaves in which are the leaves in
at at depth or less. also contains exactly leaves at
depth and its remaining leaves are all deeper than
Thus with , we have

cost depth

depth

cost

Example 1: The following table

signature partial sums

shift level

shift level

shows the transition from a signatureto and by two
expansions with and , respectively. We have

and therefore
The modification of the signature is done in two

steps: the first step is the shift, which is due to the change of
focus from level to level The second step is the
addition of a suitable multiple of the vector
which is given in the second line. The last column gives the
sequence of partial sums which
is important later.

This last lemma tells us that to calculate the extra cost
added by a level-expansion of and the signature of the
new expanded tree it is not necessary to knowor but only
sig This motivates us to recast the problem in a graph
formulation with vertices corresponding to signatures, arcs to
expansions, and the cost of an arc to the cost added by its
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associated expansion. A path in this graph will correspond
to the construction of a tree by successive expansions; so
an optimal tree will correspond to a least cost path of a
certain type.

More specifically, we define a directed acyclic graph
, called thesignature graphwith

and
and

such that

We will often denote an arc by , indicating
the value of that defines the arc. We also define a cost
function on the arcs of

for

We pause here to point out the motivation behind this function.
Suppose is an -level tree with sig and
Expand with sig Then Lemma 5 tells us
that

cost cost

Note that the change in cost isindependent of
Now let be the tree containing only the root and its

children. This tree, which we call theroot tree, is the only
-level full tree; so Trunc for every full tree Its

signature sig is the starting
vertex of the graph.

For a directed path

using arcs to get from to , we define the cost of the
path in the usual way as the sum of the cost of its arcs, i.e.,

The following crucial lemma establishes a one-to-one cor-
respondence between paths of lengthemanating from and
-level trees with sig
Lemma 6:
a) Let be a -level tree with

sig

Set

Trunc sig

and let be the number of internal nodes ofat level ,
for Then the path

is contained in , and cost

b) Let

be a path in Let be the root tree. Recursively define

Expand (5)

Then the tree

(6)

is a -level tree withcost
Proof:

a) First note that ifsig then

Fix . Since theTrunc operation cannot increase the
number of leaves in the tree, as well. The arcs

exist by the definition of theTrunc and Expand
operations. Thus Straightforward calculation and
the fact thatcost yields

cost cost cost

cost

b) The fact that the exist and are -level trees with
sig follows from the definition of theExpand
operation. Equality of costs is obtained by following the above
calculation backwards.

We have just seen a) that every path of length in
from to corresponds to a -level tree with

sig and cost and b) that every
-level tree corresponds to a-arc path from to

sig with cost This proves the following
lemma.

Lemma 7: Let and a minimum cost path from
to in Then If contains arcs and

is as defined in (5) and (6) thencost

The calculation of shortest paths is facilitated by the fact
that the graph is acyclic (apart from possible loops at the
vertices ). We show this by specifying a specific
linear ordering of the vertices which is consistent with the
orientation of the arcs (a topological ordering).

Definition 9: Let

We define the linear order on the signatures so that
if and only if the vector
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Fig. 5. The simple algorithm.

is lexicographically smaller than

For example, to compare and , we form
their partial sums sequences

and , respectively. We
compare these vectors lexicographically, the rightmost entry
being most significant. Since and we
have . In Example 1, the partial sums
sequence is indicated in the second column. It is quite easy
to see that the signatures become bigger and bigger (in the
“ ” order) by expansion. The shift of levels causes a left shift
of the sequence, with the rightmost entry being duplicated,
and then a multiple of the vector which is
lexicographically positive, is added.

Lemma 8: If , and then
Proof: Suppose

and

If , then

so
If then and for

and Thus unless in which case
and

For a directed acyclic graph , a shortest path can
be computed in steps by scanning the vertices in
topological order [16, p. 45]. We rewrite the algorithm for our
special case and present it in Fig. 5. Note that in the algorithm
we never explicitly construct the signature graphbut only
implicitly use the graph structure to fill in the table
properly. In essence, we are performing dynamic programming

to fill in the table using an appropriate ordering of the table
entries. The algorithm takes time
for Steps 1 and 2a. Each vertex has
outgoing arcs, and therefore Each
execution of Steps 2b and 2c takes time. Thus the total
cost of the algorithm is time.

Note that the algorithm as presented only calculates the cost
of the optimal tree. To actually construct the optimal tree, we
have to augment the algorithm by storing a pointer with every
array entry, and whenever is improved we
update the pointer to remember where the current optimal
value came from. (In fact it is sufficient to store the value

which lead to the current value.) At the end we backtrack
from the minimum-cost vertex to recover the optimal solution.
This is standard dynamic programming practice, and we omit
the details.

IV. PRUNING OF EXTRA LEAVES

The algorithm in the previous section restricted its attention
to full trees, i.e., trees in which every internal node contains
all of its children. We had to pay for this convenience by
constructing trees with as many as leaves, many more
than the leaves actually used in the trees. In this section
we improve the algorithm by looking only at trees with at
most leaves, thereby reducing the complexity by a factor of

Note that in the binary case of this
makes no difference at all; the results of this section are only
of interest when

We have to relax the requirement of only constructingfull
trees, because optimal trees are not necessarily full, see, e.g.,
Fig. 2. This relaxation permits us to transform the construction
of an optimal tree into a least cost path search in a new
signature graph where

which has size and
The design of the graph and the corresponding algorithm

will be complicated by the following technical point: in the
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previous section we constructed full trees level by level by
specifying the number of internal nodes at each level. Since the
trees being constructed were full, this specification uniquely
determined the tree. If the trees are no longer required to be
full then specifying the number of internal nodes on each level
no longer uniquely specifies the tree; for each internal node it
must also be known which children it has.

As in the previous section, we want to construct the optimal
tree level by level. However, if we ever generate more than

leaves, we want to throw away some of them. It appears
obvious that it is best to throw away the deepest leaves. In
what follows we will prove that this is true.

Definition 10: The reductionof a tree (to leaves) is the
treeReduce obtained by removing all but the shallowest
leaves from It may happen that some internal nodes become
leaves by this process because they lose all their children. In
this case, we remove these additional “unwanted” leaves, and
if necessary, we iterate this cleanup process.

If does not have more thanleaves,Reduce

In other words, we can think of marking a set of
shallowest leaves in The tree Reduce is then the
unique subtree which has precisely this set of leaves. Similarly
as in Definition 7, the set of leaves to be removed is not
uniquely specified, but the number of leaves at each level is
uniquely determined. In other words,Reduce is unique up
to equivalence. It is obvious that reduction does not change
the cost of a tree:

Lemma 9: If is an -level tree then

cost Reduce cost

Proof: This follows from the fact that only the shal-
lowest leaves affect the computation of the cost.

If is an -level tree, then, in going from to Reduce ,
the signature changes as follows:

Let sig
Set
For successively replace by

Then

sig Reduce

reduce

The modified signature graph is defined as
follows:

Let Then there are arcs
leaving For each we have an

arc with

reduce

The costs are as in the graph of Section III. Thestarting
vertex is the signature reduce , which
corresponds to the root tree There is now also a unique
terminal vertex

Example 2: Below we show how Example 1 must be
modified for the present section when After each
expansion, we have to insert an additional reduction step.

signature partial sums

shift level

reduce
shift level

reduce

The reduction step is most easily understood in terms of the
rightmost column: We simple reduce all partial sums which
are bigger than to

The modification of the main loop in the algorithm is
straightforward. Step 2c is replaced by the following two steps.

2c. If then replace
by reduce

2d. Set

newcost

In the end, the cost of the optimal tree can be read off
the entry which corresponds to the terminal
vertex.

However, it turns out that the graph is no longer acyclic,
see Example 2, where we have Therefore, it is not
obvious that the above modification is enough to compute the
shortest path. However, by studying the example carefully we
see why such “backward arcs” like need not worry
us. In going from to three leaves at level become
internal nodes, causing nine leaves to be added to the tree. But
the following reduction chops off all but three of these new
leaves. This means that at least one of the three new internal
nodes has only one child remaining, but, by Lemma 2, such a
node cannot occur in an optimal tree.

To prove correctness, we need to show two things. First,
every path in the graph from the starting vertex to

corresponds tosometree, with appropriate cost.
Secondly and more importantly, the optimal tree corresponds
to a path from to which visits the vertices in an order
consistent with the lexicographic order These crucial pro-
perties are formulated in the following lemma, which is an
analog of Lemma 6.

Lemma 10:

a) Let be an optimal tree with height denoted by
Set Trunc ReduceFill

sig and let be the number of internal
nodes of at level , for Then
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the path

exists in , with

and cost
b) Let

be a path in Let be the root tree. Recursively
define

ReduceExpand

Then the tree is a -level tree with
cost

Proof:
a) Note first that in as well as in each , every missing

leaf has depth at least: if a missing leaf of had depth less
than , we could remove some leaf at leveland add a new
leaf in the position of the missing leaf, obtaining a better tree.
Since the truncation operator deletes either all children of a
node or none, it generates no new missing leaves. Therefore,
the claimed property carries over from to all trees The
following property follows:

Property 1: In all treesFill , the number of leaves at
depth less than is less than

Optimality of implies another property.

Property 2: If , then , and the operation
Expand increases the total number of leaves at levels

Proof: If , then a node at level can
have at most one child in the tree By Lemma 2, a node with
one child cannot occur in an optimal tree, and hence there are
no internal nodes at level

On the other hand, if , then at least two
children of each node that is expanded lie on levels
and these children more than compensate for the loss of leaves
due to the fact that the leaves at level that are expanded
become internal nodes.

To prove the lemma we must show that

ReduceExpand

We will use the fact that

Fill Expand Fill (7)

This is true because both trees are full trees which have the
same number of internal nodes at each level.

Let us first deal with the easy case whereFill has
less than leaves. Then the reduction operation is void,

Fill and we have

Fill Expand Fill Expand

If we apply the reduction operation to both sides of this
equation, we obtain

ReduceFill ReduceExpand

which is what we wanted to show. We also have
because either has more leaves in total than (in case

), or the reduction operation is void also forFill
In the latter case we have Expand , and we
can apply Lemma 8.

Now let us consider the other case, whereFill has
at least leaves. By Property 1,Fill has less than
leaves at levels The same is true for
ReduceFill and therefore has height Fill
and ReduceFill have the same number of leaves
at each level betweenand , and both trees have at least

leaves in total at levels After expansion, it follows
that also the treesExpand Fill and Expand
have the same number of leaves at each level betweenand

and, moreover, by Property 2, both trees still have at least
leaves in total at levels The reduction operation will

therefore yield equivalent trees

ReduceExpand Fill ReduceExpand

By applying (7) we obtain

ReduceFill

ReduceExpand Fill

ReduceExpand

which is what we wanted to show.
To show , let

sig

and

sig

By the above considerations about the numbers of leaves at
levels up to , we have

and but
for we have

(Note
that is the signature at level ) Thus

b) Since theExpandand Reduceoperations are faithfully
modeled by the arcs of the graph, it follows that the trees
exist and have the given signatures. Equality of costs can be
proved in the same way as in Lemma 6, using the fact that
reduction does not influence the cost (Lemma 9).

Thus as in the previous section, we can actually find the
shortest path in steps, each step
taking time. The code is given in Fig. 6. Actually, it is
not difficult to be more careful in the implementation and avoid
scanning the “backward arcs” of the graph. In the loop of Steps
2b–2d, we let run only up to
We leave it as an exercise for the reader to check that this
is correct.

The bound for the number of nonnegative
-tuples with
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Fig. 6. The improved algorithm.

is only a loose estimate. By looking at the strictly increasing
sequence

(8)

we see that these tuples are in one-to-one correspondence
with the family of -subsets of the set
and hence their number is (In fact, if one wants to
store the table as compactly as possible, in an array of

entries in the proper lexicographic order, it is most
convenient to use the vector (8) for indexing.) The number of
arcs is now , and the processing of each arc
involves an overhead of time. This gives a time
bound of

We have

for all

as can be easily proved by induction on, proving the base
cases and separately. We have therefore proved
the following theorem.

Theorem 1: The minimum-cost prefix-free code for
words can be computed in time and
space, if the costs of the letters are integers betweenand

V. CONCLUSIONS, IMPLEMENTATIONS, AND OPEN PROBLEMS

In this paper we described how to solve the optimal-
coding problem in time where the letter lengths

are integers, is the longest length
of an encoding letter, and is the number of symbols to be
encoded. This improves upon the previous best known solution
due to Karp [14] which solved the problem by transformation
to integer linear programming and whose running time could
therefore only be bounded by an exponential function of

Our algorithm works by creating a weighted graph
with vertices and arcs and showing that

optimal codes (corresponding to minimum cost trees) can be
constructed by finding least cost paths in

It is easy to see that theheightof a tree is exactly the number
of arcs in its corresponding path from to Thus we can
also use our formulation to solve theLength-Limited Optimal
Coding Problem. In this problem, we are given the same data
as in the original problem and an integer, and we want to
find a minimum-cost code containing no codeword of length
more than To solve this new problem it is only necessary is
to find the least cost path from the source to the sink that uses

or fewer arcs, which can be easily done in time.
In a practical implementation of our algorithm many im-

provements are possible. Recall that our algorithm is equiva-
lent to searching for a shortest path in a directed acyclic graph.
The simple shortest path algorithm which we used essentially
scans all arcs of the graph. There is a whole range of heuristic
graph search algorithms to be considered that might speed up
the running time of the algorithm in practice, cf. [17].

One obvious direction for future research is to resolve the
complexity of the optimal-coding problem. It is still unknown
if the problem is polynomial-time solvable, or if the problem
is NP-hard.

Another direction is to relax the restriction that theare
integers. Obviously, in any conceivable practical application
the given numbers are rationals; therefore, they can all
be scaled to be integers and our algorithm can be used.
However, since the largest integer cost enters into the exponent
of the complexity, this approach is in general not feasible.
It is challenging to find an algorithm that would solve the
problem with, for example,
in reasonable time, and which could just as easily be applied to
incommensurable lengths such as

It is not known whether the restriction to prefix-free codes in
the optimal coding problem, as opposed to the more general
class of uniquely decipherable codes, is a severe restriction
that excludes codes which would otherwise be optimal, or
whether an optimal code in the class of uniquely decipherable
codes can always be found among prefix-free codes. See
the survey by Bruỳere and Latteux [4] for this and related
open problems.
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We have tested the algorithm for computing optimal codes
for the Roman alphabet plus “space,” using the probabilities
which are given in [3, p. 52] and reproduced in Karp [14].
We ran an experimental implementation of our algorithm in
MAPLE on an HP 9000/750 workstation. When the encoding
alphabet had two letters, , we found an optimal
code with a cost of in 1.5 s. For an encoding alphabet
with three letters, , we found an optimal
cost of in 6 s. The only algorithm in the literature
for which running times are reported is the algorithm of Karp
[14] from 1961. His program took 1 min for the first example
and 5 min for the second one on an IBM 704 computer.
(The code we found for the first example was different from
Karp’s even though, of course, it had the same cost.) These
running times can hardly be compared. On the one hand,
this machine was much slower than today’s computers. An
IBM 704 in 1955 could carry out about 5000 floating-point
operations per second (0.005 MFLOPS). On the other hand,
the MAPLE system is not designed for taking the most efficient
advantage of computer hardware. For example, all arithmetic
operations are carried out in software, and array indexing is
not as efficient as in a conventional programming language.
(For the second problem, about 40% of the total running
time was spent initializing the array .) We ran an integer
programming formulation derived from Karp’s on the same
workstation as our MAPLE code. The model was formulated in
theAMPL modeling language [8], using about 25 lines of code,
and was solved with theCPLEX 4.0 software for mixed-integer
optimization. Interestingly, the three-letter problem was easier
to solve than the two-letter problem. It took 0.19 s, 46 branch-
and-bound nodes, and a total of 207 pivots of the simplex
algorithm to solve the two-letter problem, but only 0.09 s,
3 branch-and-bound nodes, and 143 simplex iterations to solve
the three-letter problem.
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