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A Dynamic Programming Algorithm for Constructing
Optimal Prefix-Free Codes with Unequal Letter Costs

Mordecai J. Golin,Member, IEEE and Qinter Rote

Abstract—We consider the problem of constructing prefix-free Codewordw = ziz2---x IS aprefix of codewordw’ =
codes of minimum cost when the encoding alphabet contains whaly oz, (with xJ.’x;. eX)if k<K andz; = x; for
letters of unequal length. The complexity of this problem has been all j = 1,---,k A set of codewords¥ = {wy,---,wn}
unclear for thirty years with the only algorithm known for its so- . . . . .
lution involving a transformation to integer linear programming. 1S Prefix-freeif no codewordw € W is a prefix of another

In this paper we introduce a new dynamic programming solution codewordw' € W.
to the problem. It optimally encodesn words in O (n“72) time, A prefix-free code assigns a codeword; to each of the
if the costs of the letters are integers between and C. While ., squrce symbols, such that the 98t = {wy, -, wy,} is

T o et 1 ST O preficree. For example, the cods, 10,10, 110.1111)

one that runs in polynomial time for fixed letter costs. and{000,001, 010,011,100, 101,11} are prefix-free, whereas
the code{010, 11,0} is not, becaus® is a prefix of010. A
prefix-free code is uniquely decipherable, which is obviously
a very desirable property of any code that is to be used.

However, uniquely decipherable codes need not necessarily
|. INTRODUCTION be prefix-free.

Index Terms—Bbynamic programming, Huffman code, optimal
code.

N this paper we present a new algorithm for construct- Let p;,---,p, be the probabilities with which the source
ing optimal-cost prefix-free codes when the letters of tteymbols occur; these are also the probabilities with which
alphabet from which the codewords are constructed hatree respective codewords will be used. The numkes also
different lengths (costs). This algorithm runs in polynomiatalled theweightor frequencyof codewordw;. The cost of
time when the costs are fixed positive integers, improving updtime codeW is
the previously best known algorithm which ran in exponential

time even for fixed letter costs. cWw) = Z length(w;) - p;-
Assume that messages consist of sequences of characters isn
taken from an alphabet oi source symbols and are transThis is the expected length of the string needed to transmit
mitted over a channel admitting aencoding alphabel: = one source symbol.
{a1,- -, a,} containingr characters. The length of letter, Given integer cost§ < ¢; < ¢» < -+ < ¢, and proba-

symbolizing its cost or transmission time,ds= length(«;).  pilities pL>pa > - > p, > 0, the Optimal Coding Problem

A codewordw is a string of characters ik, i.e., w € X*. 5 {g find a codei’ containingn prefix-free codewords with
Thelengthof w = a;, i, - -, is the sum of the lengths of yinimum costC(W)

its component letters

As an application, consider the case rohlength-limited
. codes which is of importance for storage of information on
length(w) = Z o . magr_1et|c or optical disks or tape_s. The stored mfo_rmatmn can
’ be viewed as a sequence of bits, but for technical reasons,
it is desirable that the length of a contiguous block of zeros
As an example, consider the Morse-code alphapet}. between two successive ones rian of zeros) be boqnded
If length(:) = ¢, = 1 and length(—) = ¢ = 9 then from above and below [20], [22]. For example, cc.)ns.|der the
length(- —-) = 4. common case 0f(2,7)-codes. We can model this in our
framework by combining each one-digit with the preceding
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assuming that different input bits are distributed uniformly depth ()

and independently. 0
If »=2 andc; = ¢ =1 then the length of codeword is

just the number of characters it containsyif=0, > =1 then 1

length(w) is the number of bits inv, e.g.,length(01001) =5.

A minimum-cost binary code of this type is known as a 2

Huffman codeand there is a very well know® (nlogn) time

greedy algorithm due to Huffman [21] for finding such a code. 3

This greedy algorithm cannot be adapted to solve the general

optimal coding problem (in the next section we will see WhyEig. 1. Two codetrees for five codewords using the three-letter alphabet

. = {a1, a2, a3} with respective letter costsy = ¢ = 1 andes = 2.

In fact, the only known solution for the general problem seengg (a) encodes the set of WOrts = {1, a10s, 0103, a9, a3}, and

to be the one proposed by Karp when he formulated it in 1964art (b) encodes the s&t = {11, a102, azay, azaz, s}

[14]. He recast the problem as an integer linear program, which

he solved by cutting plane methods; this approach does nok shorter preliminary version of this paper was presented at

ha;ien?e%ﬂlggor(;?értelr:teaz(sﬁgg have studied various as tf}e 22nd International Colloquium on Automata, Languages,

, pects L

of the problem such as finding bounds on the cost of tﬁiend Programming in Szeged, Hungary [10]

solution [1], [13], [19] or solving the special case in which

all codewords are equally likely to occgp; =1/n for all 7) Il. SOME FACTS CONCERNING CODES AND TREES

[5]-{71, [11], [15], [18], and [23], but not much is known about  Throughout the remainder of the paper it will be assumed

the general problem, not even if it is NP-hard or solvable ihat the numbers; < ¢, < - -- < ¢, are fixed positive integers

polynomial time. The only efficient algorithms known find apand1 > p; > p» > --- > p,, > 0 are fixed positive reals.

proximately minimal codes but not the actual minimal ones [9]. Let W = {wy,---,w, } be a prefix-free set of codewords.
In this paper we describe a dynamic programming approagfe will find it convenient to follow the standard practice and

to the general problem. In fact, our algorithm may be viewed agpresen??” by an ordered, labeled tr&& By an ordered tree

a dynamic programming solution of the integer programminge mean one in which the children of a node are specified in

formulation of Karp [14, Theorem 3]. Our approach is t@ particular order. Each node i can have up to children,

construct a weighted directed acyclic graph with a polynomishrrying distinct labels from the set of letteXs To build 7’

number of vertices and arcs and demonstrate that an optirpetform the following for eachy = z1zs - xx € W: start

code corresponds to a shortest path between two specifiegn the root and draw the path consisting of an edge labeled

vertices in the graph. Finding an optimal code, thereforg, followed by an edge labeleg) followed by an edge labeled

reduces to a shortest path calculation. x3, an so on, until alk: characters have been processed. The
We first describe an algorithm that is easy to understand ajid edge leaving a node corresponds to writing charaetén

runs inO ((n(r — 1))¢*+2) time whereC = ¢, is the largest the codeword. See Fig. 1.

letter cost. We then improve the running time @(n<+2). This process will construct a tree corresponding g
For this second algorithm, some effort is required to prove itse tree will haven leaves, each of which corresponds to a
correctness. codeword ini¥. Note that a codeword: cannot correspond to

While our algorithms do not settle the long-standing quean internal node. This is because if the node corresponding
tion of the problem’s complexity they appear to be the firsdb w appeared on a path leading from the root to a node
solutions that run in polynomial time for fixed letter costs. corresponding to another codewortd then w would be a

The two algorithms are both extremely simple and easy foefix of w’, contradicting the prefix-free property. Also, note
implement; the bulk of the paper is devoted to deriving thethat this correspondence is reversible; every tree wikbaves
and proving their correctness. The reader interested primamll correspond to a different prefix-free set nfcodewords.
in code is invited to skip directly to Figs. 5 and 6. We draw our trees so that the vertidehgth of an edge

The rest of the paper is structured as follows: in the nekdbeled«; is ¢;. Such trees are also callédpsided treesn
section we describe the problem in detail, showing how it cahe literature. Thelepthof a nodev € T, denoted bydepth(v),
be transformed into a problem on trees. We then explain wigythe sum of the lengths of the edges on the path connecting
the standard Huffman encoding algorithm fails in the generdde root to the node. The root has degithNote that if 7’
case. In Section Il we introduce the procedure of truncatingrapresents a codd” and a leafv representsy € W then our
tree at a given level, which allows us to transform the probledefinitions imply thatdepth(v) = length(w). As usual, the
into shortest path construction on graphs. In Section IV weightof a tree is the maximum depth of its leaves.
describe the improved algorithm. We conclude in Section V by As an example, in Fig. 1(a) the codewargns is mapped to
describing implementation experiences, some open problernin® leafv associated withy;, depth(v) = 3 = length(oy as),
and areas for future research. and the tree has height When we draw trees in this way,

Recently, Bradford, Golin, Larmore, and Rytter [2] found &dge labels can be inferred from the edge lengths. (When
faster algorithm for the binary cage = 2), using techniques several characters have the same length, we can assign labels
for finding minima in monotone matrices. The algorithm needsbitrarily without affecting the quality of the code.) In the
only O (n) time. sequel, we will therefore omit edge labels in the figures.
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Suppose now thai” is a tree withn leaves. Label the: Proof. By contracting the edge between a node and its
leaves aw = (v1,-- -, v, ); v; is the codeword assigned to theonly child we would get a better tree. O
ith input symbol, having probability;. Define the cost of the

tree under the labeling to be its weighted external path Ien%?_rif_gr? e%%rgé?ﬁéngiggri!;n;n?(;frutcr:]tévia?e:e;aznIn_ecWEylthe
;€1 — €2 —

n cannot be adapted to work in the general case. Recall that
cost(T,v) = Zdepth(vi) - P the Huffman encoding algorithm works by constructing the
p— optimal tree from the leaves up. It assumes that it is given a
collection ofn nodes with associated probabilitiés> p; >
The following lemma is easy to see: p2 > -+ > p, > 0. It takes the two leaves,,,p,_1 with
lowest probability and combines them to form a new node with
probabilityp = p,,+p,_1 that it adds to the set while throwing
away the two nodes it combined (for the rest of the algorithm
those nodes will always appear as childrenpf It then
recurses on the new set of— 1 probabilities, stopping when
the set contains only one node. A more complete description
thencost(T’,v) is minimum over all labelings of the tree.  of the algorithm can be found in most introductory textbooks
Proof: We want to find a permutatiom which min-  on algorithm design, e.g., [21].
imizes the inner product of two vector;)i=i,.... and  Why does this algorithm work? Lemma 1 tells us tpat
(depth(vz(;)))i=L,....n, Where the entries of the second vectogndp,,_; can always be assigned to two deepest nodes in an
may be arbitrarily permuted. It is well known that the minipptimal tree. In the standard Huffman case-6f 2,¢; = ¢, =
mum is achieved by permuting one vector into increasing ordera node and its sibling have the same depth and, in particular,
and the other one into decreasing order, see [12, p. 261]. the deepest node’s sibling is also a deepest node. Therefore,
This lemma implies that in the optimal cost labeling th&1€ré is & minimum cost labeling of the optimal tree in which
deepest node is assigned the smallest probability, the nE}§ leaves assigned weighis andp,—, are siblings of each
deepest node the second smallest probability, and so on, uQer- Algorithmically, this implies that these two leaves can
the shallowest node which is assigned the highest probabilt§ combined together as in the Huffman algorithm.
(see Fig. 1). Such a code is calledn@notone codecf. Karp N the general case when # c,, however, the deepest and
[14, Sec. IV]. second deepest node are.not neces;anly siblings, anagbthus
Since we are interested in minimum-cost trees we wfind?»—1 cannot be combined, cf. Figs. 2 or 3.
restrict our attention to monotone codes. Thugst(ZT") can
be defined without specifying a labeling of the leaves because
the labeling is implied byZ. [ll. A SIMPLE ALGORITHM FOR FULL TREES
The Optimal Coding Problem is now seen to be equivalent\ye saw above that building the trees from the bottom up
to the following tree problem: givefe,---,¢.) andpr > i 4 straightforward greedy fashion does not work. Instead,
pz 2 -+ 2 py find a treeT™ with » leaves with minimum e have to consider many possible partial solutions, using a
cost over all trees with leaves, i.e., dynamic programming approach. In contrast to the bottom-up
approach of the Huffman algorithm, we construct the trees
cost(7™) = min{cost(T’): 1" hasn leaveg. from the top down, expanding them level by level. This,
however, is not a necessary feature of our algorithm, it is
From here on we will restrict ourselves to discussing thenly for ease of exposition.
tree version of the problem in place of the original coding We construct a graph whose size is polynomiakirand

Lemma 1: Let 7’ be a fixed tree withn leaves. Ifv is a
labeling of the leaves such that

depth(vy) < depth(vz) < --- < depth(v,,) Q)

formulation. whose arcs encode the structural changes caused by expanding
For example, in Fig. 1, we have, ¢z, c3) = (1,1,2). For  a tree by one level; the cost of an arc will be the cost added
the probabilities to the tree by the corresponding expansion. Trees will then
correspond to paths in the graph with the cost of a tree being
(p1.p2,P3,P4,05) = (35 35- 15 357 15) the cost of the associated path. An optimal-cost tree will

correspond to a least cost path between specified vertices in
the tree in Fig. 1(a) has minimum cost; for the probabilitiesthe graph and will be found using a standard single-source
shortest path algorithm.
(D1, P2, D3, P4, P3) = (%’ 11l %) Before proceeding we must addrgss a sm.all technical point.
Cretenene Recall that we had reduced the Optimal Coding problem to the
|problem of finding a tree withw leaves and minimal external
r%\th length.
A tree is called dull tree if all of its internal nodes have
the full set of+ children. For example, if = 2 any optimal
Lemma 2:In an optimal tree, every internal node has atee must be full, by Lemma 2. Unfortunately,rif> 2 this is
least two children. no longer the case. See Fig. 2(a).

the tree in Fig. 1(b) has minimum cost. The correspondi
codes are the optimal codes for those probabilities.
Optimal trees have another obvious property:
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depth (a) (b) docpth

T Fill(T) 1

/5 1/5 1/5 1/5 1/5 1/5 1/5

3
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Fig. 2. A case in which- = 3, (¢1,¢2,c3) = (1,1,2). () An optimal tree Fig. 3. AfulltreeT with depth6, having seven internal nodes and 15 leaves.
T which is not full. (b) The augmented tréll (7). Each internal node has= 3 children, and(c1, c2, c3) = (1,1,3).

For convenience, we will first present an easier version bive depth at mosi
the algorithm which assumes that the tree we are searchin

for is full. gI'runci(T) = root(7") U {u € T: depth(parent(u)) < i}.

Definition 1: Let 7 be a tree. ByFill (T") we denote the full Fig. 3 gives a full tree and Fig. 4 shows its truncations to
tree with the same set of internal nodes7adn other words, various levels.
to every internal node which has less thaohildren, we add ~ We will also need the following definition.
::h.ﬁ a;propTrlate numlllr)edr ?r: Ch_lld_ren.IThesefnTeW leaves (the SeIBefinition 3: The treeT is ani-level tree if all internal

il (T) —T) are called themissing leavesf T nodesv € T satisfy depth(v) < <.

SinceFill (T') may have more than leaves, we extend the

- ) The following are some obvious statements about trunca-
definition of the cost of a tree by padding the sequence

tion.

(p17p27"'7pn7070707"') Lemma 3:

: - . * Trung(T) is ani-level tree.
with sufficiently many zeros. This means that omiyleaves | ¢ 7 is ani-level tree therTrung (T) = 7.

are ;elected _vvith positive prqbability, and the remaining leaves, |t 7 is a full tree thenTrunc(T) is also a full tree.
are ignored in the compu_tat|0n of the cost. « Trung(T) has at most as many leavesBs 0
We clearly havecost(Fill (T')) < cost(T), because we
can obtain an assignment &1l (T) with the same cost as The idea behind our algorithm will be to build full trees
cost(T’) by giving probability 0 to the missing leaves. Seefrom the top down. Given a tre€ with height; we will start
Fig. 2(b). The restriction to full trees is therefore no loss dfom a tree with just the root and successively build the
optimality. level treesT; = Trung(T), ¢ =0,---, j, whereTj is the tree
To bound the size ofi (7)) we use the fact of Lemma 2 containing only the root and its children andl}; = 7"
that every internal node of an optimal tréehas at least two ~ We will find that buildingZ;+; from Z; will not require
children. Thereforel’ has at most. — 1 internal nodes. A knowing all of Z; but only a) thetotal number of leaves with
full tree with T internal nodes has + Ir — I =1+ (r — 1)I  depth at most in 7; and b) the number of leaves @ on
leaves. The full tree that results from augmenting an optim@@ch levek +1,¢+2,---, i+ C. (There are no leaves beyond
tree thus has at mosdt+ (n — 1)(r — 1) < n(r — 1) leaves. depthi 4+ C.) To capture this information we introduce the
We therefore recast the problem of finding the optim&oncept of a signature.

tree forn leaves, and thus the optimal coding problem, as pefinition 4: Let 7 be ani-level tree. The-level signature

follows: givgn (cl,~~~,c,:) andp; > ps > 2 P S€U Gf 7 the (C + 1)-tuple
p; = 0 for ¢ > n and find the full tree™ with m leaves
(n <m < n(r — 1)), with minimum cost, i.e., sigy(T) = (m; 11, 1o, -, l¢)
cost(1™) = min{cost(T’): T"hasm leaves in which m = |{v € T : v is a leaf,depth(v) < 4}| is the
n<m< n(r—1D} number of leaves iY” with depth at most, and
It is this problem that we address now. After finding such a /x = [{v € T :depth(u) =t +k}|,  k=1,---,C.
tree and peeling away it®-probability nodes we will be left . o ]
with the optimal-coding tree fon leaves. Even though the way in whichig;(7;) is computed depends

We start by examining the structure of trees and how thé&j the truncation level, the signature itself contains no

can change as we expand them level by level. The basic t§§prmation identifying the value of. Also note that the
we use is the truncated tree: truncation operation cannot increase the total number of leaves

o o in the tree; so, ifl" is a tree with at most(r — 1) leaves and
Definition 2: Let 7" be a tree and a nonnegative integer. sig,(TrunG,(T)) = (m;ly,---,lc), then

Theith-level truncation off” is the tre€Trunc,(7") containing
the root of 1" along with all other nodes ifi” whose parents m4+lh+--+lc <n(r—1).
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0 0
1 1 /¥\
2 2 \
3 3
4 4
5 5
6 6
Ty = Trunco(T) T1 = Trunc,(T)
sigo(To) = (0;2,0,1) sigy (T1) = (0;4,1,2)
0 0
2 peee 2
: \ \\ AN
; 4 \\ \ \\
5 5
6 6
Ty = Truncy(T) Ty = Truncs(T)
sigy(T2) = (1;7,2,3) sigy(Ts) = (7;4,3,1)

Fig. 4. The treesTy,T1,7>, and T3 for r = 3, (ci,c2,¢3) = (1,1,3). The dotted horizontal line is thesig level. Note that
Trung (T') = Truncy(T) = Trung(T') = Trung; (T) = T, with sig,(T) = (11;3,1,0), sig;(T") = (14;1,0,0), andsigs(T) = (15;0,0,0).

Suppose€T; is theith-level truncation of some code trd¢é  minimum cost of a tree with signatufer;iy,---,lc). More
for n symbols withsig,(7;) = (m; 1,12, ---,lc). How much precisely,
information concernindg’ can be derived fron®;?

First note that the nodes on levetsi are the same i’ CPT [ 01, -+, le]=min {cos}(T): i>0,T is ani-level tree
andT;; that is, ifu € T; is a node withdepth(x) < 4, then andsig,(T) = (m;ly, -+, 1lc)}
w IS a leaf inT; if and only if the corresponding node is a i ) o
leaf in T'; T therefore has exacthy leaves with depth< :. If T"is an i-level tree withsig,(T) = (m;l,l2,--,lc)

We cannot say anything similar for a node i with depth @ndm 2> n then, because; = 0 for ¢ > m, we find that
greater thari; we know it is a leaf iriZ; but the corresponding C0SH(1') = cost(T). Also, T' contains at leasti+1, +- - -+lc

node in7" might be an internal node. By Lemma 1, the nodes. Since we may restrict ourselve; to trees. which have at
largest probabilities iff” are assigned to the: highest leaves MOSt2(r —1) nodes the cost of the optimal tree is exactly the
in 7" which are them highest leaves ifT;. All that is known Minimal cost ofoPT [m; 11,1y, -- -, lc] where the minimum is
concerning the remaining — m probabilities is that they will {@ken over all tuples in which. > n andm +1; +---+lc <

be assigned to nodes i that have depth greater thanThis (" — 1). An optimal tree is one that realizes this cost.

leads us to the following definition. To find this minimum value and its corresponding signature
(and the tree with the signature that has that value) we use

Definition 5: Let 7" be an-level tree withsig,(T) = a dynamic programming approach to fill in tl®T table.
(m;ly,l2, -+, lc). Form < n, theidth-level cost ofl" is We will therefore investigate how truncated trees can be

m " expanded level by level. Suppose tHatis an i-level tree
cost(T) = Z depth(v;) - py +i - Z D (2) Wwith sig,(T") = (m;l1, 12, -+, lc) and1” is some(i + 1)-level

— tmmtl tree with Trung,(Z”) = 7. How can?” differ from 7°?

) By the definition ofTrunc;, the two trees must be identical
wherew,,---, v, are them highest leaves of” ordered by o |evelso throughi in that they contain the same nodes on
depth. Form > =, we define those levels and a node is a leaf or internallinf and only

n if the corresponding node is respectively a leaf or internal
cost(T) = Z depth(v:) - ;. in 7”. Furthermore, the two trees contain exactly the same
t=1 nodes on level + 1 because the parents of those nodes are

i . on level ¢ or higher. The only difference between the trees
The first term in the sum (2) reflects the cost of the pat%sn leveli 4+ 1 is the status of thé; nodes on that level. In

to the m leaves which have already been assigned, whereas
. all of these nodes are leaves. T, some numbey, of
the second term reflects only part of the cost for reaching the

remaining leaves, namely, only the part until level em might be internal witl 4 of them be_ing leaves. Since
' ' 0 < ¢ < [y, there are essentially + 1 possible(i + 1)-level

Definition 6: Let (m;ly,l2,---,lc) be a valid signature, trees7” with Trung,(7”) = T, a different tree corresponding

ie., m,ly, --,lc > 0. Set OPT[m;!l1,---,lc] to be the to each possible value af. Oncegq is fixed, the number of
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nodes on levels+ 2 through: + 1+ C are also fixed since all
such nodes are either nodesiinor children of theg internal
nodes at level + 1 of 77.

This motivates the following definition:

Definition 7: Let T' be ani-level tree with sig,(T)
(m;ly,la,---,lc). Let 0 < ¢ < [;. The ¢gth expansion of
T at levels + 1 is the tree

T' = Expand(T, q)

constructed by making of the leaves at level + 1 of T
internal nodes with- children.

Note that the definition does not specifyhich ¢ of the
l; leaves become internal nodes Expand(7’). For our

1775

Proof: Equation (3) follows directly from the discussion
preceding the definition:; on levelsthroughz, 7" has exactly
the same leaves dB. On leveli + 1, 7" hasl; — q leaves.
The first entry insig; , (7”) is thereforem +1; — ¢q. Nodes
appearing on leveli+1)+j of 77, for 1 < j < C, were either
in tree’l” or are one of the - d; children on that level whose
parents are on level + 1). There are exactly; 1 + gd; of
these. Finally, the only nodes appearing on levell + C of
T" are thegdc children of the internal nodes on levil- 1.

The proof of (4) follows from a similar analysis. Suppose
m < n; otherwise, T’ has obviously the same cost d%
The m shallowest leaves iff” are exactly the same as the
shallowest leaves, - - -, v,, in T, which are the leaves iff’
at at depthi or less.T” also contains exactliy — ¢ leaves at

purposes, however, this does not matter. Although differeépépthiJr 1 and its remaining leaves are all deeper thanl.

choices result in different trees, the number of leaves at e

level is fixed, and more importantly, all resulting trees have the

s withm' = min{m + 1, — ¢,n}, we have

same cost. A formal statement of this fact requires a notion

of equivalence between trees.

Definition 8: Two trees?; and 1> are equivalentif they

have the same number of leaves at every level. We write this

as
T, =Ty

The following lemma summarizes the obvious properties
this relation.

Lemma 4:

All trees which may result as thgh expansion ofl" at
level i + 1 are equivalent. In other wordExpand(7T’) is
unique up to equivalence.

If Ty = T, then Expand(71,q) = Expand(Z3,q),
provided that the expansions are defined.

If T, = T3 are twoti-level trees, thesig, (71 ) = sig;(7%).
If 71 = 1>, thencost (1) = cost(1), for any:«. O

L]

L]

(
In order to describe the transformation of signatures
affected by expansion, we need tlobaracteristic vgector . §=(16;14,8,2,0) | (16,30,38,40,40)
(di,d2,---,d¢) associated to an alphabet with length vector shift Ie.vet , (30f8’2’0’0) (30,38, 40,40, 40)
(c1,c2,--+,¢): for 1 < j < O, d; is the number of; that 4= 2: §'=1(28;8,2,4,4) (28,36, 38,42, 46)
are equal toj. For example, shift levet (36;2,4,4,0) (36,38,42,46,46)
g=3: 5" =(33;2,4,10,6) | (33,35,39,49,55)

(c1,¢2,¢3,¢4) =(1,2,2,2) gives (di, d2) = (1, 3),
(c1,c2,¢3) = (1,1,3) gives (di,da, d3) = (2,0,1),
and
(c1,c2,03) = (2,3,3) gives (dy, da, d3) = (0,1,2).
Lemma 5: SupposeT is an i-level tree withsig,(T) =
(m;ly,la,---,1lc). Let T" = Expand(T, q) be its gth expan-
sion at leveli + 1. ThenZ” is an (i + 1)-level tree with
'7l070) +q- (_1;d17d27"'7d0)
3)

where vector addition and multiplication by the scalars
carried out componentwise (see Example 1 below), and

costy (T') =cost(T) + > p. (4)

m<t<n

sig, 1 (T7) = (m + 13312,

costy (T')=| > depth(v)p:+ Y (i+p
1<t<m m<t<m/
m<t<n
= Z depth(vt)pt + 'L Z Pt
of 1<i<m m<t<n
+ > m
m<t<n
= cost(T) + Z pe O
m<t<n
Example 1: The following table
signature (m;ly,ls,13,14) partial sums

[(_1;d17"'7d4) = _1;0707272)] (_17_17_17173)

shows the transition from a signatufeto S’ and S” by two
expansions withy = 2 and ¢ = 3, respectively. We have
(Cl, Co2, C3, 04) = (3, 3,4, 4), and thereforddl, dg, dg, d4) =
(0,0,2,2). The modification of the signature is done in two
steps: the first step is the shift, which is due to the change of
focus from levelsig; to level sig;+1. The second step is the
addition of a suitable multiple of the vectér1;dy,---,d4),
which is given in the second line. The last column gives the
sequence of partial sums,m + l;,m + 13 + Is,---, which

is important later.

This last lemma tells us that to calculate the extra cost
added by a level-expansion off” and the signature of the
new expanded tree it is not necessary to kridwr ¢ but only
sig.(T"). This motivates us to recast the problem in a graph
formulation with vertices corresponding to signatures, arcs to
expansions, and the cost of an arc to the cost added by its
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associated expansion. A path in this graph will correspondb) Let

to the construction of a tree by successive expansions; so _ _

an optimal tree will correspond to a least cost path of a P =(So™ Si 5 So = LB s B sy

certain type. ] ] i
More specifically, we define a directed acyclic gragh= P€ @ path inG. Let Tj be the root tree. Recursively define

(V. E), called thesignature graphwith

CTH'l = Expanq(E7Qi)7 1= 07 17 T 7j -1 (5)
|4 :{(m;ll"”’lc); ml’lla"'alc Z Oa

my+l+ e <n(r—1)} Then the tree
E:{(S7S ) € V x V : S: (m;l17127"'7lc70) andflq,
0 < g <1y, such that is a j-level tree withcost(T(P)) = ¢(P).

Proof:

/_ - v ow
§'=(m+hily, - 1c,0) a) First note that ifsig;(7) € V then

+q- (_1;d17d27 o ',dc)}.

We will often denote an argS, S’) € Eby S L 5, indicating
the value ofq that defines the arc. We also define a cogliy ; 4. Since theTrung operation cannot increase the

m4li+-+lc <nlr-1).

function on the arcs otz number of leaves in the tree§; € V as well. The arcs
o(S,8') = Z e, S; & S, exist by the definition of tharunc and Expand
m<t<n operations. Thus’(T") C G. Straightforward calculation and

for (S,8"Y € E, S=(m;ly,la,---,lc). the fact thatcost (7o) = 0 yields

We pause here to point out the motivation behind this function.
. L P(T)) = Si, S;
SupposeT is an i-level tree withsig,(T) = S and 7" = «P() Z « +1)

. . 0<i<y
Expand(7’, ¢) with sig;,(7") = S’. Then Lemma 5 tells us
that =cost(Zp) + Y (coSty1(Tis1) — COSE(T))
0<i<y
cost1(T") = cost(T) + (S, 5"). =cost(7).
Note that the change in cost ilsdependent of;. b) The fact that thel; exist and arei-level trees with

Now let T, be the tree containing only the root and its Sig;(Zi;) = Si follows from the definition of theExpand
children. This tree, which we call theot tree is the only operation. Equality of costs is obtained by following the above

0-level full tree; soTj = Trungy (7)) for every full tree7". Its ~ calculation backwards. U
signatureSy = sigy(1o) = (0;d1,dz,---,dc) is the starting  \we have just seen a) that every pathof length j in
vertex of the graph. G from S, to S corresponds to g-level tree T(P) with
For a directed path sig;(1'(P)) = S andcost(T(P)) = ¢(P) and b) that every
P= (soﬂ 8 6,5 L Si1 Ehy S) j-level treeT corresponds to g-arc pathP(T") from S, to
sig; (7)) with cost(T") = ¢(P(T)). This proves the following

using j arcs to get fromS, to S;, we define the cost of the lemma
path in the usual way as the sum of the cost of its arcs, i.e., '

J Lemma 7:Let S € V and P a minimum cost path from
c(P) = Z c(Si_1,5;). So to S'in G. ThenOPT [S] = ¢(P). If P containsj arcs and
i=1 T(P) is as defined in (5) and (6) the@wst (Z°(FP)) = OPT [S].

The ;OIIOW"E)Q crucial Ierr:]maf lestg;}l;shes.a ofner—Ttg—onedcor- The calculation of shortest paths is facilitated by the fact
respondence between paths of lengemanating fronbo and 5 the graph is acyclic (apart from possible loops at the

g-level treesT” with sig,(T) € V. vertices(m; 0, ---,0)). We show this by specifying a specific
Lemma 6: . . linear ordering of the vertices which is consistent with the
a) LetT be aj-level tree with orientation of the arcs (a topological ordering).
sig;(T) = (msly,la,---,lc) € V. Definition 9: Let

Set S=(m;llp,---lc)eV

T; =Trung(T)  S; =sig,(T;) ST =m0, 1, le) €V

We define the linear ordex on the signatures so that< S’

and letg; be the number of internal nodes bfat leveli + 1, . .
if and only if the vector

fori =0,1,---,7 — 1. Then the path
P(T)= (5% 5% 5% ... %5 5, "5 5 (m+b+-+lem+li+-+lo,
is contained inG, and ¢(P(T)) = cost(T). comAlA by mAlym)
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1. Initialization.

Set OPT[m; s, ..

Set OPT[0; dy, d, - - -, de] = 0;

2. Loop. Process the array entries OPT[m; 1, . .

lexicographically increasing order of

(m4+L+-+lg, m+L+--+lg, ..

For each entry OPT|m; !4, ..

1777

. l¢] == oo for all entries with m+ 1l +--- + lc < n(r —1).

g with (Iy, .., lg) # (0,...,0) in

, m+1i, m).

., l¢] do the following:

2a. new_cost := OPT[m; ly,... . Ic]+ Y py
m<t<n
forg:=0to l, do
2b. Let (m';15,...,l) = (m+1ls,.. ., lc,0) +¢q- (—1;dy,...,dc);
2c. IEm' +1 4+ <n(r—1) then

OPT[m/; 11, ..
end for;
3. Termination. min { 0PT[m;!,,...,l]

Fig. 5. The simple algorithm.

is lexicographically smaller than
(m/ + 0+ +lem + 1+ F ey,
"'7m/ +l/1 +l/27m/ +l/17m/)'
For example, to comparel; 1,2,4) and (3; 1,4, 3), we form

their partial sums sequencéd, 4 + 1,4 + 1+ 2,4+ 1+
24+ 4) = (4,6,7,11) and (3,4,8,11), respectively. We

compare these vectors lexicographically, the rightmost en

being most significant. Sincé1l 11 and 7 < &, we

have(4;1,2,4) < (3;1,4,3). In Example 1, the partial sums
sequence is indicated in the second column. It is quite ea
to see that the signatures become bigger and bigger (in the
“<" order) by expansion. The shift of levels causes a left shi

of the sequence, with the rightmost entry being duplicatexl'i

and then a multiple of the vectdr1,—1,—1,1,3), which is
lexicographically positive, is added.

Lemma8:If S,8' € V,S% §', andS # S thenS < ',
Proof: Suppose

S = (m;117127"'7lc)
and

S/ :(m/7l/1a /2a"'a /C)
If ¢ > 0, then

(m' +0 4+ +l)—(m+lL+--
:(—1+d1+...

+1c)
+dc)g=(r—1)g>0

soS < S

If ¢ =0thenm’ = m+ 1 andl;. =l forj < C
and iy = 0. Thus $* < S unlessS’ = S in which case
11:ZQ:~~~:ZC:OandS:S’. |

For a directed acyclic grapi = (V, E), a shortest path can Signature grapit’
be computed ir0 (|V'|+|E|) steps by scanning the vertices in
topological order [16, p. 45]. We rewrite the algorithm for our
special case and present it in Fig. 5. Note that in the algorithm

we never explicitly construct the signature gra@hbut only
implicitly use the graph structure to fill in thePT table

S Ie] = min {OPT[m/; I, ..

S lp], new_cost};

:m > n} is the cost of the optimal code.

to fill in the OPT table using an appropriate ordering of the table
entries. The algorithm takez (|V|) = O ((n(r—1))¢ 1) time
for Steps 1 and 2a. Each vertex has+ 1 = O (n(r — 1))
outgoing arcs, and therefot&| = O ((n(r — 1))“*?2). Each
execution of Steps 2b and 2c tak@g () time. Thus the total
cost of the algorithm i) (C(n(r — 1))°*?) time.

Note that the algorithm as presented only calculates the cost
of the optimal tree. To actually construct the optimal tree, we

Wé\ve to augment the algorithm by storing a pointer with every

array entry, and wheneveprT [m/;1{,---,l] is improved we
uspdate the pointer to remember where the current optimal

lue came from. (In fact it is sufficient to store the value
Which lead to the current value.) At the end we backtrack
om the minimum-cost vertex to recover the optimal solution.
his is standard dynamic programming practice, and we omit
the details.

IV. PRUNING OF EXTRA LEAVES

The algorithm in the previous section restricted its attention
to full trees, i.e., trees in which every internal node contains
all » of its children. We had to pay for this convenience by
constructing trees with as manyag& — 1) leaves, many more
than then leaves actually used in the trees. In this section
we improve the algorithm by looking only at trees with at
mostr leaves, thereby reducing the complexity by a factor of
O ((r — 1)¢*2). Note that in the binary case aof = 2 this
makes no difference at all; the results of this section are only
of interest whenr > 2.

We have to relax the requirement of only constructinty
trees because optimal trees are not necessarily full, see, e.g.,
Fig. 2. This relaxation permits us to transform the construction
of an optimal tree into a least cost path search in a new
(V', E") where

V/ :{(m;llv"'vlC):
e z20m+li+---+1lc <n}

which has sizdV’| = O (n“*!) and|E'| = O (n“12).
The design of the grapi’ and the corresponding algorithm

malla"

properly. In essence, we are performing dynamic programmingll be complicated by the following technical point: in the
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previous section we constructed full trees level by level bijhe costs are as in the gragh of Section Ill. Thestarting

specifying the number of internal nodes at each level. Since tertex is the signatureS, = reduce0;dy, - -, d-), which
trees being constructed were full, this specification uniquetprresponds to the root trég,. There is now also a unique
determined the tree. If the trees are no longer required to teeminal vertexS = (n;0,---,0).

full then specifying the number of internal nodes on each level
no longer uniquely specifies the tree; for each internal node it 'od|f|ed for the present section when— 40. After each

must also be known which children it has. ansion, we have to insert an additional reduction ste
As in the previous section, we want to construct the optlmaf(p P-

tree level by level. However, if we ever generate more tham
n leaves, we want to throw away some of them. It appears
obvious that it is best to throw away the deepest leaves.|In[(—1;d;, - -,dy)
what follows we will prove that this is true.

Example 2: Below we show how Example 1 must be

S|gnature (m;ly,la, 13, ly) partial sums
1;0,0,2,2)] | (-1,-1,-1,1,3)

(-

o _ . S =(16;14,8,2,0) | (16,30,38,40,40)
Definition 10: Thereductionof a tree7” (to n leaves) is the | ghift level (30;8,2,0,0) | (30,38,40,40,40)
treeReduce’) obtained by removing all but the shallowest |, _ o. (28:8,2,4,4) | (28,36,38,42,46)
leaves fronil". It may happen that some internal nodes become gy ce S = (28;8,2,2,0) | (28,36,38,40,40)
leaves by this process because they lose all their children| Inghift |evet (38;2,2,0,0) | (36,38,40,40,40)
this case, we remove these additional “unwanted” leaves, ang, _ 3. (33:2,2,6,6) | (33,35,37,43,49)
if necessary, we iterate this cleanup process. reduce S" =(33;2,2,3,0) | (33,35,37,40,40)

If T does not have more thanleaves,Reducé?’) = T.

In other words, we can think of marking a set ef The reduction step is most easily understood in terms of the
shallowest leaves irl. The tree Reducé?’) is then the rightmost column: We simple reduce all partial sums which
unique subtree which has precisely this set of leaves. Similafige bigger tham to n.
as in Definition 7, the set of leaves to be removed is not The modification of the main loop in the algorithm is
uniquely specified, but the number of leaves at each levelsiaightforward. Step 2c is replaced by the following two steps.
uniquely determined. In other wordReducé?’) is unique up ~ 2C. If m’' +1 +---+1 > n, then replacgm/; 11, - - -, )

to equivalence. It is obvious that reduction does not chanfy reduce(m/;1{, -+, 1.
the cost of a tree: 2d.  Set
Lemma 9:If T is ani-level tree then OPT [m/;1},- -+ ,1z] := min{OPT [m/;1}, - - -,l],newcost.

cost(Reducé’)) = cost(T). In the end, the cost of the optimal tree can be read off

the entryOPT [n;0, - - -, 0], which corresponds to the terminal
vertex.

However, it turns out that the gragh is no longer acyclic,
see Example 2, where we haw€ < 5’. Therefore, it is not
obvious that the above modification is enough to compute the
shortest path. However, by studying the example carefully we
see why such “backward arcs” likgs’, S”) need not worry
us. In going froms’ to S”, three leaves at levél+- 1 become

j—1 internal nodes, causing nine leaves to be added to the tree. But

l mln{lj,n—< )}

Proof: This follows from the fact that only the shal-
lowest leaves affect the computation of the cost. O
If 7" is ani-level tree, then, in going fror#” to Reducér),
the signature changes as follows:
Let sig,(T) = (m;ly, -+, lc).
Setm’ := min{m,n}.
Forj =1,---,C, successively replacg by

m’ + Z 7, the following reduction chops off all but three of these new
k=1 leaves. This means that at least one of the three new internal
nodes has only one child remaining, but, by Lemma 2, such a

Then node cannot occur in an optimal tree.
sig,(ReducdT)) To prove correctness, we need to show two things. First,
= reduce(m: Ly, -+ lc) == (m's 0}, 1) every path in the graph from the start_lng vertgx _to S =
R ) Pl (n;0,---,0) corresponds t@ometree, with appropriate cost.
The modified signature grap’ = (V’, E') is defined as Secondly and more importantly, the optimal tree corresponds
follows: to a path fromS, to S which visits the vertices in an order
consistent with the lexicographic order. These crucial pro-
Vi={(mily, - le)my by, le 20, perties are formulated in the following lemma, which is an
m+li+---+1lc <nlk. analog of Lemma 6.

Let S = (m;ly,---,lc) € V'. Then there ard; + 1 arcs  Lémma 10
(S,5") € E’ leaving S. For eachg = 0,1,---,1; we have an @) Let I be an optimal tree with height denoted by
arc S % S with J. Set I, = Trung(7T), 7] = ReducéFill (1;)),

S; = sig;(T7), and letg; be the number of internal
S" =reduce((m+11;l2, - ,lc,0)+q-(=1;d1,da, - - -, dc)). nodes ofT at leveli + 1, for i = 0,1,---,5 — 1. Then
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the path If we apply the reduction operation to both sides of this

4o a1 @ ; . equation, we obtain

P(T):(SO_’SI_’SQ_’"'_’ Sj—l — Sj)
7., = ReducéFill (T; = ReducdExpand(77, q;

exists inG’, with +1 &Fill (T341)) & d( )

which is what we wanted to show. We also ha¥e< S;;1

So XS = <55 = (n:0,0--,0) because eithef?, ; has more leaves in total th& (in case

and ¢(P(T)) = cost(T). g; > 0), or the reduction operation is void also feitl (7;;).

b) Let In the latter case we havé,; = Expand(77,¢:), and we
_ _ can apply Lemma 8.

P=(S %5 8B 5.5 s 5y Now let us consider the other case, whéfl (7;) has

. ) at leastn leaves. By Property 1Fill (7;) has less tham
be a path inG’. Let 1Ty be the root tree. Recur3|vely|eaves at level®),1,---,j — 1. The same is true fofl! =
define Reduc€Fill (7;)) and thereforél; has height: > j. Fill (T;)

T,y = ReducéExpand(T;,¢)), and7; = ReducdFill (1;)) have the same number of leaves
i=0.1, -1 at each level betweehand% — 1, and both trees have at least
B ’ n leaves in total at level8, - - - | k. After expansion, it follows
Then the treeT(P) = T; is a j-level tree with that also the treeExpand(Fill (13),¢;) and Expand(17, ;)
cost(T(P)) = ¢(P). have the same number of leaves at each level bet@Wesrd
k—1, and, moreover, by Property 2, both trees still have at least
n leaves in total at level, - - - , k. The reduction operation will
therefore yield equivalent trees

Proof:

a) Note first that idl” as well as in eacll;, every missing
leaf has depth at leagt if a missing leaf of" had depth less
than j, we could remove some leaf at leveland add a new ReduceExpand(Fill (T:). o)) = ReducdExpand(T” . -
leaf in the position of the missing leaf, obtaining a better tree. &Expand(Fill (73), ¢i)) dExpand(1;, ;).
Since the truncation operator deletes either all children ofgg applying (7) we obtain
node or none, it generates no new missing leaves. Therefore,

the claimed property carries over frofto all treesZ;. The T;,, =ReducdFill (T;;,))
following property follows: = ReducéExpand(Fill (T;), ¢))
Property 1: In all treesFill (Z;), the number of leaves at = ReducdExpand(77, ¢;))

depth less than is less thamn. L
which is what we wanted to show.

Optimality of 7" implies another property. To show S; < Sy, let
Property 2: If ¢; > 0, theni+1+c, < 7, and the operation S — i IN (e
. ¢ - i_SI‘CTi — 7lvlv"'7l
Expand(-, ¢;) increases the total number of leaves at levels q G(T3) = (mily, 2
0717"'7‘7' an
Proof: If i +1+ ¢ > j, then a node at level+ 1 can Siy1 = Sig¢+1(T{+1) = (m’; 1,1y, 1e)

have at most one child in the tr&& By Lemma 2, a node with ) ]
one child cannot occur in an optimal tree, and hence there &% the above considerations about the numbers of leaves at

no internal nodes at level+ 1. levels up tok, we haven+Il;+- - -+lc = m+li+---+lc_ 1 =
On the other hand, if +1 4 ¢, < j, then at least two *~~ = m+li+ -+l =nandm+ii+- -+l <n,but
children of each node that is expanded lie on levels - - -, 5, for Sit1 we havem’ +1i +---+lc =m/' +1j +---+1c_, =
and these children more than compensate for the loss of leaves= ' Tl +- -+l = m'+l+- -+, _ ;) = n. (Note
due to the fact that the leaves at levet 1 that are expanded that Si+1 is the signature at level+ 1.) Thus.S; < Sy
become internal nodes. O b) Since theExpandand Reduceoperations are faithfully
modeled by the arcs of the graph, it follows that the trées
To prove the lemma we must show that exist and have the given signatures. Equality of costs can be
Iy - proved in the same way as in Lemma 6, using the fact that
ReduceExpand(T}, ) = Tis- reduction does not influence the cost (Lemma 9). O
We will use the fact that Thus as in the previous section, we can actually find the
_ ) _ shortest path irO (|V'| + |E’|) = O (n“*2) steps, each step
Fill (T34+1) = Expand(Fill (73), ¢;)- (7)  taking O (C) time. The code is given in Fig. 6. Actually, it is

This is true because both trees are full trees which have m%tdiﬁicult to be more careful in the implementation and avoid
same number of internal nodes at each level scanning the “backward arcs” of the graph. In the loop of Steps
: 2b-2d, we letg run only up tomin(ly,n — (m + X5, ;).

Let us first deal with the easy case whe#l (7;) has . : .
less thann leaves. Then the reduction operation is voidNe leave it as an exercise for the reader to check that this

T! = Fill (T;) and we have IS correct.
! (T) The boundV’| = O (n€*1) for the number of nonnegative

Fill (7341) = Expand(Fill (T;), ¢;) = Expand(Z}. ¢). (C 4+ 1)-tuples(m;ly, -, lc) withm + 1+ +1lc < n
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1. Imitialization. Set OPT[m;!,...,lc] := oo for all entries with m+{;+---+lc < n.
Set Sp = reduce(0;dy, ds, ..., dc). Set OPT[S,] :=0;

2. Loop. Process the array entries OPT{m; 11, ..., l¢] with

(i1,...,lc) #(0,...,0) in lexicographically increasing order of
(mAbi+-Alg, m+L+-+lea, ..., m+1l, m)

For each entry OPT[m;!y, ..., Il¢] do the following:

n
2a. new_cost := OPT[m; ly,...,1lc| + Z Di;
t=m+1

for g:=0to !, do

2b. Let (m/;0,...,0) = (m+1i;ls,....1c,0) +q- (—1;dy,...,de);
2c. If m/+{+- - -+l > n then replace (m/; 14, ..., I5) by reduce(m/; 1, ..., lg).
2d. Set OPT[m'; 1, ..., 5] :== min {OPT[m'; i, . .., I;;], new_cost};
end for;
3. Termination. OPT[n;0,...,0] is the cost of the optimal code.

Fig. 6. The improved algorithm.

is only a loose estimate. By looking at the strictly increasingptimal codes (corresponding to minimum cost trees) can be
sequence constructed by finding least cost pathsGh.
It is easy to see that tHeeightof a tree is exactly the number
(mym+li+1m+h+la+2,-,m+--+lc+0) () of arcs in its corresponding path frofy to S. Thus we can
also use our formulation to solve thength-Limited Optimal
e&%%ing ProblemIn this problem, we are given the same data

. . N as in the original problem and an inte and we want to
and hence their number {§£SF1). (In fact, if one wants to ginal p OBy

C X . find a minimum-cost code containing no codeword of length
store the tabl@dPT as compactly as possible, in an array 01‘J 9 9

S . . o more thanL. T Ive this new problem it is only n ry i
("+C+1) entries in the proper lexicographic order it is most ore tha 0 solve this new problem itis only necessary is

C+1 . ) tq find the least cost path from the source to the sink that uses
convenient to use the vector (8) for indexing.) The number 9 or fewer arcs. which can be easily donerLn<+?) time.

arcs is now E| < (n + 1)|V|, and the processing of each arc¢ T : . .

; . o : In a practical implementation of our algorithm many im-

involves an overhead of (C + 1) time. This gives a time . . . .
provements are possible. Recall that our algorithm is equiva-

we see that these tuples are in one-to-one correspond
with the family of (C + 1)-subsets of the s€i0,---,n + C}

bound of lent to searching for a shortest path in a directed acyclic graph.
O<(n F1(C+1) <n +C+ 1)) The simple shortest path algorithm which we used essentially

C+1 scans all arcs of the graph. There is a whole range of heuristic

We have graph search algorithms to be considered that might speed up

the running time of the algorithm in practice, cf. [17].

One obvious direction for future research is to resolve the
complexity of the optimal-coding problem. It is still unknown
if the problem is polynomial-time solvable, or if the problem
as can be easily proved by induction 6h proving the base ijs NP-hard.
case” = 1 andC = 2 separately. We have therefore proved Another direction is to relax the restriction that theare
the following theorem. integers. Obviously, in any conceivable practical application

Theorem 1: The minimum-cost prefix-free code fon the given number'sz; are rationals; therefgre, they can all
words can be computed i (nC+2) time and O (nC+1) be scaled .to be mtegers. and our algorlthm can be used.
space, if the costs of the letters are integers betviegnd C. However, since the largest integer cost enters into the exponent

of the complexity, this approach is in general not feasible.

It is challenging to find an algorithm that would solve the
V. CONCLUSIONS IMPLEMENTATIONS, AND OPEN PROBLEMS problem with, for example(c;, cz,c3) = (0.169,0.3,0.531)

Cc+1
(O+1)<nz+1r ><4nc+1, for alln > 2

In this paper we described how to solve the optimaln reasonable time, and which could just as easily be applied to
coding problem inO (n+2) time where the letter lengthsincommensurable lengths such (@s, ca, c3) = (1,v/2,v/3).
c1 < £--- < ¢, are integersC' = ¢, is the longest length  Itis not known whether the restriction to prefix-free codes in
of an encoding letter, and is the number of symbols to bethe optimal coding problem, as opposed to the more general
encoded. This improves upon the previous best known solutidiass of uniquely decipherable codes, is a severe restriction
due to Karp [14] which solved the problem by transformatiothat excludes codes which would otherwise be optimal, or
to integer linear programming and whose running time couldhether an optimal code in the class of uniquely decipherable
therefore only be bounded by an exponential functiom.of codes can always be found among prefix-free codes. See

Our algorithm works by creating a weighted grapgl the survey by Brugre and Latteux [4] for this and related
with O (n€+1) vertices andD (n“*2) arcs and showing that open problems.
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We have tested the algorithm for computing optimal codes
for the Roman alphabet plus “space,” using the probabilities
which are given in [3, p. 52] and reproduced in Karp [14].[3
We ran an experimental implementation of our algorithm in
MAPLE on an HP 9000/750 workstation. When the encodind‘”
alphabet had two letters; = 1, co = 2, we found an optimal
code with a cost 06.8599 in 1.5 s. For an encoding alphabet
with three letters(c;, ¢z, ¢3) = (2, 3,3), we found an optimal
cost of 6.7324 in 6 s. The only algorithm in the literature
for which running times are reported is the algorithm of Karp
[14] from 1961. His program took 1 min for the first example
and 5 min for the second one on an IBM 704 computer.
(The code we found for the first example was different froml6l
Karp's even though, of course, it had the same cost.) These
running times can hardly be compared. On the one handi]
this machine was much slower than today’s computers. An
IBM 704 in 1955 could carry out about 5000 floating-point g
operations per second (0.005 MFLOPS). On the other hand,
the MAPLE system is not designed for taking the most efficientlgl
advantage of computer hardware. For example, all arithmetic
operations are carried out in software, and array indexing [i]
not as efficient as in a conventional programming language.
(For the second problem, about 40% of the total running
time was spent initializing the arradPT.) We ran an integer
programming formulation derived from Karp’s on the sam
workstation as our MPLE code. The model was formulated in
the AMPL modeling language [8], using about 25 lines of code12
and was solved with thepLEX 4.0 software for mixed-integer (12l
optimization. Interestingly, the three-letter problem was easigs]
to solve than the two-letter problem. It took 0.19 s, 46 branch-
and-bound nodes, and a total of 207 pivots of the simplex
algorithm to solve the two-letter problem, but only 0.09 d15]
3 branch-and-bound nodes, and 143 simplex iterations to solve
the three-letter problem. [16]
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