
A dynamic programming approach for the control of
autonomous vehicles on planar motion

Jorge Estrela da Silva
Electrical Engineering Department
Institute of Engineering of Porto

Porto, Portugal
jes@isep.ipp.pt

João Borges de Sousa
Electrical and Computer Engineering Department

Faculty of Engineering of Porto University
Porto, Portugal
jtasso@fe.up.pt

Abstract—The problem of path following for autonomous
vehicles under adversarial behavior is considered. The objective
is to keep the cross-track error to the reference path inside
a given tolerance interval. The adversarial behavior models
system uncertainty and unknown or poorly estimated bounded
disturbances. The first step to that objective is the computation
of an invariant set, namely the maximal set of states that the
vehicle may enter while ensuring that the cross-track errorwill
never exceed the tolerance interval. This is done through dynamic
programming. Two modes of operation are then considered: when
the vehicle is inside the invariant set, the objective is to stay
inside it while minimizing a combination of the actuation effort
and cross-track error; otherwise, the objective becomes toreach
the invariant set in minimum time. Each mode corresponds to a
different optimal control problem which is dealt independently;
thus, each mode has a corresponding control law. We discuss
efficient ways of computing and implementing those control laws
on currently available computational systems. For the purpose of
the dynamic programming approach, the autonomous vehiclesare
modeled as an unicycle. Simulations with a six degree of freedom
nonlinear model of an autonomous submarine are performed in
order to illustrate the robustness of the control strategy.

Index Terms—dynamic programming, path following, au-
tonomous vehicles

I. I NTRODUCTION

The path following problem has been studied for wheeled
mobile robots (see [1] and [2] for early approaches), for
under-actuated marine vehicles (see [3] for instance) and aerial
vehicles (see [4] for instance). The path following formulation,
as considered here, takes into account the vehicle’s current
state in order to compute the reference posture. The first aspect
to be dealt in a path-following algorithm is how to choose the
reference point at each time instant. The simplest approach
to this reference generation is to choose the posture (position
and heading) associated to the closest point in the path. This
intuitive approach has been studied before (see [5] and [4]
for instance). It must be remarked that the reference generator
may be a dynamic system itself; in this case, the reference
configuration acts as a virtual moving target that takes in
account the vehicle’s past trajectory and dynamic constraints
(see [6], for instance). That approach is explored in order to
cope with more general paths, for which the closest point
approach may lead to singularities (e.g., when the vehicle is
at the center of an arc). The approaches may also differ on
whether the path curvature must be known or not. In [6], the

authors develop a controller that may follow arbitrary paths
without knowing its curvature profile.

The existing approaches to path following vary on the
degree of complexity of the considered system model. In
general, the vehicle longitudinal speed (surge) is considered
constant. In [4], the authors assume an essentially kinematic
model, with no sideslip and with first order linear dynamics for
yaw rate. For vehicles with non-null lateral speed (sway) some
kind of dynamic model must be considered (see [5], [3] and
[7] for examples on marine vehicles). In general, determination
of an accurate dynamic model is a difficult task. In [6], the
authors disregard the dynamics of lateral speed and model itas
a bounded disturbance. In [7], the authors describe an approach
to add some robustness against model uncertainty.

The approach described in this work is independent of the
system model. However, for simplicity, we will consider a
model with 3 state variables, where the lateral speed is modeled
as a bounded disturbance.

Most papers on the subject seek the perfect following of
the reference path. In some cases, that objective may be
impractical or simply unnecessary. For instance, autonomous
underwater vehicles have strong limitations in what concerns
the estimation of their exact position. Given that uncertainty,
it does not make sense to be very stringent in what concerns
the following of a path that the vehicle can not determine
very accurately. Therefore, the designer of the control system
may seek a more relaxed objective: to keep the vehicle inside
a given tube around the reference path. This approach is
followed in [6]. We follow similar guidelines in the current
work. The main difference between these two works resides
in the controller design. In [6], the authors derive a control
law with guaranteed bounded error and convergence. However,
the performance of the proposed control law is not discussed.
In the current work, we present a methodology to design
robust optimal path following controllers with guaranteed
bounded error for paths with bounded curvature. Since the
methodology is based on dynamic programming [8], [9], the
derived controllers are globally optimal up to the accuracyof
the employed numerical scheme.

The paper is organized as follows. Section II describes the
system model. In section III, we propose a general approach for
controlling systems ensuring bounded error against bounded

1

u

v

T

N

East

North

x

y

ψr
ψt

Fig. 1. Coordinate system (North-East-Down convention).

disturbances; the problems associated to that approach are
formulated. In section IV, these problems are solved in the
framework of dynamic programming. In section V, we describe
how to use a publicly available numerical solver to derive the
control laws; the process is then applied to the problem of path
following. In section VI, we discuss some practical aspectsof
implementation. Finally, in section VII, the conclusions are
presented.

II. SYSTEM MODEL

Consider the following vehicle model

ẋ = u cos(ψ) − v sin(ψ) + cx (1)

ẏ = u sin(ψ) + v cos(ψ) + cy (2)

ψ̇ = r (3)

where(x, y) describes the vehicle’s position on a earth fixed
frame,ψ is the vehicle’s heading direction,u and v are the
longitudinal and lateral speeds,r ∈ [−rmax, rmax] is the
vehicle’s angular speed and(cx, cy) models the effect of envi-
ronmental disturbances (such as constant winds and currents).
For practical operation,u > ||(cx, cy)||∞ is assumed. In
general, we have|u| ≫ |v|.

Consider a frame with its origin at the nearest point of the
path. We assume there is some scheme to disambiguate the
choice in case of multiple candidates. This frame (the Frenet
frame) has aT axis tangent to the path and aN axis normal to
the path. The orientation of theT axis with respect to the earth
fixed frame isψt and we define the vehicle’s angle relative to
the path asψr = ψ − ψt (see Fig. 1). The cross-track error
d is the shortest distance between the vehicle and the path.
Thus, the cross-track error dynamics may be described by the
following model:

ḋ = u sin(ψr) + v cos(ψr) + cn (4)

ψ̇r = r − (u cos(ψr) − v sin(ψr) + ct)κ (5)

where cn = −cx sin(ψt) + cy cos(ψt), ct = cx cos(ψt) +
cy sin(ψt) and κ is the path’s curvature (for a straight path
κ = 0) at the closest point (origin of the Frenet frame).

In the general case, it is reasonable to assume thatu
is constant and that it may act as an input to the system.
However, the same can not be assumed forv for vehicles
with no lateral actuation and no sideslip constraint (i.e.,that
may skid). In these cases, the dynamics ofv have to be
considered. However, an accurate identification of the system’s
dynamic model may be an expensive task. In what concerns
the environmental disturbances, this task is even more difficult,
since the disturbances may vary both temporally and spatially.
In order to cope with this model uncertainty and keep the
system model simple, we consider a bounded virtual inputcv
that may take values in[−cv,max, cv,max] such that

cv,max ≥ ‖v(.) cos(ψr(.)) + cn(.)‖∞ (6)

Additionally, we consider the following input

rv ∈ [−rv,max, rv,max] ⊃ [−Ut,max/Rmin, Ut,max/Rmin] (7)

whereUt,max is the maximum expected tangential velocity
(i.e., the projection of the vehicle’s velocity on theT axis).
This input models possible variations in the path’s curvature,
i.e., it models the assumption that the minimum radius of
curvature isRmin; it may also encompass the effect of mod-
eling errors for ther dynamics. At each instant of time,cv
andrv may take the worst-case values for the current control
objective. In the framework of differential games [10], these
are adversarial inputs. Under the stated assumptions, the model
becomes as follows:

ẋ = f(x, a, b) =

{

u sin(ψr) + cv
r − rv

(8)

wherex =
[

d ψr
]′

, a =
[

r
]

andb =
[

cv rv
]′

.

III. PROBLEM FORMULATION

The considered systems have smooth dynamics, described
by ẋ = f(x, a, b), wherex ∈ R

n is the state vector,a is a
bounded controlled input andb is a bounded adversarial input
that always acts against the defined control objectives. The
main objective is to keep the system inside a neighborhood
S of a reference pointxref. The setS models the maximum
tolerance for system operation. When outsideS, the state of
the system should be driven toS in minimal time. When
inside S, the system may use any control strategy as long
as it stays insideS. One such strategy could be to make the
system’s state converge toxref while avoiding abrupt changes
in the system’s trajectory; this may be important, for instance,
for data sampling applications or to maximize comfort in
transportation systems. The main objective is accomplished by
the solution of the three problems formulated below. We recall
the definition of weakly invariant set:

Definition 1: A set S is weakly invariant for the dynamic
systemẋ = f(x, a, b) (as defined above) if for everyx0 ∈ S
there is at least one trajectory such thatx(0) = x0 andx(.)

never leavesS, i.e., for each inputb(.) there is at least one
input a(.) such thatx(.) never leavesS.
It is clear thatS must meet the requirements of a weakly
invariant set. However, in many scenarios, the tolerance for
system operation may be defined in a rather loose sense; it
may just reflect, for instance, some constraint in the value of
some system output. Therefore, we assume that the input for
our control design is the setR which defines the acceptable
region of operation. SinceR is not necessarily invariant, we
define the first problem.

Problem 1: Find the maximal invariant setS ⊂ R.

Let us resort to the path following problem in order to
illustrate this aspect. In the present approach to the path-
following problem, one simply states the requirement of keep-
ing the cross-track error below a given threshold. However,
in order to accomplish that, there are certain states that must
be avoided. For instance, consider that the vehicle is over the
desired path (i.e., accomplishing null cross-track error)but still
perpendicular to it; then, due to its limited radius of curvature,
the vehicle might not be able to respect the desired maximum
cross-track error when following the remaining path. Thus,
although a setR = [−dmax, dmax]× [−π

2 ,
π
2] may be initially

considered as an acceptable region of operation, the system
will not be able to remain inside that set for the entire duration
of the operation. Therefore, it is necessary to find a subset of
R composed only of those states the system may enter while
ensuring that it is still able to remain insideR afterwards. That
subset ofR is the invariant setS. Given S, two additional
problems are considered:

Problem 2: Derive a control law such that if the system is
outsideS then it should drive the system intoS as soon as
possible.

Problem 3: Derive a control law such that if the system is
insideS then it should make the system stay insideS while
minimizing the time integral of a given functionl(x, a) ≥ 0
(the running cost) for the whole operation timeT . The running
cost is assumed to be bounded forx ∈ R.

More formally, Problem 2 consists of finding a control law
fmt(x) such that, for any given initial conditionx(0) = x0,
a(.) = fmt(x(.)) is the solution of the following time-optimal
differential game [10]:

min
a(.)

max
b(.)

tf (9)

subject to:

ẋ(t) = f(x(t), a(t), b(t)) (10)

x(tf) ∈ S (11)

∀t ∈ [0, tf] : a(t) ∈ Ua, b(t) ∈ Ub (12)

wherea(.) belongs to the set of measurable nonanticipating
strategies.

Similarly, Problem 3 consists of finding a control lawfS(x)
such that, for any given initial conditionx(0) = x0, a(.) =
fS(x(.)) is the solution of the following finite horizon optimal

control problem with state constraints:

min
a(.)

max
b(.)

∫ T

0

l(x, a) (13)

subject to:

ẋ(t) = f(x(t), a(t), b(t)) (14)

x(t) ∈ S (15)

∀t ∈ [0, T] : a(t) ∈ Ua, b(t) ∈ Ub (16)

wherea(.) belongs to the set of measurable nonanticipating
strategies. The choice ofT is discussed in the next section.
Note that our system, described by (8), meets the usual
conditions for the existence of solution and, moreover, it meets
the Isaacs condition (see [10, Ch. 1]):

min
a∈Ua

max
b∈Ub

[p · f(x, a, b) + l(x, a)]

=max
b∈Ub

min
a∈Ua

[p · f(x, a, b) + l(x, a)] (17)

for any p ∈ R
n and (t, x) ∈ [0, T]× R

n.

IV. SOLUTION APPROACH

Our approach to problem 1 is inspired by [11]. We define
the value functionV1(x, t) as follows:V1(x,−τ) = τ if there
is a trajectory leavingx at t = 0 and reachingR at t = τ such
that∀t ∈ [0, t] : x(t) ∈ R; V1(x, t) = ∞ otherwise. Therefore,
S = {x ∈ R

n : V (x,−T1) 6= ∞}, whereT1 is chosen such
that the following condition is met:

∀x ∈ {x : V1(x,−T1) 6= ∞} :
∂

∂t
V1(x,−T1) = −1 (18)

This means that the set{x ∈ R
n : V (x, t) 6= ∞} is not

changing anymore fort < −T1.
The problem now consists of computingV1(x, t). This can

be done by computing the solution of the following Hamilton-
Jacobi-Isaacs (HJI) partial differential equation (PDE).

∂

∂t
V (x, t) +H(x,∇V (x, t)) = 0 (19)

V (x, 0) = 0, x ∈ R (20)

V (x, 0) = ∞, x /∈ R (21)

V (x, t) = ∞, x /∈ R (22)

with

H(x, p) = min
a

max
b
p · f(x, a, b) + 1. (23)

Problem 2 is also solved using dynamic programming
techniques. Consider the following static HJI PDE:

max
b

min
a

∇Vmt(x) · f(x, a, b) + 1 = 0, x /∈ S (24)

Vmt(x) = 0, x ∈ S (25)

Then, Vmt(x) is the minimum time to reach the target. The
desired optimal control law is

fmt(x) = argmina[∇Vmt(x) · f(x, a, b)] (26)

Finally, in order to solve Problem 3, the following HJI PDE
is considered:

∂

∂t
VS(x, t) +HS(x,∇VS(x, t)) = 0, x ∈ S (27)

VS(x, 0) = 0, x ∈ S (28)

VS(x, t) = ∞, x /∈ S (29)

where

HS(x, p) = max
b

min
a
p · f(x, a, b) + l(x, a). (30)

The solution of this PDE isVS(x, t), the minimum cost to keep
the vehicle insideS during−t units of time. We are interested
in finding a time-invariant control law. That is because we
do not want to rely on a estimate of the system operation
time. We assume that, for a sufficiently largeT , VS(x,−T)
gives a reliable measure of the cost associated to steady state
operation. Thus, ifVS(x1,−T) > VS(x2,−T) then we assume
that, for the general case, its preferable to drive the system from
x1 to x2 than staying inx1. Therefore, the following control
law is defined

fS(x) = argmina[∇VS(x,−T) · f(x, a, b) + l(x, a)] (31)

Therefore, the global optimal control strategy is

a(t) =

{

fmt(x(t)), x(t) /∈ S
fS(x(t)), x(t) ∈ S

(32)

V. NUMERICAL RESULTS

A. The Toolbox of Level Set Methods

The major challenge of dynamic programming is the com-
putation of the value function, i.e., finding the solution ofthe
HJI PDE’s. In this work, the computations were performed
using Ian Mitchell’s Toolbox of Level Set Methods (Tool-
boxLS) [12], [13]. The ToolboxLS provides a set of solvers for
the numerical solution of the Hamilton-Jacobi equation in its
several forms. It is implemented as a set of MatlabTMm-files.

The ToolboxLS solves the following HJI PDE:

∂

∂t
Φ(x, t) + min[0, H(x,∇Φ(x, t))] = 0 (33)

Φ(x, 0) = g(x) (34)

where

H(x, p) = max
a

min
b
p · f(x, a, b). (35)

and g(x) is the signed distance to a given target set. Notice
that this is not the standard HJI PDE usually considered in
dynamic programming. It is through the level sets ofΦ(x, t)
that the ToolboxLS computes the value function associated to
static HJI PDE’s of the form

max
b

min
a

∇V (x) · f(x, a, b) + l(x, a), x ∈ R
n \ S (36)

V (x) = 0, x ∈ ∂S (37)

Furthermore, in order to accomplish that, one has to feed the
toolbox with the following Hamiltonian:

H(x, p) = max
b

min
a

∇V (x) · f(x, a, b)

l(x, a)
(38)

Then, when using the toolbox, the value function associated
to the original static HJI PDE is given by

V (x) = min{t : Φ(x, t) ≤ 0}. (39)

See [12] for additional technical details. Problems 1 and 3
presents us with a time-dependent HJI PDE. Our approach is
to cast them as static HJI PDE’s. This is done by augmenting
the state of the original problem with a new state variable
s with dynamicsṡ = 1 and initial conditions(0) = 0, and
making the change of variablet = s in the HJI PDE.

In what follows, all computations were performed using
the fifth order upwind weighted essentially non-oscillatory
scheme for the spatial derivatives and the third order strong
stability preserving Runge-Kutta scheme for explicit time
integration. The Hamiltonian is approximated using a Lax-
Friedrichs scheme.

B. The path-following problem

A vehicle with constant surgeu = 1 m/s and maximum
angular velocityrmax = 0.26 rad/s is assumed in the numerical
examples. We assume|cv| < 0.25 m/s andrv = 0 rad/s
(straight line following). These parameters were chosen in
order to mimic the dynamics of the Autonomous Underwater
Vehicle (AUV) described in [14] in a typical operational
scenario. The expression for the running cost is

l(x, a) = Kdd
2 + r2 (40)

A maximum cross-track error of 2 meters is imposed; there-
fore, an obvious initial choice forR is [−2, 2] × [−π

2 ,
π
2]. It

must be remarked that the method is completely general and
these parameters can be easily modified.

The ToolboxLS requires the user to provide the analytical
expression of the Hamiltonian. For problem 1, the Hamiltonian
takes the following expression:

H(x, p1) =pdu sin(ψr) + |pd|cv,max

+ |pψr
|(rv,max − rmax) + ps

wherep1 =
[

pd pψr
ps

]′

andu is the constant surge velocity.
The computational domain was defined to be an hypercube
that enclosesR× [−T1, 0] and its interface with the forbidden
set. This domain was discretized by a grid of47 × 97 × 21
points (the forbidden set is discretized by 3 grid points in each
dimension). The toolbox iterates until the solution converges
to a fixed point. Some trial and error might be necessary in
order to choose a sufficiently high value forT1 such that (18)
is verified andS can be accurately retrieved. Notice that the
computation must be repeated for each new value ofT1. The
boundary ofS can be easily identified on Fig. 3 and Fig. 5.

For problem 2, a larger computational domain was consid-
ered. Ideally, all the state space would be considered. Of course
this is not possible. Therefore, we compute the solution fora
partition of the state space, trying to gain some insight about
the global solution. We used the entire range for theψr state
variable and the interval[−20, 20] for the d state variable. In
order to avoid errors due to the finite resolution of the grid,the

−180 −90 0 90 180
−20

−10

0

10

20

Fig. 2. Control law to reachS in minimum time, for the considered scenario.
Vertical axis is for statex, in meters, and horizontal axis is for stateψr , in
degrees. For instance, ifd > 8 and |ψr | < 90 thenfmt(x) = rmax.

target set is a subset ofS. The Hamiltonian for this problem
is

H(x, p2) = pdu sin(ψr) + |pd|cv,max − |pψr
|(rmax − rv,max)

where p2 =
[

pd pψr

]′

. In this case, the algorithm iterates
(i.e., proceeds with the time integration) until the minimum
time is computed for each point of the domain. The computa-
tion of an horizon ofn seconds for a grid of80 × 51 nodes
took roughlyn/3 seconds in terms of real time, on a Intel
Core 2 Duo T7250 based system. Increasing the number of
nodes by a factor of 16 increased the computation time by a
factor of approximately 32.

The optimal control law (26) is derived through the numer-
ical derivative of the resulting value function such that

fmt(x) = −sign

(

∂

∂ψr
Vmt(x)

)

rmax (41)

The image of the control law for the considered example
is represented on Fig. 2. Analysis of (41) shows that the
optimal control must be either−rmax or rmax except on those
cases whereVmt reaches a minimum with respect toψr. The
inspection of Fig. 2 shows that, for|d| > 8, it is trivial to
identify and define an explicit expression for the switching
surface between those modes of operation. Therefore, in the
implementation of the controller, we only use the numerical
data of the value function for|d| ≤ 8. Actually, it would also
be possible to compute a polynomial approximation of the
switching surface for|d| ≤ 8, but we found that implementing
the optimal control law as a lookup table was an acceptable
solution for the final implementation.

The Lax-Friedrichs scheme requires the user to provide an
estimate of the maximum| ∂

∂pi
H(x, p)| for each dimensioni

in order to control the accuracy of the numerical scheme. For
problem 3, the considered Hamiltonian is affected by the term
l(x, a)−1, which may become very large (or even infinity) for
small values ofd or r (see (38)). These singularities would
impact the computation time and the accuracy of the results.
Therefore, we add a constant termǫ to the running costl(x, a).
In order to retrieve the value function associated to the original
running cost, it is necessary to subtractǫt from the obtained
value function. Therefore, for problem 3, the following local
minimization must be performed for each grid point in each

−45 0 45
−2

−1

0

1

2

Fig. 3. Level sets offS(x) for the considered scenario. Vertical axis is for
statex, in meters, and horizontal axis is for stateψr , in degrees. The thick
line represents the system trajectory for initiald = 1.5 meters andψr = 10
degrees, with no disturbances. The outer contour delimitsS.

0 10 20 30 40
0

1

2

0 10 20 30 40

−10

0

10

Fig. 4. Evolution ofd(t) (meters) andr(t) (degrees/second) for the trajectory
represented on Fig. 3.

iteration:

H(x, p1) = min
r

(Kdd
2 + r2 + ǫ)−1(ps + pdu sin(ψr)+

|pd|cv,max + |pψr
|rv,max + pψr

r)

The assumed time horizon (the third dimension) was 44 sec-
onds. The computation runs until all points of the invariantset
are reached at timet = −T . The computation time is directly
related to the maximum cost att = −T . The computation took
2 hours and 45 minutes for a grid of43 × 93 × 45 points.

The expression for the optimal control law defined in (31)
is

fS(x) = −
1

2

∂

∂ψr
VS(x),

∣

∣

∣

∣

∂

∂ψr
VS(x)

∣

∣

∣

∣

≤ 2rmax (42)

fS(x) = −sign

(

∂

∂ψr
VS(x)

)

rmax, otherwise (43)

Fig. 3 illustrates a sequence of level sets offS(x) for
Kd = 0.01. The thick line represents the optimal trajectory
for initial d = 1.5 meters andψr = 10 degrees, assuming
no disturbances; in this case, the trajectory converges to
the origin. Fig. 4 shows the correspondingd(.) and r(.)
signals. Assuming the worst case disturbance (i.e.,cv(.) =
argmaxb∇VS ·f(x(.), fS(x(.)), b)), it can be observed that the
trajectories no longer converge to the origin. The equilibrium
point corresponds to the vehicle getting an orientation such
that the projection of its longitudinal velocity on theN axis
cancels the disturbance. Fig. 5 shows these trajectories, for
Kd = 1.

VI. CONTROLLER IMPLEMENTATION

The controllers were also implemented in C++ and tested,
for the control of an AUV operating at constant depth, in
the simulation environment described in [14]. This simulation
environment allows the user to test the control system using
a virtual vehicle whose motion is described by a 6 degree

−75 −60 −45 −30 −15 0 15 30 45 60 75
−2

−1

0

1

2

Fig. 5. System trajectories (thick lines) starting from different initial states,
with the vehicle subject to the worst-case disturbance signal cv(.). The level
sets ofVS(x,−T) (thin lines) are shown in the background. Vertical axis is
for statex, in meters, and horizontal axis is for stateψr , in degrees.

of freedom nonlinear model. In general, the entire simulation
may even run on the final computational system. The control
rate was set to 40Hz, the same used in the real time control
system of the mentioned above AUV. It was observed that the
controllers were able to drive the vehicle into the invariant
set and to keep the vehicle inside it, even when constant
currents were considered. We remark that the computation
times mentioned in the previous section are related only to
the computation of the value functionsVS andVmt. The actual
controller consists only of the implementation of (32) which
is much less computationally demanding. The implementation
uses three 2-dimensional arrays. The elements of the first
array are nonzero for those points(d, ψr) insideS and zero
otherwise. The elements of the second array are the optimal
controls to reach the safe set in minimum time, i.e., the
discrete version of (26). Finally, the third array containsthe
optimal controls to keep the vehicle inside the safe set, i.e., it
represents the discrete version of (31). At each control cycle,
the software checks whether the vehicle’s state is insideS
or not and then uses the corresponding optimal control law.
Due to the finite resolution of the discrete value functions,the
actual control is interpolated from a stencil composed of the
closest four grid nodes. With carefully chosen discretizations
of the value functions, these controllers are simple enoughto
be implemented on most types of micro-controllers, being the
amount of non-volatile memory the main concern. If a storage
device is used, the arrays may be stored as files. The files
can be loaded entirely to main memory or read on demand at
each control cycle. This makes it possible to use large arrays
(meaning higher accuracy) on machines with small amounts of
main memory. In those cases, the files are stored on a solid-
state drive (SSD) since the seek times of this type of devices
are small enough to meet the real-time requirements of most
applications.

VII. C ONCLUSION

The described approach provides an efficient solution for
optimal path-following. The major computational burden re-
sides in the offline computation of the optimal controls. The
memory requirements for the real time application are easily

met by most current computational platforms. For scenarios
where the vehicle departs far from the desired path, the control
strategy can be seen as an integrated approach for optimal path
generation and following. Most work in the literature tackles
this two problems independently. However, even in cases for
which there is an analytical expression for the optimal path, it
might be simpler to implement a lookup table based algorithm
than some set of cumbersome expressions, such as those in
[15].

It can be argued that this approach is too conservative
since in practice the disturbances are not actively fighting
the normal system operation. However, we remark that the
method can take in account all the information provided by the
state estimation. Therefore, the adversarial input is bounded by
the degree of uncertainty of the system’s state: the more the
confidence in the state estimate, the lesser the effect of the
adversarial input.

REFERENCES

[1] C. Samson, “Path following and time-varying feedback stabilization of a
wheeled mobile robot,” inInt. Conf. ICARCV’92, Singapore, 1992, pp.
RO–13.1.

[2] O. Sordalen and C. Canudas de Wit, “Exponential control law for a
mobile robot: extension to path following,” May 1992, pp. 2158 –2163
vol.3.

[3] P. Encarnação, A. Pascoal, and M. Arcak, “Path following for marine
vehicles in the presence of unknown currents,” inProceedings of
SYROCO’2000 - 6th International IFAC Symposium on Robot Control,
vol. II, Vienna, Austria, 2000, pp. 469–474.

[4] D. Nelson, D. Barber, T. McLain, and R. Beard, “Vector field path
following for miniature air vehicles,”IEEE Transactions on Robotics,
vol. 23, no. 3, pp. 519 –529, June 2007.

[5] G. Indiveri, M. Aicardi, and G. Casalino, “Nonlinear time-invariant
feedback control of an underactuated marine vehicle along astraight
course,” in Proceedings of the 5th IFAC Conference on Manoeuvring
and Control of Marine Crafts, MCMC 2000, Aalborg, Denmark, August
2000, pp. 221–226.

[6] M. Aicardi, G. Casalino, G. Indiveri, A. Aguiar, P. Encarnação, and
A. Pascoal, “A planar path following controller for underactuated ma-
rine vehicles,” inProc. 9th Mediterranean Conference on Control and
Automation, Dubrovnik, Croatia, 2001.

[7] L. Lapierre and B. Jouvencel, “Robust nonlinear path-following control
of an auv,”IEEE Journal of Oceanic Engineering, vol. 33, no. 2, pp. 89
–102, April 2008.

[8] R. Bellman,Dynamic programming. Princeton University Press, 1957.
[9] M. Bardi and I. Capuzzo-Dolcetta,Optimal control and viscosity solu-

tions of Hamilton-Jacobi-Bellman equations. Birkhauser, 1997.
[10] M. Bardi, T. E. S. Raghavan, and T. Parthasarathy, Eds.,Stochastic

and differential games: theory and numerical methods, ser. Annals of
the International Society of Dynamic Games. Basel, Switzerland:
Birkhäuser Verlag, 1999, vol. 4.

[11] A. B. Kurzhanskii and P. Varaiya, “Dynamic optimization for reachability
problems,” Journal of Optimization Theory & Applications, vol. 108,
no. 2, pp. 227–51, 2001.

[12] I. M. Mitchell, “A toolbox of level set methods,” UBC Department of
Computer Science, Tech. Rep. TR-2007-11, June 2007.

[13] ——, “The flexible, extensible and efficient toolbox of level set meth-
ods,” Journal of Scientific Computing, vol. 35, no. 2-3, pp. 300–329,
June 2008.

[14] J. E. da Silva, B. Terra, R. Martins, and J. B. de Sousa, “Modeling and
simulation of the lauv autonomous underwater vehicle,” in13th IEEE
IFAC International Conference on Methods and Models in Automation
and Robotics, Szczecin, Poland, August 2007.

[15] L. E. Dubins, “On curves of minimal length with a constraint on
average curvature, and with prescribed initial and terminal positions and
tangents,”American Journal of Mathematics, vol. 79, pp. 497–516, 1957.

