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A Dynamic Programming Approach to De Novo Peptide 
Sequencing via Tandem Mass Spectrometry 

Ting Chen  *t Ming-Yang Kao  $ M a t t h e w  Tepel* 
George M. Church* 

John Rush* 

A b s t r a c t  

The tandem mass spectrometry fragments a large number of molecules of the same pep- 
tide sequence into charged prefix and suffix subsequences, and then measures mass/charge 
ratios of these ions. The de nova peptide sequencing problem is to reconstruct the peptide 
sequence from a given tandem mass spectral data of k ions. By implicitly transforming 
the spectral data into an NC-spec~rum graph G = (V, E) where IV I = 2k + 2, we can solve 
this problem in O(IY ] + ]El) time and O(IY]) space using dynamic programming. Our 
approach can be further used to discover a modified amino acid in O(IVIIE[) time and 
to analyze data with other types of noise in O(]VHEI) time. Our algorithms have been 
implemented and tested on actual experimental data. 

1 Introduct ion 

The determination of the amino acid sequence of a protein is the first step toward solving 
the structure and the function of this protein. Conventional sequencing methods [1] cleave 
proteins into peptides and then sequence the peptides individually using Edman degrada- 
tion or ladder sequencing by mass spectrometry or t andem mass spec t romet ry  [2]. Among 
such methods,  tandem mass spectrometry combined with microcolumn liquid chromatogra- 
phy has been widely used as follows. A large number  of molecules of the  same but  unknown 
pept ide sequence are selected from a liquid chromatographer  and a mass analyzer. Then 
they are fragmented and ionized by collision-induced dissociation. Finally all the resulting 
ions are measured by the tandem mass spectrometer  for mass/charge ratios. In the process 
of collision-induced dissociation, a peptide bond at a random position is broken, and each 
molecule is fragmented into two complementary ions, typically an N-terminal b-ion and a 
C-terminal y-ion. For example, if the ith peptide bond of a peptide sequence of n amino 
acids (NH2CHRiC0 - NHCHR2C0 . . . . .  NHCHRnC00H) is broken, the N-terminal  ion corresponds 
to a charged prefix subsequence (NH2CHR1C0 . . . . .  NHCHRiC0 +) and the C-terminal ion cor- 
responds a charged suffix subsequence (NH2CHRi+iC0 . . . . .  NHCHI%C00H + H+). This process 
fragments a large number of molecules of the same pept ide sequence, and therefore the result- 
ing ions contain almost all possible prefix subsequences and suffix subsequences, and display 
a spect rum in the tandem mass spectrometer.  All these prefix (or suffix) subsequences form a 
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Figure 1: Hypothetical  t andem mass spectrum of peptide DII. 

sequence ladder where two adjacent sequences differ by one amino acid. In the t andem mass 
spectrum, each ion appears at the position of its mass because it carries a +1 charge. 

Figure 1 shows all the ions of the peptide DII in a hypothetical  t andem mass spectrum. 
The interpretat ion of a real t andem mass spectrum has to deal with the following two factors: 
(1) some ions may be lost in the experiments and the corresponding mass peaks disappear 
in the spectrum; (2) it is unknown whether  a mass peak corresponds to a prefix or a suffix 
subsequence. The de novo peptide sequencing problem takes an input of a subset of prefix and 
suffix masses of a target  peptide sequence P and asks for a peptide sequence Q such that  a 
subset of its prefixes and suffixes gives the same input masses. Note tha t  as expected, Q may 
or may not be the same as P ,  depending on the input da ta  and the quality. 

In practice, other  factors can also affect a t andem mass spectrum. An ion may display two 
or three different mass peaks because of the distribution of two isotopic carbons, C i2 and C i3, 
in the molecules. An ion may  lose a water or an ammonia  molecule and displays a different 
mass peak from its normal  one. An amino acid at some unknown location of the peptide 
sequence is modified and the  mass is changed. This modification appears in every molecule of 
this peptide, and all the ions containing the modified amino acid display different mass peaks 
from the unmodified ions. Finding the modified amino acid is of great  intetest  to biologists 
because the modification is usually associated with protein functions. 

Several computer  programs have been designed to interpret  the t andem mass spectral data. 
A popular approach [3] is to correlate peptide sequences in a protein database with the tandem 
mass spectrum. Peptide sequences in the database are converted into hypothetical  tandem 
mass spectra, which are matched against the target  spectrum using some correlation functions, 
and the sequences with top scores are reported. This approach gives an accurate  identification, 
but cannot handle the peptides that  are not in the database. Also, it does not scale up very 
well with the length of a protein and the size of a protein database because the number  of 
peptides for a protein grows quadratically with the length of the protein. Pruning techniques 
have been applied to screen the peptides before matching but at the cost of reduced accuracy. 

An alternative approach [4] is de novo peptide sequencing. The peptide sequences are 
extracted from the spectral  da ta  before they are validated in the database.  First, the spectral 
da ta  is t ransformed to a directed acyclic graph, called a spectrum graph, where (1) a node 
corresponds to a mass peak and an edge, labeled by some amino acids, connects two nodes 
differed by the total  mass of the amino acids in the label; (2) a mass peak is t ransformed 
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into several nodes in the graph, and each node represents a possible prefix subsequence (ion) 
for the peak. Then,  an algorithm is called to find a longest or highest-scoring path  in the 
graph. The concatenation of edge labels in the pa th  gives one or multiple candidate  peptide 
sequences. However, the well-known algorithms [5] for finding the longest path  tend to include 
multiple nodes associated with the same mass peak. This interprets a mass peak with multiple 
ions of a peptide sequence, which is rare in practice. This paper provides efficient sequencing 
algorithms for a general interpretat ion of the da ta  by restricting a path to contain at most one 
node for each mass peak. 

For this purpose, we introduce the notion of an NC-spec t rum graph G = (V,  E )  for a given 
tandem mass spectrum, where E = 2k + 2 and k is the number of mass peaks in the  spectrum. 
In conjunction with this graph, we develop a dynamic  programming approach to obtain the 
following results for previously open problems: 

• The de novo peptide sequencing problem can be solved in O([VI + [El) t ime and O(IVI )  
space for clean spectral data,  and in O(IVI IE] )  time and O(lYl 2) space for noisy data. 

• A modified amino acid can be found in O([V[[E[)  time. 

Our paper is organized as follows. Section 2 formally defines the NC-spectrum graph and 
the peptide sequencing problem. Section 3 describes the dynamic programming algorithms. 
Section 4 refines the algorithms for the data  with a modified amino acid and o ther  types of 
noise. Section 5 reports the implementation and testing of our algorithms on experimental 
data. Section ?? mentions fur ther  research. 

2 Spectrum graphs and the peptide sequencing problem 

Given the mass W of a target  peptide sequence P ,  k ions I 1 , . . . , I k  of P ,  and the masses 
Wl , . . . ,  wk of these ions, we create the NC-spec t rum graph G = (V,  E )  as follows. 

For each I j ,  it is unknown whether  it is an N-terminal  ion or a C-terminal ion. If I j  is a 
C-terminal ion, it has a complementary N-terminal ion, denoted as I3, with a mass of W - wj .  

Therefore, we create two complementary nodes N j  and Cj to represent I j  and I~, one of 
which must be an N-terminal ion. We also create two auxiliary nodes No and Co to represent 
the zero-length and full-length N-terminal ions of P .  Let V = {No, N1, ..., Ark, Co, C1, ..., Ck}. 
Each node x E V, is placed at a real fine, and its coordinate cord(x) is the tota l  mass of its 
amino acids, i.e., 

0 x = N o ;  

c o r d ( x ) =  W - 1 8  x = C 0 ;  
wj - 1 x = N j  for j = 1 , . . . , k ;  
W-wj  x--Cj for j = 1 , . . . , k .  

This coordinate scheme is adopted for the following reasons. An N-terminM b-ion has an 
extra Hydrogen (approximately 1 dalton), so cord(Nj)  = wj - 1 and cord(Cj) = ( W  - (wj  - 
1)) - 1 = W - wj;  and the full peptide sequence of P has two extra  Hydrogens and one 
extra Oxygen (approximately 16 daltons), so cord(C0) = W - 18. If cord(Ni) = cord(Cj)  for 
some i and j ,  Ii and I j  are complementary: one of them corresponds to a prefix sequence and 
another corresponds to the complementary suffix sequence. In the spectrum graph,  they are 
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Figure 2: A t a n d e m  mass spectrum and its corresponding NC-spectrum graph. 

t ransformed into one pair of complementary nodes. We say that  Nj and Cj are derived from 
Ij .  For convenience, for x add y E V, if cord(x) < cord(y) ,  then we say x < y. 

The edges of G are specified as follows. For x and y E V, there is a directed edge from x to 
y, denoted by E(x ,  y) = 1, if the following conditions are satisfied: (1) x and y are not derived 
from the same Ij; (2) x < y; and (3) cord(y) - cord(z)  equals the total  mass of some amino 
acids. Figure 2 shows a t andem mass spectrum and its corresponding NC-spectrum graph. 

Since G is a directed graph along a line and all edges point to the right on the real line, we 
list the nodes from left to right according to their coordinates as xo, x l , . . . ,  xk, Yk,. •. ,  Yl, Yo. 

L e m m a  1 The peptide sequencing problem is equivalent to the problem which, given G = 
(V, E),  asks for a directed path from xo to Yo which contains exactly one of  xj and yj for each 
/ > 0 .  

Proof. If the peptide sequence is known, we can identify the nodes of G corresponding 
to the prefix subsequences of this peptide. These nodes form a directed path from x0 to Y0. 
Generally the mass of a prefix subsequence does not equal the mass of any suffix subsequence, 
so the pa th  contains exactly one of xj and Yd for each j > 0. 

A satisfying directed path  from x0 to y0 contains all observed prefix subsequences. If each 
edge on the path corresponds to one amino acid, we can visit the edges on the path from left to 
right, and concatenate these amino acids to form a pept ide sequence that  display the tandem 
mass spectrum. If some edge corresponds to multiple amino acids, we obtain more than one 
peptide sequences. 

Even if the mass of a prefix subsequence coincidently equals the mass of a suffix subse- 
quence, which means the  directed path  contains both  x d and Yd, we can remove either xj  or Yd 
from the path  and form a new path corresponding to multiple peptide sequences which contain 
the real sequence. 

We call such a directed path a feasible reconstruction of P or a feasible solution of G. To 
construct  G, we use a mass array .4, which takes an input  of mass m, and returns 1 if m 
equals the  total  mass of some amino acids; and 0 otherwise. Let h be the maximum mass 
under construction. Let (~ be the measurement  precision for mass. Then,  

T h e o r e m  2 Assume that we are given the maximum mass h and the mass precision 6. 

1. The mass array .4 can be constructed in O(h)  time. 

2. With .4, G can be constructed in O(k 2) time. 
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Proof. These s ta tements  are proved as follows. 
Sta tement  1. Given a mass m, 0 < m <_ h, A[m] = 1 if and only if m equals one amino 

acid mass, or there exists an amino acid mass r < m such tha t  ,4[m - r] = 1. If .A is computed 
in the order from .4[0] to Jl[h], each entry can be determined in constant  time since there are 

only 20 amino acids. The total  t ime is o ( h ) .  
Statement  2. For any two nodes vi and vj of G, we create an edge for vi and vj, E(vi, vj) = 1, 

if and only if 0 < cord(vj)  - cord(v 0 < h and .A[cord(vj) - cord(vi)] = 1. There are O(k 2) 
pairs of nodes. With  .4, G can be constructed in O(k 2) time. D 

In current practice, ~i = 0.01 dalton, and h = 400 daltons, roughly the total  mass of four 
amino acids. The efficiency of our algorithm will allow biologists to consider much larger h 
and much smaller (~. 

3 Algorithms for peptide sequencing 

3.1 D y n a m i c  programming 

We list the nodes of G from left to right as x0, X l , . . . ,  xk, y k , - . . ,  Yl, y0. Let M ( i , j )  be a two- 
dimension table with 0 _< i , j  < k. Let M(i , j )  = 1 if and only if in G, there is a path L from 
x0 to xl and a path  R from yj to Y0, such that  L t2 R contains exactly one of xp and yp for 
every p e [0, i] t2 [0, j].  Let M(i,  j )  -= 0 otherwise. 

Algorithm Compute-M(G) 
1. Initialize M ( 0 , 0 )  = 1 and M ( i , j ) =  0 for all i ¢ 0 o r j  ¢ 0; 
2. Compute M(1 ,  0) and M(0,  1); 
3. F o r j = 2 t o k  
4. For i = O to j -  2 

(a) if M ( i , j  - 1) = 1 and E(xi,  xj) = 1, then M ( j , j  - 1) = 1; 
(b) if M ( i , j  - 1) = 1 and E(yj ,y j -1)  = 1, then M ( i , j )  = 1; 
(c) if M ( j  - 1,i) = 1 and E(xj_l ,  xj) = 1, then M ( j , i )  = 1; 
(d) if M ( j  - 1,i) = 1 and E(yj,  y 0 = 1, then M ( j  - 1 , j )  = 1. 

L e m m a  3 Given G(V, E), Algorithm Compute-M computes the table M in O([V[ 2) time. 

Proof. Let L and R be the paths that  correspond to M ( i , j )  = 1. If i < j ,  by definition, after 
removing node yj from R, L U R -  {yj) contains exactly one ofxq and yq for all 1 _< q _< j - 1. 
If (yj,yp) E R, then M(i ,p)  = 1, and either p = j - 1 or i = j - 1, which corresponds to 
Step 4(b) or 4(d) respectively in the algorithm, because either xj-1 or Yj-1, but not both, is 
in L U R. A similar analysis holds for the cases of Step 4(a) or 4(c). The loop at Step 3 uses 
previously computed M ( 0 , j  - 1 ) , . . . ,  M ( j  - 1,j  - 1) and M ( j  - 1, 0 ) , . . . ,  M ( j  - 1, j  - 1) to fill 
up M ( 0 , j ) , . . . ,  M ( j , j )  and M(j ,  0 ) , . . . ,  M(j , j ) .  Thus the algori thm computes M correctly. 
Note that  IvI = 2k + 2 and Steps 4(a), 4(b), 4(c), and 4(d) take O(1) time, and thus the total 
time is O([V[2). D 

Theorem 4 The following statements hold. 

1. Given G = (V, E) and M,  a feasible solution of G can be found in O([VI) time. 
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2. Given a = (y, E), a feasible solution of G can be found in O(IVI 2) time and O(]V] ~) 

space. 

3. Given G = (V,E) ,  all feasible solutions of G can be found in O(IV[ 2 + nlY]) time and 
O(IY] 2 + n[Yl) space, where n is the number of solutions. 

Proof. These s tatements  are proved as follows. 
Statement  1. Note that  IV I = 2k + 2. Without  loss of generality, assume that  a feasible 

solution S contain node xk. Then there exists some j < k, such that (xk, yj) is an edge in S 
and M ( k , j )  = 1. Therefore, we search the non-zero entries in the last row of M and find a j 
tha t  satisfies both  M ( k , j )  = 1 and E(xk,  yj) = 1. This takes O(IYl) time. Wi th  M ( k , j )  = 1, 
we backtrack M to search the next edge of S as follows. If j = k - 1, the search s tar ts  from 
i -- k - 2 to 0 until both  E(xi,  xk) ---- 1 and M ( i , j )  = 1 are satisfied; otherwise j < k - 1, and 
then E(xk - l , x k )  = 1 and M ( k  - 1 , j )  = 1. We repeat  this process to find every edge of S. 
The process visits every node of G at most  once in the order from xk to x0 and from Yk to Y0. 

The to ta l  cost is O(IVI) time. 
Statement  2. We compute M by means of Lemma 3 and find a feasible solution by means 

of Sta tement  1. The total  cost is O(IVI 2) time and O(IV] 2) space. 
Sta tement  3. The proof is similar to that  of Statement  1. We can find all the feasible 

solutions by backtracking M,  and each feasible solution costs O(IVI) t ime and O(IYl) space. 
Comput ing M and finding n solutions cost O([Yl 2 + nlYl) t ime and O(IYl 2 + n[Y[) space in 

total .  [3 

3.2 An improved algorithm 

To improve the t ime and space complexities in Theorem 4, we encode M into two linear arrays. 
Define an edge (xi ,yj)  with 0 _< i , j  <_ k to be a cross edge, and an edge (zi, xj)  or (yj ,yi)  with 
0 _ i < j <_ k to be an inside edge. Let lce(z) be the length of the longest consecutive inside 

edges starting from node z; i.e., 

lce(xi) = j - i if E(xi,  xiq-1) = - . .  ---- E(xj-1,  xj)  ---- 1 and ( j  = k or E(xj ,  xj+l) = 0); 
lce(yi) i - j  if E(yi, y i - 1 ) = . . . - -  E(y j+i , y j )=  l a n d  ( j  = Oor E(yj ,  yj-1) =0) .  

Let dia(z) be two diagonals in M ,  where 

dia(xj )  = M ( j , j -  1) 
dia(yj)  = M ( j -  1 , j )  
din(x0) = dia(y0) = 1. 

f o r 0 < j < k ;  
f o r 0 < j < k ;  

L e m m a  5 Given lce(-) and d/a(.), any entry of M can be computed in O(1) time. 

Proof. Without  loss of generality, let the M ( i , j )  be the entry we want to compute  where 
0 <_ i < j <_ k. If i = j - 1, M ( i , j )  = dia(yj)  as defined; otherwise i < j - 1 and M ( i , j )  = 1 
if and only if M(i,  i + 1) = 1 and E(yj ,  yj-1) = . . . .  E(yi+2, Y{+I) = 1, which is equivalent to 
dia(yi+l)  = 1 and lce(yj)  >_ j - i - 1. Thus both cases can be solved in 0 ( 1 )  time. 

L e m m a  6 Given G = (V, E), Ice(-) and d/a(.) can be computed in O(IV I + IEI) time. 
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Proof. We retrieve consecutive edges start ing from Yk, Yk-1, . . . ,  until the first yp with 
p < k and E(yp, yp-1) = O. Then we can fill lce(yk) = k - p ,  lce(yk_l) = k - p -  1, . . . ,  and 
lce(yp) = 0 immediately. Next, we start  a new retrieving and filling process from yp-1, and 
repeat  this until y0 is visited. Eventually we retrieve O(k) consecutive edges. A similar process 
can be applied to x. Using a common graph data  structure such as a link list, a consecutive 
edge can be retrieved in constant time, and thus lee(.) can be computed in O([Yl) time. 

By definition, dia(zj)  = M ( j , j  - 1) = I if and only if there exists some i with 0 _ i < 
j - 1, M ( i , j  - 1) = 1, and E(xi, xj) = 1. If we have computed d i n ( x 0 ) , . . . , d i a ( x j _ l )  and 
d i a (y j_ l ) , . . . , d in (y0 ) ,  then M ( i , j -  1) can be computed in constant t ime by means of the 
proof in Lemma 5. To find the xi for E(xi, xj) = 1, we can visit every inside edge that  ends 
at xj. Therefore the computat ion of din(.) visits every inside edge exactly once, and the total  
t ime is O(IVl + [El). 0 

T h e o r e m  7 Assume that G(V, E) is given. 

1. A feasible solution of G can be found in O(IV I + ]El) time and O(IVI) space. 

2. All feasible solutions of G can be found in O(n]Y[ + ]E[) time and O(n[Y[) space, where 
n is the number of solutions. 

Proof. These statements are proved as follows. 
Statement  1. By Lemma 6, lee(.) and dia(-) can be computed in O([V I + [El) t ime and 

O(IV[) space. By Lemma 5, the last row and the last column of M can be reconstructed from 
lee and din in O(]VI) time. By Theorem 4 and Lemma 5, a feasible solution of G can be found 
in O([EI) time. Therefore, finding a feasible solution takes O([Y I + IEI) t ime and O([Yl) space. 

Statement  2. The proof is similar to the proof of Statement 3 in Theorem 4. Finding an 
additional feasible solution takes O(IY]) t ime and O(IYl) space. Thus finding n solutions takes 
O(nlY ] + ]El) time and O(nlYl) space. D 

A feasible solution of G is a path of k + 1 nodes and k edges, and therefore there must exist 
an edge between any two nodes on the pa th  by the edge transitive relations. This implies that  
there are at least (k + 1)k/2 or O([Yl 2) edges in the graph. However, in practice, a threshold 
is usually set for the maximum length (mass) of an edge, so the number  of edges in G could 
be much smaller than  O(IY[ 2) and may actually equal O(IYl) sometimes. 

4 Algorithms for noisy data 

4.1 A m i n o  a c i d  m o d i f i c a t i o n  

Amino acid modifications are related to protein functions. For example, some proteins are 
active when phosphorylated but inactive when dephosphorylated. Although there are a few 
hundred known modifications, a peptide rarely has two or more modified amino acids. This 
section discusses how to find the position of a modified amino acid from a t andem mass spectral 
data. We assume that  the modified mass is unknown and is not equal to the total mass of 
any number of amino acids; otherwise, it is information-theoretically impossible to detect an 
amino acid modification from tandem mass spectral data. 

L a m i n a  8 The amino acid modification problem is equivalent to the problem which, given 
G = (V, E), asks for two nodes vi and vj, such that E(vi, vj) = 0 but adding the edge (vl, vj) 
to G creates a feasible solution that contains this edge. 
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Proof. Similar to Lemma 1. D 
Let G = (V, E )  be an NC-spectrum graph with nodes from left to right as x0,. • . ,  xk, yk , . . . ,  yo. 

Let N(i , j )  be a two-dimension table with 0 _< i , j  <_ k, where N( i , j )  = 1 if and only if there 
is a path from xi to yj which contains exactly one of xp and yp for every p e [i, k] U [j, k]. Let 

N(i,  j )  = 0 otherwise. 

Algorithm Compute-N(G) 
1. Initialize N( i , j )  = 0 for all i and j ;  
2. Compute  g ( k ,  k -  1) and g ( k -  1, k); 
3. For j = k -  2 to O 
4. For i = k to j + 2 

(a) if N ( i , j  + 1) = 1 and E(xj, xi) = 1, then N ( j , j  + 1) = 1; 
(b) if N ( i , j  + 1) = 1 and E(yj+l,yj) = 1, then N(i , j )  = 1; 
(c) if N ( j  + 1, i) = 1 and E(xj, xj+l) = 1, then N(j,  i) = 1; 
(d) if N( j  + 1, i ) =  1 and E(yi, yj+l) = 1, then N( j  + 1 , j ) =  1. 

Lemma 9 Given G = (V, E), Algorithm Compute-N computes the table N in O([V[ 2) time. 

Proof. Similar to Lemma 3. 17 

Theorem 10 Given G = (V, E) which contains all prefix and suffix nodes, all possible amino 
acid modifications can be found in O(]V]IEI) time and O([VI 2) space. 

Proof. Let M and N be two tables for G computed from Lemma  3 and 9. Without  
loss of gene.rality, let the modification be between two consecutive prefix nodes xi and xj with 
0 <_ i < j <_ k and E(xi, xj) = 0. All the prefix nodes to the right of xj have the same mass 
offset from the normal  locations .because the corresponding sequences contain the modified 
amino acid. By adding a new edge (xi, xj) to G, we create a feasible solution S that  contains 
this edge. If i + 1 < j ,  then y~+l E S, and thus M(i, i  + 1) = 1 and N ( j , i +  1) = 1. There 
are O(k 2) possible combinations of i and j ,  and checking all of t hem takes O(IY[ 2) time. If 
i + 1 = j ,  then S must  contain an edge (yq, yp) with q > j > i > p, which skips over yi and 
yj. S can be found if E(yq, yp) = 1 and M(i,p) = 1 and g ( j , q )  = 1. There are at most 
O(]EI) edges, which can be examined in O(]E]) t ime.  Checking O(lYl) possible i +  1 = j costs 
O(W]IE[) time. The  total  complexity is O([VllEL) time and O(IVI 2) space, cl 

Note that  the condition in Theorem 10 does not require tha t  all ions in the spectrum are 
observed. If some ions are lost but their complementary ions appear ,  G still contains all prefix 
and suffix nodes of the target sequence. Furthermore,  if G does not  contain all prefix and suffix 
nodes because of many  missing ions, we can still use this algori thm to find the modification 
but the result depends on the quality of the data  and the modified mass. 

4 .2  U s i n g  s c o r i n g  f u n c t i o n s  

In practice, a t andem mass spectral da ta  may contain noise such as mass peaks of other types 
of ions from the same peptide, mass peaks of ions from other  peptides, and mass peaks of 
unknown ions. A common way to deal with these situations is to use a pre-defined edge 
scoring function s(.).  With s, the score of a path is the sum of the scores of the edges on 
the path.  We re-define the peptide sequencing problem, which given an NC-spectrum graph 
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G = (V, E) ,  asks for a maximum score path from x0 to Y0, such that  at most  one of xj and yj 
for every 1 _< j ___ k is on the path. 

Let Q(i,j) be a two-dimension table with 0 __% i ,j  <_ k. Q(i,j) > 0 if and only if in G, 
there is a path L from x0 to x¢ and a path R from yj to y0, such that  at most  one of Xp and 
yp is in L t.J R for every p E [0, i] t2 [0,j]; Q(i,j) = 0 otherwise. If Q(i,j) > 0, let Q(i,j) be the 
maximum score among all L and R pairs. 

A l g o r i t h m  C o m p u t e - Q ( G )  
1. Initialize Q ( 0 , 0 ) =  1 and Q(i,j)= 0 for all i ~ 0 o r j  ~ 0; 
2. F o r j = l t o k  
3. For i = 0 to j -  1 

(a) For every E(yj,yp) = 1 and Q(i,p) > O, Q(i,j) = max{Q(i,j),Q(i,p)+ s(yj,yp)}; 
(b) For e v e r y  E(xp, Xj) = 1 and Q(p,i) > 0, Q(j,i) = max{Q(j,i),Q(p,i)+ ~(Xp,Xj)}. 

L e m m a  11 Given G = (V,E) ,  Algorithm ¢ompute -Q computes the table Q in O([V]]E]) 
time. 

Proof. The correctness proof is similar to that  for Lemma 3. For every j ,  Steps 3(a) and 
3(5) visit every edge of G at most once, so the total  time is O(]VI]EI). 0 

T h e o r e m  12 Given a = (V, E), a feasible solution of G can be found in O(IV]]EI) time and 
o(IVID space. 

Proof. Algorithm Compute -q  computes Q in O([V[IE[) t ime and O(]V] 2) space. For 
every i and j ,  if Q(i,j) > 0 and E(xi, yj) = 1, we compute the sum Q(i, j)+ s(xi,yj). Let 
Q(p, q) + s(xp, yq) be the maximum value, and we can backtrack Q(p, q) to find all the edges 
of the feasible solution. The total  cost is O(IV]]EI) time and O(]Yl 2) space. D 

5 Exper imenta l  results 

We have presented algorithms for reconstructing peptide sequences from a tandem mass spec- 
tral da ta  with loss of ions. This section reports experimental studies which focus on cases of 
b-ions losing a water  or ammonia molecule and cases of isotopic varieties for an ion. We treat  
the rare occurrence such as y-ions losing a water or ammonia molecule, b-ions losing two water  
or ammonia  molecules, and other types of ions, as noise and apply Algori thm Compute-Q to 
reconstruct peptide sequences. 

Isotopic ions come from isotopic carbons of C 12 and ¢~3. An ion usually has a couple of 
isotopic forms, and the mass difference between two isotopic ions is generally one or two dal- 
tons. Their intensities reflect the binomial distribution between C12 and C13. This distribution 
can be used for identification. Isotopic ions can be merged to one ion of either the highest 
intensity or a new mass. 

It is very common for a b-ion to lose a water or ammonia molecule. In the construction 
of an NC-spectrum graph, we add three types of edges whose lengths equal the masses of a 
water molecule, amino acids minus one water, and amino acids plus one water  respectively. In 
Algorithm Compute-Q,  we restrict the net number of waters at each ent ry  to be at most one, 
since a feasible solution should have a net of zero water. We have implemented this algorithm 
and tested it on the da ta  generated by the following process: 



398 

, , , [  ~ 4  

. . . .  1oo,  
u~m'n mm mpmca~,~ ~ pw~  O~JLF~INr-O'rAAOOAA - -  

JOa- 

12 3O I- 

/t 
, , l ~ l s  

rLI 

e ~ * e e : J u  ,e~.o ~ k 'aee~ey > 5+o - -  

r I ,r,, 
)Am) ~ c).)a~ 

Figure 3: Raw tandem mass spectrum and predicted ions of the Chicken Ovalbumin peptide 
GGLEPINFQTAADQAR. 

The Chicken Ovalbumin proteins were digested with trypsin in 100 mM ammonium 
bicarbonate buffer pH 8 for 18 hours at 37°C. Then 100 #~ are injected in acetoni- 
trile into a reverse phase HPLC interfaced with a Finnigan LCQ ESI-MS/MS mass 
spectrometer. A 1% to 50% acetonitrile 0.1%TFA linear gradient was executed 
over 60 minutes. 

Figure 3 shows one of our prediction results. The ions labeled in the spectrum were 
identified successfully. We use resolution 1.0 dalton and relative intensity threshold 5.0 in our 
program. More experimental results will be shown in the full version of this paper. 

6 F u r t h e r  r e s e a r c h  

We are working on the cases of multiple peptides. 
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