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Cognitive behaviorist E. C. Tolman (1932) proposed many years ago that rats and men navigate

with the aid of cognitive maps, but his theory was incomplete. Critic E. R. Guthrie (1935) pointed

out that Tolman's maps lack a rule for action, a route nnder. We show that a dynamic model for

stimulus generalization based on an elementary diffusion process can reproduce the qualitative

properties of spatial orientation in animals: area-restricted search in the open field, rinding shortcuts,

barrier learning (the Umweg problem), spatial "insight" in mazes, and radial maze behavior. The

model provides a behavioristic reader for Tolman's cognitive map.

The cognitive behaviorist Edward Tblman spent much of his

career devising clever experiments to show that stimulus-re-

sponse accounts of rat behavior cannot be correct. Some of his

most striking demonstrations involve spatial learning. One such

example is shown in Figure 1, which depicts a maze apparatus

used in a famous experiment by Tolman and Honzik (1930).

The maze has three paths from the Start box to the Goal box.

The paths differ in length: Path 1 (heavy vertical line) shorter

than Path 2 (intermediate line) shorter than Path 3 (light line).

In preliminary training, the rats were allowed to become familiar

with all three paths to the Goal box. They also had experience

with a block at Point A, which permits access to the Goal only

via Paths 2 and 3. In the test condition, the block was moved

to Point B—so that only Path 3 is open. The question is, Will

the rats choose Path 3 as soon as they encounter the block at

B, or will they choose Path 2, which is normally preferred to

Path 3—indicating that they do not know Paths 1 and 2 share a

common, blocked, segment? Tolman and Honzik1 s rats behaved

intelligently and usually went straight to Path 3 after encounter-

ing the block at B. Tbrman took this as evidence that the rats

knew something about the topography of the maze. They were

not just operating on a fixed hierarchy of preferences ("Path 1

better than Path 2 better than Path 3"), nor were they responding

reflexively to local cues. Tolman considered this behavior to be

an example of "insight," although he did not specify exactly

what that means. He did say that some kind of cognitive map
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must be involved, and he also argued that these results are

incompatible with a blind S-R process. But he offered no satis-

factory alternative, prompting Guthrie's (1935) famous objec-

tion that Tolman's theory left the rat "buried in thought" (p.

143) at each choice point (see also Dawkins, 1982). The prob-

lem was that Tolman assumed a map, but provided no way for

the animals to use the map to decide on where to go—no route

finder.

There have been several responses to Guthrie's objection. For

example, Deutsch (1960) described a verbal model for learning

embodied in 14 propositions. "Insight" learning in the Tolman

and Honzik apparatus is accounted for by assuming three

"links" corresponding to the three alternative paths. When Path

1 is blocked, it is the link corresponding to Path 3 rather than that

corresponding to Path 2, that is activated, because of common

elements between Path 2 and the blocked Path 1. Deutsch does

not discuss barriers, open-field navigation, or cognitive maps.

More recently, Hampson (1990) has set out an ambitious con-

nectionist program intended to model Tolman's maze results

and many others in the animal learning literature. His model,

"which is actually more a collection of components than a

single monolithic structure, traces a path from relatively low-

level neural/connectionist structures and processes to high-level

animal /artificial intelligence behaviors" (p. 1). We mention

points of contact between Hampson's approach and ours as we

develop our much simpler route-finding model, which is based

on the familiar behavioristic idea of stimulus generalization. We

identify a class of spatial problems, including the Tolman and

Honzik problem, that can be solved by a very simple local

process, operating on an internal map. The process involves no

overview of the problem as a whole, hence nothing correspond-

ing to "insight"—it requires a cognitive map, but makes do

with a noncognitive route finder. Our intention is not so much

to provide a comprehensive theory of spatial orientation as to

show that the processing requirements for behavior that shows

spatial "insight" are simpler than previously thought. The

model we describe is not complete, but may be an essential

ingredient in any comprehensive mode) for spatial orientation

in animals.

We first describe the model and illustrate how it simulates

the main features of stimulus generalization. We go on to show

how the same process can simulate the behavior of animals in
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a variety of spatial situations. We conclude by pointing to some

limitations on the simple model.

A Local-Process Model

Our route finder is based on a diffusion model for the dynam-

ics of stimulus generalization (Shepard, 1958; Staddon & Higa,

1991; Staddon & Reid, 1990). Some kind of diffusion or spread-

ing activation is a common element in theories of adaptive be-

havior, beginning with Pavlov (1927); although our model, un-

like Pavlov's, is intended to explain behavior rather than brain

physiology. We show in the next section that a minimal dynamic

generalization model is able to account for a number of proper-

ties of spatial orientation, including properties often thought to

demand "insight." But first we describe one- and two-dimen-

sional versions of the model.

One-Dimensional Model

The one-dimensional diffusion model assumes that a single

stimulus dimension can be represented as a line of units (cf.

Figure 2, inset). Each unit has connections to its immediate

neighbors (this assumption is relaxed in a moment). Associated

with each unit is an activation strength, V,, which we term

reward expectation, for reasons that will become apparent. In

the absence of external stimulation, expectation diffuses from

one unit to the next according to an elementary process analo-

gous to heat diffusion; that is, if V, > VM, then V, will decrease

in the next time step and K+, will increase (Equation 1, below).

In the absence of external input, this process will eventually

lead to flat (or zero, if boundaries are absorbing) expectation

across the whole network. This does not happen in the model,

because expectation is injected into the network through active
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Figure 1. The maze apparatus used by Tolman and Honzik (1930).

Path 1 is the shortest path from start box to food box, Path 2 the next

shortest, and Path 3 the longest. Blocks were placed at Points A and B

during different phases of the experiment.
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Figure 2. Stimulus generalization according to the diffusion model.

The inset represents 20 stimulus-representation units, each with bidirec-

tional connections to nearest neighbors. Each unit has an activation value

that changes according to Equation 1 and the other assumptions in the

text. The graph shows effect on the activation profile of training with

reinforcement delivered in the presence of Stimulus 10 during Time Steps

1,5 25. Fine lines = activation profile during (nonreinforced) Time

Steps 4, 8, . . . , 24; heavy line = activation profile at Time Step 30;

intermediate line = activation profile at Time Step 50.

units. In the case of spatial generalization, one and only one

unit will be active at any instant ("stimulus" in the figure) —

the animal can only be in one place at a time. The value (expec-

tation) of the active unit depends on whether or not reinforce-

ment (e.g., food, for a hungry animal) occurs during that time

step. If it does, the value of the unit is set to a positive value

(e.g., 1, for unit reinforcement); if there is no reinforcement,

the value is set to zero.

Formally, in discrete-time notation,1 Vt(t) is the expectation

associated with unit i at time step t. At each time step the

expectation of each unit moves toward the average of its neigh-

bors'. The change in the value of the ith unit in a series at each

time step is given by

AV, = a[(VM - V,) + (Vi_! - V,)], 0 < a < 0.5,

(1)

where AV) is the change in V, from one time step to the next

(i.e., V,(t + 1) - V,(0) and i + 1 and i - 1 are the adjacent

units. The a is a diffusion-rate parameter: Larger values of a

produce faster diffusion. Equation 1 is a discrete-time version

of the standard diffusion equation (e.g., Banks, 1994; Berg,

1983).

The effects of stimuli and of reward and nonreward are incor-

porated via two assumptions:

Activity. A unit is either active or inactive, depending on

whether or not its stimulus is present (and attended to). If its

' Because of the nonlinear reinforcement/nonreinforcement rule, and

the nonlinear environment-interaction rule, predictions from the model

can only be obtained by simulation. We therefore use discrete-time

(rather than continuous-time) formalism, which translates directly into

computer implementation.
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stimulus is absent, the unit is inactive and the expectation vari-

able changes according to diffusion (Equation 1). If its stimulus

is present, the unit is active and the expectation variable is set

to a fixed value, which is determined by whether reward or

nonreward occurs during that time step.

Tb accommodate the free-operant situation and nonspatial

stimuli, we assume that a unit is active only when two conditions

are fulfilled: The appropriate stimulus is present, and an operant

response is made to it. If the appropriate stimulus is absent, or

if it is present but not responded to (not attended to, in cognitive

parlance), then the unit is treated as inactive.

Reward. Reward events set Vt(t) for the active unit to a

value directly related to the reward magnitude, S(t). (S[i] = 1

in all our simulations). If reward is present, reward expectation

equals reward value; if no reward is present, reward expectation

equals zero.

These two assumptions allow the expectation surface to

change in real time as a function of the temporal patterns of

reward and nonreward in the presence of different stimuli. When

we generalize the scheme to two dimensions, we will introduce

an action rule that allows movement to be guided by the expecta-

tion surface, but first let's look at the diffusion process itself.

The process is illustrated in Figure 2, which shows 20 units,

corresponding to 20 values on a stimulus dimension (inset). At

Time 0 the expectation variable is everywhere zero (V, = 0 for

all is) and no unit is active. Suppose that at time t = 1, the

stimulus appropriate to Unit 10 is presented so that Unit 10 is

active; suppose also that reward is presented at/s = 1, 5, 9, etc.

(i.e., every fourth time step) until t = 24 and then omitted

thereafter, and the stimulus turned off. The activation profile

builds to an asymptotic form with successive reinforcements

(V10, the expectation of the active unit, is zero during training

[light lines] just because this figure shows the state of the

network only on nonrewarded time steps; on rewarded time

steps, Vln = 1). When reward ceases and no unit is active,

diffusion soon creates a typical generalization gradient with a

maximum at S+ (stimulus 10: heavy line). This gradient slowly

collapses into a Gaussian form (intermediate line). If the gradi-

ent is sampled by presenting stimuli along the continuum, a

roughly similar profile of responding can be generated. This

one-dimensional process is qualitatively consistent with well-

established properties of stimulus control in reinforcement

learning: generalization, peak shift, and the effects of reward

in the presence of multiple stimuli. It also shows a simple kind

of spatial extrapolation.

Generalization. Stimulus generalization reflects two kinds

of processes: perceptual processes that determine the perceived

similarity of one physical stimulus to another; and reinforce-

ment-expectancy processes that determine how the animal

should respond to stimuli more or less similar to the rewarded

stimulus. We represent the perceptual processes by a single

dimension (line of units) along which stimuli are varied. The

diffusion process models the expectation process that guides

action.

Stimulus generalization in animals is demonstrated in two-

phase reinforcement-learning experiments (Guttman & Kalish,

1956) like the procedure used to make Figure 2. In the first

phase, an animal such as a pigeon is trained with a single

stimulus (usually termed S+), such as a wavelength of 550 nm,

in the presence of which responses intermittently produce food

reinforcement. In the second phase, no food is delivered and a

counterbalanced series of stimuli more or less similar to S+ is

presented. The experimenter records the frequency of re-

sponding in the presence of each of these stimuli. The usual

finding is that response rate is maximal in the presence of S+

and falls off smoothly in the presence of stimuli increasingly

different from S+—yielding a profile of response rate versus

wavelength (say), a generalization gradient, resembling one or

other of the "testing" curves in Figure 2.

Peak shift. One of the more reliable phenomena of general-

ization, as it is measured in these experiments, is peak shift

(Hanson, 1959). To demonstrate peak shift, the first phase of

the generalization experiment involves not one but two stimuli:

an S+, as before, and another stimulus, S-, a little different

from S+, which is alternated with S+. Responses are never

reinforced in the presence of S—. When generalization is tested

in the second phase, the result is often a gradient with a peak

shifted away from S+ in a direction opposite to S—. If S+ is

550 nm and S- is 540 nm, the new peak might be at 560

nm, for example. The magnitude of peak shift depends on the

separation between S+ and S—: The closer they are, the larger

the shift. Peak shift is usually thought to require some kind of

inhibitory process (cf. Spence, 1937; Staddon, 1977).

Figure 3 shows a simple simulation of peak shift with the

diffusion model. S+ (Stimulus 10) and S- (Stimulus 9) are

alternated at intervals of four time steps for a total of three

alternations (24 time steps). Two time steps after the end of

training, the gradient (heavy line) shows a peak shifted from

S+ away from S—. It is also possible to show that peak shift

declines and then disappears in the model as S— is displaced

further from S+. Notice that the shift here is achieved without

assuming that S— is inhibitory (inhibition seems to be necessary

to explain behavioral contrast [Reynolds, 1961], but this dem-

Stimuli
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Figure 3. Generalization peak shift simulated by the diffusion model.

Stimuli 9 and 10 alternated every 4 time steps for a total of 3 alternations

(24 time steps). Reinforcement was always present during Stimulus 10

(S+), never during Stimulus 9 (S-). Fine lines = activation pro-

file during training (see Figure 2); heavy line = activation profile 2

time steps after training. Note that the peak is shifted from S-f, away

from S—.
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onstration shows that the inhibitory assumption is not necessary

for peak shift).

The diffusion model is compatible with Terrace's (1964) ob-

servation that "errorless" discrimination training does not pro-

duce peak shift. In the model, peak shift occurs because reward

expectation is zeroed during each time step when an unrein-

forced response occurs in the presence of S-. But in errorless

discrimination training, no such responses occur, so that the

postdiscrimination gradient has the same general form as the

single-stimulus gradient.

The diffusion model produces qualitative results similar to

data from experiments with more than one S+ or discrimination

studies with multiple S-s (Kalish & Guttman, 1959; Hanson,

1961), although we do not show these simulations here.

In our simulations, we have assumed that the rate of diffusion

is constant, which implies that if generalization is tested at

different times after the last reinforcement (all else remaining

the same), the height of the gradient should decrease and

breadth of generalization should increase. Both these effects

were observed in the original study by Guttman and Kalish

(1956). The authors made little of the increasing gradient

breadth, even though the opposite result was expected, but Riley

(1968) has pointed out that

the decrement in stimulus generalization appears to be present from

the first three trials, but the steepness of the gradient does not seem

to increase over extinction trials. If anything, the opposite trend is

true: The gradients appear to flatten with the passage of trials. Also

in this study, the shape of the gradient is difficult to specify. On

the right-hand side of the second test series, for example, the form

appears to be ogival, wheieas by the fourth series both sides of the

curve appear to be somewhat convex downward, (pp. 21-22)

Nevertheless, the flattening effect has not always been ob-

served (e.g., Hoffman & Fleshier, 1961), and in any case, indi-

vidual generalization gradients are evidently quite variable in

form during extinction. Evidence from memory studies with

both humans and animals suggests that older memories change

more slowly than newer ones (Rubin & Wenzel, 1996; Staddon,

1998). Hence, a more realistic (but also more complex) version

of our model might include an assumption about the rate of

diffusion as a function of the "age" of the diffusing effect.

Such an assumption would make different predictions about the

change in gradient form with time, but would make much the

same qualitative predictions about peak shift and multistimulus

effects, as the simple model. It is important to emphasize that

none of the qualitative predictions we discuss depend on this

aspect of the model, so we feel reasonably comfortable about

leaving it for future development.

Spatial extrapolation. The same process that produces peak

shift can also produce a sort of spatial extrapolation. In honey-

bee foraging, for example,

During training to an artificial food source, there comes a point at

which at least some of the bees begin to 'catch on' that the experi-

menter is systematically moving the food farther and farther away,

and von Frisch recalls instances in which the trained foragers began

to anticipate subsequent moves and to wait for the feeding at the

presumptive new location fvon Frisch, 1967]. (Gould & Gould,

1982, p. 281)

Gould and Gould termed this extrapolation "slightly eerie.'' We

have not been able to find a detailed account of this phenomenon,

but Figure 4 shows how something of this sort arises naturally

from the diffusion model. The inset shows the spatiotemporal

pattern of rewarded and unrewarded locations experienced by

bees in a study such as von Frisch's. On Day 1 they are fed at

close-by source Fl (first filled circle in the inset). On the second

day, no food is available at Fl (gray circle below Fl in the

inset), but after a delay shorter than a day they find food at the

more distant source, F2 (second filled circle in the inset). This

pattern is repeated on a 3rd day, with nonreward at Fl and F2

and reward at F3. On the 4th test day, the bees find no food at

any of the three locations. The graph shows the expectation

profile as a function of location (distance from the hive) after

the model has spent some time searching (i.e., with no active

units) after failing to find reward at any of the previous three

locations. The peak activation is displaced away from hive, at

the fourth location, which has never been rewarded. Obviously,

the exact form of expectation profile at different times depends

on the details of the bees' search pattern, the time and distance

between food sites, and so on and these details are not available.

Nevertheless, Figure 4 illustrates the fact that a simple form of

spatial extrapolation is a robust property of this kind of model.

Two-Dimensional Model: Spatial Orientation

Spatial orientation has two logical parts, knowledge and ac-

tion. Knowledge is the mapping between states of the organism

and location in space—Tolman's cognitive map. The map may

be more or less complete, more or less accurate and fine grained.

A minimal cognitive map must at least have a defined state

(termed a node or unit in our model) for each spatial position

Figure 4. Spatial extrapolation. The inset represents spauotetnporal

pattern of reward and nonreward in an experiment by von Frisch in

which honeybees were fed each day at a point farther and farther from

the hive. Fl = food site on Day 1; F2 = food site on Day 2, and

so forth. Filled circles are rewarded sites; gray circles are visited but

unrewarded sites. The graph shows the expectation profile versus dis-

tance after unrewarded visits to all three sites on Day 4. See text for

details.
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(within some spatial resolution), that is, a many-one mapping

of spatial location on to map node. For every location there

should be one and only one node, although in a coarse-grained

map one node may correspond to several neighboring physical

locations. Richer maps will have in addition information about

adjacency (what is next to what), connectivity (what can be

reached from what), and distance (how far places are from

each other).

We assume the existence of an orientation process sufficient

to locate the animal accurately, that is, to change the active unit

in the cognitive map as the model organism changes its position

(in a spatial map, only one unit can be active at a time). With

the sole exception of learning about barriers (see later discus-

sion), we are not concerned with how the animal knows where

it is: Any process—landmark learning, dead reckoning (path

integration), viewpoint memory, GPS,
2
 etc.—that can provide

the required mapping of position on to state will do (see Gallis-

tel, 1990; Schmajuk & Blair, 1993, for discussions of these

issues).

The simplest map is shown on the left of Figure 5. Even

an unconnected map permits navigation, because it allows the

.organism to associate actions with states (locations): The organ-

ism can learn to turn left when in State A, right when in State

B, and so on. But an unconnected map cannot permit extrapola-

tion or insight (see later examples) because it contains no infor-

mation about adjacency and because no information can pass

from one state to another. The other three examples in the figure

show different types of map connectivity. In our simulations,

we used eight-neighbor connectivity, except for restrictions due

to barriers or the edges of the map.

Unit properties. Each map unit is characterized by three

things: It is active or inactive, in the sense described earlier; it

has a level of the expectation variable, Vj , and it is connected

(linked) to one or more units (termed neighbors) representing

adjacent spatial locations.

Diffusion rule. Equation 1 described the diffusion process

along a single dimension. At each step the expectation of each

unit moves toward the average of its neighbors—one on either

side of the current unit. When the map has two dimensions the

Types of Map Connectivity

form of the equation is the same, but the number of neighbors

increases. Thus, the generalized diffusion equation is
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Figure 5. Two-dimensional map structures. In the unconnected map,

there is a many-one mapping of environment onto state (states are

indicated by the filled circles), but no information can pass from one

state to another. The map has no information about adjacency. The

organism can navigate by learning to associate particular actions with

particular states, but it cannot solve problems that require spatial extrap-

olation or insight. The other three maps show essentially complete link-

ages between states; these maps contain adjacency information and also

some information about distance.

AV, = (a/N,) I KV(.VJ- V,), 0 < a < l , ( 2 )

where a is the diffusion-rate parameter, N, is the number of

units connected to unit i, and K^ is a parameter that is equal to

1 when unit j is connected to unit i and 0 otherwise.
3

The only difference between Equations 1 and 2 is the number

of neighbors, N>, associated with each unit, which depends on

the type of map and the location of the unit in the map. If the

underlying map is a rectangular lattice (cf. Figure 5), each

element has four neighbors (N = 4). In the simulations that

follow, we use an eight-neighbor lattice (N = 8), except at the

edges of the simulated surface. Units on an edge have only five

neighbors; units at a corner have only three neighbors.

The activation and reward assumptions are the same as in the

one-dimensional case. For the two-dimensional case, we need

to add an assumption about barriers, as well as an action rule.

Barriers. Barriers reduce the number of neighbors, and this

reduction affects both diffusion and the action rule: Diffusion

cannot occur between units separated by a barrier, and the model

organism cannot move between them. Thus, if the action rule

requires movement that would take the model organism from

unit i to unit j and movement is blocked by a barrier, then

parameter Ktj is set to zero and Nt is reduced by 1 . During future

time steps, no diffusion can take place between units j and j

and the action rule will not initiate movement from one to the

other. This is the only kind of map formation (as opposed to

map reading) incorporated in our model.

Action rule. For a map to be useful, it must be combined

with an action rule that tells the organism what to do at any

map location: stay, move forward or back, left or right, etc. Our

action rule is very simple: At each time step, the system moves

to the adjacent (connected) unit with the highest expectation

(lvalue). If the current unit has a higher expectation than its

neighbors, the organism remains where it is; otherwise, it moves

to the highest expectation neighbor. This rule is variously termed

hill-climbing or gradient descent, depending on the sign as-

signed to "good" events.

This system will never become trapped in a local maximum,

because of our reward rule and the dynamic nature of the expec-

tation surface. If no reward is available at a given point, V, is

set to zero, which ensures that adjacent points will generally

have higher V values. If reward is present, it is consumed, at

which point, Vj again equals 0 and the action rule ensures move-

ment during the next time step.

Notice that this model is both deterministic and local: Diffu-

sion flow and the direction of movement from any unit are

determined only with respect to immediate neighbors. The

model involves no overview of the problem (or expectation

landscape) as a whole.

Initial conditions. In all our simulations, the initial condi-

2
 Global Positioning System: a satellite-based system used in naviga-

tion and robot orientation.

' R>r simplicity, we denote each unit (node) in the map by a single

subscript, even though the map is two-dimensional.
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tions were a uniform low expectation level at each node in the

map. Under these conditions, the system will actively explore

its environment, zeroing expectation at each point it passes

through.

Details of the computer algorithms we used are given in the

Appendix.

Spatial Search

The model defines a route to be followed within the map.

The route is defined by an expectation surface that is altered

dynamically both by the passage of time and by the model

organism's experience with reward and nonreward. In this sec-

tion we describe how the behavior of this model matches qualita-

tively the behavior of searching animals in both open-field and

constrained conditions (barriers, mazes).

Open-Field Foraging: Area-Restricted Search

If rats are allowed to find buried food at a particular spot in

a large enclosure, removed, and then returned after a delay, they

usually begin digging close to the rewarded spot (cf. Cheng,

1992). If they fail to find food at once, the search is restricted

to the immediately surrounding area before a more general,

unlocalized search begins. Area-restricted search has been ob-

served in a variety of species, including common shrews (Pierce,

1987), pigeons (Cheng, 1989), and even insect larvae and ants

(Banks, 1954; Bond, 1980; Harkness & Maroudas, 1985; Naka-

muta, 1982; Wehner & Srinivasan, 1981).

The two-dimensional diffusion model produces area-re-

stricted movement patterns when the simulated organism is rein-

troduced to the enclosure after finding reward at a particular

spot. We begin our simulation with the assumption of a low,

uniform level of reward expectation at every unit in the map.

This small a priori expectation causes the organism to move

around the enclosure in an exploratory way as successive fail-

ures to find food "zero" expectation at each spot. Once the

model organism finds reward at a particular spot, expectation

for the active unit is set to unity and the organism is immediately

removed from the enclosure (i.e., all units made inactive). Re-

ward expectation at that position immediately begins to diffuse

according to Equation 2 at a rate determined by a. Figure 6

shows the pattern of movement produced when the organism is

subsequently reintroduced to the empty (no-food) enclosure.

The four panels show the pattern of movement generated

using four different values of a. The movement patterns were

smoothed using splines to eliminate the abrupt changes in direc-

tion that result from a coarse-grained discrete map. In all panels,

diffusion occurred for 30 time steps while the organism was

out of the enclosure. This process creates a three-dimensional

"landscape" of reward expectation (not depicted), centered

on the rewarded location. For each panel the organism was

subsequently reintroduced at Position 1,1 and allowed to move

for 60 time steps. As before, Equation 2 was iterated once for

each step taken.

The hill-climbing action rule moves the organism directly to

the peak of the expectation landscape. This movement has the

appearance of goal direction (i.e., the model organism moves

straight to the rewarded spot), but in fact only local processes

20
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Figure 6. Area-restricted movement patterns. After "finding" food at

location (12, 12; each quadrant), the simulated organism was removed

from the enclosure. The figure shows the movement patterns produced

when the organism is subsequently reintroduced to the empty (no-food)

enclosure at position (1,1; each quadrant) and allowed to move for 60

time steps. The different panels represent movement patterns produced

with different values of the diffusion-rate parameter, a, shown in the

bottom-right corner of each quadrant.

are involved: The organism cannot sense the peak of the expec-

tation landscape from a distance. At each step, the value of the

reward expectation for the active unit is set to zero, because

no reward is obtained. The diffusion process allows reward

expectation to "flow" back gradually into the units the organ-

ism has already visited (like tracks made by walking through

a puddle of viscous fluid). The amount of flow back into pre-

viously visited spots depends on the amount of reward expecta-

tion in the neighboring units and the time elapsed—the higher

the expectation, the longer the time elapsed, the more flow, hence

the more likely the organism will revisit the spot. The dynamics

of the expectation landscape act like a working memory that

shows spontaneous recovery.

With each unrewarded step, reward expectation is zeroed at

that point. As more and more steps are made near the rewarded

spot, the overall level of reward expectation in the area declines,

and the organism gradually moves farther away to areas in which

"expectation" has not been depleted. This gradually expanding

search pattern closely resembles descriptions of ' 'focal'' search

followed by more "general" search in rats (e.g., Timberlake &

Lucas, 1989; see Figure 7).

The area-restricted "search" pattern of movement is centered

on the rewarded location. Movement in all directions from that

spot is equally likely, as it is with actual animals (Cheng, 1992;

Wehner & Srinivasan, 1981). Even though the model has no

stochastic component, the search path appears erratic and fre-

quently intersects itself. This general pattern is not dependent

on the value of the diffusion-rate parameter a.
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Figure 7. Top panel: Distance from the origin (' 'nest") of a single searching ant at 2-m intervals as a

function of total path length, in m (from Wehner & Srinivasan, 1981, Figure 8b). Bottom panel: Distance

from goal as a function of time steps of a simulated organism searching according to the diffusion model.

The model was allowed to iterate for 20 steps after reward was presented at the origin before the animal

was allowed to begin searching (diffusion rate, a = 0,1). We have found very similar patterns with a

values ranging from 0.02 to 0.1 and initial iterations from 20 to 50.

Area-Restricted Search: Fine Structure

Desert ants of the genus Cataglyphis find their nest (a hole

less than 1 cm in diameter, in the ground in an almost featureless

environment) by dead-reckoning (also termed path integra-

tion). Unlike many other ant species, they do not use odor trails.
4

Wehner and Srinivasan (e.g., 1981) have provided beautiful data

on the search paths of these animals as they look for the nest.

The ants show a pattern that looks like area-restricted search

but has interesting fine structure of the sort predicted by our

model.

A typical experiment was done as follows:

Individual ants were picked up at a feeding station, mostly at a

distance of 20 m from the nest, transferred to a small glass flask

and displaced to the test area, which was located 300-600 m away

from the nest area. There the ant was released and its return run

recorded by means of a grid of white lines painted on the hard

desert plain, (p. 317)

Because these animals' cognitive map is established through

dead-reckoning (i.e., by integration of the path they have taken

in leaving the nest, rather than via landmarks or other environ-

mental features), the ant is completely unaffected by being

displaced and sets off in the same compass direction it would

have, had it never been moved. But when it reaches the point

where the nest should be, the ant turns and begins to search in a

fashion that closely resembles the plots in Figure 6. An alternate

strategy was to take a returning ant from the mouth of the nest:

In this case, the animal begins search at once since its dead-

reckoning system has been reset to zero by finding the nest.

* The suggestion has been made that the ants may actually detect an

odor emanating from the nest, and orient in this way, but we have read

no suggestion that this is the case. It seems in any case unlikely because

such a signal would be easily distorted by wind, which is common in

desert habitats, and the resulting path alteration would be obvious to

experimenters.
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Although the search pattern looks pretty irregular, there is in

fact structure in it:

Generally speaking, the ant performs a number of loops of ever-

increasing diameter, pointing at different azimuthal directions. This

system of loops is centered around the origin [i.e., the "nest"

location] to which the ant repeatedly returns during searching.. . .

Even when the ants, after searching times of more than half an

hour, have departed from the origin for more than 50 m, they may

return close to the origin before starting for another loop in another

direction, (p. 319)

Commenting on this looping pattern, the authors note that ' 'No

navigational mechanism is reset when the ant has arrived at (or

near to) the origin
5
 . . . the return to the centre must be re-

garded as an intrinsic feature of the search strategy itself"

(p. 319).

The best way to see this looping pattern is to plot the ant's

distance from the origin ("nest") as a function of time (or,

equivalently, path length). A typical example is shown in the

top panel ("Data") of Figure 7, which is taken from Wehner

and Srinivasan's (1981) Figure 8b. The figure shows distance

from the origin on the y-axis versus path length (in m) on the

j-axis. The division between ' 'focal" search—small excursions

away from the goal (when path length is less than about 100

m) —and ' 'general'' search—when the animal drifts farther and

farther away from the goal in between return swings—is clearly

apparent in the record of distance versus path length. But the

most striking feature is the oscillations of increasing amplitude

late in the search as the animal swings in to and away from the

goal.

A typical simulation with the diffusion model ("Simula-

tion' ') is shown in the lower panel of Figure 7, and the general

pattern is very similar: Focal search followed by wide return

swings farther and farther away from the goal. We observed this

same pattern with a range of a values and numbers of steps

(see figure note). The reason the model shows periodicity like

the data is well described by Wehner and Srinivasan (1981),

who propose a stochastic optimal-search model with properties

very similar to the diffusion model. They write:

There can never be complete certainty . . . that a given region has

been fully explored. All that can be said is that the probability of

encountering unexplored areas within the region decreases as the

time spent in searching the region increases. . . . Another way of

expressing this idea is to say that the probability of finding the nest

with [in] a given region decreases as the time spent searching that

region increases.. . . The entire searching strategy [and the period-

ical return to the origin] derives from, and is based upon, this one

simple concept, (p. 326)

Wehner and Srinivasan (1981) propose an explicit stochastic

optimal-search model that embodies this idea and it resembles

their data pretty well (see their Figures 15, 16, 19, and 20),

although not, to our eye, quite as well as the diffusion model

(the oscillations of their model are too regular). But the diffu-

sion model perfectly captures their core idea: that search is

centered on an origin, and that the probability of visiting a

region is inversely related to time spent in the region (extinc-

tion) but positively related to time since the region was last

visited (spontaneous recovery). It is these two factors in combi-

Procedure:

Search Path:

Simulation:

Search Path:

Figure 8. Top panel: Mellgren and Roper's (1986) procedure showing

the placement of shelled peanuts in an open field. Middle panel: The

path taken by a single European badger on the 6th night as it foraged

for the peanuts. Bottom panel: The movement panel produced by our

model organism as it "foraged" for reward distributed in the same

pattern as in the top panel. Dashed lines mark the three study areas.

nation that lead to periodical returns to the origin: At first, a

sector (what Wehner and Srinivasan call an "azimuthal direc-

tion" ) near the origin is extensively explored, because expecta-

tion is highest there. As expectation in a sector near the origin

is depleted, the animal moves away. But once it moves away,

expectation can flow back from yet-unexplored sectors close to

the origin, and eventually this increase in expectation causes a

return to the origin, which allows another sector to be depleted.

This process is repeated, leading each time to a looping back

to the origin, until the whole central area is depleted as the

search moves outward.

Open-Field Foraging: Multiple Goals

Area-restricted search is best seen with a single goal, but real

foraging usually involves multiple food sites. One of the few

multiple-goal studies that measured actual tracks is a simple

experiment with a European badger by Mellgren and Roper

(1986). For 6 days, the experimenters placed shelled peanuts at

several fixed positions in an open grassy field and recorded the

movement patterns of the badger as it entered the area at night,

located and consumed the food, and left the area. Each day, the

peanuts were placed in the same fixed positions, shown in the

top panel of Figure 8. The second panel shows the track of the

5
 Note that finding the nest resets the orientation mechanism; failing

to find the nest at the origin does not.
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badger on the 6th night as it entered the study area, located and

ate the peanuts, and finally left the area (data from the preceding

nights were not presented).

The bottom panel of Figure 8 shows a typical simulation

result. We distributed the simulated rewards in the same spatial

pattern as in the Mellgren and Roper (1986) experiment (top

panel of Figure 8). As in the prior simulations, we allowed the

organism to locate the rewards and immediately "removed" it

from the area. In Mellgren and Roper's experiment, sessions

were separated by approximately 24 hr, and the badger typically

spent about 15 min in the study area collecting the peanuts. We

simulated the 24-hr period by iterating the diffusion equation

300 times with a low diffusion rate (a = 0.001) before returning

the organism to the area.6 We stopped the simulation when the

organism left the area (i.e., moved as far away from the reward

as the point of introduction). As before, each "step" of the

organism iterated the diffusion equation once. Because move-

ment patterns of actual animals are not identical each night in

this procedure, the movement generated by the model cannot

be expected to produce patterns identical to the data. Moreover,

the behavior of the diffusion model is very dependent on initial

conditions: Very small changes in starting point (or in diffusion

rate) can produce very different search paths—the simulation

may cross between Areas A and C two or three times, rather

than just once, for example. But the general pattern will always

be the same, showing a complexity and frequency of direction

reversals and path recrossings that resembles the badger data.

Short Cuts

The badger in the Mellgren and Roper (1986) experiment, as

well as our simulation, crossed from one food patch directly to

the other, without returning to its starting point. Not surprising,

perhaps, but this result does suggest dial the diffusion model

has the capacity to take shortcuts (i.e., to take a novel, shorter

path after experience with a roundabout path to a goal). Chapuis

(1987) did a very simple shortcut experiment. Imagine three

open-field locations arranged as in each panel of Figure 9: A,

B, and X, arranged in a triangle, with X (open circle) as starting

point. A is closer to X than B: Distance XA < XB. A hungry

dog on a leash was led from starting point (X) to Location A

where food had been placed, and then led back to the starting

location without being allowed to eat the food (Path XAX).

This procedure was repeated for another, more distant, location,

B (Path XBX). Path XAB is obviously shorter than the sum of

the two training paths, XAXB (see Figure 9). However, going

straight to B after eating the food at A involved taking a shortcut,

Path AB, over ground previously unvisited by the dogs. Most

dogs tested nevertheless took the shortcut when allowed to run

free from the starting point.

The diffusion model works like this in the Chapuis (1987)

experiment: The simulated organism first follows the steeper

gradient to the closer patch, A. As it travels, expectation is

zeroed at each step, so that once the reward at A is consumed,

and that unit is also zeroed, the steepest gradient will be in the

direction of the unvisited patch, B, more or less along the AB

line. Figure 9 shows typical movement patterns produced by

the model. The open circle in each panel is the starting point,

X, and the two filled circles are the two reward locations, A

Iterations Prior to Movement

40 50 60

0.01

Figure 9. Simulations of Chapuis's (1987) shortcut experiment. The

open circle in each panel is the starting point, X. and the two filled

circles are the two reward locations, A and B. Rows show the effect of

different values of the diffusion parameter, a', columns show the effect

of different numbers of iterations after seeing food at A and B before

beginning to search again from Point X.

and B. Rows show the effect of varying the diffusion-rate param-

eter, a; columns show the effect of varying the number of itera-

tions after food at both locations has been "seen" but before

the simulated organism begins foraging from the starting point,

X. In every case, the model goes straight to A, the closer food

source, first. Low values of a produce substantial area-restricted

search around point A after the food is consumed, higher values

produce little. In all cases, after searching much or little at A,

the model goes straight to B. Thus, given an accurate map, the

simulated organism, like Chapuis's dogs, will go straight to B

rather than retracing its path to X. The model shows spatial

"insight."

Menzel (1973) has done much more extensive shortcut, multi-

ple-goal experiments with chimpanzees along these same lines,

with results similar to Chapuis's (1987). We have not attempted

to simulate these studies, because of the complicated cue envi-

ronment and uncertainties about exact timing of events. But

Menzel's results do not seem to be in any way incompatible

with our analysis.

Detour Problems

If a barrier is introduced into a familiar environment, most

mammals and birds soon leant to maneuver around it. This

is the classic Umweg (detour) problem used by the Gestalt

psychologists and others to demonstrate spatial insight. In the

1930s, the detour problem occasioned much debate between

6
 Note that the basic diffusion model is not context sensitive and has

no long-term memory. Without ad hoc assumptions, it cannot account

for differential effects in and out of the experimental apparatus or for

long-term retention. This slow-diffusion-outside-the-apparatus assump-

tion is an ad hoc way of building in the idea that memory changes more

slowly when the animal is outside the learning context than when it is

inside. It is a crude way to implement the distinction between working

and reference memory.
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competing learning theories such as Hull's early S-R theory

(Hull, 1938), Lewin's field theory (Lewin, 1933, 1935), and

Tolman's "means-end-fields" (Tolman, 1932). (See, for ex-

ample, Rashotte's excellent 1987 review.)

Simulation of open-field behavior assumes a fixed cognitive

map. Learning about barriers obviously requires modification of

the map. We have already described how our model incorporates

barriers into the map. Encountering a barrier breaks the link

between two adjacent units: parameter K,, is set equal to zero

and NI reduced by 1 if a barrier is encountered when the model

attempts to move from node i to node j or the reverse. Reward

expectation will not flow directly between the units, and no

movement will be attempted between them. Note that we are

not assuming what we hope to prove (that the model can solve

Umweg problems), because encountering a barrier does not

affect the model organism's behavior directly, it only changes

the map. As we will see, there is an indirect effect, however,

because of the effect of the changed map on patterns of diffusion

and, therefore, on the form of the expectation surface.

There are two classic types of detour problem. One involves

the placement of a U-shaped barrier between the subject and

the reward in a relatively open field (e.g., Hull, 1938; Lewin,

1933; Tolman, 1932). The other involves the use of removable

partitions within an enclosure (e.g., Dennis, 1929).

U-barrier problems entail placement of a U-shaped barrier

(see Figure 10) between the subject and a reward. Because the

direct route to the reward is blocked, an indirect route must be

found if the reward is to be obtained. Inexperienced or less

cognitively elite subjects, such as rats or young children, first

attempt the direct route, only later taking an indirect route that

approximately minimizes the (indirect) distance between the

starting location and reward. Experienced subjects take the indi-

rect route immediately without attempting to go through the

barrier. Our model suggests that the difference between smart

and less smart subjects lies in their ability to change their maps,

not in the level of "cognitive processing" after they've learned

A. B.

D.

Figure 10. Barrier problem. A U-shaped barrier lies between the simu-

lated organism (filled circle) and the reward (filled square). The four

panels show two starting positions (Panels A and C) and two goal

positions (Panels B and D). The organism was allowed to encounter

the barrier and find reward; it was then removed from the apparatus and

returned to the starting position. Each panel shows the path to the goal

taken by the simulated organism when returned to the start.

the new map. Once the map is changed, the diffusion model

solves the problem.

Figure 10 shows simulations of the U-detour problem. We

began the simulations with the assumption that all adjacent units

are fully connected, including those on each side of the barrier:

that is, there was no a priori knowledge of the barrier. Every

unit was initialized with the same low value of reward expecta-

tion. As we saw earlier, in a free field this initial condition

produces an exploratory pattern of movement. As before, we

allowed the diffusion equation to iterate once for each step taken

by the simulated organism. This process brought the organism

into contact with the barrier at various points. Each time the

barrier prevented the organism from moving to a neighboring

spot (i.e., a neighboring unit), the two units were declared

nonadjacent (K,J set to 0, N, reduced by 1).

The simulation continued until the barrier had been encoun-

tered at each point. Subsequently, reward was placed at one of

two goal locations, the simulated organism at one of two starting

locations on the other side of the barrier. The simulation contin-

ued until the reward was found, at which point the organism

was immediately removed from the area (all units were deacti-

vated). The diffusion equation was iterated for a further 30

steps, and the system was then placed at one of the two starting

locations on the other side of the barrier from the reward. The

simulation was then, iterated until the reward was found.

The panels in Figure 10 show four simulations with two

starting positions (filled circles) and two goal positions (filled

squares). In each case, the simulations produce a movement

path that approximately minimizes the distance between the

starting position and the reward location, given the constraints

imposed by the lattice structure of our map. These movement

patterns result from the diffusion of reward expectation around

the barrier. The patterns do not depend on the value of the

diffusion rate parameter, a. The movement path closely resem-

bles reports in the Hull, Lewin, and Tolman studies cited earlier,

as well as in newer studies (e.g., Chapuis, 1987) with this task.

The second type of detour problem involves the use of remov-

able partitions in an enclosure. In an early report, Dennis (1929)

described the paths taken by blind
7
 rats in a rectangular enclo-

sure containing two removable partitions. As individual rats

moved about in the enclosure, their paths were traced by means

of a camera lucida. The two panels of Figure 11 depict Dennis's

apparatus, as well as tracings from a typical rat during five

consecutive trials with one or two partitions in place. The start

box (not shown) was located at the upper left corner, and the

goal box was at the bottom right corner.

The two panels of Figure 12 show the movement patterns

produced by our simulation of Dennis's (1929) procedure. Once

again, we began the simulations with the assumption that all

adjacent units are connected, both inside and outside the enclo-

sure. That is, there was no a priori knowledge of partitions or

walls. Every unit was initialized with a low expectation value

to produce an exploratory pattern of movement. This exploration

eventually brought the organism into contact with the walls of

7
 The fact that these rats were blind undoubtedly made it difficult for

them to form a map, but evidence from later experiments (e.g., Dale,

1982) suggests that once the map is formed, blind and sighted rats

behave very similarly.
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Figure 11. Dennis (1929) traced the paths taken by a blind rat in five

consecutive trials in an apparatus containing one (Panel A) or two (Panel

B) removable partitions. The start box (not shown) was located at the

upper left corner, and the goal box was at the lower right comer.

the enclosure and any internal partitions. Each time a barrier

prevented the organism from moving to a neighboring unit, the

two units were declared nonadjacent.

The diffusion process was iterated once for each step or

attempted (i.e., barrier-blocked) step. We allowed the simulation

to iterate until all the barriers had been identified. Subsequently,

we removed the simulated rat from the enclosure and placed it

in the start box. When the rat's continued exploration eventually

led it to the goal box, it was immediately rewarded for one time

step and moved back to the start box for the next trial, which
began immediately.

At the beginning of the simulation, the rat explored the enclo-

sure. Movement was mostly restricted to the walls and partitions.

The organism moved into the open areas only after all the parti-

tions and walls had been traversed at least once. This finding

strongly resembles so-called thigmotaxis: Rats exploring a large

novel enclosure at first restrict their movement to the walls and
only much later venture out into the open (Hall & Ballachey,
1932; Patrick & Laughlin, 1934).

After the simulated organism had explored the enclosure and

obtained reward in the goal box, the patterns of movement

closely resembled the patterns obtained by Dennis (1929).

When only one partition was in place (cf. top panel of Figure

11), the simulation produced movement that approximately

minimized the number of steps from the start box. to the goal

box. The model achieved a similar minimum-distance solution
when a second partition was added (bottom panel). The main

difference between the movement produced by our simulation

and that of actual rats is the occasional abrupt changes in path

direction because of the coarse grain of our map: The finer the

map, the closer is the predicted movement pattern to the mini-
mum-distance solution.

After Dennis's (1929) rats had been trained to run through

the enclosure with one partition in place, the partition was re-

moved and the trials continued. The top panel of Figure 13

shows the patterns produced by the first run of Rat I, the second

run of Rat 2, the third run of Rat 3, etc. (Unfortunately, Dennis

does not show data from individual subjects in consecutive trials,

and it is not possible from his tracings to be sure about the

order in which the paths crossed the location where the partition

had been.) Dennis described the results this way:

The nature of the pathway followed when the cross-wall was lifted

is shown by Figure [13]. The path which they had followed from

87 to 100 trials gave way immediately to a shorter one. Of the total

records during the three days when the wall was lifted, 64% show
some trace of the old habit. In this percentage of cases, that is, the

rats went to the right of a straight line between the entrance- and

food-boxes. . . . There was a general progression of the paths

B

Figure 12. Movement patterns produced by our simulation of Dennis's

(1929) procedure. See text for details. Panel A represents the movement
of the simulated organism when one barrier is in place. Panel B repre-

sents the movement when two barriers are in place. The light dotted

lines provide a visual representation of the units in the cognitive map.

The simulated organism approximately minimized the distance between
the start (S) and goal (O) boxes within the constraints of the cognitive
map.
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Figure 13. Top panel: Paths taken by Dennis's (1929) blind rats when

the partition was removed. The patterns represent the first run of Rat 1,

the second run of Rat 2, the third run of Rat 3, and so on. Unfortunately,

Dennis did not show data from individual subjects in consecutive trials,

and it is not possible to be sure about the order in which the paths

crossed the location where the partition had been. Bottom panel: Move-

ment patterns produced by our simulation of Dennis's (1929) procedure

after the partition was removed. The six pathways represent consecutive

rewarded trials. The order in which the paths occurred is labeled. In

each trial the distance traveled from the start box (S) to the goal box

(G) was shorter than when the partition had been in place, in general

agreement with Dennis's data.

Mazes

Mazes have been widely used in the study of spatial learning.

Adaptive behavior in mazes has often been used to justify large

claims about cognitive processing. For example, Tolman, Rit-

chie, and Kalish (1946) argued that rats often take the shortest

path to the goal, whenever such a path is available (i.e., not

prevented by the design of the maze) and that this behavior

provides evidence for a type of spatial insight. We have already

shown that our essentially local model is nevertheless capable

of producing minimum-distance paths under many conditions.

We show in this section three other examples of intelligent maze

behavior that can be simulated by the diffusion model.

Tolman's "insight" mazes. The shortcut problem of Tolman

et al. (1946) using the "sunburst" maze is probably the best-

known example of spatial insight in animals. Rats were given

extensive training on the elevated maze shown on the left in

Figure 14. The rats were first trained to run down the short path

from the "start" then across the open field and down the "left-

right-right" path to the goal. In the test phase they began again

at the start in the "starburst" arrangement on the right but the

straight-ahead path was blocked at Point A. The rats usually

chose instead Path P, pointing directly at what used to be the

goal, rather than one of the paths on the left corresponding to

the left dogleg in the original maze. Tolman et al. (1946) con-

cluded that training produces (in some rats, at least) a "disposi-

tion to take the shortest Euclidean Path to the goal" (p. 20).

The diffusion model easily simulates this result. Given an

accurate cognitive map and known goal location outside the

maze, the values of expectation outside the open-field area are

always higher than values inside, so the simulated organism will

persistently explore the edges of the open field. In this way it

discovers barriers at the edges of the open field and around the

straight-ahead-left-right-right segment that leads to the goal.

At this point, there will be a diffusion gradient along the runway

with a peak at the goal, so the simulated organism will move

toward a straight line, but the behavior varied from trial to trial

and from rat to rat. (p. 70)

Dennis's (1929) description resembles several features of the

simulation in the bottom panel of Figure 13, which shows the

paths produced when the partition is removed. The six labeled

pathways represent consecutive rewarded trials. In each trial the

distance traveled from the start box to the goal box was shorter

than when the partition had been in place, in general agreement

with Dennis's data. The simulations also show a similar effect

of the prior ' 'habit'': Pathways were to the right of a straight

line between the start and goal boxes. Finally, the simulation

produced a similar progression toward a straight line. After the

sixth trial, simulated paths generally overlapped Pathways 4-6.

Dennis (1929) argued that the pattern of path changes when

the partition was removed shows that spatial learning is not

simply based on S—R associations, because the "maze habit"

does not show up as identical behavior on successive trials. Our

simulation results show that once the dynamics of generalization

are taken into account, an S—R process works pretty well.

start start

Figure 14. Left: Schematic picture of the training maze for rats used

by Tolman, Ritchie, and Kalish (1946). Right: The "starburst" maze

used by Tolman et al. (1946) during testing with a block at A. P = the

path pointing directly at what used to be the goal.
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smoothly to the goal along the runway in the arrangement on

the left in the figure. But when it is transferred to the "sunburst"

arrangement on the right, the block at A forces the system to

explore again the edges of the open field, where there are now

open runways. The expectation gradient is always highest in

the direction of the goal, so that once the new open alleys are

discovered, the simulation will choose Path P, the "insightful"

solution.

The Tolman and Honzik (1930) "insight" problem with

which we began (Figure 1) can obviously be solved in the same

way. Given an accurate map and knowledge of a barrier at Point

B, expectation can diffuse back to the start box only along Path

3, which should therefore be the one chosen.

Radial-arm maze- The radial-arm maze first studied by Da-

vid Olton (e.g., Olton & Samuelson, 1976) is a sort of inverse

of the classical single-goal maze and produces very different

behavior. A nice feature of the diffusion model is that it applies

just as easily to the radial-arm maze as to classical mazes even

though the observed behavior is so different. Training in the

radial-arm maze proceeds in two steps. First, the animals are

allowed to explore the maze (usually, just once per day) with

food at the end of all (usually eight) arms. They explore the

maze in an efficient though not necessarily patterned way that

ensures they revisit no arm until all have been explored. This

behavior is sometimes termed paradoxical because conventional

law-of-effect learning would presumably have the rats always

returning to the first rewarded goal box. Suggestions about' 'ex-

ploratory tendencies'' and ' 'spontaneous alternation'' have been

offered to account for this apparently puzzling behavior (Olton,

Walker, Gage, & Johnson, 1977; see review in Gallistel, 1990).

In the second phase of a typical radial-maze experiment, the

rat is allowed to enter only some (e.g., four) of the arms. It is

then removed from the maze and returned only after a substantial

delay, whereupon it enters first just the unvisited arms (Olton &

Samuelson, 1976). This result also caused a stir, because the

animals choose accurately even if removed from the maze for

several hours after entering the first four arms—a delay much

longer than that sustainable under conventional delay-of-rein-

forcement procedures. In fact, the rats' ability to remember

across a long delay is not as puzzling as it may seem, given the

lengthy mtertrial interval in these experiments as well as other

differences between this procedure and conventional delay-of-

reinforcement procedures (Lett, 1975; Staddon, 1983, 1985).

Thus, the biggest puzzle posed by radial-maze experiments is

why the animals are so accurate in the first place. Why do they

not always return to the first rewarded arm? Why do they explore

the other arms without revisiting? Do we need to postulate some

kind of special principle or instinct, or can this behavior be

derived in a natural way from the processes of spatial learning?

The diffusion model provides a straightforward answer to

these questions. Given an accurate cognitive map, behavior in

a maze depends solely on the initial conditions (i.e., the expecta-

tion surface at the beginning of testing) and the subsequent

reinforcement schedule. Given a history of training with a single

goal box (as in the Tolman, 1932, experiments), the expectation

surface in the maze will be peaked at the goal, which, as we

have seen, yields goal-directed behavior. But given no training,

we may expect a flat expectation surface, which, as we have

also seen, yields exploratory behavior—and would yield spon-

taneous alternation in a T-maze or varied paths in a Dashiell

maze (Dashiell, 1930). If exploratory behavior leads to finding

reward at the end of the first arm in the radial maze, then, after

a period of area-restricted search (cf. Figures 6 and 8), the

simulated organism will backtrack and choose another arm,

whose expectation strength must be higher than the arm just

extensively (and unsuccessfully) explored. If it finds food again,

the process will be repeated, until each unvisited arm has been

visited once. The result will be a pattern of search in which

the least-recently visited arm will normally be highest priority.

Moreover, the expectation strength of each arm visited will be

reduced relative to the arms unvisited since the previous day,

until all have been visited. Hence, the model, like the real animal,

will hesitate before searching again once all arms have been

visited on a given day.

Thus, the model easily explains the basics of radial-arm maze

performance and does so without invoking any novel principles.

At the beginning of testing, the expectation surface in any sin-

gle-goal maze, such as Tolman's (1932) or the Morris (1981)

water "maze," will have a single peak at the goal. The surface

for the radial-arm maze will be flat or have multiple peaks.

The difference between behavior in the standard and radial-

arm mazes is a consequence of the different initial conditions

(expectation surfaces) at the beginning of testing with the two

maze types; it need not reflect some special set of processes

unique to rats.

Discussion

Once an organism has the capacity to form some kind of

internal, cognitive map, a very simple, behavioristic route finder

is sufficient to guide behavior intelligently. (Any map contains

a great deal of information; it is perhaps not surprising that a

relatively simple map-reading process is sufficient to extract it.)

The route finder we propose is nothing but a dynamic formula-

tion of stimulus generalization, a basic behavioristic process.

Thus, Tolman's (1932) contention that something more than S-

R principles is required to account for maze behavior is only

partly true. A map is required (in our scheme) but beyond that,

no "insight," no internal Cyclopean eye with an overview of

the situation-as-a-whole, is necessary.

Moreover, the idea of an internal representation is not in

any way foreign to behavioristic ideas. Stimulus generalization

assumes representation of a stimulus dimension, and evidence

abounds that even a psychological property as apparently primi-

tive as color is not captured by a simple physical dimension,

such as wavelength. Generalization takes place not in physical

but in psychological space (cf. Shepard, 1965). Physical space

is internally represented, even by the lowly ant. But once this

is conceded, little more need be assumed to explain apparently

complex spatial behavior.

There are several omissions in our account. Most glaring is

the absence of a system for the formation of a map. Yet this

may not be a very formidable problem. If we restrict ourselves

to landmark learning, for example, then all that is necessary

is a process that maps the space of landmark azimuths (two-

dimensional for two landmarks, three-dimensional for three,

etc.) on to a two-dimensional array of neural units. Schmajuk

and Blair (1993) have recently done this using a set of neural-
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network detectors "tuned" to landmark azimuths and trained

by back-propagation reinforcement to generate generalization

surfaces with properties very similar to our expectation surface.

In a related article, Schmajuk and Thieme (1992) have proposed

a neural-network route finder that uses recurrent links between

"views" to propagate binary associations across the map, a

process that seems to have some similarities to diffusion in our

model and also suggests a way to combine map reading with

map formation.

Hampson (1990) has proposed a connectionist scheme that

also combines map building and route finding. Instead of diffu-

sion, Hampson used forward and backward ' 'spreading activa-

tion" to create "subgoals," which guide movement. Like our

model, Hampson's broke links between nodes separated by a

barrier. Unlike ours, it also created the map, by making links

between nodes representing places visited through random

movement: It built the map, as well as constraining it (as we

do by breaking links after experiencing barriers). (Nevertheless,

for most of his simulations, "to simplify matters and avoid

the initial learning phase," Hampson provided "a complete

representation of the spatial state space" (p. 151). The most

important difference between our model and the models of

Hampson and Schmajuk et al. is that our model organism learns

something about the presence or absence of reinforcement with

each step—reinforcement sets expectation of the active unit to

a positive value, but nonreinforcement sets it to zero. This pro-

cess gives rise to a dynamic expectation landscape that changes

with every step the organism takes. The models of Hampson

and Schmajuk et al. create gradients the model organism will

climb, but movement does not affect gradient shape. Once cre-

ated, the expectation gradients are climbed, but not directly

altered, by the organism's movement until the peak is reached,

at which point the simulation typically stops. As a result, these

models are likely to make similar predictions to ours in mazes

with runways that are sufficiently narrow (i.e., the Tblman and

Honzik maze) to preclude an effect of diffusion from the organ-

ism's unreinforced steps. But predictions will diverge in mazes

with more spacious areas (cf. the starburst maze and Dennis's

mazes), and especially in the open field. In the open field, these

models are unlikely to show the path self-crossings and the

patterns of area-restricted search characteristic of the diffusion

model—and the data (cf. Figures 6-9). Because of their static

expectation surfaces, the Hampson and Schmajuk et al. models

may also be subject to trapping in local maxima, something that

cannot occur with our model. Unfortunately, Hampson did not

present simulated search paths that can be compared directly

with data and with our predictions. Hampson's theory also fails

in some interesting ways. For example, he wrote in connection

with open-field search, "The predator will follow a gradient

that is determined by a single "best" goal. The result is that it

will reject a cluster of goals in favor of a single, slightly stronger

goal at the same distance" (p. 160). Apparently he could find

no easy fix for this problem. Because it is basically a spatial

generalization model, the diffusion model does not make this

particular error. It will combine the expectancies of adjacent

small goals so that they can win out over a single large goal at

the same distance.

Another omission in our model is a comprehensive way of

dealing with temporal properties of reinforcement. For example,

Hearst, Koresko, and Poppen (1964) showed that generalization

gradients measured after training with very intermittent rein-

forcement (e.g., a variable-interval, 4-min schedule) are shal-

lower than gradients obtained after less intermittent reinforce-

ment (e.g., VI30 s). The diffusion model generates gradients

with lower peaks after less frequent reinforcement, but the nor-

malized gradients are not shallower. A diffusion process that

incorporates a property we have termed rale sensitivity (Stad-

don & Higa, 1996; Staddon, 1998) may be necessary to deal

with these effects. Rate sensitivity refers to a well-known effect

of intermittent reinforcement, that although it produces less re-

sponding under training conditions, it may produce more persis-

tent responding when reinforcement is withheld (the partial rein-

forcement-extinction effect). Simple diffusion is not rate sensi-

tive in this sense.

Although our model has some of the properties of working

memory, it lacks most of the properties of long-term or reference

memory. For example, the model deals with nonreward by zero-

ing the expectation value of the active unit. This means that

after nonreward, the only difference between a unit that has

been frequently reinforced in the past and one that has been

rarely reinforced will be the level of expectation in neighboring

units. But if reward resets expectation to a fixed value, rather

than cumulating, there may be little or no difference in the

immediate environments of previously rewarded units with these

two different histories. (Cumulation, in turn, poses difficulties

for prediction of simple search and exploration.) Hence, the

model cannot accommodate histories that are likely to have very

different effects on future behavior. Real animals are likely to

relearn about a spot with a long history of reward faster than

they relearn about a spot that has been rewarded only once, for

example. This problem seems to be an example of a more

general problem that Grossberg (1987) has termed the stability -

plasticity dilemma: the stability of learning in the face of new

information. One way to deal with it is to add another layer of

units whose job is to learn about the histories of units in the

first layer. Carpenter and Grossberg (e.g., 1988) have made a

well-known proposal along these lines, and doubtless others are

possible.

Our model is sensitive to only part of the stimulus context.

We assume that in the absence of its stimulus a unit is inactive,

but it is also likely that diffusion rate will vary as a function of

context (whether the organism is in or out of the experimental

apparatus, for example) and "attention" (what parts of the

apparatus are acting on its behavior at any time). Incorporating

these effects requires a more comprehensive model.

The diffusion model predicts qualitative properties of search

paths. The predictions are qualitative rather than quantitative for

several reasons: (a) The model is incomplete in the ways just

discussed—it lacks context sensitivity as well as a map-making

process, (b) Even though the model is entirely deterministic,

nonlinearity in the reinforcement assumptions means that the

predicted path is exquisitely sensitive to parameter values and

to initial conditions (chaotic, in the technical sense). Conse-

quently, the model cannot be expected to predict specific paths.

Moreover search paths in real experiments are never reproduced

exactly (just as the model implies). For both these reasons—

the properties of the model and variability of data—the model

cannot be expected to predict specific paths, (c) Because the
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mode] lacks a principled way of setting diffusion rate and num-

ber of diffusion steps, prediction of specific changes in search

path as a function of time since exposure to a given problem is

somewhat problematic (more on this in a moment).

On the other hand, given parameters (diffusion rate, number

of iterations) adequate to predict the search path after exposure

to one set of goals, as in Chapuis's (1987) two-goal experiment,

for example (Figure 9), the model should be able to predict

search paths in similar experiments with more or differently

arranged goals. Our assumptions about barrier learning could

be tested systematically by varying exposure to barriers and

looking at detour paths (cf. Figure 10).

The model implies changes in the expectation surface as a

function of time. It therefore predicts reversals in preference for

two rewards in an open field as time between reward encounters

is varied. For example, in the Chapuis (1987) study the dogs

went to the closer food location before they went to the farther

location. However, our model suggests that if there is a large

difference in time between exposure to the two food locations,

the first (closer) location will have a flatter expectation gradient

than the gradient for the more recent, but more distant, food.

Therefore, animals should go to the more distant food source

first. The following is another example: If the experimenter

shows the dog the more distant food, waits a little while, shows

the dog a second, closer food, and then releases the dog without

delay at the starting location, the model implies that diffusion

from the second location may not have had time to reach the

starting location, so that the animal goes to the farther location

first.

The following is a final example: In the open field, gradients

from adjacent goals may combine. So if two food locations are

relatively close to each other and there is very little delay before

releasing the animal from the starting location, it should choose

the closer food source. But with increased delays, the two gradi-

ents will combine into one large hill, with a peak near the

midpoint between the two locations. Therefore, the animal

should go initially to the midpoint before changing direction.

In general, the model makes definite predictions about

changes in preference as a function of the order and times at

which rewards are encountered. It is important to emphasize,

however, that because the rate of diffusion is a free parameter,

the model can only predict a certain pattern of preference change

as a function of time. If diffusion is very rapid, for example,

then the predicted preference changes may take place over times

too short to be practical for behavioral test, and only the long-

time preference will be observed.

Despite these limitations, the simplicity of the diffusion

model and its ability to generate complex search paths whose

general properties closely resemble those of real animals in a

variety of environments recommend it as a useful component

for any comprehensive model of spatial behavior.
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Appendix

Details  of  the Computer Simulations

Diffusion  is a parallel process,  so that implementation by  serial com-

puter  always  entails  some  compromises.  The  one-dimensional  simula-

tions  (cf.  Figures 2—4) were  straightforward  implementations of Equa-

tion  1,  carried  out  on  a  spreadsheet.  The  two-dimensional simulations

required  more  extensive  programming.  Physical  locations  were  repre-

sented  by  individual  nodes,  and each  node  may  have  links  connecting

it  to  as  many  as  eight  neighboring  nodes  (cf. Figure  5).  Every  node

has  a  value of  reward  expectancy  associated  with  it.  The values  of  all

nodes  in  the  map  may  change  with  every  iteration  of  the  diffusion

equation. With an incomplete map (cf.  Figure  5),  some  nodes  may  be

unreachable from others—the map may consist of separate,  unconnected

graphs.  Therefore,  the  diffusion  process  had  to  treat  each  graph  as

separate.  Formally, each  area  was  represented  as  an  undirected  graph

(such  as  a  tree  in  which  the  node  representing  the  root  has  not  been

identified).  Diffusion  should occur  in all nodes  of all  graphs  with  every

iteration.  We  met this requirement by  implementing  the  task as  a  span-

ning forest,  which is an algorithm that traverses all  connected  or uncon-

nected  graphs, visiting each  node  exactly  once. It incorporates  breadth-

first  traversal  of  each  independent  graph,  and all  links  emanating  from

every  node  are  considered.  This  algorithm  allows  each  node's  expec-

tancy  value  to  be  updated  by  the  diffusion  equation  exactly  once  per

iteration,  no  matter  how  incomplete  or  complex  the  topological  map

may  become.
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—^—^——^̂ ^—^—  (TO BE FILLED OUT BY APA STAFF)  — n  •

DATE RECEIVED!.

ACTION  TAKEN: _

STAFF NAME:

DATE OF ACTION!  _

INV. NO. & DATE:

LABEL NO. & DATE:.

Send this form to APA Subscription Claims, 750 First Street, NE, Washington, DC 29002-4242

PLEASE DO NOT REMOVE.  A PHOTOCOPY MAY BE USED.


