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Abstract

As an e↵ective tool for data representation and processing, granular computing has been incorporated into formal
decision contexts for finding granular reducts to achieve the task of mining granular rules. However, the classification
performance of granular rules has not been evaluated, and this type of method is not suitable for dynamic data. To
solve this problem, the current study updates granular reducts and evaluates the obtained granular rules in terms of
classification performance. Concretely, we first give a theoretical analysis of updating granular reducts and granular
rules and then present a novel dynamic rule-based classification model (DRCM) based on the updating mechanism.
Finally, we discuss the feasibility of the proposed model and compare it with several popular classification algorithms.
The conducted experiments demonstrate that the granular reducts can improve the classification ability to a certain
extent and that DRCM can achieve better classification performance on some consistent datasets.

Key words: granular computing, formal concept analysis, granular reduct, granular rule, dynamic learning,
classification

1. Introduction

Rule-based classification approaches aim to achieve classification tasks by certain types of acquired rules, such
as fuzzy rules [1–4] and formal concept analysis (FCA)-based [5] rules [6]. One of the biggest challenges faced by
such classification methods is how to mine useful information from massive data to improve the classification ability
of rules in terms of the speed and accuracy. Since a popular adopted method is to reduce useless attributes in target5

datasets, it is meaningful to seek a suitable method for attribute reduction.
Motivated by seeking an e↵ective reduction algorithm, researchers have studied various attribute reduction meth-

ods [7–11] in di↵erent disciplines [5, 12–14]. Among them, rough set theory (RST) and formal concept analysis-based
attribute reduction are the most explored methods, and many models have been developed to address a variety of dif-
ferent requirements. In the literature, Bazan et al. studied dynamic reducts [15, 16] and decision reducts [17] using the10

Boolean reasoning [18] approach to extract decision rules. Meanwhile, Skowron et al. [19] introduced a discernibility
matrix and discernibility function for computing the reducts of an information system. Considering that an informa-
tion system can be transformed into a formal context, the discernibility matrix method was further investigated in
FCA for solving attribute reduction problems. For example, applicable discernibility matrices were also defined to
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compute all of the reducts of a formal (decision) context [5, 20], i.e., the classical concept-based discernibility matri-15

ces [21, 22]. Di↵erent from RST, attribute reduction in FCA focuses on not only keeping certain consistencies [21] or
decision-making ability unchanged, but also preserving the concept lattice structure unchanged [20]. However, since
RST and FCA can be complementary to each other, many researchers have attempted to combine them to achieve
better data analysis ability. Liu et al. [23] proposed a multi-step attribute reduction method and object reduction
method for attribute-oriented and property-oriented concept lattices by justifying whether an attribute or an object is20

dispensable.
FCA takes the concept as the basic unit, and to achieve more concept knowledge discovery tasks, additional theo-

ries, such as three-way decision [24, 25] and granular computing [22, 26–28], were used to study multiple concepts.
As a result, many types of notions [29, 30] have been proposed from various research aspects. A few studies have been
performed on the classification problem from the perspective of concepts. For example, based on concept-cognitive25

learning [29, 31], Shi et al. [32] proposed a concurrent incremental learning technique by continuously accommodat-
ing newly added data to meet the requirements of classification tasks. Considering that the corresponding rules can
be defined through the implications among sets of attributes, Kuznetsov [33] developed an algorithm for computing
concepts to generate all possible concept-based classification rules (hypotheses). Although these FCA-based classifi-
cation methods have shown good classification ability, there are some limitations. First, they lack the mechanism for30

learning rules dynamically, and the obtained rules must be retrained when new data are added. Second, these methods
did not consider attribute reduction, which will lead to a large number of invalid rules, and a↵ect the classification
ability. Although compact rules can be obtained by the so-called pruning strategy, this approach still su↵ers from
instability. Finally, because the FCA-based rules were generated based on concepts, it will take plenty of time to
calculate the rules. Note that some parallel technologies [34] have been used to improve the calculation e�ciency, but35

there is still room for improvement.
On the one hand, the incremental learning method can e↵ectively avoid repeated training of the model when new

objects are added. This approach refers to a learning system that can learn new knowledge from unseen samples and
saves most of the knowledge that has been learned before. Because of its strong self-study ability, researchers have
applied it to di↵erent disciplines to propose appropriate incremental algorithms [15, 16, 35–39, 41, 42], among which40

Bazan et al. [39] presented a rough set approach to vague concept approximation that realized a step towards ap-
proximate reasoning in complex dynamic systems. In addition, the recent concept-cognitive learning model (CCLM)
[32] also adopted an incremental learning strategy. On the other hand, attribute reduction can reduce those attributes
that are not helpful to the classification task, and then, a more compact rule base can be obtained from the reduced
datasets.45

In addition, granular computing (GrC), which explores the composition of parts, their interrelationships, and con-
nections to the whole, can e↵ectively improve the e�ciency of knowledge discovery [26]. Since complex problems
can be better analysed from the perspective of information granulation, some valuable work [22, 40, 43–47] has been
accomplished over a short time. Wu et al. [22] integrated granular computing into the framework of FCA for gran-
ularity learning in the concept lattice. As a result, attribute reduction was implemented from a granularity viewpoint50

to propose granular reducts and generate granular rules. Di↵erent from other rules in FCA, the acquisition of gran-
ular rules is free of concepts, and the corresponding algorithm has linear time complexity. This finding motivates
us to further achieve a classification task based on dynamic granular rules. In this paper, we propose a novel dy-
namic rule-based classification model named DRCM via GrC. The main contributions are as follows: (1) we analyse
the mechanism of updating granular reducts and granular rules; (2) granular reducts are further used to design an55

incremental classification algorithm.
The remainder of this paper is organized as follows. Section 2 reviews some notions related to FCA. In Section

3, we first give an overall introduction to the proposed DRCM, and then explain the updating mechanism. In Section
4, numerical experiments are conducted on sixteen datasets selected from the UCI Machine Learning Repository to
evaluate the classification performance of the proposed model. A summary and future work are given in Section 5.60

2. Preliminary knowledge

In this section, we review some notions related to FCA, i.e., formal decision contexts, granular rules and granular
reducts.
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Table 1: A formal decision context S = (U,C, I,D, J)

U a b c d e f g h i j k l m n o p q r s t u v w x

x1 1 0 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0
x2 1 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0
x3 1 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 1 0 0
x4 0 1 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0
x5 1 0 0 1 0 0 1 1 1 1 0 0 0 0 1 0 0 0 1 0 1 1 0 0
x6 1 0 0 1 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 1 0 1 0 0
x7 0 1 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 0 0 1 0
x8 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1
x9 1 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 1 0 1 1 0 0
x10 1 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0

Definition 1. [5] A formal context is a triplet F = (U,C, I), where U = {x1, x2, ..., xn} is a nonempty, finite set of
objects called the universe of discourse, C = {a1, a2, ..., am} is a nonempty, finite set of attributes, and I ✓ U ⇥ C is65

a binary relation between U and C. Here, I(x, a) = 1 indicates that the object x has the attribute a while I(x, a) = 0
means the opposite.
Definition 2. [20, 33] A formal decision context is a quintuple S = (U,C, I,D, J) in which (U,C, I) and (U,D, J) are
called conditional formal context and decision formal context with C \ D = ;.

Generally, the concept lattices of the conditional formal context and decision formal context are called the condi-70

tional concept lattice and decision concept lattice, respectively.
Table 1 is a formal decision context S = (U,C, I,D, J) randomly selected from the Zoo dataset (see Section 4 for

details), where U = {xi|i = 1, 2, ..., 10} represents the animal names, C = {a, b, c, d, e, f , g, h, i, j, k, l,m, n, o, p, q, r, s, t, u}
denotes the attribute characteristics, such as legs and hairs, related to those objects and D = {v,w, x} indicates the
classes of animals. From Table 1, we know that the object x1 has the attributes a, d, h, i, j, o and t, and it is classified75

into v.
FCA takes formal concepts as the basic unit of knowledge. In general, a concept (X,Y) is a tuple composed of an

object set X (extent) and an attribute set Y (intent) such that X
⇤ = Y and Y

⇤ = X, where “*” is a mapping between U

and C as follows:

X
⇤ = {a 2 C|8x 2 X, I(x, a) = 1}, X ✓ U,80

Y
⇤ = {x 2 U |8a 2 Y, I(x, a) = 1},Y ✓ C.

A concept can be obtained by the basic operations of objects or attributes only. For example, (X,Y) can be depicted
by _x2X(x

⇤⇤, x⇤). In FCA, such a pair (x
⇤⇤, x⇤) is regarded as a granular concept and can be strictly defined below:

Definition 3. [5] Let F = (U,C, I) be a formal context. For any x 2 U, a 2 C, (x
⇤⇤, x⇤) and (a⇤, a⇤⇤) are object concepts

and attribute concepts, respectively, called granular concepts of F.85

Since this paper will discuss the dynamic updating of objects in a formal decision context, object granular concepts
will be given more attention. Hereinafter, “⇤B” is used to represent the mapping between the object set U and the
attribute subset B. That is, for X ✓ U,Y ✓ B,

X
⇤B = {a 2 B|8x 2 X, IB(x, a) = 1}, X ✓ U,

Y
⇤B = {x 2 U |8a 2 Y, IB(x, a) = 1},Y ✓ B,90

where IB = I \ (U ⇥ B).
Proposition 1. Let F = (U,C, I) be a formal context. For any Y ✓ B ✓ C and X ✓ U, we have

(1) Y
⇤B = Y

⇤C ;
(2) X

⇤B ✓ X
⇤C ;

(3) X
⇤C⇤C ✓ X

⇤B⇤B .
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Figure 1: Illustration of overall procedure for DRCM.

The main purpose of analysing the formal decision context is to perform decision analysis, and rules are the main
way to make decisions.
Definition 4. Let S = (U,C, I,D, J) be a formal decision context. For any x 2 U, (x

⇤C⇤C , x⇤C ) and (x
⇤D⇤D , x⇤D ) are

granular concepts in the conditional concept lattice and decision concept lattice, respectively. Then rx : x
⇤C ! x

⇤D is95

called a granular rule of S , where x
⇤C and x

⇤D are called condition and conclusion (also a label of x) of rx, respectively.
Due to massive data, an extracted granular rule base will inevitably contain a large number of useless rules for

decision analysis. To refine the granular rule base, a useful way is to remove the useless attributes by means of granular
reducts.
Definition 5. [22] Let S = (U,C, I,D, J) be a formal decision context. S is said to be consistent if x

⇤C⇤C ✓ x
⇤D⇤D for100

any x 2 U; otherwise, it is said to be inconsistent.
Definition 6. [22] Let S = (U,C, I,D, J) be a formal decision context and G ✓ C. If x

⇤G⇤G ✓ x
⇤D⇤D for any x 2 U, then

G is a granular consistent set of S and if there is no proper subset of G such that it is a granular consistent set of S ,
then G is referred to as a granular reduct of S .
Theorem 1. Let S = (U,C, I,D, J) be a consistent formal decision context, G be a granular reduct of S and E = C�G,105

K ✓ E. Then, for any x 2 U, x
⇤G[K⇤G[K ✓ x

⇤D⇤D .
Proof. It is obvious that G ✓ G [ K ✓ C. According to Proposition 1 and Definition 7, x

⇤G[K⇤G[K ✓ x
⇤G⇤G and

x
⇤G⇤G ✓ x

⇤D⇤D . Thus, x
⇤G[K⇤G[K ✓ x

⇤D⇤D holds.
Theorem 1 shows that an attribute set that includes a granular reduct must be a granular consistent set of a consis-

tent formal decision context.110

Many rules can be extracted from a general formal decision context, but some of them might not be necessary in
terms of classification. In addition, granular rules will become e↵ective for achieving classification tasks when each
object has only one label. For this purpose, we need to introduce the notion of a regular formal decision context.
Definition 7. [32] Let S = (U,C, I,D, J) be a formal decision context. S is referred to as a regular formal decision
context if for any a, b 2 D, a

⇤ \ b
⇤ = ;.115

3. The granular rule-based classification model

In this section, a dynamic updating framework named DRCM for computing granular reducts and granular rules
is designed to achieve classification tasks. It includes four processes: (1) initialize granular reducts and granular rules;
(2) perform granular reduct updating; (3) perform granular rule updating; and (4) generate predictions.

Figure 1 gives an overall procedure for DRCM in which “Max” indicates that we choose the maximal similarity120

degree (introduced in Section 3.3) to obtain the predicted label. Before the calculation, the input formal decision
context will be divided into a training formal decision context (training set) and a testing formal decision context
(testing set) with a given ratio. Then, the training set is used to learn the granular rule, while the testing set is
employed to estimate the classification ability of the learned granular rules. During granular reduct and granular rule
updating processes, the training set is further divided into an initial dataset and an incremental dataset, in which a125

new object is added into the initial dataset at a certain time, and then, we update the corresponding granular reduct.
4

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



The granular rules will be updated after the granular reduct updating is finished. In the process of prediction, for a
testing instance, the similarity degree between it and each of the granular rules will be calculated, and the label of the
granular rule with the maximal similarity degree will be assigned to the testing instance.

We consider that adding a new object will produce two states: the original formal decision context and the updated130

formal decision context. To distinguish them from each other, we use S and S
+ to represent two states of the formal

decision context. In other words, for a formal decision context S = (U,C, I,D, J), S
+ = (U+,C+, I+,D+, J+) is used

to denote the updated version, where U
+ = {x1, x2, ..., xn, xnew}, C

+ = C, D
+ = D and I

+ ✓ U
+ ⇥ C

+, J
+ ✓ U

+ ⇥ D
+.

To avoid confusion, we use “e⇤” to represent the “ ⇤ ” mapping in the updated formal decision context S
+. In addition,

all of the formal decision contexts to be discussed below are regular and consistent.135

3.1. Granular reduct updating process

In this subsection, we mainly discuss the updating of granular reducts. The di�culty of this problem lies in judging
when to update and how to update. As pointed out before, the granular reduct maintains the consistency of a formal
decision context, which is closely related to the extents of the granular concepts. Therefore, we consider the extents
of granular concepts as the beginning to discuss this problem.140

Theorem 2. Let S = (U,C, I,D, J) and S
+ = (U+,C+, I+,D+, J+) be two formal decision contexts and K ✓ C. Then,

for any x 2 U, we have

x
⇤̃K ⇤̃K =

(
x
⇤K⇤K [ {xnew}, if x

⇤K ✓ x
⇤̃K

new,
x
⇤K⇤K , otherwise.

Proof. It is obvious from the definitions of S and S
+.

Theorem 2 shows that adding a new object can make x
⇤K⇤K increase, as does x

⇤D⇤D . Therefore, the changes in
x
⇤K⇤K and x

⇤D⇤D will inevitably have an influence on the granular reduct G. Figure 2 presents a consistency analysis145

of G after adding a new object xnew, in which the results are caused by di↵erent combinations of the second and third
columns. It is obvious that if the newly added object has the same label as one of the previous objects, it will certainly
not a↵ect the consistency of that object. Otherwise, it is not necessary. For convenience, for any two objects x and y,
Z(Z , x

⇤,Z , y
⇤) is used to denote their common attribute set. Then, we can summarize the following conclusions to

facilitate subsequent analysis.150

Theorem 3. Let S = (U,C, I,D, J) and S
+ = (U+,C+, I+,D+, J+) be two formal decision contexts, and G be a

granular reduct of S . G is a granular reduct of S
+ if any x 2 U satisfies one of the following conditions:

(1) x
⇤D = x

⇤̃D

new;
(2) x

⇤D , x
⇤̃D

new, x
⇤G \ x

⇤̃G
new = Z.

Proof. (1) Suppose any x 2 U can satisfy x
⇤D = x

⇤̃D
new

. According to Theorem 2 and Definition 6, we have

x
⇤̃G ⇤̃G =

(
x
⇤G⇤G [ {xnew}, if x

⇤G ✓ x
⇤̃G
new,

x
⇤G⇤G , otherwise,

x
⇤̃D ⇤̃D = x

⇤D⇤D [ {xnew},
x
⇤G⇤G ✓ x

⇤D⇤D .

Thus, x
⇤̃G ⇤̃G ✓ x

⇤̃D ⇤̃D . Moreover, for xnew 2 U
+, x

⇤̃G ⇤̃G
new = {xnew} [ X ✓ {xnew} [ U = x

⇤̃D ⇤̃D

new , in which X ✓ U and for any
x 2 X, x⇤D = x

⇤̃D

new, x
⇤G \ x

⇤̃G
new = x

⇤̃G
new .

Let K ⇢ G be a granular consistent set of S
+. As G is the granular reduct of S , there must exist x 2 U such that

x
⇤K⇤K * x

⇤D⇤D , which contradicts the assumption. Therefore, we conclude that G is a granular reduct of S
+.

(2) Suppose for any x 2 U, x
⇤D , x

⇤̃D

new, x
⇤G \ x

⇤̃G
new = Z. According to Theorem 2 and Definition 6, we obtain

x
⇤̃G ⇤̃G = x

⇤G⇤G ,
x
⇤̃D ⇤̃D = x

⇤D⇤D ,
x
⇤G⇤G ✓ x

⇤D⇤D .

Thus, x
⇤̃G ⇤̃G ✓ x

⇤̃D ⇤̃D . As a result, for xnew 2 U
+, x

⇤̃G ⇤̃G
new = {xnew} = x

⇤̃D ⇤̃D

new .155
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Figure 2: Consistency analysis of G after adding object xnew.

Assume that K ⇢ G is a granular consistent set of S
+. As G is the granular reduct of S , there must exist x 2 U

such that x
⇤K⇤K * x

⇤D⇤D , which is in contradiction with the assumption. Thus, we conclude that G is a granular reduct
of S

+.
Theorem 4. Let S = (U,C, I,D, J) and S+ = (U+,C+, I+,D+, J+) be two formal decision contexts, G be a granular
reduct of S and E = C �G. G

+ = G [ {e}, e 2 E with I(x, e) = 1 and I
+(xnew, e) = 0 is a granular consistent set of S

+
160

if x
⇤D , x

⇤̃D

new and x
⇤G \ x

⇤̃G
new = x

⇤G for any x 2 U.
Proof. Suppose any x 2 U can satisfy x

⇤D , x
⇤̃D

new and x
⇤G \ x

⇤̃G
new = x

⇤G . According to Theorem 2, x
⇤̃G ⇤̃G = x

⇤G⇤G [ {xnew}
and x

⇤̃D ⇤̃D = x
⇤D⇤D , which leads to the fact that G is not a granular consistent set of S

+. For any e 2 E, I(x, e) = 1,
I
+(xnew, e) = 0, x

⇤G+ \ x
⇤̃G+
new = Z. Then, according to Theorems 1-2, we get x

⇤̃G+ ⇤̃G+ = x
⇤G+ ⇤G+ ✓ x

⇤D⇤D = x
⇤̃D ⇤̃D .

Consequently, x
⇤̃G+ ⇤̃G+
new = {xnew} ✓ x

⇤̃D ⇤̃D

new = {xnew}. Thus, G
+ is a granular consistent set of S

+.165

Theorem 5. Let S = (U,C, I,D, J) and S
+ = (U+,C+, I+,D+, J+) be two formal decision contexts, G be a granular

reduct of S and E = C �G. G
+ = G [ {e}, e 2 E with I(x, e) = 0 and I

+(xnew, e) = 1 is a granular consistent set of S
+

if x
⇤D , x

⇤̃D

new and x
⇤G \ x

⇤̃G
new = x

⇤̃G
new for any x 2 U.

Proof. Suppose for any x 2 U, x
⇤D , x

⇤̃D

new and x
⇤G\x

⇤̃G
new = x

⇤̃G
new. Thus, x

⇤̃G ⇤̃G
new = x

⇤G⇤G
new [{xnew} and x

⇤̃D ⇤̃D

new = {xnew}, which
yields that G is not a granular consistent set of S

+. For any e 2 E, I(x, e) = 0, I
+(xnew, e) = 1, x

⇤G+ \ x
⇤̃G+
new = Z. Then,170

according to Theorems 1-2, we get x
⇤̃G+ ⇤̃G+ = x

⇤G+ ⇤G+ ✓ x
⇤D⇤D = x

⇤̃D ⇤̃D . Note that, x
⇤̃G+ ⇤̃G+
new = {xnew} ✓ x

⇤̃D ⇤̃D

new = {xnew}.
Therefore, G

+ is a granular consistent set of S
+.

Theorem 6. Let S = (U,C, I,D, J) and S
+ = (U+,C+, I+,D+, J+) be two formal decision contexts, G be a granular

reduct of S and E = C �G. G
+ = G [ {e, f }, e, f 2 E with I(x, e) = 0, I+(xnew, e) = 1, I(x, f ) = 1 and I

+(xnew, f ) = 0
is a granular consistent set of S

+ if x
⇤D , x

⇤̃D

new and x
⇤G = x

⇤̃G
new for any x 2 U.175

Proof. Suppose for any x 2 U, x
⇤D , x

⇤̃D

new and x
⇤G = x

⇤̃G
new. Thus, x

⇤̃G ⇤̃G = x
⇤G⇤G [ {xnew} and x

⇤̃D ⇤̃D

new = {xnew}, which
indicates that G is not a granular consistent set of S

+. For any e, f 2 E, I(x, e) = 0, I+(xnew, e) = 1, I(x, f ) =
1, I+(xnew, f ) = 0, x

⇤G+ \ x
⇤̃G+
new = Z. Then, according to Theorems 1-2, we get x

⇤̃G+ ⇤̃G+ = x
⇤G+ ⇤G+ ✓ x

⇤D⇤D = x
⇤̃D ⇤̃D .

Besides, x
⇤̃G+ ⇤̃G+
new = {xnew} ✓ x

⇤̃D ⇤̃D

new = {xnew}. Thus, G
+ is a granular consistent set of S

+.
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Algorithm 1 The updating algorithm of a granular reduct
Input: A formal decision context S and newly added objects U

0 .
Output: A granular consistent set G

+ of the updated formal decision context S
+.

1: Initialize the granular reduct G for S

2: For each xnew in U
0

3: Set Ka = ;; // The added attribute set
4: For each xi in U

5: If xi satisfies the conditions in Theorem 4 or Theorem 6
6: Select the candidate attribute set Ks ✓ C �G satisfying I(x, e) = 1 and I

+(xnew, e) = 0 for any e 2 Ks;
7: Elseif xi satisfies the conditions in Theorem 5 or Theorem 6
8: Select the candidate attribute set Kv ✓ C �G satisfying I(x, b) = 0 and I

+(xnew, b) = 1 for any b 2 Kv;
9: End

10: If Ka \ Ks = ;
11: Select an attribute e from Ks;
12: Update Ka = Ka [ {e};
13: End
14: If Ka \ Kv = ;
15: Select an attribute b from Kv;
16: Update Ka = Ka [ {b};
17: End
18: End
19: End
20: G

+ = G [ Ka;
21: For each e 2 G

+

22: If G
+ � {e} is a granular consistent set

23: G
+ = G

+ � {e};
24: End
25: End
26: Return G

+.
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Theorems 3-6 show the updating rules for the granular consistent sets in all possible cases when a new object is180

added. Roughly speaking, the changes in the granular reduct depend on the relationships between the conditional and
decision attributes that the newly added objects and the previous objects have. In fact, one or two additional attributes
are needed to maintain the consistency of an object in a new consistent formal decision context. We can design the
updating algorithm (Algorithm 1) to compute the granular reduct based on those theorems. Note that, each theorem
considers only a single case, such as Theorem 4 assuming that x

⇤D , x
⇤̃D

new, x
⇤G \ x

⇤̃G
new = x

⇤G for any x 2 U. Since185

knowledge updating is actually a complex process, two or more cases can exist at the same time. In other words, in
addition to x

⇤D , x
⇤̃D

new, x
⇤G \ x

⇤̃G
new = x

⇤G , there can be another y 2 U that satisfies y
⇤D , x

⇤̃D

new, y
⇤G \ x

⇤̃G
new = x

⇤̃G
new, which

leads to the coexistence of the cases introduced in Theorems 4-6. Therefore, it is necessary to prove that the updated
granular consistent set can be suitable for all consistent decision formal contexts.
Theorem 7. Let S = (U,C, I,D, J) and S

+ = (U+,C+, I+,D+, J+) be two formal decision contexts, G be a granular190

reduct of S and E = C � G. If we denote K ✓ E as the set of all the newly added attributes according to Theorems
4-6, then G

+ = G [ K is a granular consistent set of S
+.

Proof. Let Ui ✓ U, i = 1, 2, 3, 4 be the object sets satisfying the conditions in Theorems 3-6, respectively, and Ki ✓ K

be the corresponding attribute sets added by them.
Based on Proposition 1 and Definition 6, x

⇤̃G[Ki
⇤̃G[Ki ✓ x

⇤̃G ⇤̃G ✓ x
⇤̃D ⇤̃D . Note that G [ Ki ✓ G [ K. Thus, x

⇤̃G[K ⇤̃G[K ✓195

x
⇤̃G[Ki

⇤̃G[Ki . Then, for any x 2 U, we have x
⇤̃G[K ⇤̃G[K ✓ x

⇤̃D ⇤̃D .
Besides, for xnew 2 U

+, x
⇤̃G[K ⇤̃G[K

new = {xnew} [ X ✓ {xnew} [ U1 = x
⇤̃D ⇤̃D

new , in which X ✓ U1 and for any x 2 X, x⇤D =
x
⇤̃D

new, x
⇤G[K \ x

⇤̃G[K

new = x
⇤̃G[K

new .
In summary, for any x 2 U

+, x
⇤̃G[K ⇤̃G[K ✓ x

⇤̃D ⇤̃D , and G
+ is a granular consistent set of S

+.

3.2. Granular rule updating process200

In this subsection, we investigate the updating of the granular rules extracted from a reduced formal decision
context. Compared to the previous process, it is relatively simple. To obtain the updated granular rules, we only need
to remove the attributes not included in the new granular reduct and add those included in the new granular reduct.
Unless there are special notes, all of the granular rules to be discussed are extracted from the reduced formal decision
context.205

Theorem 8. Let S = (U,C, I,D, J) and S
+ = (U+,C+, I+,D+, J+) be two formal decision contexts, and RS , RS + be

their granular rule sets, respectively. If they have the same granular reduct, then RS + = RS [ {rxnew
}.

Proof. It is obvious from Definition 4.
Theorem 9. Let S = (U,C, I,D, J) and S

+ = (U+,C+, I+,D+, J+) be two formal decision contexts, G and G
+ be their

granular reducts, and RS = {x 2 U |x⇤G ! x
⇤D } be the granular rule set of S . If RS is updated to RS U = {x 2 U |x⇤̃G+ !210

x
⇤̃D+ }, then RS + = RS U [ {rxnew

}.
Proof. It is obvious from Theorem 8.

Algorithm 2 The updating algorithm of granular rules
Input: A formal decision context S and newly added objects U

0 .
Output: The granular rule set RS + of the updated formal decision context S

+.
1: Initialize the granular rule set RS for S

2: For each xnew in U
0

3: Compute the granular reduct G
+ according to Algorithm 1;

4: For each rx in RS

5: Update rx : x
⇤G ! x

⇤D to rx : x
⇤̃G+ ! x

⇤̃D ;
6: RS + = RS + [ {rx};
7: End
8: If x

⇤̃G+
new ! x

⇤̃D

new < RS +

9: RS + = RS + [ {x⇤̃G+new ! x
⇤̃D

new};
10: End
11: End
12: Return RS + .
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As Theorems 8-9 depicted, if the granular reduct does not change, the updating of the granular rules involves
only the addition of a new rule. Otherwise, we need to adjust x

⇤G in rx to x
⇤̃G+ to generate a new granular rule. We

summarize the updating progress in Algorithm 2, and give an example to illustrate the updating processes of a granular215

reduct and granular rules.
Example 1. We take Table 1 as an example to illustrate the whole updating process of a granular reduct and granular
rules. Suppose that U = {1, 2} is the initial object set and U

+ = {3, 4, 5, 6, 7, 8, 9, 10} is the incremental object set.
Then, the incremental processes are as follows:

Initialize the granular reduct G = {t, u} and the granular rules:

rx1 : {t}! {v},
rx2 : {u}! {v}.

(1) For the new object x3, we have x
⇤D
i
= x

⇤̃D

3 (i = 1, 2). According to Theorem 3, G
+
1 = G is a granular reduct of220

the updated formal decision context.
(2) For the new object x4, we have x

⇤D
1 , x

⇤̃D

4 , x
⇤G
1 = x

⇤̃G
4 and x

⇤D
i
, x

⇤̃D

4 , x
⇤G
i
\ x
⇤̃G
4 = Z(i = 2, 3). Based on Theorem

3 and Theorem 6, we need to select two attributes a1, a2 satisfying I(x1, a1) = 1, I(x4, a1) = 0, I(x1, a2) = 0 and
I(x4, a2) = 1. Thus, G

+
2 = G [ {c, d} = {c, d, t, u} is a granular consistent set.

(3) For the new object x5, we have x
⇤D
i
= x

⇤̃D

5 (i = 1, 2, 3), x
⇤D
4 , x

⇤̃D

5 and x
⇤G
4 \ x

⇤̃G
5 = Z. According to Theorem 3,225

G
+
2 is a granular consistent set of the updated formal decision context.

(4) The granular reduct set G
+
2 is unchanged after the objects x6 and x7 are added into the updated formal decision

context.
(5) For the new object x8, we have x

⇤D
i
, x

⇤̃D

8 , x
⇤G
i
\x
⇤̃G
8 = Z(i = 1, 2, 3, 5, 6), x

⇤D
j
, x

⇤̃D

8 and x
⇤G
j
\x
⇤̃G
8 = x

⇤̃G
8 ( j = 4, 7).

According to Theorem 3 and Theorem 5, we need to select two attributes a1, a2 satisfying I(x4, a1) = 0, I(x8, a1) = 1,230

I(x7, a2) = 0 and I(x8, a2) = 1. Thus, G
+
6 = G

+
2 [ {q} = {c, d, q, t, u} is a granular consistent set.

(6) The granular reduct set G
+
6 is preserved after the objects x9 and x10 are added into the updated formal decision

context.
Finally, we can further obtain a granular reduct G

+ = {c, d, q, t} from the granular consistent set {c, d, q, t, u}. Based
on the updated granular reduct, the new granular rules are as follows:

r
0
x1

: {d, t}! {v},
r
0
x2

: {d}! {v},
r
0
x4

: {c, t}! {w},
r
0
x8

: {c, q}! {x}.

3.3. Prediction

In this section, we discuss the final prediction process. For an unlabelled object, the prediction stage aims at235

finding the most likely label for it. The key of this process is to choose the appropriate rule that matches the unlabelled
object. Since the similarity degree can be used to measure the nearness between two objects, we employ a rule-based
similarity degree to evaluate the closeness between two rules. Thus, some additional notions are needed.

Algorithm 3 Prediction algorithm for DRCM
Input: The trained rule base RS and the testing formal decision context T .
Output: l(T ).

1: For each ti in T

2: For each rx in Rs

3: Calculate the similarity degree RS (rti
, rx) according to Definition 9;

4: End
5: Get a label l(ti) for the object ti according to Definition 9 and Definition 10;
6: l(T ) = l(T ) [ l(ti);
7: End
8: Return l(T ).
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Definition 8. Let S = (U,C, I,D, J) be a formal decision context, where C = {a1, a2, ..., am}. For any x 2 U, we
denote vx = (I(x, a1), I(x, a2), ..., I(x, am)) as the attribute vector of x.240

Definition 9. Let S = (U,C, I,D, J) be a formal decision context. For two granular rules rx : x
⇤C ! x

⇤D and
ry : y

⇤C ! y
⇤D of S , we define the granular rule-similarity degree between rx and ry as

RS (rx, ry) =
vxv

T

y

|x⇤C [ y⇤C | ,

where v
T

y
represents the transposition of vy and |X| is the number of elements in X. Since an attribute vector is 0 or 1

valued, vxv
T

y
is actually equal to the number of the same elements of vx and vy.245

With the definition of the granular rule-similarity degree, the issue of predicting labels can be transformed into the
problem of determining the conclusion in a granular rule. For each unseen instance t in the testing set, there always
exists a maximum RS denoted as max(RS ) and its corresponding granular rule rẋ. If we use l(x) to denote the label of
object x, then l(t) is predicted by l(ẋ). However, sometimes a granular rule set marked by di↵erent labels can also be
obtained. In this case, we cannot confirm which label is better. Thus, the following probability function is defined to250

o↵er a further prediction.
Definition 11. Let S = (U,C, I,D, J) be a formal decision context, and RS be the granular rule base trained by S . For
an unseen instance t and a candidate set R1 = {r1, r2, ..., rn} ✓ RS satisfying RS (rt, r1) = RS (rt, r2) = ... = RS (rt, rn) =
max(RS ), we define

P(t, l(i)) =
|{rk |r 2 R1, l(k) = l(i)}|

|R1|
(i, k = 1, 2, ..., n)255

as the probability of t labeled by l(i).
Definition 11 indicates that the label with the highest probability actually corresponds to the label predicted by

the trained granular rule base. In the prediction process, we first use the rule-similarity degree to predict a label for a
given object; if it fails, then the probability must be used. If neither of them can predict a label e↵ectively, it will be
randomly selected from the candidate label set. The whole process is described by Algorithm 3.260

3.4. Time complexity analysis

In this subsection, we analyse the time complexity of the proposed algorithms in this paper.
In Algorithm 1, Step 1 aims at initializing a granular reduct for S . Here, we use the algorithm proposed in

this paper to initialize the granular reduct. Steps 2-19 select the candidate attribute set with a time complexity of
O(|U ||U 0 |), in which the judgements of Ka \ Ks = ; and Ka \ Kv = ; are to add as few attributes as possible. Steps265

20-25 compute G
+ to evolve the granular consistent set for the purpose of generating a new granular reduct. Thus, the

time complexity of Algorithm 1 is O(|U ||U 0 |+ |G+|). In Algorithm 2, Step 1 initializes a granular rule set for S . Then,
for each newly added object, it recalls Algorithm 1 to find a new granular reduct, which will severe as the basis of the
updating granular rule in Steps 4-9. Since it also recalls Algorithm 1, its time complexity is O(|U 0 |(|U | + |G+| + |RS |)).
The time complexity of Algorithm 3 is O(|T ||RS |).270

4. Experimental results

In this section, we conduct experiments mainly for the purpose of evaluating the classification performances of
the algorithms proposed in this paper.

4.1. Datasets

In the experiments, we chose sixteen datasets from the UCI Machine Learning Repository: Zoo DataSet, Iris Plants275

DataSet, Ecoli DataSet, Contraceptive Method Choice DataSet, Wisconsin Diagnostic Breast Cancer DataSet, Sensor
Reading DataSet, Waveform Database Generator (Version 2) DataSet, Car Evaluation DataSet, Chess (King-Rook
vs. King-Pawn)DataSet, Statlog (Image Segmentation) DataSet, Page Blocks Classification DataSet, Wilt DataSet,
Mushroom DataSet, Spambase DataSet, Letter Recognition DataSet and Adult DataSet. Table 2 shows the statistics
of the sixteen chosen datasets.280
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Table 2: The statistics of the chosen datasets

Dataset #Object #Attribute #Class
Zoo DataSet 101 16 7
Iris DataSet 150 4 3
Ecoli DataSet 336 7 8
Contraceptive Method Choice DataSet 1473 9 3
Wisconsin Diagnostic Breast Cancer DataSet 569 30 2
Sensor Reading DataSet 5456 4 4
Waveform DataSet 5000 21 3
Car Evaluation DataSet 1728 6 4
Chess DataSet 3196 36 2
Statlog (Image Segmentation) DataSet 2310 19 7
Page Blocks Classification DataSet 5473 10 5
Wilt DataSet 4839 5 2
Spambase DataSet 4601 57 2
Mushroom DataSet 8124 21 2
Letter Recognition DataSet 20000 16 26
Adult DataSet 32561 14 2

Since most of the chosen datasets are many-valued or continuous-valued contexts, a data preprocessing technique
should be applied to them to generate standard datasets. Conceptual scaling [48], which covers nominal scale, ordinal
scale and interordinal scale, was employed to convert a many-valued or continuous-valued context into a 0-1 valued
formal decision context. For example, the Wisconsin Diagnostic Breast Cancer DataSet has 30 continuous attributes.
During the experiment, we first sorted the attribute values, and then divided them into three pairwise disjoint inter-285

vals to obtain an attribute with 3 attribute values only: intervals 1-3. Furthermore, we scaled each attribute into 3
attributes. Concretely, if the attribute value belongs to a certain interval, its value under the interval is 1; otherwise, it
is 0. Thus, we obtained a standard dataset with 90 attributes. In addition, since this paper considers only consistent
formal decision contexts, we eliminated the objects that cannot meet the consistency in the datasets, and renamed the
standardized datasets by Datasets 1-16. Table 3 lists the details of the standardized datasets.290

4.2. Comparison of models

To verify the e↵ectiveness of DRCM, we compare it with two types of algorithms: the non-FCA-based algorithm
and the FCA-based algorithm. Concretely, the former includes the Decision Tree (DT), Linear Discriminant Anal-
ysis (LDA), Linear Support Vector Machine (LSVM), Gaussian Kernel Function Support Vector Machine (GSVM),
Polynomial Kernel Function Support Vector Machine (PSVM) and Radial Kernel Function Support Vector Machine295

(RSVM), Nearest Neighbour Classifiers [49] (KNN) with k = 1, Bagged Trees in Ensemble Classifiers [50] (EC),
Random Forest (RF) and Naive Bayes (NB). In addition, considering that the latest CCLM [32] achieved the level
of state-of-the-art in classification tasks, we also compare DRCM and CCLM. For fairness, all of the classifiers were
trained automatically by the classification learner software tool in MATLAB 2016b, and 5 trials were conducted to
report the average value with the same training and testing samples. Statistical analysis was performed by using300

paired t-test1 on MATLAB to compare the two algorithms, and the test results are shown in the appropriate place. The
experimental conditions were as follows: Intel Core i7-4720HQ @2.60 GHz CPU and 16 GB main memory.

For comparison, we will first analyse the feasibility of the proposed algorithm for achieving classification tasks,
and then, we will compare it with the classification algorithms introduced above; next, we will evaluate the dynamic
learning ability. Since the classification task aims at predicting the labels of new objects with known objects, it305

requires a training set and testing set. Thus, during the experiment, a given dataset will be randomly divided into a
training set and testing set, and TestRatio =

|testing set|
|training set|+|testing set| is employed to depict the division ratio.

1https://uk.mathworks.com/help/stats/ttest.html#d123e816945
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Table 3: The statistics of the datasets after standardization

Dataset #Object #Attribute #Class
Dataset 1 93 16 7
Dataset 2 105 12 3
Dataset 3 199 17 8
Dataset 4 254 21 3
Dataset 5 569 90 2
Dataset 6 660 12 4
Dataset 7 1306 21 3
Dataset 8 1590 19 4
Dataset 9 1856 38 2
Dataset 10 2070 55 7
Dataset 11 2132 30 5
Dataset 12 4067 15 2
Dataset 13 4125 171 2
Dataset 14 8000 50 2
Dataset 15 8871 48 26
Dataset 16 15095 40 2

Table 4: The change of classification ability (%) after attribute reduction

Dataset TestRatio
0.1 0.2 0.3 0.4 0.5

Dataset 1 +2.2222 +0.0000 -0.7407 -0.5440 -3.0434
Dataset 2 +0.0000 +0.9524 +0.6452 +0.0000 +0.3847
Dataset 3 +0.0000 +0.0000 +1.0170 -0.2531 +0.6061
Dataset 4 +0.8000 +1.6000 +2.3685 +1.9802 +0.6300
Dataset 5 -0.3571 -0.7079 -1.5294 -0.9691 -2.3943
Dataset 6 +0.5051 +0.3031 +0.5051 +0.0000 +0.3031
Dataset 7 -1.2307 +0.0000 -2.8644 -3.4099 -6.0030
Dataset 8 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
Dataset 9 +0.1082 +0.0001 -0.0719 -0.0269 -0.1939
Dataset 10 -0.3864 -0.2415 -0.7085 -0.1932 -0.6570
Dataset 11 +0.0000 +0.0939 +0.0627 -0.1643 +0.1877
Dataset 12 +0.0000 +0.1477 +0.0164 -0.0123 -0.1475
Dataset 13 +0.6739 +0.6848 +0.7899 +0.8348 +0.5826
Dataset 14 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
Dataset 15 +0.0000 +0.0000 +0.0000 +0.0000 +0.0000
Dataset 16 -0.0795 +0.0596 -0.0441 +0.0000 +0.0000

(i) Feasibility analysis of the proposed algorithm
Feasibility analysis evaluates whether the proposed attribute reduction method can retain the e↵ective information

of the datasets. The classification ability of the dataset is used as the evaluation standard in this paper. In other310

words, a good attribute reduction algorithm should be able to maintain the classification ability of the dataset. For this
purpose, we calculated statistics on the changes in the classification ability under di↵erent partition strategies, which
are reported in Table 4.

It can be observed that attribute reduction proposed in this paper guarantees the classification ability on Datasets
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Table 5: Training time of DRCM

Dataset #Training #Testing Time (s) Ave. (obj.) Ave. (att.)
Dataset 1 75 18 0.0235 0.0003 0.0011
Dataset 2 84 21 0.0074 0.0001 0.0006
Dataset 3 160 39 0.0425 0.0002 0.0025
Dataset 4 204 50 0.1264 0.0006 0.0060
Dataset 5 456 113 0.8034 0.0017 0.0089
Dataset 6 528 132 0.0131 0.0002 0.0010
Dataset 7 1045 261 2.4491 0.0023 0.1166
Dataset 8 1383 345 0.7872 0.0037 0.0414
Dataset 9 1485 371 7.0439 0.0005 0.1853
Dataset 10 1656 414 6.5984 0.0032 0.1199
Dataset 11 1706 426 0.4131 0.0039 0.0130
Dataset 12 3254 813 0.0819 0.0001 0.0054
Dataset 13 3300 825 119.4784 0.3620 0.6987
Dataset 14 6400 1600 6.5885 0.0010 0.1317
Dataset 15 7097 1774 49.1988 0.0069 1.0249
Dataset 16 12076 3019 113.5600 0.0094 2.8390

8, 14 and 15, while it improves the classification ability on Datasets 2, 4, 6 and 13. On most of the remaining315

datasets, the proposed attribute reduction method can also improve the classification ability of the obtained rules with
an appropriate partition. For example, the classification ability on Dataset 3 has been improved by 1.0170% when
TestRatio = 0.4, which indicates that attribute reduction is helpful for us to improve classification ability. This finding
occurs because attribute reduction can reduce some attributes that have adverse e↵ects on the classification task, i.e.,
an increase in the associated rule-similarity degree. Despite the e↵ectiveness of DRCM, it performed poorly on some320

of the datasets, such as a 6.003% descent on Dataset 7, which could be caused by an inappropriate granular reduct.
Here, we only want to show that an appropriate granular reduct can indeed improve the generalization ability of the
proposed model.

The training time and the average value are also reported in Table 5. Obviously, the training time is closely related
to the numbers of objects and attributes. Thus, the proposed algorithm can train at a very fast speed in the face of325

small datasets, and only 0.0235 s was needed to train a formal decision context with 75 objects and 18 attributes.
When facing a much larger dataset with 12076 objects and 40 attributes, the proposed algorithm can also be quickly
completed in 114 seconds, which shows the feasibility of the proposed algorithm.
(ii) A comparison with other classification algorithms

To achieve the comparison task, we must report the experimental results when compared with the non-FCA based330

algorithms. The prediction accuracies with TestRatio = 0.2 are listed in Table 6, from which we can see that DRCM
achieves the optimal results in eight of the sixteen chosen datasets. In other datasets, it still obtains competitive results.
To further analyse the influence of the partition strategy on the proposed algorithm, we draw accuracy trend charts
of DRCM on the sixteen datasets with di↵erent TestRatios in Figure 3. It is obvious that the accuracy of DRCM
fluctuates slightly with the increase in TestRatio. Since only incomplete granular rules can be learned from a small335

number of instances and noise can be produced by a large number of instances, selecting an appropriate partition ratio
is very important for our algorithm.

Moreover, we show the prediction accuracy of DRCM and the simplified CCLM [32] in Figure 4. DRCM has
higher accuracies on all of the datasets except for Datasets 1 and 5-7, and even improves the accuracy by up to 4%
on Dataset 4. In addition, our model displays more stable results than CCLM in some datasets with increasing of340

TestRatio. A further theoretical analysis of the stable results is performed as follows. It appears that there is little
diversity between some objects on these datasets, which leads to more candidate labels by calculating the similarity
degree, and those candidate labels have a negative impact on the final results of CCLM, while DRCM reduces some
of such attributes and increases the diversity between objects, which makes our model have better prediction results
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Table 6: Accuracy (%) comparison with non-FCA based algorithms

Dataset DRCM DT LAD LSVM GSVM KNN EC RF NB PSVM RSVM
Dataset 1 97.7778 92.2222 95.5556 94.4444 95.5556 95.5556 96.6667 96.6667 94.4444 96.6667 96.6667
Dataset 2 100.000 99.0476 95.2381 100.000 100.000 100.000 99.0476 100.000 98.0952 99.0476 100.000
Dataset 3 94.3590 93.3333 92.3077 93.3333 93.8462 91.7949* 93.3333 93.3333 91.7949 92.8205 93.8462
Dataset 4 72.4000 70.8000 64.0000* 70.4000 73.6000 70.0000* 70.8000* 70.0000 68.8000* 74.0000 73.6000
Dataset 5 94.5133 94.8673 95.7522 97.8761* 97.8761* 94.5133 96.9912* 97.5221* 94.6903 97.3451* 97.8761*
Dataset 6 98.4848 98.3333 90.0000 97.5758* 98.0303 98.0303 98.3333 97.5757 97.1212* 98.1818 98.0303
Dataset 7 86.7433 88.8889* 93.7165* 93.4099* 93.7931 88.0460* 92.4904* 92.0306* 93.4100* 92.7203* 93.8697*
Dataset 8 99.8742 97.6101* 91.8868* 95.9748* 99.8113 95.6604* 99.4340 99.4969 88.8050* 99.8113 99.8113
Dataset 9 98.0054 99.5148* 90.3504* 99.0296* 98.7601 95.7952* 99.7305* 99.7844* 89.9191* 98.7601 98.7601
Dataset 10 94.2995 94.8309 84.3961* 93.9614 94.8309 93.3333 95.7971* 96.0869* 84.9275* 96.4735* 94.8309
Dataset 11 98.4037 97.4178* 92.6291* 97.7934* 97.9812* 97.9813* 98.2629 98.1221 94.0376* 98.2629 98.0282*
Dataset 12 98.3764 98.2780 97.7614* 98.2780 98.2780 98.0074 98.2780 98.3026 96.8758 98.3518* 98.2780
Dataset 13 91.5394 91.1030 90.6182* 93.0909* 94.0364* 90.8848 94.2788* 94.3273* 91.9758 94.1333* 94.1818*
Dataset 14 100.000 95.4000 96.0375* 74.4625* 72.0875* 74.7875* 100.000 95.6750* 100.000 100.000 71.8000*
Dataset 15 88.3653 64.4194* 63.3371* 81.9504 87.9030* 86.7531* 88.8162* 89.1545* 66.9335 88.0045* 88.0158*
Dataset 16 94.8062 95.3097* 94.5545 95.3694 95.6807* 94.3557* 95.9987* 95.8794* 94.6538 95.4952* 95.6608*

The best results are highlighted, and “*” indicates that DRCM is better (worse) than the corresponding algorithm according to the paired t-test
with confident level of 95 percent.

Figure 3: Evaluation results of DRCM with di↵erent partition strategies.

due to reducing the negative impact caused by unnecessary attributes. However, DRCM achieves poorer results in the345

five partition strategies on Datset 1. This finding could occur because of the strong correlations between attributes,
which leads to the fact that rules have less information than concepts after reduction.
(iii) Performance evaluation of the dynamic learning ability

Dynamic learning aims to evaluate the ability of a model to address new data. Since DRCM is an updating-based
model, it has a good theoretical basis for dynamic learning. In what follows, we will conduct a performance evaluation350
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Figure 4: Evaluation results of DRCM and CCLM.
The five-pointed star means that DRCM is better (worse) than CCLM acccording to the paired t-test with confident level of 95 percent.

Table 7: The batch size of di↵erent batches

Dataset Batch 1 Batch 2 Batch 3 Batch 4 Batch 5
Dataset 1 15 21 20 19 18
Dataset 2 16 23 23 22 21
Dataset 3 32 43 43 42 39
Dataset 4 40 55 55 54 50
Dataset 5 91 123 122 120 113
Dataset 6 105 142 142 139 132
Dataset 7 209 281 280 275 261
Dataset 8 254 342 341 335 318
Dataset 9 297 398 398 392 371
Dataset 10 331 444 444 437 414
Dataset 11 341 458 457 450 426
Dataset 12 650 873 872 859 813
Dataset 13 660 885 884 871 825
Dataset 14 1280 1716 1715 1689 1600
Dataset 15 1419 1903 1902 1873 1774
Dataset 16 2415 3237 3236 3188 3019

of dynamic learning ability on the chosen datasets. To generate a dynamic dataset, those datasets were divided into
five batches named Batches 1-5, in which Batch 1 served as the initial dataset, Batches 2-4 were regarded as the
incremental dataset, and Batch 5 was the testing dataset. Table 7 lists the batch size of the batches on each dataset.

Table 8 shows the evaluation results for dynamic learning, in which Batches 1,2-3-5 indicate that Batch 1 together
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Table 8: The evaluation results for dynamic learning

Dataset Batches 1-5 Batches 1-2-5 Batches 1,2-3-5 Batches 1,2,3-4-5
Time(s) Accuracy(%) Time(s) Accuracy(%) Time(s) Accuracy(%) Time(s) Accuracy(%)

Dataset 1 0.0073 76.6667 0.0088 90.0000* 0.0136 93.3333* 0.0161 96.6666*
Dataset 2 0.0063 80.9520 0.0058 94.2857* 0.0055 98.0952* 0.0062 98.0952*
Dataset 3 0.0108 76.4102 0.0171 84.6154 0.0231 88.2051* 0.0302 89.2308*
Dataset 4# 0.0234 67.2000 0.0429 71.2000 0.0791 74.8000* 0.1239 71.6000
Dataset 5# 0.0492 88.1416 0.1888 89.9115 0.4380 92.7434* 0.7258 92.2124*
Dataset 6 0.0091 97.7273 0.0104 97.8789 0.0116 97.8788 0.0117 97.8788
Dataset 7# 0.2078 67.1264 0.9877 77.0115* 2.4901 82.2988* 4.3077 79.9234*
Dataset 8 0.1387 90.8176 0.3631 96.3522* 0.6031 99.3082* 0.7719 99.6226*
Dataset 9 0.4121 92.7763 1.8070 95.4178* 4.1424 97.0889* 7.0647 97.7897*
Dataset 10 0.4740 87.1015 1.9048 91.4010* 3.8877 93.2367* 6.1497 94.4444*
Dataset 11 0.0965 95.6338 0.2117 96.7136 0.3178 97.3709* 0.4282 97.5117*
Dataset 12# 0.0389 98.3518 0.0499 98.4010 0.0714 98.4256 0.0755 98.4010
Dataset 13 5.0832 84.1697 28.4248 88.4849* 66.8538 90.2545* 126.8750 91.3212*
Dataset 14# 1.5775 98.9162 3.7597 98.8177 5.3921 98.5344 6.6409 98.5714
Dataset 15 5.6487 78.0045 19.0140 84.1826* 36.9245 86.6178* 56.4153 88.2863*
Dataset 16 9.2369 93.9715 40.0850 94.2762* 79.4134 94.5478* 125.9319 94.7333*

The best results are highlighted, and “*” indicates that the result is better (worse) than the initial state according to the paired t-test with confident
level of 95 percent.

with Batch 2 serves as the initial dataset while Batch 3 and Batch 4 are regarded as the incremental data and testing355

set, respectively. During the incremental process, the datasets that su↵er from accuracy loss are labelled by “#”.
Obviously, the accuracies of DRCM are nondecreasing on all of the datasets except for Datasets 4, 5, 7, 12 and 14 as
the increment process continues. In addition, DRCM achieved the highest accuracy on Dataset 14 in the first process,
obtained the best results on Datasets 2, 4-7 and 12 in the second process, and obtained the best results on the remaining
datasets in the third process. In other words, DRCM indeed has better incremental learning ability.360

We also evaluated the impact of batch size on the dynamic learning process, and the results are shown in Figure 5.
The prediction accuracy can be slightly improved with increasing batch size on most of the datasets. However, at the
same time, it should be pointed out that a batch that is too large could also lead to a decline in the prediction ability.
In fact, this circumstance is exactly consistent with the gradual cognitive process. On the one hand, a larger batch size
will bring challenges to cognitive ability, and on the other hand, it could produce more noise. In other words, how to365

select a proper batch size is crucial to our model.

5. Conclusions and future work

In this paper, we have studied dynamic knowledge discovery in a formal decision context. Concretely, a novel
model named DRCM has been proposed for updating granular reduct and granular rules by analysing the newly added
objects. We performed a feasibility analysis of the proposed method and compared it with other popular classification370

algorithms, as well as the evaluation of the dynamic learning ability. The experimental results have illustrated that the
proposed DRCM can achieve better classification performance on many datasets.

Although DRCM has shown good experimental performance, it still has some limitations. First, the training time
increases with increasing data volume, and thus, it could take a long time to train a large-scale dataset. Therefore,
optimization methods, such as using parallel technology, for the updating process are still worthwhile to explore.375

Second, DRCM was discussed for 0-1 valued contexts, which cannot be able to address continuous data directly. The
discretization of continuous attributes often means information loss. Thus, DRCM still deserves to be investigated
in a fuzzy environment to improve the scalability of the model. Moreover, the consistent condition for the formal
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Figure 5: Evaluation results of dynamic learning with di↵erent sample ratios
The “•” indicates that result of the incremental process is better (worse) than the initial state according to the paired t-test with confident level of

95 percent.

decision context makes DRCM lack e↵ectiveness in the face of inconsistent data. In other words, how to avoid the
ine�ciency caused by inconsistency is also worthwhile to discuss. Since each dataset must contain consistent subsets,380

this problem can be solved by finding a consistent subset to obtain a local granular reduct. This concern is another
focus in our future work. Last but not least, due to the non-exclusiveness of granular reduct, the performance of
our model after reduction could become slightly unsatisfactory, and thus, developing an improved DRCM that can
overcome this limitation is also an important area to be discussed.
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