
A Dynamic Service-Oriented Implementation for Java EE Servers

Mikael Desertot1,2, Didier Donsez1 and Philippe Lalanda1

1LSR-IMAG, 220 rue de la Chimie

Domaine Universitaire, BP 53
F-38041 Grenoble, Cedex 9, France

firstname.surname@imag.fr

2Bull SAS
1, rue de Provence - BP 208

F-38432 Echirolles Cedex - France
mikael.desertot@imag.fr

Abstract

This paper proposes to enhance the dynamism and the

flexibility of Java Enterprise Edition (EE) servers by
introducing a Service-Oriented Architecture (SOA) inside.
The purpose is to ease the deployment and offer dynamic
server configuration and reconfiguration. Such an
approach limits consumed resources and is capable of
context adaptation. After defining the properties that must
be verified for the service platform, we propose to use
OSGi technology as the basis for the architecture. We
have experimented with integrating OSGi into Java EE
servers. Moreover, this architecture has been chosen for
the next generation of JOnAS ObjectWeb's open source
Java EE implementation.

1. Introduction

Nowadays, since the introduction of component
models in mid-nineties, most components developed in
the industry are those deployable on dedicated application
servers. The market is divided between the two main
leaders, Java Enterprise Edition (formerly J2EE) in the
Java world and .NET in the Microsoft world. .NET offers
a single industry-level implementation, provided by
Microsoft, and is still an emerging technology.

On the other hand, Java EE is currently the most used
industrial application server. It is specified by Sun. There
are many implementations available, being commercial
(IBM, Sun, HP, Oracle…) or open-source (ObjectWeb's
JOnAS, JBoss' Application Server and the recent
Apache's Geronimo). It offers an environment to deploy
and execute applications and ensures that the specified
technical services are available. The usage of those
services is hidden to the developer by containers that
manage application logic components and their
interaction with technical services.

Server specifications (with some additional Java
Specification Requests) aim to simplify application
development and deployment. But currently, only the
Java Business Integration (JBI) specification (JSR 208)
tackles Java EE architecture (as well as J2SE). It
standardizes a way of assembling and binding the

components making up an application. As of now, none
of the existing open source servers are JBI compliant, it is
up to each implementer to provide the functionalities he
needs for the assembly of services. This is why we can
find disparate server capabilities depending on the choices
that have been made by the servers' providers. The most
useful, and also the trickiest, implementation-dependent
capability is the introduction of dynamism for services
[1], which is currently limited in Java EE
implementations.

The objective of our work is to tackle the Java EE
services layer limitations. In this paper we argue that we
can benefit from using a Service-Oriented Architecture
(SOA) as a basis for Java EE services dynamism. First of
all, it brings the flexible architecture that Java EE servers
are lacking. Indeed, a particularity of service architectures
is that service implementations can be registered or
unregistered at runtime. This is due to the loosely-coupled
connections that exist between each component when
building applications. Second, it can also help interaction
with third-party applications also offering services
because of the abstraction level offered by service
contracts.

This paper proposes an architecture for a dynamic
service-oriented backbone for Java EE. This work is
realized in collaboration with the JOnAS project leader,
Bull SAS. Section 2 focuses on Java EE, more precisely
on its services layer, its limits and existing solutions to
compensate for them. Section 3 explains our approach.
Section 4 gives a description of the new architecture and
the choices that have been made concerning the services
platforms. Section 5 illustrates an implementation of a
dynamic Java EE server. In section 6 we describe a
typical use case for such a server. Finally, in section 7 we
run through experiments that are currently performed
around Java EE.

2. Java EE Application Servers

This section presents the general Java EE architecture
with its advantages and limits. It describes existing
solutions for introducing dynamism into the Java EE
services layer. We rely on these principles to introduce
our approach for enhancing Java EE architectures.

2.1. Java EE

Applications deployed on Java EE application servers
are assemblies of components dealing with user
presentation or business logic. Those two layers
(presentation and logic) are composed of JSPs and
Servlets for the first one and of different kinds of
components (i.e., EJB for Enterprise Java Beans) for the
second one (figure 1). An EJB can be:
• a Session Bean implementing application logic.
• an Entity Bean to simplify access to persistent data

contained in databases.
• a Message Driven Bean that reifies a message queue

polling (like JMS queues or topics).

Figure 1. The Java EE environment

Application deployment, undeployment and update can

be performed during the server runtime. This capability is
addressed by a Java Specification Request (JSR 88) and is
an absolute must in every Java EE implementation.
At the lowest levels of the server, the Java EE platform
manages all the technical services specified by Java EE
(figure 2). Those technical services are orthogonal aspects
with regard to the application logic. These services are
required in most enterprise applications. They are offered
to release the developer (or assembler) from these
concerns. If applications have dependencies on some
services, services can also have dependencies to other
services. For instance the Servlet (or JSP) engine has a
dependency on the Security service for providing secure
web pages. Among the services offered we can mention
transactional, persistency or mail services.

Those services are very specific and complex. They
can only be implemented by domain experts. It means that
providing a Java EE server requires the integration of
components dealing with very different concepts. Such
components are most of the time large and complicated
projects on their own, and their implementation is
independent from Java EE servers.

To access services, application component
implementations are placed into containers. Those
containers are used as the glue between components and
technical services. But, contrarily to the application level,
nothing is specified concerning the service level
behaviour. In fact, the specification assumes that the
services are always available as soon as the server is
started.

Figure 2. Java EE classical architecture

This drives each server implementer to offer his own

solution for introducing new service properties, e.g.,
dynamism. This also allows each server implementer to
distinguish his implementation from other ones. It leads to
many different implementations, often proprietary and
incompatible.

2.2. Current Solutions

In this section we present the choices that have been
made in different Java EE implementations for providing
a dynamic layer for non-functional services. We studied
in particular the three open-source implementations
available today, that are JBoss Application Server (AS)
[2] [3], Geronimo [4] and JOnAS
(http://jonas.objectweb.org).

JBoss AS considers Java EE containers meta-level
components (MBeans) whereas EJB are base-level
components. This container relies on the JMX (Java
Management eXtensions) dynamic class loading
capabilities for offering services dynamism; a JMX server
is currently always deployed with a Java EE (or a third
party JMX server is accessible).

It offers life-cycle activities on services that include
creation, start, stop and destruction as well as a way of
deploying those services. In order to do this, a service
descriptor is added in the deployment unit. When
deploying a service, this description is used to also install

and activate (start) all the required services. The base
internal class loader architecture (called
UnifiedClassLoader) is flat, each one being at the same
level as the others. Once loaded, the services are bound
together with the help of dynamic proxies.

Geronimo models complex systems as components
capable of keeping their state, having relationships and
reacting to events. Even though it distinguishes between
two kinds of components, containers and applications,
each component is a GBean that could be in one of three
different states: stored, loaded or running. Geronimo
proposes a loosely-coupled architecture where service
bindings are managed by the framework. The latter uses
both inversion of control (IoC) and byte code injection to
resolve dependencies. When a GBean is deployed,
dependency resolutions are taken into account by the
framework by injecting in the bean the needed code for
bindings. This injection of one or a set of dependencies is
done by getter/setter methods or directly inside the
component constructor.

JOnAS does not offer for now any dynamic services
capabilities. Moreover, as soon as the server is started it is
impossible to install or start new services or even
reconfigure deployed services without restarting the
whole server.

 The first two solutions, JBoss and Geronimo, are
already providing a certain degree of dynamic capabilities
but still have some limitations. JBoss does not offer truly
modular service loading. All the classes of a service are
not isolated from the other service classes. It is not
possible to guarantee that they will not interfere with
something already running and make the system
incoherent. JBoss and Geronimo do not offer a real
service registry which is a key characteristic of the
Service-Oriented Architecture to perform service trading
enabling the use of any service implementation that fits
the requirements. And they both do not follow any
standard. This can impose a penalty because it
complicates the reuse of third-party services. Finally even
if it is not really the purpose of the paper, none of them
address the service deployment issues, assuming that the
administrator manages the deployment of service
implementations.

3. A Service-Oriented Approach for Java EE
Server Architectures

This section describes our service-oriented approach
for Java EE servers, our motivations, the way we handle
the services and the requirements we introduced.

3.1. Motivations

Considering current Java EE servers capabilities, our
goal is to offer a way of using the specified services by
relying on a Service-Oriented Architecture for bindings.
Java EE architecture can benefit from the interesting
features brought by the SOA layer. What we can expect

from it can be useful for resource consumption,
(re)configuration, simplified server construction and
update:
• Resource consumption: an application may not require

all of a servers' services. In that case, those which are
not used can be stopped to release memory resources. If
the server is dedicated to some particular application,
non-needed services may not be directly loaded at
server activation. SOA can also bring benefit to the
environments' dynamic capabilities. A service can be
started on demand if a newly deployed application
requires it. This property can also be useful if a server
provider offers different licensing (and different costs)
for its server, depending of the offered services. A
client can then upgrade his licensing, and the additional
services he needs can be deployed at runtime.

• Configuration and reconfiguration: it is again the
services' inherent dynamism that offers a suitable
response. It is also possible to perform configuration or
reconfiguration at runtime of the deployed services. In
the worst case, if a service must be restarted for taking
the new configuration into account, the capability of
stopping and restarting it at runtime is available; and
this without interfering with the rest of the collocated
services.

• Server building: it is simplified by the abstraction level
that services provide. A service is only defined by a
contract and potentially some additional properties. For
using it, only this contract has to be known. As
previously said, an application server is an assembly of
different components coming from different
implementers. To simplify this assembly, the service
abstraction appears to be a good first step. Indeed,
integrating a service within this architecture is much
simpler than hard coding the integration directly in the
server code. Moreover it eases server maintenance and
engineering. But to benefit from this capacity, standard
interfaces must be defined for all Java EE services,
which is currently not the case.

• Service update: it is the last enhancement brought by
SOA. Still with the same idea that the different
application servers' service components are managed by
different specifications and most of the time (in open
source projects) provided by third-party projects, they
have very different life cycles compared to the core of
the server. Versions are produced more frequently than
the server ones and it may be interesting, for debug or
performance purposes, to migrate rapidly toward the
new version. Because of the contract abstraction, we are
able to update only one service and this at runtime.
There is no need of providing a whole complete server
version and all configurations that have been done on
the running server don't have to be executed again.

3.2. Services

In this paper, we argue that we would benefit from
treating with a homogeneous life cycle both the services

and application level. As said previously, the application
layer already provides dynamic capabilities. We want to
offer in the same manner the deployment and activation of
both the technical services and applications. If the
enhancements listed below could be reached, the
management of the server would become easier. To
achieve it, our goal is to propose a new dynamic
architecture for the Java EE services backbone.

Figure 3. Java EE environment proposition

In figure 3, services are at the same level as

applications and benefit from the same capabilities. Both
the application layer and the services layer rely on a
Service-Oriented Platform that will manage the binding
between containers and services. An important point in
the architecture is that we do not want to reduce the
application layer's capabilities but only increase the
service layer's.

3.3. Requirements

The Service Platform we propose has to meet a
number of requirements to respond to the needs of the
Java EE domain:
• Language: it must accept the Java language for services

implementation. The application server we target is
Java based.

• Service announcement: we want to ensure that the
application we are deploying will run properly, without
any missing service dependencies. The environment
must offer a way of announcing the arrival or departure
of services.

• Service registry: the service registry is centralized, for
performance purposes. Binding a set of distributed
services to construct a single server instance may be
costly and not reliable due to network overhead. Even
in cluster cases, the whole server is currently replicated
on each node instead of some parts distributed over
different nodes.

• Management: it must be manageable. As we introduce
new capabilities, we want the administrator to be able to
pilot service deployment, deal with security or deal with
service life cycle easily.

• Persistency: it must provide a persistency mechanism
for service configurations. A deployed service may be
stopped. But it can always be asked to restart,
recovering the state it has before stopping. This
property is also interesting when replicating services on
different nodes of a cluster, keeping the sessions alive.

4. Our Java EE Server Architecture

By introducing a Service-Oriented Platform into Java
EE servers, we would like to benefit from their dynamic
and flexible capabilities. But different service
environments exist, each one of them with particular
advantages and drawbacks. A first step of our work is to
compare them and to choose the most appropriate one;
that would be the one that meets the requirements listed
above. We can then propose our new Java EE
architecture.

4.1. Existing Service Platforms

There are many different service platforms and
environments that are differentiated by particular
properties. The most important ones are the way the
provided services are accessible (invocation), either
locally or remotely, the way a service departure is
announced and the kind of directory they use for
registering services. The most well known and used
service environment relates to Web Services [5]. JINI [6]
initiated by Sun is now losing speed in the face of UPnP
(http://upnp.org). A summary of most important
platforms' characteristics are summarized in the figure 4.

Figure 4. Services platform/environment

Among those the closest from the requirements we

have listed above is the OSGi platform. The OSGi
Alliance (http://www.orgi.org) is an independent, non-
profit corporation working to define and promote open
specifications originally intended for the delivery of
managed services to networked environments, such as
homes, cars or servers. These specifications include the

definition of the OSGi Service Platform, which consists
of two pieces: the OSGi framework and a set of standard
service definitions. The OSGi framework is a Java-based
deployment and execution environment for components.

The OSGi framework supports uninterrupted
deployment of components within deployment units
called bundles. The framework also provides a service
registry that allows the components delivered through the
bundles to interact following a service-oriented approach.
The continuous deployment activities supported by the
framework include bundle installation, activation,
deactivation, update and un-installation of bundles. The
framework ensures that deployment dependencies at the
bundle level are satisfied before allowing the bundle to be
activated. Bundle activation results in the creation of the
component instance deployed inside the bundle.

Component instances can publish or discover services
provided by other component instances at run time. In
OSGi, a service is published from a service interface, a
reference toward the component implementing the service
and a set of properties. Those properties, defined as keys
and values, allow clients to differentiate among two
equivalent service offerings (i.e., two services with the
same interface). Moreover, the registry allows constraint
searches to be made using LDAP filters based on the
properties. Because service publication or departure can
occur at anytime, the service registry supports a
notification mechanism that allows service clients to be
aware of a particular service arrival or departure. In OSGi,
application assembly is done at execution time as a result
of the interaction between components and the service
registry.

The OSGi service platform permits Java service
implementations and provides event notification for
announcing service state changes. It has a centralized
service registry. It is easily manageable as it already
specifies security policies and piloting services is possible
locally or remotely. But unfortunately, nothing exists in
the platform specification concerning service state
persistence. Additionally, this service environment is very
interesting because of its small memory footprint, since it
was designed for embedded platforms. This property
ensures we are not going to impose significant overhead
on the server. And the last key point of this architecture is
the packaging and deployment capabilities it provides.
This can considerably simplify the administrator's task
since this work is supported by the framework.

4.2. Proposed Architecture

Our proposed architecture based on the OSGi service
platform can be divided into three key points: the
packaging, the deployment and the services' binding.
These three points are discussed in this section.

The packaging is an important point of our architecture
because as we want to dynamically deploy the services we
must provide a way to modularize them. When deployed,
a module must not interfere with already deployed

modules. And it must be possible to uninstall them. The
bundles provided and standardized by OSGi offer these
properties. Concretely they are Java archive (JAR) files
with additional meta-data included. Standardizing
packaging in Java holds center stage and is being
addressed by JSR 277 concerning Java Modules Systems,
but for now it is an emerging work.

Our modularized services have to be deployed on the
framework when needed. This task is also delegated to the
OSGi platform. It permits installation of local or remote
bundles by managing a cache. It can also manage module
updates and their code dependencies. It manages the stop
and restart of concerned services if needed when different
versions of classes are loaded.

Figure 5: Services' ADL

Java EE services are expressed by the dependencies

they have with other services [7]. For instance the HTTP
service (Servlet + JSP engine) may require a security
service if deployed application require some security. The
services are defined by contracts and some properties that
allow selection among the whole set of services by
trading with the registry. Each module containing services
embeds a descriptor that specifies the services it offers
and the ones it requires. This description follows the
OSGi's Declarative Service Specification. An example of
description is given in figure 5.

This descriptor allows the framework to manage the
binding between the services and the services' life cycles.
If a required service is not present then a service will not
start. As soon as the dependencies are resolved the service
starts. The framework also manages stopping and
rebinding services in case a service is updated or
unavailable.

We do not explicitly express the dependencies we have
between the containers and the services. Indeed,
depending on the application, the container may require
all of them.

This new Java EE architecture consists of a set of
bundles (figure 6) for the technical services and one for
the core of the server (this bundle will mainly manage
application deployment). It is still possible with this
architecture to deploy applications at runtime, but now the
services also have the same capabilities.

Figure 6: Java EE Architecture

5. Experimentation and Feedback

We implemented our approach, using one of the open
source offerings, JOnAS, in which we integrated the
OSGi service platform. Moreover, this work has been
realized in collaboration with the JOnAS project leaders,
Bull SAS. This prototype is called JOnAS On Demand
(JOD) [8]. As previously stated, this implementation does
not specifically offer any dynamic properties to its service
layer. Any capability we introduce is obtained through the
use of OSGi [9].

Integrating the OSGi platform inside the server means
that the services (Java EE services) have to become OSGi
services. The service interface we have chosen was the
one already used inside JOnAS for accessing the services
(figure 7). It permits in this first step not to be intrusive on
the existing implementation.

The rest of the server core has also to be delivered
inside a bundle. Packaging the services and the core
inside bundles was the first steps of our work. As OSGi
employs explicit package dependencies between the
bundles, we also provide the right meta-data inside each
bundle. When deployed and activated, according to the
descriptor we present above, the bundles register the
services in the OSGi registry and bind to the required
services.

Once done, we are able to offer dynamic service
deployment, installation and activation. We are also able
to stop and uninstall them. With OSGi class loading
properties, all the classes are destroyed when un-
deploying a bundle and all the resources are freed. OSGi
also proposes a mechanism for updating services. It stops
the services depending on the one we are updating. It then
performs the re-binding when the new service is available.
So OSGi meets all the requirements we had except the
persistency of the services' state. As we have all the
deployment capabilities for packaging and providing,
having service replication will help stopping and
restarting service. This missing point will be the subject

of future work. OSGi keeps one's promise but also brings
additional new interesting features for Java EE.

Figure 7: Re-factoring Java EE Service

Concerning applications, we do not want to break the

dynamic deployment capabilities offered by the JSR 88.
What we do for that point is automating the generation of
OSGi bundles meta-data when an application is deployed.
In this way, applications can also benefit from the explicit
OSGi class path definition. It can import some classes
provided by services or the core bundle. This capability
solves a major class loading problem of JOnAS. In its
current version it implements a hierarchical class loader
tree. In this context, a class loader looking for a class first
asks its parent for the class. Applications, as ending leafs,
had to use the server library version and were not able to
embed a more recent one. This issue is tackled by OSGi
because we can ignore the import of server packages
when generating the bundles metadata.

Another enhancement is OSGi's capability of
managing different versions of the same class loaded at
the same time in the JVM. This attribute permits the
server to provide different service versions. For instance
we are able to deploy both an application that requires
Servlet in version 2.3 and another one requiring Servlet in
version 2.4. This was not possible in the previous
architecture.

Since the OSGi gateway downloads remote bundles,
manages a cache and intends to host services provided
from different hosts, security is a major issue in this
context. For this problem we completely rely on the OSGi
platform security properties. To prevent malicious code
from executing, we can only authorize the execution of
services that are contained in signed bundles. Moreover,
we can specify security properties to prevent a service
from accessing another that it is not authorised to call.

Another convenient feature of the SOA in OSGi is that
the platform manages event notification when services
arrive or leave. We benefit from this by studying the
contract interfaces of the registering services. We assume
that the ones ending with MBean indicate a service that is
manageable with JMX. We take advantage of this to
automate the MBean Object registration in the active
JMX server.

Finally, due to the fact that OSGi is a widely used
standard, we can benefit from existing services, those
specified in the specification or others available in open
source. Their integration is simplified and can again

separate some concerns from the core implementation.
For instance the log service used in JOnAS is a library
provided by Apache. We can replace this dependency by
the use of the standardized OSGi Log service. This
service could be implemented thanks to the Apache
implementation or by another. This will not impact the
server implementation.

6. Use Case

We experimented with our re-architectured Java EE
server in a real industrial case, to tackle an issue occurring
in Bull SAS. We addressed the Edge Computing domain
[10]. It is a new computing paradigm designed to share
computing and storage resources over the Internet
between several organizations. The resources are
allocated on-demand when load peaks and flash crowds
occur on the company’s IT infrastructure. Resources are
scattered over the Internet Service Providers/Content
Delivery Network backbones and are generally high
density of low-cost blade servers. Those servers are
preferably close to the end users to improve response time
to the end user and to alleviate the ISP/CDN backbone
(figure 8). The benefits of this paradigm for a company
are on-demand performance scalability and quality of
service (QoS) such as response time, jig for isochronous
data (audios, videos, gamer actions …) since resources
are preferably close to the end users.

Figure 8: Edge Computing Architecture

The available power can be used for

service/application execution. Moreover, in addition to
the resource distribution, we can take advantage of the
proximity of the server to the clients to host services to
decrease response time.

In this particular and very dynamic environment, the
usable Edge resources are not owned by the application
provider. It is important to use them as little as possible
(because this has a cost), only to guarantee the quality of
service. Deployment and retreat (service un-installation
and eventual state repatriation) of component services are
key points of the environment. Thanks to the properties
we provide with our dynamic service-oriented server we
are able to deploy when needed the Java EE applications

and the required non-functional services on Edge servers.
Moreover we can retract then when the peak load has
ended. Due to the management complexity of the
environment, we rely on an autonomic manager for
decision making but this is the subject of other work [11]
[12].

This dynamic deployment and activation of services
can also be adapted to fit a cluster environment. In that
case, cluster nodes appear or disappear dynamically (for
instance during a peak load). We can then benefit from
deploying, adapting and configuring each service on each
node during runtime. We do not tackle this problem yet
since we must have state replication capabilities in our
deployed services. This is a necessary condition for being
capable to treat similar requests on different nodes. As
this problem is also a limitation for component service
retreat (see section 5), this is a perspective of our work.

7. Related Work

We have already described the way dynamism is
tackled inside open source implementations. This section
describes another approach that has been chosen to make
Java EE servers, and more precisely JOnAS, more
adaptable.

In this work [13] the idea is to homogenize the
component approach, not only for application, but to the
whole server. The component model used, Fractal
(fractal.objectweb.org), is manageable and adaptable. But
contrarily to our approach, this implementation is
adaptable meaning that it is possible, at runtime, to
change the binding between the components. But it is not
dynamic as only the already deployed components can be
re-bound. We consider that the server must be capable of
incremental construction. This property is very
interesting in dynamic environments, like clusters or edge
computing. We also believe that the component approach
is for now mainly suitable in cases of single operated
applications. As we explained, the Java EE server is the
assembly of different very complex components provided
by different projects. Integrating those different bricks
corresponds better to a service than a component
approach. Indeed, trading a service instead of namely
binding it offers better flexibility.

8. Conclusion and Perspectives

This paper has presented the introduction of a service-
oriented architecture into a Java EE application server. It
illustrates the benefits it brings to the server by the way it
is made more dynamic and flexible. We have studied the
different service platforms in this work and chosen the
most suitable one for our implementation.

The implementation we have done to validate the
approach offers many improvements to the current
JOnAS implementation. This is the reason why this
architecture will be introduced in the next version (5th) of
the JOnAS application server (announced at the

ObjectWeb Conference [14]). We believe that the service-
oriented architecture will become an absolute must in the
next generation Java EE servers and may be the basis of
JBI.

Perspectives for this work are twofold. The first one
concerns service replication. The second one is the full
integration of the service-oriented architecture into the
application layer.

As we saw, replicating the services and being able to
make their state persistent can become the next feature
that will differentiate Java EE servers. Some
implementations already propose it. In clusters or in edge
environments, where nodes can be added dynamically, the
capability to replicate services to offer load balancing is
crucial.

Concerning applications, we saw that we treat them by
adding the meta-data they are missing at deployment.
This allows us to modify the Java EE packaging. But if
we consider that Java EE is just a service-oriented
environment that provides some specified services, why
not think of forgetting the containers in which the
components reside? A Java EE application is only a
component providing a service and requiring some others.
This vision will be the basis of our future work. To that
end, we should also go deeply into the definition of
architecture when talking about services.

9. References

[1] R. Allen and R. Douence and D. Garlan, "Specifying
Dynamism in Software Architectures", Proceedings of
Foundations of Component-Based Systems Workshop, 1997

[2] M. Fleury and F. Reverbel, "The JBoss Extensible Server",
ACM/IFIP/USENIX International Middleware Conference,
Middleware, 2003

[3] M. Fleury, "Professional Open Source and the Future of
JBoss", 30th Internatinal CMG conference, Las Vegas,
December 2004

[4] J. Genender, B. Snyder and S. Li, "Professional Apache
Geronimo", Wiley book, ISBN0-471-78543-1

[5] K.P. Eckert, "The Fundamentals of Web Services", The
Industrial Information Technology Handbook, 2005

[6] K. Arnold, "The Jini Architecture: Dynamic Services in a
Flexible Network", DAC, 1999

[7] H. Cervantes and R.S. Hall, "Automating Service
Dependency Management in a service Oriented Component
Model", ICSE CBSE Workshop, Portland, May 2003

[8] M. Desertot and D. Donsez, “Infusion of OSGi Technology
into a J2EE Application Server”, OSGi World Congress,
Presentation, Paris, October 2005

[9] R.S. Hall and H. Cervantes, "An OSGi implementation and

experience report", IEEE Consumer Communication &
Networking Conference, CCNC, Las Vegas, January 2004

[10] A. Weihl,, P. Jay and E. William, “Edge computing:
Extending Enterprise Applications to the Edge of the Internet”
In Proc. of the 13th International World Wide Web Conference,
May 2004

[11] M. Desertot, C. Escoffier and D. Donsez, “Autonomic
Management of J2EE Edge Servers”, 3rd International
Workshop on Middleware for Grid Computing, MGC’05,
Grenoble, November 2005

[12] M. Desertot, C. Escoffier, P. Lalanda and D. Donsez,
"Autonomic Management of Edge Servers", In proceedings of
the International Workshop on Self-Organizing Systems, New
Trends in Network Architectures and Services, IWSOS'06, 18-20
September 2006, Passau, Germany

[13] T. Abdellatif, "Enhancing the Management of J2EE
Application Server Using A Component Based Architecture",
31th IEEE/Euromicro Conference, CBSE, Porto, Septembre
2005

[14] M. Desertot and T. Abdellatif, "JonAS 5, The ObjectWeb's
Next Generation Application server", 5th Annual ObjectWeb
Conference, Presentation, Paris, February 2006

