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Abstract— A climbing robot mechanism is introduced, which
uses dynamic movements to climb between two parallel vertical
walls. This robot relies on its own internal dynamic motions
to gain height, unlike previous mechanisms which are quasi-
static. One benefit of dynamics is that it allows climbing
with only a single actuated degree of freedom. We show
with analysis, simulations and experiments that this dynamic
robot is capable of climbing vertically between parallel walls.
We introduce simplifications that enable us to obtain closed
form approximations of the robot motion. Furthermore, this
provides us with some design considerations and insights into
the mechanism’s ability to climb.

I. INTRODUCTION

In recent years, several minimalist approaches to loco-

motion have been proposed. Some examples are hopping

robots [1], [2] and passive dynamic walkers [3] designed with

minimal number of active and passive joints. Reducing the

number of actuators can simplify design, minimize weight

and size of the mechanism, and reduce costs and risk of

failure. Despite these advantages, few minimal mechanisms

have been implemented for climbing robots. We propose

a dynamic climbing mechanism which interacts with the

environment (by shape and friction) to propel itself upwards

against gravity using only one actuator with a simple open-

loop control input. We focus on a two parallel wall environ-

ment which is similar to a channel or a crack in a wall (Fig.

1).

Using dynamic motions has two advantages in climbing.

The first advantage is the ability to overcome obstacles

which are impossible to pass in a quasi-static motion. One

example is a human climber that cannot reach its next

foothold. Leaping further using dynamic movements can

help overcome this constraint. The second advantage of

dynamic motions is in minimizing the number of actuators

in a mechanism. We take advantage of this quality and

use dynamic motions and implement a minimalist climbing

mechanism. This mechanism consists of only two links. In

order to climb it swings one of the links, which gives the

whole system enough inertia change to climb upwards. The

purpose of our analysis is to inspire future design of dynamic

climbing mechanisms rather than as a purely applicable

mechanism.
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Fig. 1. Rendering of the robot dynamically climbing in a brick wall.

II. RELATED WORK

A. Climbing Robots

We review previous climbing robots in four groups ac-

cording to the method they use to attach themselves to

the environment: adhesive, spines, brute force fixture and

“grasping”. The adhesive group comprises of robots that

use special mechanism such as electromagnetic fixtures on

ferrous surfaces [4], suction [5], or other types of adhesives

[6]. The spine group comprises of robots that use spines,

and sometimes, micro-spines to attach themselves to surfaces

[7]–[9]. The brute force fixtures include robots that use a

special mechanism to grasp onto an engineered structure,

such as a truss or pipe [10]. The last group of mechanisms,

including our robot, uses its own kinematic and sometimes

dynamic state to “grasp” itself into the environment. A

typical example is a snake robot wedging itself inside a crack

[11], or a multiple limb robot which uses frictional footholds

to locomote [12], [13].

B. Dynamic Systems

Very few climbing systems have made use of dynamic

motions. One recent example is [14], in which the authors

designed and built a bio-inspired, two degree of freedom

(DoF) vertical “running” robot assisted by springs. In ma-

nipulation and locomotion, however, dynamical systems are

more often being used. In manipulation, Mason and Lynch

[15] designed and controlled a minimalist single DoF mech-

anism to manipulate objects. In locomotion, Berkemeier and

Fearing [2] and others introduced the Acrobot, based on

Fredkin’s hinge robot, which is a serial two-link robot, where

the single actuated DoF is the second joint. The authors were

able to control this mechanism and to make it hop and slide.
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The mechanism we introduce in this paper is similar to the

Acrobot in its simplicity, but also uses the constraints of the

two parallel walls to propel itself vertically with a simple

open-loop control.

III. ROBOT MODEL AND MODELING

ASSUMPTIONS

In simulations and experiments this system exhibits stable

periodic climbing motions. The goal of our analysis is to

produce a model which exhibits behavior similar to that

of the experiments and simulations. We intend to use this

model to explore variant designs which can optimize the

climbing characteristics of this mechanism with respect to the

environment. The proposed mechanism is planar and consists

of two links; the first is the main body which contacts the

walls and the second is a pendulum which is connected to

the main body through an actuated revolute joint (Fig. 2).

Fig. 2. Model of Robot.

Fig. 3 presents a dynamic simulation of two versions of the

mechanism: both with the same size of the main body, but

different pendulum length. The pendulum swings back and

forth causing the main body to rotate. While doing so, the

main body hits the walls and uses the dynamic movement of

the pendulum to push itself upwards. When the pendulum is

short as in Fig. 3a the climbing behaves in “purely dynamic”

fashion, where the robot contacts the wall only with the two

top corners of the main body. When the pendulum is longer

(Fig. 3b) the robot’s main body rotates after contact with the

wall, and exhibits a “two point” contact phase. The focus of

this paper will be on the former, simpler and more interesting

“purely dynamic” movement. However, a similar analysis

can be done on the other type of motion.

A few assumptions and design considerations will be made

throughout the analysis of this mechanism based on the

hypotheses described below. These enable us to obtain some

closed form approximations of the mechanism’s motion, and

insights into the mechanism’s design and ability to climb.

First, the main body is comprised of a massless block (with

width W and length L) and a point mass motor (mb) at

the hinge (we ignore reflected inertia and gear reduction).

A pendulum, comprising a massless rod with a point mass

(mp) connected to it, is attached to the motor. The length of

Fig. 3. Two typical motions of the dynamic climbing robot (the main body
is traced over time) (a) Purely dynamic (single support) and (b) Double
support.

the pendulum (lp) is designed such that the pendulum mass

will pass near the contact corners of the main body. θ is

the angle of the main body relative to the vertical axis, and

φ is the angle of the pendulum relative to the body (Fig.

2). The pendulum’s trajectory is φ(t) = A sin(ωt), where A
and ω are the pendulum’s amplitude and angular frequency,

respectively. We allow the pendulum mass to travel beyond

the walls (technically, the pendulum can be out of the plane

of the main body and the walls). The friction between the

main body and the walls is very high, hence no slippage

occurs.

IV. ANALYSIS

The dynamic equations of the mechanism can be described

as:

M(q)q̈ + N(q, q̇) =

⎡
⎢⎢⎣

0
0
0
τ

⎤
⎥⎥⎦ − JT (q)Fext, (1)

where q = (x, y, θ, φ) ∈ R
2×S

1×S
1 denote the generalized

coordinates, M(q) ∈ R
4×4 is the symmetric inertia matrix,

N(q, q̇) ∈ R
4 is the gravity effect, Coriolis and centrifugal

forces, τ is the applied torque between the two links and

Fext is the contact force with the wall. Let J(q) = ∂P (q)
∂q ∈

R
2×4 be the Jacobian matrix, where P (q) = [Px Py]T is

the point of contact with the walls. In the contactless case

Fext = 0.

To analyze the behavior of this robot in “purely dynamic”

mode we will split the motion into three phases: impact,

stance and flight phase (see Fig. 4). By using the final state

of one phase as the initial values of the next phase we can

analyze and simulate the climbing motion.

A. Impact Phase

A few model assumptions can be made to analyze the

impact phase (as was done in [2], [19]). The impact model is
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Fig. 4. Three phases: (a) impact (b) stance (c) flight.

assumed to be instantaneous and inelastic, where no slipping

or rebound occurs during the impact. The external forces

during the impact can be represented by impulses, which

may result in an instantaneous change in the velocities

but not in the configuration. In reality, actuators cannot

generate impulsive torques and therefore can be ignored

during the instantaneous time of impact. However, in our

analysis we assume a known trajectory (φ(t) = A sin(ωt)),
therefore, we cannot neglect impulsive torques from the

motors. Simulations and experiments in Section V support

these hypotheses and assumptions.

The equations of impact can now be derived from (1) by

integrating over the instantaneous time of impact, resulting

in the simplified form

M(q)Δq̇ = [0 0 0 Iτ ]T − JT (q)IFext, (2)

where IFext are the impulsive forces, Iτ is the impulsive

torque, and Δq̇ is the change of velocities over the time of

impact. From (2), the velocity change during impact (Δq̇)

can be extracted by knowing Iτ and IFext.

Since finding Iτ and IFext is not trivial, we further

simplify the analysis of this phase. As can be seen in the

simulations and experiments section, in the case of our

mechanism, the velocities after impact (including the angular

velocities) almost completely vanish. This special occurrence

is due to the body being hit inelastically in the center of

percussion [17] and is not the general case of inelastic col-

lision. When the impulsive force inelastically hits upon the

center of percussion, rotations and translations of the body

will completely stop. Therefore, in order to constrain the

impact point to be on the center of percussion, a relationship

between the geometry of the mechanism (lp, L, W , A) and

the mass distribution (mb, mp) can be found. Observing that

the instantaneous center of rotation during the flight phase

(prior to impact) is close to the bottom corner closest to the

wall helps to evaluate the center of percussion.

B. Stance Phase

The stance phase is the segment where the main body is in

contact with the wall, while the pendulum is swinging. One

way to model this phase is by using the Lagrange multiplier

method [18]. This method expresses the two contact forces

(normal force Fx and tangential force Fy) as two variables

as in (1). In order to solve for the four configuration space

variables and these two contact forces, two new constraints

are imposed. These constraints come from the assumption

that no sliding occurs and therefore no work is done by the

contact constraint forces, i.e.

J(q)q̇ = 0. (3)

Numerically solving this set of six differential equations will

allow us to locate the configuration where the normal contact

force (Fx) changes sign. This configuration is the change

from stance to flight phase, and therefore the final state of

the stance phase will be the initial state of the flight phase.

In order to find the state space of the system when

transitioning to the flight phase we reduce the complexity

of the six differential equations by using two observations.

First, the main body hardly moves during stance phase. This

is mainly due to the fact that we designed the mass of the

pendulum to pass near the contact point (Fig. 4b) and that

θ and φ during stance phase are small. This is similar to a

two link serial manipulator with two identical links and two

point masses at the end of each link. Solving the linearized

system around θ = 0 and φ = 0 will result in negligible

angle change of the first link. Because the velocity of the

main body is negligible, the velocity of the center of mass

(CoM) of the system depends only on the movement of the

pendulum.

The second observation relates to the transition between

the stance and the flight phases (as shown in Fig. 4b).

Because the main body is nearly still during the stance phase

and the pendulum’s trajectory is a sine function, the transition

point between these two phases occurs when φ = 0. This is

the configuration where the pendulum changes acceleration

sign. From these two observations we can assume that the

velocity of the CoM of the system just before transitioning to

flight phase is vCoM = mpvp

mp+mb
(where vp is the pendulum’s

velocity). This velocity will be used as the initial velocity of

the flight phase.

We next find the equation of the velocity of the mechanism

transitioning between phases. Because the trajectory of the

pendulum is φ(t) = A sin(ωt), the angular velocity is

φ̇(t) = Aω cos(ωt), the velocity of the pendulum mass is

φ̇ × rp/H (where rp/H is the vector from the hinge to the

pendulum mass). Therefore vp = Aω cos(wt)k̂×(lp sin(θ)̂i+
lp cos(θ)ĵ), where lp is the length of the pendulum. By

noticing that for the first half of the pendulum’s cycle (0 <
t < π

w ) the main body will be hitting the left wall and for

the second half of the cycle ( π
w < t < 2π

w ) the main body

will be hitting the right wall, we arrive at the equation that

represents the velocity of the pendulum mass, and hence the

velocity of the CoM of the whole system:[
vxCoM

vyCoM

]
=

[
− ( mp

mb+mp
)Alpω cos(πk) cos(θtrans)

( mp

mb+mp
)Alpω cos(πk) sin(θtrans)

]
, (4)

where θtrans is the angle of the main body in the transition

between stance phase and flight phase from the left wall

(k = 1), or from the right wall (k = 2).

C. Flight Phase

We now know the initial velocities of the CoM in flight

phase and can turn to analyzing the motion of the mechanism
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while “leaping” between the two walls. By considering the

CoM of the system as the origin of the inertial frame during

the flight phase, this phase can be decoupled into a simple

projectile (parabolic) motion of the CoM and an internal

shape change of the mechanism. Given the initial velocities

of the CoM (obtained in (4)) the trajectory of the CoM will

draw a parabola in each “leap” between the two walls:

xCoM = x0CoM + vxCoM t (5)

yCoM = y0CoM + vyCoM t − 1
2
gt2, (6)

where x0CoM and y0CoM are the initial locations of the

CoM.

In order to know when the main body will hit the oppo-

site wall, we need to identify the relationship between the

orientations of the two links (θ and φ). Given that in free

flight the angular momentum is conserved, we can derive the

relationship [2], [20]:

K1(φ)θ̇ + K2(φ)φ̇ = H, (7)

where H is the angular momentum, and K1 and K2 are

functions of φ. When the robot is released for the first time

from rest in flight phase, angular momentum (H) is zero.

For this special case there is a closed form solution to (7)

(we refer the reader to the appendix of [20] for a solution

to this case). In all other occurrences of the flight phase,

the angular momentum is not zero because the main body is

motionless at liftoff while the pendulum is moving. In this

general case (H �= 0) (7) is a nonholonomic constraint. Thus,

this equation cannot be integrated to the form of f(q) = 0.

However, because we know that the explicit trajectory of the

pendulum is φ(t) = A sin(ωt), (7) becomes integrable and

hence θ(t) can be computed.

The observed motion of the mechanism in steady state

is symmetric relative to the walls, and the transition angle

(θtrans) will be constant for all stance phases. Therefore,

the approximate horizontal distance of the CoM from the

wall during transition is rCoMx/wall � W
2 cos(θtrans)

. This

approximation is accurate when the pendulum mass is larger

than the motor mass and when θtrans is small. We can now

calculate the trajectory of the mechanism in flight phase. By

substituting |vx| from (4) and the horizontal distance that the

CoM can pass between the walls into (5), we arrive at the

equation that provides the time (T ) it takes for the CoM to

reach the opposite wall.

T =

(
d − W

2 cos(θtrans)

( mp

mb+mp
)Alpω cos(θtrans)

)
, (8)

where d is the distance between the two walls and W is

the width of the main body. The nominator d − W
2 cos(θtrans)

is approximately the horizontal distance that the CoM can

pass between the walls. Inserting (8) and |vy| from (4) into

(6) gives the equation for the incremental “leap” in the y
direction between the two walls:

Δy = tan(θtrans)
(

d − W

2 cos(θtrans)

)
− 1

2
gT 2. (9)

It is difficult to precisely calculate θtrans. One approach,

which we do not implement here, is to find this angle by

analyzing the converging limit cycle and interpreting this

angle from it.

By assuming that the body rotates approximately around

the bottom corner of the main body (closer to the wall),

and that the hinge joint will be roughly at half the distance

between the two walls because the mechanism motion is

symmetric relative to the walls, we can arrive at an equation

which allows us to approximate θtrans. To do so, we approxi-

mate that the hinge is located at the bottom edge of the main

body.

L sin(θtrans) +
W

2
cos(θtrans) =

d

2
, (10)

where L is the length of the mechanism. Solving for θtrans

will give the approximate angle at which the robot hits the

walls. The simulations and experiments provide support that

this assumption is realistic and that this approximation is

reasonable.

V. SIMULATIONS AND EXPERIMENTS

A. Simulations

In order to verify our analysis, and our assumptions, we

have simulated the climber using the Working Model 2D

dynamic simulator (Design Simulation Technologies, Inc).

These simulations use the Kutta-Merson numerical integra-

tion method with variable integration step size to simulate

the motion. We will present a few representative results of

the simulations with a typical robot with these parameters:

W = 0.04 m, L = 0.065 m, lp = 0.0585 m, mb =
0.1 kg, mp = 0.2 kg, A = 0.5 rad, ω = 70 rad/sec, d =
0.08 m, g = 9.807 m/sec2.

Fig. 5 depicts a phase plot of one full cycle of the

mechanism’s motion. Fig. 5a is the phase plot of the main

body, and Fig. 5b is the phase plot of the pendulum. Distance

between two tick marks represents 10 msec.

A closeup of the main body’s phase plot depicting the

three phases is shown in Fig. 6. Supporting our previous

assumptions, it can be seen that during the impact phase the

angular velocities almost vanish instantaneously and during

the stance phase there is barely any movement of the main

body. The flight phase depicts a “leap” to the opposite wall.

As can be seen, the landing angle on one wall is identical to

the angle on the other (with opposite signs).

A comparison of the CoM’s trajectory during one “leap”

taken from the Working Model 2D simulation to the “leap”

from (4), (5), (6), (8) is shown in Fig. 7. In order to verify

the incremental vertical “leap” (9), we insert into it the

parameters of the robot resulting in Δy = 0.01 m, which

is close to the simulation results (Δy = 0.012 m). Note that

θtrans = 0.33 rad was calculated using (10).

B. Experiments

We built a prototype of the dynamic climbing mechanism,

as shown in Fig. 8. The main body is built out of very

low mass balsa wood. A Hitec HSR-5995TG high torque

motor is connected to the wood and drives the pendulum.
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Fig. 5. Phase plots of (a) main body, (b) pendulum.

Fig. 6. Phase plot closeup of the main body in simulation (the three phases
are marked).

A large variable mass is connected to the pendulum. In

order to decrease the out-of-plane motions during impact,

the mass of the pendulum is designed to be as close as

possible to the impact plane. In order to control the amount

of gravitational acceleration, we placed the mechanism on an

inclined frictionless air-table. The air-table also helps keep

the mechanism planar. To increase the contact surface area

of the main body with the air-table, we attached a 15 cm

plastic disc to the main body.

The purely dynamic motion was tested successfully on

a relatively low inclined air-table (0.1 rad and 0.6 rad).

Fig. 7. Trajectory of the CoM during two leaps.

These lower gravitational fields helped lower motor speeds.

Fig. 9 shows a few frames of the experiment held on a

0.1 rad incline with these parameters: W = 0.03 m, L =
0.065 m, lp = 0.12 m, mb = 0.07 kg, mp = 0.1 kg, A =
0.3 rad, ω = 25 rad/sec, g = 9.807 m/sec2, d = 0.06 m.
Perturbations of the mechanism stabilized in less than two

cycles.

In this experiment the mechanism progressed approxi-

mately 0.005 m per leap. For comparison, we inserted the

parameters of the experiments into (9) and approximated the

leap in the vertical direction to be 0.007 m. Considering that

friction and other disturbances were not taken into account

these are very satisfying results.

After completing the initial experiment we conducted a

successful experiment with a high incline (≈ 80◦). This was

done with the two phase motion because this type of motion

requires slower motor speed. Fig. 8 shows a snapshot of the

climber in the experimental setup. It was important to keep

the incline angle less than 90◦ in order to ensure contact with

the frictionless air-table, and to avoid out-of-plane motions

and contact of the plastic disc with the walls.

Fig. 8. Experimental setup: The air-table is on an 80◦ incline.

VI. FUTURE WORK AND CONCLUSION

We have introduced a new dynamic mechanism that uses

a single DoF to climb between two vertical walls. Some

assumptions were used in order to simplify the equations

of motion and hence make them tractable. A few of these

assumptions, such as allowing the pendulum to cross over

the walls, can be avoided by decreasing the amplitude and

increasing the angular frequency. This was not implemented

due to the limitations of our current motors.

Through a detailed analysis we have identified a few

design and motor parameters, together with environment

parameters, which determine the incremental vertical leap.

Experiments and simulations have verified the analysis and

showed that this mechanism is able to climb in a dynamic

fashion with a single actuated DoF.

In future work we intend to improve the design to elim-

inate the use of the air-table. In order to do so, we must

overcome the challenge of keeping the robot planar. One

possible solution would be to place the climber inside a tube

which is axisymmetric, therefore small rotations around the
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Fig. 9. Frames from experiment: 0.1 rad, mb = 70 gr, mp = 100 gr, ≈30 frames per second. The first row depicts one full cycle of the mechanism’s
climbing motion, while the second row depicts the configuration of the mechanism at the end of nine consecutive cycles.

main axis will not change the contact of the robot with the

environment. Another future direction might be to change

the way the mechanism impacts the walls. A more elastic

impact can improve power efficiency and can be analyzed

with a compliance contact model. Furthermore, although the

assumption we made of a stable mechanism was verified in

simulations and experiments, a proof of stability criteria of

the mechanism is warranted.
Lastly, in this paper we assumed an open-loop input which

enabled the robot to climb between two parallel walls. We

intend to extend this work by implementing a control law

which will enable the mechanism to plan and execute its own

motion in a non-uniform environment, e.g. pegs in random

locations or piecewise linear walls.
Climbing has many facets, such as mechanism design,

gait control, motion planning and dynamic motions. We

believe that dynamic climbing can be very advantageous,

for example by minimizing the number of actuators and

overcoming obstacles. To the best of our knowledge, this

mechanism is the first climbing mechanism to use a single

actuator to climb dynamically.
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