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SUMMARY

This study describes a mathematical model constructed as a
computational aid for planners seeking to establish least-cost
order and supply policies within a complex and dynamic structure.
It is intended only as a useful tool for research in inventory
theory; there are no policy implications.

Most past work in inventory theory has sought to derive least-
cost ordering and stocking policies for a relatively simple situa-
tion: a given facility stocking a single given item. Unlimited
resupply has usually been assumed, subjecty, of course, to ordering
costs and delays. Recent work has incorporated demand uncertainty
expressed in probability distributions with parameters as functions
of time to allow for a changing future. These are dynamic, single-
item, single-echelon inventory models which, while useful, have
limited utility in complex real-world supply systems -- that of the
Air Force, for example. Past attempts to derive an integrated
package of decisions for such systems have faltered not for lack
of a conceptual approach, but rather because of the numerous dimen-
sions involved.

This study uses a typical Air Force supply system as its frame
of reference, in which many bases stock a particular item, a depot
replenishes base stocks, and a factory and a repair facility re-

supply the depot with new and with repaired items. The main
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decisions to be made at any given time are how much to ship to
each base, how much to repair, and how much to procure from the
factory. The dynamic element in the problem is accentuated by
bases phasing into and out of operation at different times, and
experiencing changing failure patterns while in operation, This
is, then, a dynamic, single-item, multi-echelon inventory model;
that is, a model which integrates stockage policies for indivi-

dual activities so as to minimize inventory costs for the logis-~

tics system as a whole.
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A DYNAMIC, SINGLE-ITEM, MULTI-ECHELON

INVENTORY MODEL

1. INTRODUCTION

Most work in inventory theory has been directed towards the
derivation of least=-cost ordering and stocking policies for a
given facility that stocks a given item. It is usually assumed
that unlimited resupply to the facility is available, subject,
of course, to ordering costs and delays. Recent work has incor-
porated demand uncertainty expressed in probability distributions,
with parameters as functions of time to allow for a changing

1 Models of this kind may be called dynamic, single-item,

2

future.
single-echelon inventory models.
Real-world supply systems are often more complex, of course,
since many contain several supply echelons and regenerate failed
parts through repair. 1In the Air Force, for example, there may

be many operational bases which stock a particular item, and a

IThe recent book by K.J. Arrow, S. Karlin, and H. Scarf,
Studies in the Mathematical Theory of Inventory and Production,
Stanford University Press, 1958, represents a useful collection
of work in this field.

2The word ''echelon' is used rather than "level" to avoid con-
fusion with stock levels, and rather than ''stage' -- although the
word has been used in this context -- because the term "multi-
stage problems' has recently been used to designate problems in
which time is divided into discrete decision-intervals or stages.
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depot which replenishes base stocks in accordance wi th base
ordering policies. The depot, in turn, is resupplied either from
a factory or from a repair facility that repairs those failed items

it eéonomically can and scraps the rest. This structure is illus-

trated in Fig. 1.
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Fig. 1 -- Air Force Supply System
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While Fig. 1 is representative of the supply structure for
many items in the Air Force inventory, the structure for other
items may be much more complex. For example, some failed items
may be repaired at the base itself and turned back into the ser—‘
viceable stock, There also may be several depots, each support-
ing a complex of bases; more than one depot-level repair facility;
and even more than one faétory producing the item. Furthermore,

there may be a wide variety of bases or "customers'" with different
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It is evident that supply decisions in such complex systems
should be closely interrelated. Within the structure of Fig. 1,
the main decisions at any given time are how much to ship to each
base, how much to repair, and how much to procure from the fac-
tory. The dynamic element in the problem is accentuated by the
various bases phasing into and out of operation at different times,
and experiencing changing failure patterns while in operation. In
this environment, a particular decision, such as whether or not to
resupply a given base, should not be made in a vacuum ignoring
the other elements of the system. Instead, the decision should
take a large number of relevant factors into account, such as res-
pective transportation and repair delays, asset postures, cost
factors, failure forecasts, etc.

The abandonment of many past attempts to derive such an integrated
package of decisions for complex systems has been more often due
to the numerous dimensions involved, rather than to the lack of a
conceptual approach. The purpose of this paper, however, is to
show that with certain restrictive assumptions, a practical solu-
tion to this problem is possible.

For expository purposes, the model described in this paper
will be confined to the particular supply structure portrayed in

Fig. 1, although it is not a conceptual requirement to do so. A

fully dynamic system will be considered with a number of bases
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involved, each phasing in and out of operation at different times,
and each with different random failure patterns changing over time
while operational. Since the model is confined to a single item
of supply, it is described as a dynamic, single-item, multi-echelon
model.

Although the model uses concepts of the dynamic programming

technique, no claim is made for rigour, proofs of any kind, opti-
mality, or even conformity of symbolism., The only claim made is

that it incorporates most of the relevant factors, is computable,

and seems to make sense for the few cases so far considered.
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11. THE SINGLE-ECHELON PROBLEM

Before considering the multi-echelon problem, it is conven-
ient to consider the case of a single echelon and to express the
dynamic programming procedure in vector notation.

If a finite future is divided into n equal decision intervals,
then certain costs may be defined for the jth interval. Assuming
holding cost as a linear homogeneous function of the stock balance,

a holding cost vector, Hj’ is defined as follows:

HJ: hj,x = hjx (x>0)
= O: (XSO)’
where hj x 1s the xth element of the vector Hj’ x is the balance
s

at the start of the period, and hj is the per-unit holding cost.

For simplicity, the holding cost is assessed as if the stock

balance at the start of the period remains on hand throughout the

period,

Assuming depletion cost as a linear homogeneous function of

the number of unsatisfied demands, a depletion cost vector, D,,
J

is defined as follows:

D.: d. =
37 9,x = 0 (x20)

= djlxl (x<0),

where dj,x is the xth element of the vector Dj, dj is the per-

unit depletion cost, and x is the balance at the end of the per-
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iod, with negative balances representing stockouts during the
period. Since the stockout cost is taken as a linear function of
the number of stockouts, an equal duration of each stockout is im-
plied which, in turn, implies replacing stockouts by expedite-
orders at the time they occur; shortage costs associated with the
constant time~delay for the expedited order are reflected in the
per-unit cost, dj' In this case, a negative stock balance has no
reality, and is merely a convenient device for reflecting the num-
ber of temporary stockouts during the period.

1f demands occur during the jth period according to the pro-

bability distribution, gj(x), then a matrix Pj is defined as fol-

lows:
(1) Pyt Pi,x,y = 85(x - ¥)  (x2y)
= 0’ (X<Y)
where p. is the matrix element in column x and
J’x’y
TOoW V.

Let the vector Cj represent, for all possible stock balances,
the total expected costs from the start of period j through period
n after applying an ordering policy, £, at the start of period j.
The dynamic programming recursion formula is then as follows, as-

suming no delay in receiving amounts ordered:

(2) Cj = f(Hj + Pij + o0 ch_']+1) = f(Tj),
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where o is a discount factor.

In multiplying by the matrix Pj, row x of the matrix corres-
ponds to the balance on hand at the end of the period and hence
to the x-th element of vectors Dj and Cj+1; column y corresponds
to possible demands during the period.

If items may be ordered at a per-unit cost of vj (where or-
dering costs are assumed to be a linear function of the amount
ordered), and there is no fixed ordering cost, then the least-cost

ordering policy, £, is given as follows:

(3) f(tj,x) =ty x (x 2_Sj)_
where t; = x-th element of vector, T:, and
JX J

Sj = max X: tj,x - tj,x-l 2 V3

Thus, if there are fewer than Sj on hand at the start of period j,
enough are ordered to bring the balance to Sj°

The procedure implied by equations (2) and (3) may be illus-
trated by plotting the cost vectors Tj and f(Tj) as functions of x,
the amount on hand at the start of the period. These functions
are shown in Fig. 2 as continuous functions for jllustrative pur-

poses; they are actually confined to integral values of x.
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Fig. 2 -- Expected Costs as Functions of Stock
Balance -- Without Fixed Order Cost

The function Tj is dominated by the depletion costs for low values

of x and by holding costs for higher values of x. The level Sj is
the value of x for which the slope of the Tj function is equal to
the ordering cost, Vj‘ The functions Tj and f(Tj) are the same for
X 2 Sj’ since Sj is the amount on hand after ordering.For x < Sj’
f(Tj)‘is merely a straight line with a slope of vj, assuming linear
ordering costs. Note that the shaded area in the diagram repre-
sents savings derived by ordering, or extra costs if resupply can-
not be obtained., These costs will have implications later in the
discussion.

If there is a fixed ordering cost, Uy, then the optimal policy

f, is given as follows:
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) E(ey D) =5, (x>
= tjssj + Vj(sj - X) + Uj, (X < SJ)
where S, is as previously defined, and
. = S | - (t. . (8. -
55 mix i T ( 3% + v ( j x) [ > uj

In this case, if the balance is at or below Sj’ the reorder point,
enough is ordered to raise the balance to S..
This case may also be illustrated by plotting Tj and f(Tj) as

functions of x.

Fig. 3 -- Expected Costs as Functions of Stock
Balance -- With Fixed Order Cost

As shown in Fig. 3, the level Sj again is the value of x for which
the slope of the Tj function is equal to vj. The ordering-cost

line, AB, with slope of vj, is raised an amount uj, the fixed order-
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cost, above t,. ; its intercept with t; yields s, the reorder
3,5 J»X ]
point. The functions f£(t. _) and t; are the same for x » s.,
RIPRS 3% J

since no orders are placed for balances above the reorder point.
If there is a one-period delay in receiving an order after it

is initiated, then equation (1) becomes:

. = H, . D. AP. C.
(5) CJ HJ + PJ DJ + £ PJ CJ+1),

where the function f is as previously defined.
The recursion process implied by equation (1) or (2) may be

accomplished by setting C = 0 under the assumption that the de-

n+1l

mand for the item ceases after period n. Repeated application of

the equation then yields the stock levels Sj and 83 for j = 0 to n.
The above assumptions of linearity in the holding, depletion,
and ordering costs are not necessary restrictions for a least-cost
solution. Linearity is assumed for expository purposes and also
because one is usually degraded to this level when trying to get
the costs in an existing supply system. Some of the effects of

non-linearity can be readily ascertained from the diagrams in

Figs. 2 and 3:.l

lSee Arrow, Karlin, and Scarf, op. cit., for a complete dis-
cussion of this subject.
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III, THE MULTI-ECHELON PROBLEM

The multi-echelon problem will be considered as an intercon-
nected set of single-echelon problems. This, however, involves a
rather peculiar definition of "echelon'" and certain assumptions

developed below. Before grappling with the main issue, then, let

" !

us take a side excursion into the peculiar definition of 'echelon,'
once more focusing our attention on the Air Force supply organiza-
tion shown in Fig. 1.

Let us again divide the future into n equal decision-inter-
vals. All routine decisions will be made at the start of these
time intervals, and thus all supply lags must be expressed as inte-

gral numbers of such intervals. Thus, we define the following:

Tl = number of intervals in the repair cycle (time between
ordering an item into repair and receiving it at the
depot) .

T2 = number of intervals in the production lead-time (time
between initiating an order on the factory and receiv-
ing the goods at the depot).
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In these definitions we impose the restriction that
1 STTI‘( T,. The production lead-time may be viewed as consisting

of T, discrete stages of production, with items being "ordered"
from one stage to the next. Similarly, the repair cycle may be
considered as T1 stages of repair.

Now let us divide all the stock in the system into the follow-

ing sets:
B = serviceable stock on hand at bases;
S = serviceable stock on hand at the depot;

Qa = reparable stock that has a stage of repair to be ac-
complished before becoming serviceable. (1l § a < Tl);

Rb = in-production stock that has b stages of production
yet to be accomplished. (1§t><T2)

It is assumed that this split-up of the stock has occurred at
the start of the decision interval, after all deliveries from pre-
vious orders have been received but before any new ordering deci-
sions have been made. Thus, there is no "in-between' stock; e.g.,
stock in transit to bases or stock half-way through a production
stage.

Echelon k is defined as containing Ek stock as follows:
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E-1 =B
€ =B +5
° 5o §
€ =B+ S + Q. + R (1€£k <T,)
k a=t 2 pop P 1
T k
=B+5+ 2 Q+ X R (T;<k<Ty)
a=1 b=1

Thus, echelon -1 consists of all serviceable stock at bases;
echelon 0 contains all serviceable stock in the system; echelon

1 contains all serviceable stock plus stock that has only the last
stage of production or repair yet to be accomplished; and so forth.
In general, stock in echelon k is augmented by stock from echelon
k + 1. Echelon Tl-l has an unlimited source of supply, since, at
a price, any amount may be ordered into the first stage of produc-
tion. Note that there is no echelon Tl, since items ordered into
the first stage of production are delivered into echelon Tl-l when

the stock split-up defining the echelons is made.

Now let us consider, in a general way, costs associated with
stock in these various echelons. The routine per-unit ordering
cost for echelon k is merely the cost of obtaining an item from
echelon k + 1. For echelon -1 (base stock) this is the cost of

obtaining an item from the depot or from another base, including

1Actually, set notation should be used in these definitions,
since we are dealing with sets of stock rather than numerical quan-
tities. We use this notation, however, since no set algebra is
contemplated.
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transportation and other processing costs. The cost of obtaining
an item from another base will be assumed the same as that of ob-
taining it from the depot; for items repaired at the depot, however,
there is usually no necessity for transshipments between bases ex-
cept possibly to cover stockouts. For echelon 0 (system service-
able stock), augmentation is achieved by moving items through the
last stage of production or repair; the associated per-unit order-
ing cost is then the cost of doing so. Similarly, the ordering
cost for echelon 1 is the cost of accomplishing the next-to-last
stage of production or repair. 1In general, the per-unit ordering
cost for echelon k (k > 0) is the cost of completing stage T2-k
of the production process (k < T2) or stage Ty-k of the repair
process (k < Tl). These costs may be obtained as the marginal

values of cumulative production or repair cost functions, as il-

lustrated in Fig. 4.

Cumulative Cunmulative

Production Repair '

Cost per Cost per !
Unit Unit !

e w0 o o -

o 1 2 3 ...T, -1 T 01 2 3 ...1.-1 T

2 2 1 1

Fig. 4 -- Cumulative Production and Repair Costs as Func-
tions of Processing Times
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Costs for the initial'periodS‘of'the lead time are usually
those of paperwork and the acquisition of raw material and com-
ponents. The main fabrication costs typically occur in the middle
periods. Costs at the end periods may be largely those of inspec-
tion, packaging, and transportation. (The transportation time from
the factory to the depot is included in the total lead time.) The
cumulative per-unit cost at T1 represents the delivered price of
the item.

For reasons to be mentioned later, the model must assume the
ordering costs from repair to be the same as those from production,
for a given echelon. For example, the model assumes that echelon 0
(serviceable stock) may order items through the last stage of re-
pair at the same cost as through the last stage of production,
Under this assumption it makes no difference, from a cost point
of view, which resupply source is used.

The model also cannot accept fixed ordering costs for any

echelon but the highest, T,-1. For this echelon, the fixed order-

2
ing cost includes costs of processing the contract and costs of
tooling up for production.

Holding costs are charged to stock in each echelon only to
the extent the items have increased in value by being moved from

the next higher echelon. They are, then, the extra costs of hold-

ing stock in a particular echelon rather than in the one above it.

This definition of holding cost stems from the assumption that any
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given echelon includes all stock in lowef echelons; if holding
costs for each echelon were assessed to the full value of the
stock, they would then be overstated to the extent of the stock's
being included in more than one echelon. If, in general, holding
costs per unit are stated as a percentage of the unit's value, then
the holding cost assigned to each echelon is a percentage of the
ordering cost, since this represents the marginal worth of the item
at that stage. The percentage charged against this marginal value
'may vary among echelons because elements of the holding cost, such
as costs of engineering obsolescence, depend on what state of com-
pletion the item has attained. Other elements, such as interest
on the investment, may remain the same for all echelons.

Depletion costs are charged to a particular echelon when de-
mands occur in the system after the echelon's stock has been ex-
hausted. These demands actually represent stockouts at bases,
since by definition each echelon includes all stock positioned at
bases, I1f, for example, a stockout occurs for echelon 0, a base
demand has occurred after all serviceable stock in the system has
been exhausted. The stockout cost for each echelon is determined
on the basis of expediting from the next higher echelon, under the
assumption that stock is there. It iﬁcludes the direct costs of
the expedite action plus the cost of inconvenience to the base for
a further delay. From an over-all point of view, a base stockout

will accumulate these individual echelon stockout costs up to the
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echelon that has assets to satisfy the demand, _According to how
high upstream one has to go, expedite production or repair costs
increase, and more and more delays are encountered in satisfying
the demand.

In addition to this natural depletion cost, each echelon other
than echelon -1 (base stock) incurs a cost penalty for failure to
raise the next lower echelon to its proper level. 1f, for example,
the economical level for echelon k at period j is Sj,k’ then costs
are assessed against echelon k + 1 1if it has less than S.’k assets.
1f there are more than Sj,k items in echelon k + 1, then echelon k
can be raised to its proper level by ordéring, regardless of how
many items are in echelon k when the decision is made. In this
case no penalty is incurred by echelon k + 1. In general, the de-
pletion cost assigned to echelon k + 1 is the difference between
costs incurred by echelon k if it can obtain resupply and 1if it
cannot,

Let us now turn our attention to echelon =1, the aggregate of

base stocks. If we have m bases, the following inputs are assumed:

Hj y = holding cost vector for period j and base i
’ (lgjgn, 15 igm

Dj,i = depletion cost vector for period j and base i
Vy,i = per unit ordering cost for period j and lmse 1

3j,i(*) = failure probability distribution for period j and
base 1
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,oi = pipeline time (depot to base) for base i.

As previously mentioned, holding costs for bases include only
the extra costs involved in holding stock at the bases rather than
the depot, and depletion costs are estimated assuming availability
at the depot in the event of a base stockout.

The phase-in and phase-out of bases are reflected in the as-
signment of probability distributions, where gj’i(O) = 1 for periods
when base i is not in operation. Obtaining the distributions 85,1
based on failure estimates, actual failure data, program data, and
other factors, is quite a problem in itself; this, however, is con-
sidered as outside the scope of this discussion., Given these dis-
tributions, matrices Pj,i as defined in (1) may be constructed.

The pipeline time,P;, must be either 0 or 1 period for base i.
This is an unavoidable consequence of the technique and results
from the requirement for a standard decision-interval for all bases,
in order to tie in with the higher-echelon decision-intervals.

With the above inputs, levels Sj,i may be obtained by using m
equations of the type (2) or (5), depending on the value of f&.
These levels essentially represent the maximum economical amount
to be on hand or due in after ordering, assuming availability of
serviceable stock from elsewhere in the system. If all or part of

a base's order cannot be satisfied, then the base will incur more

costs than assumed by the ordering policy. These extra costs,
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Bj i,for base i at period j are as follows:
3

(6) Bj,i = Tj,i - f(Tj,i)’ if equation (1) is used;

=¢;<Pj,i Cj+l,i - f@in’i Cj+l,i) if equation (2) is used.

These costs, Bj’i,represent the difference between base costs
incurred if full delivery cannot be made and costs resulting if the
balance can be raised to Sj,i' They therefore reflect what it costs
the base to be below its level, or conversely, how much would be
saved if an additional unit could be added to the base stock. They
are used to obtain depletion costs chargeable to echelon 0 (system
serviceable stock) for having insufficient stock to satisfy all

base orders.

m

If there are 6 ; = 2 S. s or more serviceable items in the
J i=1 Jy1 —

system at period j, then no penalty should be charged to echelon 0
since all bases can be raised to their levels by redistribution.

If there are fewer than 67 serviceables, then one base or more must

i
be below its level after redistribution. For example, if the system
is one unit short of achieving the levels at all bases, then the
base that suffers the shortage should be the base for which least
additional cost would result; this base is identified as having the

least non-zero element in the set of elements comprising the Bj i
b

vectors. If the system is two units short, then the base to suffer
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the second shortage is the one with the second smallest non-zero

element in the set of Bj i elements.
>

The above argument may be generalized by constructing the

vector Aj 1 as follows:

b

H
(@

) A1 F -1 (x 2 03)

gj:'lsx = bj’i:y # O’

Such that "Sj,-l,x+12 Sj,-l,x (x<6:i))

where is the x-th element of the vector A, and b,

Sj’-l,x J’ 1 J!i’y

is the y-th element of vector B . (The index -1 indicates that

j,i
these costs are obtained from echelon -1.) The elements of the

vector Aﬁ then increase in value as the amount of serviceable
3

-1
stock, x, decreases. For stock positions below 53, these values
constitute a depletion cost chargeable to echelon O.

Let us now assume the following factors, applicable to the

higher echelons (0 < k < T2) as being given:

Hj,k = holding-cost vector for period j and echelon k

Dj x = natural depletion-cost vector for period j and
’ echelon k

Vik < per-unit ordering cost for period j and echelon k
’

u, = fixed production-setup cost for period j (applied
J to echelon T2-1 only)

Gj,k(x) = demand probability distribution for echelon k.
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If, for the higher echelons, the holding cost is a linear
function of the stock balance and the additional value attained
by ordering into the echelon, the holding cost vector Hj 1 may

be defined as follows:

H. : h

5k P =0 (k<0

=W Vg X (x>0)

where h, is the x-th element of vector H, ., x is the stock
K, X i,k
balance, and w, is the per-unit holding cost expressed as a frac-

tion of the added per-unit worth, vj K
]

The probability distribution Gj,k(x)’ for period j and echelon
k, represents losses to the echelon during the period. For 0< k < Ty,
losses include all failures at all basés during the period. For
T;< k< T2, losses include only items condemned as not econo-
mically reparable . For convenience, these distributions may be

obtained from the base distribution as follows: if gj i(x), with
2

mean = g represents demands at base i during period j, then

jsis m
. < i T. - ..
the mean of GJ’k(x) for 0 £ k < T, is given as igl 83,1 .

the system condemnation rate for period j is given by Cj’ then the

=M It

mean of Gj,k(x) for T £ k < Ty, is given by chj. The type of
distribution assigned to the higher echelons, being in theory a
convolution of the base distributions, depends upon the type of

distributions used at bases. If Poisson demands are used for bases,
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then Poisson demands may be assumed for the higher echelons. For
other kinds of base distributions, one usually is rather arbitrary
in assigning distributions to the higher echelons, since actually
computing the convolution is impractical,

With these inputs, and treating each echelon as a single-

echelon problem, the dynamic programming recursion formula becomes:

(8) Cik = By ko + Ay k-1 * Py i Dy, + £0@P5 x Cyp1 1)

where 0 £ k < Ty, f is defined as in the single-echelon problem,

and Aﬁ,k is given as follows:
Aﬁ -1 is defined by equation (7).

The solution of (8) yields levels Sj,k for each period and echelon,
and reorder points 83 for echelon Tz-l.

The levels obtained from equation (8), together with the base
levels, provide a basis for all supply, repair, and production de-
cisions at a designated period j, for which the system asset pos-
ture is known. Each echelon is raised to its indicated level, to
the extent of stock availability, by ordering from the next higher
echelon. The level for the higher echelon is frequently less than
that for the lower echelon. This means that the lower echelon can-

not be raised to its level since it is uneconomical for the higher
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echelon to provide the stock.

If more than one base needs resupply and there are not enough
assets to raise all bases to their indicated levels, then the avail-
able stock may be rationed in accordance with the marginal savings
afforded the bases by receiving additional units. By using the
cost vectors from equation (7), the first unit of available stock
should go to the base for which highest savings are obtained; the
second unit to the base for which the next highest savings result;
(which may be the same base that receives the first unit) and so
forth, to the extent of stock availability. 1In principle, since
the model assumes that shipments from base to base cost the same
as from depot to base, base stock should be redistributed in each
period so that each base ends up with about the same level of pro-
tection. In practice, however, unless the item is almost always
repaired at base level, sufficient items become available each
period from depot-level repair or production so that base protec-
tion can be equalized through the ndrmal echelon flow, without
inter-base shipments.

If any of the input factors change significantly, levels
should be recomputed to reflect the new data. Normally the system
may be allowed to adjust to the new levels through attrition. For

drastic changes, decisions outside the model may be indicated.
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IV, THE RESTRICTIONS

The multi-echelon problem is conceptually a multi-dimensional
dynamic programming problem. Such problems, however, are computa-
tionally unfeasible for more than two or three dimensions even with
electronic computers. To avoid this difficulty, the problem was
converted to a set of interconnected one-dimensional problems by
using artifices and imposing certain restrictive assumptions. The
main artifice employed was the definition of echelon. With a little
experimentation, one can be readily convinced that any other defini-
tion leads to multi-dimensional problems. One of the restrictive
assumptions was that a fixed ordering cost cannot be permitted for
bases without increasing the dimensions of the dynamic programming
problems involved. With a fixed ordering cost, reorder points
would result, and the cost vector assigned to echelon 0 for fail-
ure to meet base orders would depend on the particular stock
distribution at the decision time. This may be illustrated by a
two-base system: Base 1 with levels sy, S;, and Base 2 with
levels 595 SZ‘ Consider the case in which there are B service-
able items in the system, with s; + s < B < §; + §,. I1f Base 1
has an amount B; > s; on hand and Base 2 has an amount By > s9,
where B1 + B, = B, then no penalty should be charged to echelon O,
since no resupply would be indicated. On the other hand, if
By & s; and B, > s,, still with B; + By = B, then a penalty should

be applied to echelon O since the indicated resupply for Base 1
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could not be made. Therefore, the penalty depends on the values
of B1 and B2

there is no fixed ordering cost, then only the levels Sl and S2

and hence, the ordering policy for echelon 0. If

obtaiﬁ, and a single, unambiguous pendlty for O may be assigned to
a balance of B.

The inability to accept a fixed base order cost more or less
confines the model to items with a reasonably high value or a low
usage rate where one can assert a priori that it pays to order one
at a time. 1In this case, any fixed order cost can be incorporated
in the per-unit order cost without incurring too much error in the
ordering policy. For essentially the same reasons mentioned above,
fixed ordering costs cannot be accepted for any echelon other than
the highest. The highest echelon may have this cost because it
has an unlimited source of supply. The inability to accept the
fixed ordering costs for the other higher echelons is of minor im-
portance, however, since if they exist at all they are probably
small compared to the variable ordering costs. Also, the division
of the repair cycle and production lead times into discrete stages
was artificial; in reality, once a batch of items is scheduled into
repair or production, it flows through to completion without halt-
ing between processes to allow a different-size batch to accumulate
before continuing. This procedure, in effect, implies that a fixed

order cost does not normally exist for these echelons. Oreexception

however, is scheduling those items for repair which can be done most
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economically in accumulated batches. Current Air Force policies
require that higher-valued items, which are characterized by low
usage rates, be repaired as generated -- usually one at a time on
a job-shop basis. This policy again implies that the fixed order
cost is relatively small or that it can be subsumed in the vari-
able ordering costs.

Another restrictive assumption is assuming ordering costs
from repair to be the same as from production. If different or-
dering costs were allowed, ordering decisions would hinge on the
independent repair and production asset positions -- a two-dimen-
sional problem. If the same ordering costs are assumed, no dis-
tinction is made between assets in repair and in production; they
may then be lumped together to form a one-dimensional problem.
The implications of this assumption are not fully known; however,
the few cases so far studied seem to indicate that the results of
the model may be relatively insensitive to the shape of the produc-
tion-cost function (see Fig. 4). If this is true, then the costs
of ordering from production may be taken the same as costs of or-
dering from repair, without incurring too much error. Also, for
items that are almost always reparable, such as higher-valued
items, results indicate that for a phase-in, phase-out type pro-
gram, production dominates as a source of supply during phase-in,
with repair taking over during the peak program and the phase-out.

This dichotomy has relatively little overlap and permits the
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assignment of actual production costs during phase-in periods
with a switch to actual repair costs thereafter,

In general, the assumptions of the model are such that no
great errors result for higher-valued items. Also, the rather
extensive input requirements, along with the cost of computation,

tend to prohibit applying the model to inexpensive items.
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V. AN EXAMPLE

A small example will illustrate some of the ways in which the
model performs. This example consists of a system with four bases,
each with a one-period base-depot pipeline time; a depot; a depot-
level repair facility with a two-period repair cycle; and a fac-
tory with a five-period production lead time. Although the bases
begin and end operations at different times, they are alike in every
respect. While in operation, the mean failure rate per period is
taken the same for all periods. All cost functions are linear.

The base phase-in, phase-out pattern is shown in Fig. 4. The cost

and other factors are included in Table 1.

Period
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Fig. 4 -- Illustrative Base Phase-in Phase-out Pattern
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Table 1

ILLUSTRATIVE COST AND OTHER FACTORS

1. Base-depot pipeline time: 1 period
2. Repair cycle: 2 periods

3. Procurement lead time: 5 periods

4. Base failures per period: Poisson, mean = 1.6
5. Condemnation rate: 50%
6. Interest rate: 0% (discount factor, £, = 1)

7. Base order cost per unit: $50

8. Base stockout cost per unit: $2000

9. Ordering cost per unit for echelons 0-4: $50

10. Holding cost per unit per period for echelons 0-4: §2
11. Stockout cost per unit for echelon 0: $1000

12, Stockout cost per unit for echelons 1-4: $100

13. Fixed procurement cost for echelon 4: $3000

By accumulating the ordering costs shown in Table 1, it is seen
that the unit price of the item, delivefed to the depot, is $250.
The total repair cost is $100 per unit.

With these inputs, the model provides the levels shown in

Table 2,
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Table 2
LEVELS COMPUTED FROM EXAMPLE INPUTS
Reorder
Base Echelon Point
Period 1 2 3 4 0 1 2 3 4 (Echelon 4)
-5 8
-4 6 9 2
-3 6 9 27 12
-2 6 9 16 27 12
-1 7 9 17 21 28 11
0 9 10 17 22 28 39 30
1 11 18 22 29 34 39 31
2 11 9 21 29 34 37 38 30
3 410 11 29 34 37 36 37 30
4 9 11 9 31 39 36 35 35 28
5 8 10 11 36 37 34 33 32 25
6 7 9 11 9 32 35 31 29 28 22
7 8 10 11 30 30 27 25 24 17
8 7 9 11 23 25 22 21 16 9
9 8 10 20 20 18 14 10 1
10 7 9 14 16 11 6 6
11 8 12 10 4 4 4
12 7 6 3 1 1 1
13

Blank entries in Table 2 indicate zero-levels.

Note that since

period 1 is defined as the first period during which failures can

occur,

levels must be obtained in advance.

This is accomplished

from the recursion formula by using probability distribution, with

the probability of zero demands equal to 1.

To obtain an idea of the effect of these levels in scheduling
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production, repair, and base distribution, random failures were

drawn from a Poisson distribution with mean of 1.6. These fail-

ures are listed in Table 3.

Table 3

RANDOM FAILURES

Base
2 3 4

foud

Period

= WwOol—- W W

WISyl w N =
i ol

NiWw - NI—= O w

HNJP‘P‘C)NJPJNJ

With these failures, the operation of the system was simulated,
with all decisions made according to the levels listed in Table 2.
The resulting distribution of stock, as a function of time, is shown
in Fig. 5.

Fig. 5 shows the initial buildup of production to provide
initial stocks at bases. The influence of the high production-
setup cost produced a life-of-type buy before the first base became

operational. Repair commenced when the first reparables generated
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and rapidly took over from production as a source of serviceable
items. Shortly after the peak of the program, more reparables
generated than were needed, so that a backlog of items needing re-
pair developed. At the end of the program, most of the stock resi-
due was in the form of reparable items. The leftover stock, con-
sisting of 13 units, or 1/3 of the total buy, resulted largely
from buys made to afford protection against stockouts at the pro-
gram peak. This protection was so large that not all the ifems
could be attrited through condemnation before the end of the pro-
gram, Needless to say, the depletion costs which caused this pro-
tection were sufficiently high that no stockouts occurred with the
particular failure pattern of Table 3, despite the fact that there

were 51 failures and 26 condemnations, against an expectation of

44,8 failures and 22.4 condemnations.
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VI, THE MODEL AS PROGRAMMED FOR A COMPUTER

A version of this model has been programmed for the IBM 704
at The RAND Corporation. The programmed model is patterned after
the organizational structure of Fig. 1 and permits a maximum of 30
bases, 78 decision intervals, 18 periods in the production lead
time, and 6 periods in the repair cycle. Although the phase-in
and phase-out dates may be specified for each base separately, the
30 bases are divided into a maximum of 5 groups, with all bases in
a group having identical inputs (failure patterns, cost factors,
pipeline times, etc.). This provides at most 5 single-echelon
problems for the 30 bases, with levels computed for each group
and then time-phased in accordance with the individual base phase-
in schedule. A maximum of 10 is allowed for the mean failure rate
for a base-period.

All probability distributions are internally computed with
a choice of Poisson, Negative Binomial, or Normal designated by
inputs. The type of distribution, along with the ratio of variance
to mean in the case of the negative binomial or normal, may be
designated differently for the different base groups, but are as-
sumed the same for all time periods. The means for each base
group may be different for the different time intervals. Means

for higher echelons are internally accumulated from base means,
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but the type of distribution and ratio of variance to mean, if
applicable, may be separately designated.

All cost factors are assumed linear and remain the same for
all time periods, except for the production-setup cost which may
be different from a designated period on. This allows for higher
setup costs when the end article goes out of production. The
cost factors may vary from one echelon to another. Altogether,
the programmed model consists of a maximum of 23 interconnected
one-dimensional dynamic programming problems.

The length of time required for computation is strongly de-

pendent upon the failure rates, being roughly a function of the

square of the maximum rate. This fact suggested the use of scal-
ing factors for higher echelons, where for example, two units

wefe viewed as being one unit with all cost and failuré factors
correspondingly adjusted. This scaling produces levels that differ
by about 5 per cent from levels obtained without scaling. For a
scale of two, however, the time required for computation is less
than half as much as when no scaling is used. With scaling, a
typical problem requires 10 to 15 minutes for computation. A pro-
blem involving the full capacity of the model, with maximum allowed

failure rates, would take over an hour to compute.
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VII. EXTENSIONS OF THE MODEL

Several additional features may be readily inserted in the
model. Repair at bases may be easily accounted for if the base
repair cycle is assumed the same as the base-depot pipeline time.
In this case, probability distributions used in calculating base
levels represent gross failures, whereas distributions used for

echelons 0 £ k € T, represent net returns to the repair depot.

1
Distributions for echelons Tlus k <T

the system through condemnation.

2 again represent losses to

Another useful feature of the model is its adaptability to
repair cycles and production lead times of different lengths, for
designated time periods in the future. In this way, for example,
a shorter repair cycle and/or production lead time may be assigned
while the weapon is phasing in or still in production, while
longer times may be assigned when the weapon goes out of produc-
tion. Variations under this feature may be readily inserted,
within limits.,

Another feature under investigation is the inclusion of dis-
posal policies. At some times it may pay to dispose of surplus
items rather than incur holding costs. It is believed that cer-
tain kinds of disposal policies may be considered without incur-
ring major changes in the model.

A difficult problem encountered in practice is caused by en-
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gineering changes whiph repléce an existing item with one or more
new items. Following such changes, several alternative supply de-
cisions are possible; for example, the o0ld item may be used until
exhauéted, or its use may be restricted in various ways. For some
cases, the model may be applied to assets of the new item with as-
sets of the old item included. For other cases, sets of the multi-
echelon problem, interconnected via the depletion-cost functions,
may result. It is believed that the technique may be adapted to
these kinds of item relationships.

N ?Coﬁceptually, the technique may be extended to the general
multi-item, multi-echelon problem., This problem, however, is at
present computationally unfeasible because of the incurrence of

multi-variable and/or conditional probability distributions.

It is believed that the basic technique of this model, as

expressed in equation (8) may find application in other problems.
One such problem may be in production scheduling, with an end

item which may be an assembly of several dozen major components.,
The sales of the end item and losses of components during fabrica-
tion due to spoilage may be subject to unzertainty. The problem
here is to determine, as a function of time, how many of each com-
ponent to schedule for production. It is not known whether or not
limitations on resources, such as tools and manpower, can be satis-

factorily included in such a model.



