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Abstract

A graph labeling is an assignment of integers to the vertices or edges, or both, subject to
certain conditions. Graph labelings were first introduced in the late 1960s. In the intervening
years dozens of graph labelings techniques have been studied in over 1000 papers. Finding out
what has been done for any particular kind of labeling and keeping up with new discoveries
is difficult because of the sheer number of papers and because many of the papers have
appeared in journals that are not widely available. In this survey I have collected everything
I could find on graph labeling. For the convenience of the reader the survey includes a
detailed table of contents and index.
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1 Introduction

Most graph labeling methods trace their origin to one introduced by Rosa [973] in 1967, or one
given by Graham and Sloane [484] in 1980. Rosa [973] called a function f a [-valuation of a
graph G with ¢ edges if f is an injection from the vertices of G to the set {0,1,..., ¢} such that,
when each edge zy is assigned the label |f(x) — f(y)|, the resulting edge labels are distinct.
Golomb [475] subsequently called such labelings graceful and this is now the popular term. Rosa
introduced [-valuations as well as a number of other labelings as tools for decomposing the
complete graph into isomorphic subgraphs. In particular, S-valuations originated as a means of
attacking the conjecture of Ringel [962] that Ks,,1 can be decomposed into 2n + 1 subgraphs
that are all isomorphic to a given tree with n edges. Although an unpublished result of Erdds
says that most graphs are not graceful (cf. [484]), most graphs that have some sort of regularity
of structure are graceful. Sheppard [1059] has shown that there are exactly ¢! gracefully labeled
graphs with ¢ edges. Rosa [973] has identified essentially three reasons why a graph fails to be
graceful: (1) G has “too many vertices” and “not enough edges,” (2) G “has too many edges,”
and (3) G “has the wrong parity.” An infinite class of graphs that are not graceful for the second
reason is given in [229]. As an example of the third condition Rosa [973] has shown that if every
vertex has even degree and the number of edges is congruent to 1 or 2 (mod 4) then the graph
is not graceful. In particular, the cycles Cy,41 and Cyy42 are not graceful.

Acharya [12] proved that every graph can be embedded as an induced subgraph of a graceful
graph and a connected graph can be embedded as an induced subgraph of a graceful connected
graph. Acharya, Rao, and Arumugam [30] proved: every triangle-free graph can be embedded
as an induced subgraph of a triangle-free graceful graph; every planar graph can be embedded as
an induced subgraph of a planar graceful graph; and every tree can be embedded as an induced
subgraph of a graceful tree. These results demonstrate that there is no forbidden subgraph
characterization of these particular kinds of graceful graphs.

Harmonious graphs naturally arose in the study by Graham and Sloane [484] of modular
versions of additive bases problems stemming from error-correcting codes. They defined a graph
G with g edges to be harmonious if there is an injection f from the vertices of G to the group
of integers modulo ¢ such that when each edge zy is assigned the label f(x) + f(y) (mod ¢),
the resulting edge labels are distinct. When G is a tree, exactly one label may be used on
two vertices. Analogous to the “parity” necessity condition for graceful graphs, Graham and
Sloane proved that if a harmonious graph has an even number of edges ¢ and the degree of every
vertex is divisible by 2 then ¢ is divisible by 2¥*1. Thus, for example, a book with seven pages
(i.e., the cartesian product of the complete bipartite graph K 7 and a path of length 1) is not
harmonious. Liu and Zhang [812] have generalized this condition as follows: if a harmonious
graph with ¢ edges has degree sequence dy,ds, ..., d, then ged(dy, da, . .. dp, q) divides g(¢—1)/2.
They have also proved that every graph is a subgraph of a harmonious graph. More generally,
Sethuraman and Elumalai [1029] have shown that any given set of graphs G, Ga, ..., G, can be
embedded in a graceful or harmonious graph. Determining whether a graph has a harmonious
labeling was shown to be NP-complete by Auparajita, Dulawat, and Rathore in 2001 (see [683]).

In the early 1980s Bloom and Hsu [238], [239],[223] extended graceful labelings to directed
graphs by defining a graceful labeling on a directed graph D(V, E) as a one-to-one map 6 from
V to {0,1,2,...,|F|} such that 6(y) — 6(x) mod (|E| + 1) is distinct for every edge zy in E.
Graceful labelings of directed graphs also arose in the characterization of finite neofields by Hsu
and Keedwell [560], [561]. Graceful labelings of directed graphs was the subject of Marr’s 2007
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Ph.D. dissertation [843]. In [843] and [844] Marr presents results of graceful labelings of directed
paths, stars, wheels, and umbrellas.

Over the past four decades in excess of 1200 papers have spawned a bewildering array of
graph labeling methods. Despite the unabated procession of papers, there are few general results
on graph labelings. Indeed, the papers focus on particular classes of graphs and methods, and
feature ad hoc arguments. In part because many of the papers have appeared in journals not
widely available, frequently the same classes of graphs have been done by several authors and in
some cases the same terminology is used for different concepts. In this article, we survey what is
known about numerous graph labeling methods. The author requests that he be sent preprints
and reprints as well as corrections for inclusion in the updated versions of the survey.

Earlier surveys, restricted to one or two labeling methods, include [217], [234], [655], [442],
and [444]. The book edited by Acharya, Arumugam, and Rosa [17] includes a variety of labeling
methods that we do not discuss in this survey. The relationship between graceful digraphs and a
variety of algebraic structures including cyclic difference sets, sequenceable groups, generalized
complete mappings, near-complete mappings, and neofields is discussed in [238] and [239]. The
connection between graceful labelings and perfect systems of difference sets is given in [220)].
Bloom and Hsu [240] extended the notion of graceful labeling to directed graphs. (See also [283]).
Labeled graphs serve as useful models for a broad range of applications such as: coding theory, x-
ray crystallography, radar, astronomy, circuit design, communication network addressing, data
base management, secret sharing schemes,and models for constraint programming over finite
domains—see [235], [236], [1159], [942], [1113], [1112], [1102] and [858] for details. Terms and
notation not defined below follow that used in [304] and [442].
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2 Graceful and Harmonious Labelings

2.1 Trees

The Ringel-Kotzig conjecture that all trees are graceful has been the focus of many papers.
Kotzig [564] has called the effort to prove it a “disease.” Among the trees known to be graceful
are: caterpillars [973] (a caterpillar is a tree with the property that the removal of its endpoints
leaves a path); trees with at most 4 end-vertices [564], [1323] and [611]; trees with diameter
at most 5 [1323] and [557]; symmetrical trees (i.e., a rooted tree in which every level contains
vertices of the same degree) [221], [939]; rooted trees where the roots have odd degree and
the lengths of the paths from the root to the leaves differ by at most one and all the internal
vertices have the same parity [282]; rooted trees with diameter D where every vertex has even
degree except for one root and the leaves in level | D /2] [176]; rooted trees with diameter D
where every vertex has even degree except for one root and the leaves, which are in level | D /2]
[176]; rooted trees with diameter D where every vertex has even degree except for one root, the
vertices in level |D/2| — 1, and the leaves which are in level |D/2| [176]; the graph obtained
by identifying the endpoints any number of paths of a fixed length except for the case that the
length has the form 4r + 1, r > 1 and the number of paths is of the form 4m with m > r [1000];
regular bamboo trees [1000] (a rooted tree consisting of branches of equal length the endpoints
of which are identified with end points of stars of equal size); and olive trees [924], [3] (a rooted
tree consisting of k branches, where the ith branch is a path of length 7); Bahls, Lake, and
Wertheim [160] proved that spiders for which the lengths of every path from the center to a
leaf differ by at most one are graceful. (A spider is a tree that has at most one vertex (called
the center) of degree greater than 2.) Motivated by Horton’s work [555], in 2010 Fang [405]
used a deterministic back-tracking algorithm to prove that all trees with at most 35 vertices are
graceful. In 2011 Fang [406] used a hybrid algorithm that involved probabilistic backtracking,
tabu searching, and constraint programming satisfaction to verify that every tree with at most
31 vertices is harmonious.

Aldred, Sirdii and Siran [52] have proved that the number of graceful labelings of P, grows
at least as fast as (5/3)™. They mention that this fact has an application to topological graph
theory. One such application was provided by Goddyn, Richter, and and Siran [473] who used
graceful labelings of paths on 2s + 1 vertices (s > 2) to obtain 22* cyclic oriented triangular
embeddings of the complete graph on 12s + 7 vertices. The Aldred, Siran and Sirdi bound was
improved by Adamaszek [36] to (2.37)" with the aid of a computer. Cattell [291] has shown
that when finding a graceful labeling of a path one has almost complete freedom to choose a
particular label i for any given vertex v. In particular, he shows that the only cases of F,, when
this cannot be done are when n = 3 (mod 4) or n =1 (mod 12), v is in the smaller of the two
partite sets of vertices, and i = (n — 1) /2.

In [397] and [398] Eshghi and Azimi [397] discuss a programming model for finding graceful
labelings of large graphs. The computational results show that the models can easily solve the
graceful labeling problems for large graphs. They used this method to verify that all trees with
30, 35, or 40 vertices are graceful. Stanton and Zarnke [1133] and Koh, Rogers, and Tan [656],
[657], [660] gave methods for combining graceful trees to yield larger graceful trees. Rogers
in [971] and Koh, Tan, and Rogers in [659] provide recursive constructions to create graceful
trees. Burzio and Ferrarese [269] have shown that the graph obtained from any graceful tree
by subdividing every edge is also graceful. In 1979 Bermond [217] conjectured that lobsters
are graceful (a lobster is a tree with the property that the removal of the endpoints leaves a
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caterpillar). Morgan [880] has shown that all lobsters with perfect matchings are graceful.

A Skolem sequence of order n is a sequence si, So, ..., S2, of 2n terms such that, for each
k € {1,2,...,n}, there exist exactly two subscripts i(k) and j(k) with s;4) = s;) = k and
li(k)—j(k)| = k. A Skolem sequence of order n exists if and only if n = 0 or 1 (mod 4). Morgan
[881] has used Skolem sequences to construct classes of graceful trees. Morgan and Rees [882]
used Skolem and Hooked-Skolem sequences to generate classes of graceful lobsters.

Mishra and Panigrahi [874] and [918] found classes of graceful lobsters of diameter at least
five. They show other classes of lobsters are graceful in [875] and [876]. In [1033] Sethuraman
and Jesintha [1033] explores how one can generate graceful lobsters from a graceful caterpillar
while in [1037] and [1038] (see also [592]) they show how to generate graceful trees from a graceful
star. More special cases of Bermond’s conjecture have been done by Ng [896], by Wang, Jin, Lu,
and Zhang [1233], Abhyanker [2], and by Mishra and Panigrahi [875]. Whether or not lobsters
are harmonious seems to have attracted no attention thus far.

Barrientos [195] defines a y-tree as a graph obtained from a path by appending an edge to
a vertex of a path adjacent to an end point. He proves that graphs obtained from a y-tree T'
by replacing every edge e; of T' by a copy of K, in such a way that the ends of e; are merged
with the two independent vertices of Ks ,, after removing the edge e; from T are graceful.

Sethuraman and Jesintha [1034], [1035] and [1036] (see also [592]) proved that rooted trees
obtained by identifying one of the end vertices adjacent to either of the penultimate vertices of
any number of caterpillars having equal diameter at least 3 with the property that all the degrees
of internal vertices of all such caterpillars have the same parity are graceful. They also proved
that rooted trees obtained by identifying either of the penultimate vertices of any number of
caterpillars having equal diameter at least 3 with the property that all the degrees of internal
vertices of all such caterpillars have the same parity are graceful. In [1034], [1035], and [1036]
(see also [592] and [593]) Sethuraman and Jesintha prove that all rooted trees in which every
level contains pendant vertices and the degrees of the internal vertices in the same level are equal
are graceful. Kanetkar and Sane [623] show that trees formed by identifying one end vertex of
each of six or fewer paths whose lengths determine an arithmetic progression are graceful.

Chen, Lii, and Yeh [310] define a firecracker as a graph obtained from the concatenation
of stars by linking one leaf from each. They also define a banana tree as a graph obtained by
connecting a vertex v to one leaf of each of any number of stars (v is not in any of the stars).
They proved that firecrackers are graceful and conjecture that banana trees are graceful. Before
Sethuraman and Jesintha [1040] and [1039] (see also [592]) proved that all banana trees and
extended banana trees (graphs obtained by joining a vertex to one leaf of each of any number of
stars by a path of length of at least two) are graceful, various kinds of bananas trees had been
shown to be graceful by Bhat-Nayak and Deshmukh [224], by Murugan and Arumugam [890],
[888] and by Vilfred [1211].

Consider a set of caterpillars, having equal diameter, in which one of the penultimate vertices
has arbitrary degree and all the other internal vertices including the other penultimate vertex is
of fixed even degree. Jesintha and Sethuraman [595] call the rooted tree obtained by merging an
end-vertex adjacent to the penultimate vertex of fixed even degree of each caterpillar a arbitrarily
fixed generalized banana tree. They prove that such trees are graceful. From this it follows that
all banana trees are graceful and all generalized banana trees are graceful.

Zhenbin [1325] has shown that graphs obtained by starting with any number of identical
stars, appending an edge to exactly one edge from each star, then joining the vertices at which
the appended edges were attached to a new vertex are graceful. He also shows that graphs
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obtained by starting with any two stars, appending an edge to exactly one edge from each star,
then joining the vertices at which the appended edges were attached to a new vertex are graceful.
In [594] Jesintha and Sethuraman use a method of Hrnciar and Havier [557] to generate graceful
trees from a graceful star with n edges.

Aldred and McKay [51] used a computer to show that all trees with at most 26 vertices are
harmonious. That caterpillars are harmonious has been shown by Graham and Sloane [484]. In
a paper published in 2004 Krishnaa [681] claims to proved that all trees have both graceful and
harmonious labelings. However, her proofs were flawed.

Using a variant of the Matrix Tree Theorem, Whitty [1256] specifies an n x n matrix of
indeterminates whose determinant is a multivariate polynomial that enumerates the gracefully
labelled (n + 1)-vertex trees. Whitty also gives a bijection between gracefully labelled graphs
and rook placements on a chessboard on the Mobius strip.

Despite the efforts of many, the graceful tree conjecture remains open even for trees with
maximum degree 3. More specialized results about trees are contained in [217], [234], [655],
[827], [276], [610], and [974]. In [377] Edwards and Howard provide a lengthy survey paper on
graceful trees.

2.2 Cycle-Related Graphs

Cycle-related graphs have been a major focus of attention. Rosa [973] showed that the n-cycle
C,, is graceful if and only if n = 0 or 3 (mod 4) and Graham and Sloane [484] proved that C,,
is harmonious if and only if n = 1 or 3 (mod 4). Wheels W,, = C,, + K7 are both graceful and
harmonious — [428], [554] and [484]. As a consequence we have that a subgraph of a graceful
(harmonious) graph need not be graceful (harmonious). The n-cone (also called the n-point
suspension of Cy,) Cp, + K, has been shown to be graceful when m = 0 or 3 (mod 12) by
Bhat-Nayak and Selvam [230]. When n is even and m is 2, 6 or 10 (mod 12) C,, + K,, violates
the parity condition for a graceful graph. Bhat-Nayak and Selvam [230] also prove that the
following cones are graceful: Cy + K,,,Cs + Ks,C7 + K,,,Cy + Ko,C11 + K,, and Cyg + K,,.
The helm H,, is the graph obtained from a wheel by attaching a pendant edge at each vertex
of the n-cycle. Helms have been shown to be graceful [79] and harmonious [471], [808], [809]
(see also [812], [1022], [799], [349] and [952]). Koh, Rogers, Teo, and Yap, [658] define a web
graph as one obtained by joining the pendant points of a helm to form a cycle and then adding
a single pendant edge to each vertex of this outer cycle. They asked whether such graphs are
graceful. This was proved by Kang, Liang, Gao, and Yang [626]. Yang has extended the notion
of a web by iterating the process of adding pendant points and joining them to form a cycle
and then adding pendant points to the new cycle. In his notation, W (2,n) is the web graph
whereas W (t, n) is the generalized web with t n-cycles. Yang has shown that W (3,n) and W (4, n)
are graceful (see [626]), Abhyanker and Bhat-Nayak [4] have done W (5,n) and Abhyanker [2]
has done W (t,5) for 5 < t < 13. Gnanajothi [471] has shown that webs with odd cycles are
harmonious. Seoud and Youssef [1022] define a closed helm as the graph obtained from a helm
by joining each pendant vertex to form a cycle and a flower as the graph obtained from a helm
by joining each pendant vertex to the central vertex of the helm. They prove that closed helms
and flowers are harmonious when the cycles are odd. A gear graph is obtained from the wheel
W, by adding a vertex between every pair of adjacent vertices of the n-cycle. In 1984 Ma and
Feng [832] proved all gears are graceful while in a Master’s thesis in 2006 Chen [311] proved all
gears are harmonious. Liu [808] has shown that if two or more vertices are inserted between
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every pair of vertices of the n-cycle of the wheel W,,, the resulting graph is graceful. Liu [806]
has also proved that the graph obtain from a gear graph by attaching one or more pendant edges
to each vertex between the vertices of the n-cycle is graceful.

Abhyanker [2] has investigated various unicyclic (that is, graphs with exactly one cycle)
graphs. He proved that the unicyclic graphs obtained by identifying one vertex of C4 with the
root of the olive tree with 2n branches and identifying an adjacent vertex on Cy with the end
point of the path P, o are graceful. He showed that if one attaches any number of pendent
edges to these unicyclic graphs at the vertex of Cj that is adjacent to the root of the olive
tree but not adjacent to the end vertex of the attached path, the resulting graphs are graceful.
Likewise, Abhyanker proved that the graph obtained by deleting the branch of length 1 from an
olive tree with 2n branches and identifying the root of the edge deleted tree with a vertex of a
cycle of the form Cy,13 is graceful. He also has a number of results similar to these.

Delorme, Maheo, Thuillier, Koh, and Teo [352] and Ma and Feng [831] showed that any cycle
with a chord is graceful. This was first conjectured by Bodendiek, Schumacher, and Wegner [243],
who proved various special cases. In 1985 Koh and Yap [661] generalized this by defining a cycle
with a Pg-chord to be a cycle with the path Py joining two nonconsecutive vertices of the cycle.
They proved that these graphs are graceful when k = 3 and conjectured that all cycles with a Pj-
chord are graceful. This was proved for k > 4 by Punnim and Pabhapote in 1987 [943]. Chen
[316] obtained the same result except for three cases which were then handled by Gao [499].
In 2005, Sethuraman and Elumalai [1028] defined a cycle with parallel Py-chords as a graph
obtained from a cycle C,, (n > 6) with consecutive vertices vg,v1,...,v,—1 by adding disjoint
paths Py, (k > 3), between each pair of nonadjacent vertices viv,—1,v2Up—2, ..., ViUn—i, - .., Vol
where a = |n/2] —1 and 8 = |n/2] +2if nis odd or 8 = |n/2] 4+ 1 if n is even. They proved
that every cycle C), (n > 6) with parallel Pg-chords is graceful for k = 3,4, 6,8, and 10 and they
conjecture that the cycle C), with parallel Py-chords is graceful for all even k. Xu [1274] proved
that all cycles with a chord are harmonious except for C in the case where the distance in Cg
between the endpoints of the chord is 2. The gracefulness of cycles with consecutive chords
have also been investigated. For 3 < p <n —r, let C,(p,r) denote the n-cycle with consecutive
vertices v1,v2,...,v, to which the r chords viv,,v1vp11,...,v10p4,—1 have been added. Koh
and Punnin [651] and Koh, Rogers, Teo, and Yap [658] have handled the cases r = 2,3 and
n — 3 where n is the length of the cycle. Goh and Lim [474] then proved that all remaining
cases are graceful. Moreover, Ma [830] has shown that C),(p,n — p) is graceful when p = 0,3
(mod 4) and Ma, Liu, and Liu [833] have proved other special cases of these graphs are graceful.
Ma also proved that if one adds to the graph C,,(3,n — 3) any number k; of paths of length 2
from the vertex vy to the vertex v; for ¢ = 2,...,n, the resulting graph is graceful. Chen [316]
has shown that apart from four exceptional cases, a graph consisting of three independent paths
joining two vertices of a cycle is graceful. This generalizes the result that a cycle plus a chord is
graceful. Liu [805] has shown that the n-cycle with consecutive vertices vy, vs,. .., v, to which
the chords vivg and vivkys (2 < k < n — 3) are adjoined is graceful.

In [350] Deb and Limaye use the notation C(n, k) to denote the cycle C), with k cords sharing
a common endpoint called the apex. For certain choices of n and k there is a unique C(n, k)
graph and for other choices there is more than one graph possible. They call these shell-type
graphs and they call the unique graph C'(n,n—3) a shell. Notice that the shell C(n,n —3) is the
same as the fan F,,_1 = P,,_1 + K;7. Deb and Limaye define a multiple shell to be a collection of
edge disjoint shells that have their apex in common. A multiple shell is said to be balanced with
width w if every shell has order w or every shell has order w or w 4+ 1. Deb and Limaye [350)]
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have conjectured that all multiple shells are harmonious, and have shown that the conjecture is
true for the balanced double shells and balanced triple shells. Yang, Xu, Xi, and Qiao [1295]
proved the conjecture is true for balanced quadruple shells.

Sethuraman and Dhavamani [1025] use H (n,t) to denote the graph obtained from the cycle
C,, by adding t consecutive chords incident with a common vertex. If the common vertex is u
and v is adjacent to u, then for k > 1, n > 4, and 1 <t < n — 3, Sethuraman and Dhavamani
denote by G(n,t, k) the graph obtained by taking the union of k copies of H(n, k) with the edge
uv identified. They conjecture that every graph G(n,t, k) is graceful. They prove the conjecture
for the case that t =n — 3.

Fori=1,2,...,nlet v;1,v;2,...,v;2m be the successive vertices of n copies of Co,,. Sekar
[1000] defines a chain of cycles Cop, p, as the graph obtained by identifying v; ,, and vy1yy, for
i =1,2,...,n — 1. He proves that Cg o, and Cy, are graceful for all £ and all n. Barrientos

[198] proved that all Cgp,, C12.,, and Cg o, are graceful.

Truszczyniski [1185] studied unicyclic graphs and proved several classes of such graphs are
graceful. Among these are what he calls dragons. A dragon is formed by joining the end point
of a path to a cycle (Koh, et al. [658] call these tadpoles; Kim and Park [647] call them kites).
This work led Truszczynski to conjecture that all unicyclic graphs except C,,, where n = 1 or
2 (mod 4), are graceful. Guo [498] has shown that dragons are graceful when the length of the
cycle is congruent to 1 or 2 (mod 4). Lu [826] uses cF M8 6 denote the graph obtained by
identifying one vertex of C),, with one endpoint of m paths each of length t. He proves that
C’: (1.8) (a tadpole) is not harmonious when a + ¢ is odd and C’:{ (2m.t) is harmonious when n = 3
and whenn = 2k+1 and t = k—1,k+1 or 2k—1. In his Master’s thesis, Doma [364] investigates
the gracefulness of various unicyclic graphs where the cycle has up to 9 vertices. Because of the
immense diversity of unicyclic graphs, a proof of Truszczynski’s conjecture seems out of reach
in the near future.

Cycles that share a common edge or a vertex have received some attention. Murugan and
Arumugan [889] have shown that books with n pentagonal pages (i.e., n copies of C5 with an edge
in common) are graceful when n is even and not graceful when n is odd. Lu [826] uses ©(Cy,)"
to denote the graph that make from n copies of C,, that share an edge (an n page book with
m-polygonal pages). He proves ©(Cay,y1)?" 1! is harmonious for all m and n; ©(Cyyni2)*™t! and
O(Cym)*™*3 are not harmonious for all m and n. Xu [1274] proved that ©(C),)? is harmonious
except when m = 3. (6(C,,)? is isomorphic to Ca(m—1) With a chord “in the middle.”)

Let C,(Lt) denote the one-point union of ¢ cycles of length n. Bermond, Brouwer, and Germa
[218] and Bermond, Kotzig, and Turgeon [220]) proved that Cét) (that is, the friendship graph
or Dutch t-windmill) is graceful if and only if £ = 0 or 1 (mod 4) while Graham and Sloane
[484] proved Cg()t) is harmonious if and only if ¢ # 2 (mod 4). Koh, Rogers, Lee, and Toh [652]

conjecture that it s graceful if and only if nt = 0 or 3 (mod 4). Yang and Lin [1287] have
proved the conjecture for the case n = 5 and Yang, Xu, Xi, Li, and Haque [1293] did the case
n = 7. Xu, Yang, Li and Xi [1278] did the case n = 11. Xu, Yang, Han and Li [1279] did the case
n = 13. Qian [947] verifies this conjecture for the case that t = 2 and n is even and Yang, Xu,
Xi, and Li [1294] did the case n = 9. Figueroa-Centeno, Ichishima, and Muntaner-Batle [415]
have shown that if m = 0 (mod 4) then the one-point union of 2, 3, or 4 copies of C,, admits a
special kind of graceful labeling called an a-labeling (see Section 3.1) and if m = 2 (mod 4), then
the one-point union of 2 or 4 copies of C,, admits an a-labeling. Bodendiek, Schumacher, and
Wegner [249] proved that the one-point union of any two cycles is graceful when the number of
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edges is congruent to 0 or 3 modulo 4. (The other cases violate the necessary parity condition.)

Shee [1055] has proved that C’f) is graceful for all ¢. Seoud and Youssef [1020] have shown that
the one-point union of a triangle and C,, is harmonious if and only if n = 1 (mod 4) and that if
the one-point union of two cycles is harmonious then the number of edges is divisible by 4. The
question of whether this latter condition is sufficient is open. Figueroa-Centeno, Ichishima, and
Muntaner-Batle [415] have shown that if G is harmonious then the one-point union of an odd
number of copies of GG using the vertex labeled 0 as the shared point is harmonious. Sethuraman
and Selvaraju [1047] have shown that for a variety of choices of points, the one-point union of
any number of non-isomorphic complete bipartite graphs is graceful. They raise the question of
whether this is true for all choices of the common point.

Another class of cycle-related graphs is that of triangular cacti. The block-cutpoint graph of
a graph G is a bipartite graph in which one partite set consists of the cut vertices of GG, and
the other has a vertex b; for each block B; of G. A block of a graph is a maximal connected
subgraph that has no cut-vertex. A triangular cactus is a connected graph all of whose blocks
are triangles. A triangular snake is a triangular cactus whose block-cutpoint-graph is a path (a
triangular snake is obtained from a path vy, v, ..., v, by joining v; and v;1+1 to a new vertex w;
fori=1,2,...,n—1). Rosa [975] conjectured that all triangular cacti with t = 0 or 1 (mod 4)
blocks are graceful. (The cases where ¢t = 2 or 3 (mod 4) fail to be graceful because of the parity
condition.) Moulton [883] proved the conjecture for all triangular snakes. A proof of the general
case (i.e., all triangular cacti) seems hopelessly difficult. Liu and Zhang [812] gave an incorrect
proof that triangular snakes with an odd number of triangles are harmonious whereas triangular
snakes with n = 2 (mod 4) triangles are not harmonious. Xu [1275] subsequently proved that
triangular snakes are harmonious if and only if the number of triangles is not congruent to 2
(mod 4).

A double triangular snake consists of two triangular snakes that have a common path. That
is, a double triangular snake is obtained from a path wvi,vo,...,v, by joining v; and v;41 to a
new vertex w; for i = 1,2,...,n—1 and to a new vertex u; for i =1,2,...,n—1. Xi, Yang, and
Wang [1271] proved that all double triangular snakes are harmonious.

For any graph G defining G-snake analogous to triangular snakes, Sekar [1000] has shown
that C,-snakes are graceful when n = 0 (mod 4) (n > 8) and when n = 2 (mod 4) and
the number of (), is even. Gnanajothi [471, pp. 31-34] had earlier shown that quadrilateral
snakes are graceful. Grace [482] has proved that Kj-snakes are harmonious. Rosa [975] has also
considered analogously defined quadrilateral and pentagonal cacti and examined small cases.
Yu, Lee, and Chin [1314] showed that Q2-and Qs-snakes are graceful and, when the number of
blocks is greater than 1, QQ2—, X3- and QQ4-snakes are harmonious.

Barrientos [189] calls a graph a kC),-snake if it is a connected graph with k& blocks whose
block-cutpoint graph is a path and each of the k blocks is isomorphic to Cj,. (When n > 3 and
k > 3 there is more than one kC)-snake.) If a kC),-snake where the path of minimum length
that contains all the cut-vertices of the graph has the property that the distance between any
two consecutive cut-vertices is [n/2] it is called linear. Barrientos proves that kCjy-snakes are
graceful and that the linear kCg-snakes are graceful when k is even. He further proves that
kCgs-snakes and kCis-snakes are graceful in the cases where the distances between consecutive
vertices of the path of minimum length that contains all the cut-vertices of the graph are all even
and that certain cases of kCjy,-snakes and kCj,-snakes are graceful (depending on the distances
between consecutive vertices of the path of minimum length that contains all the cut-vertices of
the graph).
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Several people have studied cycles with pendant edges attached. Frucht [428] proved that
any cycle with a pendant edge attached at each vertex (i.e., a crown) is graceful (see also [562]).
If G has order n, the corona of G with H, G ® H is the graph obtained by taking one copy
of G and n copies of H and joining the ith vertex of G with an edge to every vertex in the
ith copy of H. Barrientos [194] also proves: if G is a graceful graph of order m and size
m — 1, then G ® nK; and G + nK; are graceful; if G is a graceful graph of order p and size
g with ¢ > p, then (GU (¢+ 1 — p)K;) ® nK; is graceful; and all unicyclic graphs other than
a cycle for which the deletion of any edge from the cycle results in a caterpillar are graceful.
In [420] Figueroa-Centeno, R. Ichishima, Muntaner-Batle, Oshima introduce two methods for
constructing graceful unicyclic graphs that have cycle length congruent to 0 or 3 (mod 4). Their
results subsume all existing ones on graceful unicyclic graphs with cycle length congruent to 0
or 3 (mod 4).

In [191] Barrientos proved that helms (graphs obtained from a wheel by attaching one pen-
dant edge to each vertex) are graceful. Grace [481] showed that an odd cycle with one or more
pendant edges at each vertex is harmonious and conjectured that Co, ® K1, an even cycle with
one pendant edge attached at each vertex, is harmonious. This conjecture has been proved by
Liu and Zhang [811], Liu [808] and [809], Hegde [524], Huang [563], and Bu [258]. Sekar [1000)]
has shown that the graph C,, ® P, obtained by attaching the path P, to each vertex of C,, is
graceful. For any n > 3 and any ¢ with 1 <t < n, let C;I* denote the class of graphs formed
by adding a single pendant edge to ¢ vertices of a cycle of length n. Ropp [972] proved that for
every n and t the class C;I contains a graceful graph. Gallian and Ropp [442] conjectured that
for all n and ¢, all members of C;I* are graceful. This was proved by Qian [947] and by Kang,
Liang, Gao, and Yang [626]. Of course, such graphs are just a special case of the aforementioned
conjecture of Truszczynski that all unicyclic graphs except C), for n = 1 or 2 (mod 4) are grace-
ful. Sekar [1000] proved that the graph obtained by identifying an endpoint of a star with a
vertex of a cycle is graceful. Lu [826] shows that the graph obtained by identifying each vertex
of an odd cycle with a vertex disjoint copy of Cay,11 is harmonious if and only if m is odd.

For given cycle C,, with n = 0 or 3 (mod 4) and a family of trees 7 = {13, T5,...,T,}, let
u; and v;, 1 < i < n, be fixed vertices of C,, and Tj;, respectively. Figueroa-Centeno, Ichishima,
Muntaner-Batle, and Oshima [420] provide two construction methods that generate a graceful
labeling of the the unicyclic graphs obtained from C,, and 7 by amalgamating them at each wu;
and v;. Their results encompass all previously known results for unicyclic graphs whose cycle
length is 0 or 3 (mod 4) and considerably extend the known classes of graceful unicyclic graphs.

Solairaju and Chithra [1118] defined three classes of graphs obtained by connecting copies of
Cy in various ways. Denote the four consecutive vertices of ith copy of C4 by v; 1,v;2,v;3,v;,.
They show that the graphs obtained by identifying v; 4 with vi410 for ¢ = 1,2,...,n — 1 is
graceful; the graphs obtained by joining v; 4 with v;;192 for i = 1,2,...,n — 1 by an edge is
graceful; and the graphs obtained by joining v; 4 with v;119 for i =1,2,...,n — 1 with a path
of length 2 is graceful.

In a paper published in 1985 Bloom and Hsu [240] say a directed graph D with e edges has
a graceful labeling 6 if for each vertex v there is a vertex labeling 6 that assigns each vertex a
distinct integer from 0 to e such that for each directed edge (u,v) the integers 6(v) — 6(u) mod
(e + 1) are distinct and nonzero . They conjectured that digraphs whose underlying graphs are
wheels and that have all directed edges joining the hub and the rim in the same direction and all
directed edges in the same direction are graceful. This conjecture was proved in 2009 by Hegde
and Shivarajkumarn [544].
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2.3 Product Related Graphs

Graphs that are cartesian products and related graphs have been the subject of many papers.
That planar grids, P, x P,, are graceful was proved by Acharya and Gill [24] in 1978 although
the much simpler labeling scheme given by Maheo [839] in 1980 for P,, x P» readily extends
to all grids. In 1980 Graham and Sloane [484] proved ladders, P, x P,, are harmonious when
m > 2 and in 1992 Jungreis and Reid [621] showed that the grids P, x P, are harmonious when
(m,n) # (2,2). A few people have looked at graphs obtained from planar grids in various ways.
Kathiresan [630] has shown that graphs obtained from ladders by subdividing each step exactly
once are graceful and that graphs obtained by appending an edge to each vertex of a ladder are
graceful [632]. Acharya [15] has shown that certain subgraphs of grid graphs are graceful. Lee
[704] defines a Mongolian tent as a graph obtained from P, x P,, n odd, by adding one extra
vertex above the grid and joining every other vertex of the top row of P, X P, to the new vertex.
A Mongolian village is a graph formed by successively amalgamating copies of Mongolian tents
with the same number of rows so that adjacent tents share a column. Lee proves that Mongolian
tents and villages are graceful. A Young tableau is a subgraph of P, x P, obtained by retaining
the first two rows of P,, X P, and deleting vertices from the right hand end of other rows in
such a way that the lengths of the successive rows form a nonincreasing sequence. Lee and Ng
[724] have proved that all Young tableaus are graceful. Lee [704] has also defined a variation of
Mongolian tents by adding an extra vertex above the top row of a Young tableau and joining
every other vertex of that row to the extra vertex. He proves these graphs are graceful.

Prisms are graphs of the form C,, x P,. These can be viewed as grids on cylinders. In
1977 Bodendiek, Schumacher, and Wegner [243] proved that C,, x P» is graceful when m = 0
(mod 4). According to the survey by Bermond [217], Gangopadhyay and Rao Hebbare did the
case that m is even about the same time. In a 1979 paper, Frucht [428] stated without proof
that he had done all C,,, x P5. A complete proof of all cases and some related results were given
by Frucht and Gallian [431] in 1988.

In 1992 Jungreis and Reid [621] proved that all C,, x P, are graceful when m and n are even
or when m = 0 (mod 4). They also investigated the existence of a stronger form of graceful
labeling called an a-labeling (see Section 3.1) for graphs of the form P,, x P,,C,, x P,, and
Cm x Cy, (see also [444]).

Yang and Wang have shown that the prisms Cy,i2 X Pypnts [1292], C, x Py [1290], and
Cg X Pp(m > 2) (see [1292]) are graceful. Singh [1089] proved that C3 x P, is graceful for all
n. In their 1980 paper Graham and Sloane [484] proved that C), x P, is harmonious when n is
odd and they used a computer to show C4 X P», the cube, is not harmonious. In 1992 Gallian,
Prout, and Winters [446] proved that C,, x P, is harmonious when m # 4. In 1992, Jungreis
and Reid [621] showed that Cy x P, is harmonious when n > 3. Huang and Skiena [565] have
shown that C,, x P, is graceful for all n when m is even and for all n with 3 <n <12 when m
is odd. Abhyanker [2] proved that the graphs obtained from Cy,,11 X P5 by adding a pendent
edge to each vertex of an outer cycle is graceful.

Torus grids are graphs of the form C,, x C,, (m > 2,n > 2). Very little success has been
achieved with these graphs. The graceful parity condition is violated for C, x C),, when m and
n are odd and the harmonious parity condition [484, Theorem 11] is violated for Cy, x C), when
m = 1,2,3 (mod 4) and n is odd. In 1992 Jungreis and Reid [621] showed that C,, x C), is
graceful when m = 0 (mod 4) and n is even. A complete solution to both the graceful and
harmonious torus grid problems will most likely involve a large number of cases.
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There has been some work done on prism-related graphs. Gallian, Prout, and Winters [446]
proved that all prisms C,,, x P, with a single vertex deleted or single edge deleted are graceful
and harmonious. The Mébius ladder M, is the graph obtained from the ladder P,, X P, by joining
the opposite end points of the two copies of P,. In 1989 Gallian [441] showed that all Mdbius
ladders are graceful and all but M3 are harmonious. Ropp [972] has examined two classes of
prisms with pendant edges attached. He proved that all C}, x P, with a single pendant edge at
each vertex are graceful and all C},, X P, with a single pendant edge at each vertex of one of the
cycles are graceful.

Another class of cartesian products that has been studied is that of books and “stacked”
books. The book B, is the graph S, x P, where S,, is the star with m + 1 vertices. In 1980
Maheo [839] proved that the books of the form Bs,, are graceful and conjectured that the books
Bym+1 were also graceful. (The books By,+3 do not satisty the graceful parity condition.) This
conjecture was verified by Delorme [351] in 1980. Maheo [839] also proved that L, x P and
Boy, x Py are graceful. Both Grace [480] and Reid (see [445]) have given harmonious labelings
for Boy,. The books Byy+s do not satisfy the harmonious parity condition [484, Theorem
11]. Gallian and Jungreis [445] conjectured that the books By, +1 are harmonious. Gnanajothi
[471] has verified this conjecture by showing By, +1 has an even stronger form of labeling — see
Section 4.1. Liang [784] also proved the conjecture. In 1988 Gallian and Jungreis [445] defined
a stacked book as a graph of the form S, x P,. They proved that the stacked books of the
form So,, x P, are graceful and posed the case Sy,,11 X P, as an open question. The n-cube
Ko x K9 x -+ x Ky (n copies) was shown to be graceful by Kotzig [671]—see also [839]. Although
Graham and Sloane [484] used a computer in 1980 to show that the 3-cube is not harmonious
(see also [919]), Ichishima and Oshima [571] proved that the n-cube @), has a stronger form of
harmonious labeling (see Section 4.1) for n > 4.

In 1986 Reid [961] found a harmonious labeling for Ky x P,. Petrie and Smith [927] have
investigated graceful labelings of graphs as an exercise in constraint programming satisfaction.
They have shown that K, x P, is graceful for (m,n) = (4,2), (4,3), (4,4), (4,5), (see also [956])
and (5,2) but is not graceful for (3,3) and (6, 2). Redl [956] also proved that K4 x P, is graceful
forn =1,2,3,4 and 5 using a constraint programming approach. Their labeling for K5 x P; is
the unique graceful labeling. They also considered the graph obtained by identifying the hubs
of two copies of W,,. The resulting graph is not graceful when n = 3 but is graceful when n
is 4 and 5. Smith and Puget [1113] has used a computer search to prove that K, x P, is not
graceful for m = 7,8,9, and 10. She conjectures that K,, x P is not graceful for m > 5. Redl
[956] asks if all graphs of the form K4 x P, are graceful.

For a bipartite graph G with partite sets X and Y let G’ be a copy of G and X’ and Y’ be
copies of X and Y. Lee and Liu [718] define the mirror graph, M(G), of G as the disjoint union
of G and G’ with additional edges joining each vertex of Y to its corresponding vertex in Y.
The case that G = K, 5, is more simply denoted by M (m,n). They proved that for many cases
M (m,n) has a stronger form of graceful labeling (see §3.1 for details).

The composition G1[G2] is the graph having vertex set V(G1) x V(G2) and edge set
{(z1,91), (x2,y2)| T122 € E(Gy) or x1 = x5 and y152 € E(G2)}. The symmetric product
G1 @ Go of graphs G; and Gs is the graph with vertex set V(G1) x V(G2) and edge set
{(z1,91), (x2,y2)| 122 € E(G1) or y1y2 € E(G3) but not both}. Seoud and Youssef [1021]
have proved that P, @ K, is graceful when n > 1 and P,[P»] is harmonious for all n. They
also observe that the graphs C,, ® C,, and C,,[C},] violate the parity conditions for graceful and
harmonious graphs when m and n are odd.
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2.4 Complete Graphs

The questions of the gracefulness and harmoniousness of the complete graphs K, have been
answered. In each case the answer is positive if and only if n < 4 ([475], [1088], [484], [223]). Both
Rosa [973] and Golomb [475] proved that the complete bipartite graphs K, ,, are graceful while
Graham and Sloane [484] showed they are harmonious if and only if m or n = 1. Aravamudhan
and Murugan [73] have shown that the complete tripartite graph K ,,,, is both graceful and
harmonious while Gnanajothi [471, pp. 25-31] has shown that K1, is both graceful and
harmonious and Ky ,, ., is graceful. Some of the same results have been obtained by Seoud and
Youssef [1016] who also observed that when m,n, and p are congruent to 2 (mod 4), Ky, . p
violates the parity conditions for harmonious graphs. Beutner and Harborth [223] give graceful
labelings for K1 ,m.n, K2.mn, K1,1,m,n and conjecture that these and K,,,, are the only complete
multipartite graphs that are graceful. They have verified this conjecture for graphs with up to
23 vertices via computer.

Beutner and Harborth [223] also show that K, —e (K, with an edge deleted) is graceful only
if n <5; any K,, — 2e (K,, with two edges deleted) is graceful only if n < 6; and any K,, — 3e is
graceful only if n < 6. They also determine all graceful graphs of the form K,, — G where G is
K, with a <n — 2 and where G is a matching M, with 2a < n.

The windmill graph Kr(Lm) (n > 3) consists of m copies of K, with a vertex in common.
A necessary condition for K™ to be graceful is that n < 5 — see [658]. Bermond [217] has
conjectured that K im) is graceful for all m > 4. The gracefulness of K im) is equivalent to the
existence of a (12m + 1,4,1)-perfect difference family, which are known to exit for m < 1000
(see [565], [1], [1239], and [461]). Bermond, Kotzig, and Turgeon [220] proved that K™ is not
graceful when n = 4 and m = 2 or 3, and when m = 2 and n = 5. In 1982 Hsu [559] proved that
K im) is harmonious for all m. Graham and Sloane [484] conjectured that Ky(?) is harmonious
if and only if n = 4. They verified this conjecture for the cases that n is odd or n = 6. Liu

[799] has shown that KT(LZ) is not harmonious if n = 297" - - - p% where a,a1,...,as are positive
integers and py, ..., p, are distinct odd primes and there is a j for which p; = 3 (mod 4) and a;

is odd. He also shows that & is not harmonious when n = 0 (mod 4) and 3n = 4°(8k 4+ 7) or
n =5 (mod 8). Koh, Rogers, Lee, and Toh [652] and Rajasingh and Pushpam [953] have shown

that Km,ét), the one-point union of ¢ copies of K,,, is graceful. Sethuraman and Selvaraju
[1043] have proved that the one-point union of graphs of the form Kj,,, for i = 1,2,...,n,
where the union is taken at a vertex from the partite set with exactly 2 vertices is graceful
if at most two of the m; are equal. They conjecture that the restriction that at most two of
the m; are equal is not necessary. Koh, Rogers, Lee, and Toh [658] introduced the notation
B(n,r,m) for the graph consisting of m copies of K, with a K, in common (n > r). (We
note that Guo [499] has used the notation B(n,r,m) to denote the graph obtained by joining
opposite endpoints of three disjoint paths of lengths n,r and m.) Bermond [217] raised the
question: “For which m,n, and r is B(n,r,m) graceful?” Of course, the case r = 1 is the same
as K™, For r > 1, B(n,r,m) is graceful in the following cases: n = 3, r = 2, m > 1 [653];
n=4,r=2 m>1[351;n=4, r=3, m>1 (see [217]), [653]. Seoud and Youssef [1016] have
proved B(3,2,m) and B(4,3,m) are harmonious. Liu [798] has shown that if there is a prime p
such that p = 3 (mod 4) and p divides both n and n — 2 and the highest power of p that divides
n and n — 2 is odd, then B(n,2,2) is not graceful. Smith and Puget [1113] has shown that up
to symmetry, B(5,2,2) has a unique graceful labeling; B(n, 3,2) is not graceful for n = 6,7,8,9,
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and 10; B(6,3,3) and B(7,3,3) are not graceful; and B(5,3,3) is graceful. Combining results
of Bermond and Farhi [219] and Smith and Puget [1113] show that B(n,2,2) is not graceful for
n > 5. Lu [826] obtained the following results: B(m,2,3) and B(m,3,3) are not harmonious
when m = 1 (mod 8); B(m,4,2) and B(m,5,2) are not harmonious when m satisfies certain
special conditions; B(m,1,n) is not harmonious when m =5 (mod 8) and n = 1,2,3 (mod 4);
B(2m +1,2m,2n + 1) = Ko, + Ko,+1 is not harmonious when m = 2 (mod 4).

More generally, Bermond and Farhi [219] have investigated the class of graphs consisting
of m copies of K,, having exactly k copies of K, in common. They proved such graphs are
not graceful for n sufficiently large compared to r. Barrientos [195] proved that the graph
obtained by performing the one-point union of any collection of the complete bipartite graphs
Ky Ko ngs - -+ Ky omy, where each Koy, , appears at most twice and ged(ny, ng, ..., ny) = 1,
is graceful.

Sethuraman and Elumalai [1027] have shown that K ,, , with a pendent edge attached to
each vertex is graceful and Jirimutu [613] has shown that the graph obtained by attaching a
pendant edge to every vertex of K,,, is graceful (see also [62]). In [1041] Sethuraman and
Kishore determine the graceful graphs that are the union of n copies of K4 with i edges deleted
for 1 <4 < 5 and with one edge in common. The only cases that are not graceful are those graphs
where the members of the union are Cy for n = 3 (mod 4) and where the members of the union
are P. They conjecture that these two cases are the only instances of edge induced subgraphs
of the union of n copies of K4 with one edge in common that are not graceful. Sethuraman and
Selvaraju [1049] have shown that union of any number of copies of K4 with an edge deleted and
one edge in common is harmonious.

Clemens, Coulibaly, Garvens, Gonnering, Lucas, and Winters [339] investigated the grace-
fulness of the one-point and two-point unions of graphs. They show the following graphs are
graceful: the one-point union of an end vertex of P, and Kj; the graph obtained by taking the
one-point union of K4 with one end vertex of P, and the one-point union of the other end vertex
of P, with the central vertex of K ,; the graph obtained by taking the one-point union of Ky
with one end vertex of P, and the one-point union of the other end of P,, with a vertex from the
partite set of order 2 of Kj,; the graph obtained from the graph just described by appending
any number of edges to the other vertex of the partite set of order 2; the two-point union of
the two vertices of the partite set of order 2 in K5, and two vertices from Kj; and the graph
obtained from the graph just described by appending any number of edges to one of the vertices
from the partite set of order 2.

2.5 Disconnected Graphs

There have been many papers dealing with graphs that are not connected. For any graph G the
graph mG denotes the disjoint union of m copies of G. In 1975 Kotzig [670] investigated the
gracefulness of the graphs rCs. When rs = 1 or 2 (mod 4), these graphs violate the gracefulness
parity condition. Kotzig proved that when r = 3 and 4k > 4, then rCy; has a stronger form
of graceful labeling called a-labeling (see §3.1) whereas when » > 2 and s = 3 or 5, rCj is
not graceful. In 1984 Kotzig [672] once again investigated the gracefulness of rCy as well as
graphs that are the disjoint union of odd cycles. For graphs of the latter kind he gives several
necessary conditions. His paper concludes with an elaborate table that summarizes what was
then known about the gracefulness of rCs. M. He [513] has shown that graphs of the form 2Cs,,
and graphs obtained by connecting two copies of Cs,, with an edge are graceful. Cahit [279] has
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shown that rCj is harmonious when r and s are odd and Seoud, Abdel Magsoud, and Sheehan
[1007] noted that when r or s is even, rCy is not harmonious. Seoud, Abdel Magsoud, and
Sheehan [1007] proved that C),, U Cy,4; is harmonious if and only if n > 4. They conjecture that
C3 U Oy, is harmonious when n > 3. This conjecture was proved when Yang, Lu, and Zeng
[1288] showed that all graphs of the form Cyj41 U Cyy, are harmonious except for (n, j) = (2, 1).
As a consequence of their results about super edge-magic labelings (see §5.2) Figueroa-Centeno,
Ichishima, Muntaner-Batle, and Oshima [419] have that C3 U ), is harmonious if and only if
n > 6 and n is even.

In 1978 Kotzig and Turgeon [675] proved that mK, is graceful if and only if m = 1 and
n < 4. Liu and Zhang [812] have shown that mK, is not harmonious for n odd and m = 2
(mod 4) and is harmonious for n = 3 and m odd. They conjecture that m K3 is not harmonious
when m = 0 (mod 4). Bu and Cao [259] give some sufficient conditions for the gracefulness of
graphs of the form K,,,, UG and they prove that K,,,, U FP; and the disjoint union of complete
bipartite graphs are graceful under some conditions.

Recall a Skolem sequence of order n is a sequence s1, So, ..., So, Oof 2n terms such that, for
each k € {1,2,...,n}, there exist exactly two subscripts i(k) and j(k) with s;) = s;) = k
and |i(k) — j(k)] = k. (A Skolem sequence of order n exists if and only if n = 0 or 1 (mod
4)). Abrham [6] has proved that any graceful 2-regular graph of order n = 0 (mod 4) in which
all the component cycles are even or of order n = 3 (mod 4), with exactly one component an
odd cycle, can be used to construct a Skolem sequence of order n + 1. Also, he showed that
certain special Skolem sequences of order n can be used to generate graceful labelings on certain
2-regular graphs.

The graph H, obtained from the cycle with consecutive vertices uj,ug,...,u, (n > 6) by
adding the chords uauy, ustin—_1,...,uqug, where a = (n —1)/2 for all n and f = (n —1)/2+ 3
if nis odd or § =n/2+2 if n is even is called the cycle with parallel chords. In A. Elumalai and
G. Sethuraman [382] prove the following: for odd n > 5, H, U K, , is graceful; for even n > 6
and m = (n —2)/2 or m = n/2 H, UK, is graceful; for n > 6, H, U P, is graceful, where
m =mn or n — 2 depending on n =1 or 3 (mod 4) or m =n — 1 or n — 3 depending on n =0 or
2 (mod 4).

In 1985 Frucht and Salinas [432] conjectured that Cs U P, is graceful if and only if s+n > 7
and they proved the conjecture for the case that s = 4. Frucht [430] did the case the s = 3 and
the case that s = 2n + 1. Bhat-Nayak and Deshmukh [227] also did the case s = 3 and they
have done the cases of the form Cy,11 U P,_9p where 1 < 0 < |(x — 2)/2] [228]. Choudum and
Kishore [330] have done the cases where s > 5 and n > (s + 5)/2 and Kishore [650] did the
case s = 5. Gao and Liang [449] have done the following cases: s > 4,n = 2 (see also [448]);
s=4dkn=k+2n=k+3n=2k+2;s =4k +1,n = 2kn =3k —1,n =4k — 1;s =
4k +2,n =3k,n =3k +1,n =4k + 1;s = 4k +3,n = 2k + 1,n = 3k,n = 4k. Seoud, Abdel
Magsoud, and Sheehan [1009] did the case that s = 2k (k > 3) and n > k + 1 as well as the
cases where s = 6,8,10,12 and n > 2. Shimazu [1060] has handled the cases that s > 5 and
n=2s>4and n=3and s =2n+ 2 and n > 2. Liang [785] has done the following cases:
s=4dk,n=k+2,k+3,2k+1,2k+2,2k+3,2k+4,2k+5;s =4k —1,n =2k, 3k — 1,4k —1;s =
4k +2,n = 3k, 3k + 1,4k + 1; s = 4k + 3,n = 2k + 1, 3k, 4k. Youssef [1303] proved that C5 U S,
is graceful if and only if n = 1 or 2 and that Cg U .S, is graceful if and only if n is odd or n = 2
or 4.

Seoud and Youssef [1023] have shown that K5 U Ky, n, Kpp U Kp g (M, n,p,q

> 2), Ky U
Kp,q UKr,s (m,n,p,q,r,s > 2, (pa Q) 7& (272))’ and me,n (m’n > 2, (m’n) 7& (

2,2)) are
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graceful. They also prove that Cy U Ky, (n # 2) is not graceful whereas Choudum and Kishore
[332], [650] have proved that Cs U K, is graceful for every s > 7 and n > 1. Lee, Quach, and
Wang [738] established the gracefulness of P; U K ,,. Seoud and Wilson [1015] have shown that
C3UKy4,C3UC3U Ky, and certain graphs of the form C3U P, and C3UC3U P, are not graceful.
Abrham and Kotzig [11] proved that C,UCy is graceful if and only if p+¢ = 0 or 3 (mod 4). Zhou
[1327] proved that K, U K,, (n > 1,m > 1) is graceful if and only if {m,n} = {4,2} or {5,2}.
(C. Barrientos has called to my attention that Ky UK, is graceful if and only if n = 3 or 4.) Shee
[1054] has shown that graphs of the form P,UCo;11 (k > 1), P3UCoky1, P,UCs, and S, UCok 41
all satisfy a condition that is a bit weaker than harmonious. Bhat-Nayak and Deshmukh [225]
have shown that Cyy U K1 44—1 and Cy43 U K7 4142 are graceful. Section 3.1 includes numerous
families of disconnected graphs that have a stronger form of graceful labelings.

In considering graceful labelings of the disjoint unions of two or three stars with e edges
Yang and Wang [1291] permitted the vertex labels to range from 0 to e + 1 and 0 to e + 2,
respectively. With these definitions of graceful, they proved that S,, U S, is graceful if and only
if m or n is even and that S,, U S, U S} is graceful if and only if at least one of m,n, or k is
even (m >1,n>1k>1).

Seoud and Youssef [1019] investigated the gracefulness of specific families of the form G U
K, n. They obtained the following results: C3U K, ,, is graceful if and only if m > 2 and n > 2;
Cy4 U Ky, 5, is graceful if and only if (m,n) # (1,1); C7 U Ky, ,, and Cg U K, ,, are graceful for
all m and n; mK3UnkK;, is not graceful for all m,n and r; K; U K,, ,, is graceful for ¢ <4 and
m > 2,n > 2 except for i = 2 and (m,n) = (2,2); K5 U K, is graceful for all n; K¢ U K,
is graceful if and only if n is not 1 or 3. Youssef [1306] completed the characterization of the
graceful graphs of the form C,, U K, ; where n = 0 or 3 (mod 4) by showing that for n > 8 and
n =0 or 3 (mod 4), C,, UK, 4 is graceful for all p and ¢ (see also [193]). Note that when n =1
or 2 (mod 4) certain cases of C,, U K, , violate the parity condition for gracefulness.

For i = 1,2,...,m let v;1,v;2,v;3,v;4 be a 4-cycle. Yang and Pan [1286] define F}, 4 to
be the graph obtained by identifying v; 3 and v;411 for ¢ = 1,2,...,k — 1. They prove that
Frny aUF, 4U- - -UFE,,, 4 is graceful for all n. Pan and Lu [916] have shown that (Pa+K,,) UK
and (P, + K,,) UT, are graceful.

Barrientos [193] has shown the following graphs are graceful: Cs U K7 2p41; Ule K, n, for
2 <m; < ng; and Cpp, U U§:1 Ko, m, for 2 <m; <n;,m=0or 3 (mod 4), m > 11.

Youssef [1304] has shown that if G is harmonious then mG and G™ are harmonious for all
odd m. He asks the question of whether G is harmonious implies G'™ is harmonious when m = 0
(mod 4).

2.6 Joins of Graphs

A number of classes of graphs that are the join of graphs have been shown to be graceful or
harmonious. Acharya [12] proved that if G is a connected graceful graph, then G+ K, is graceful.
Redl [956] showed that the double cone C),+ K> is graceful for n = 3,4,5,7,8,9,11. That C,,+ Ko
is not graceful for n = 2 (mod 4) follows that Rosa’s parity condition. Redl asks what other
double cones are graceful. Reid [961] proved that P, + K; is harmonious. Sethuraman and
Selvaraju [1048] have shown that P, 4+ K3 is harmonious. They ask whether S,, + P, or P, + P,
is harmonious. Of course, wheels are of the form C), + K7 and are graceful and harmonious. In
2006 Chen [311] proved that multiple wheels nC), + K; are harmonious for all n #Z 0 mod 4.
She believes that the n Z 0 (mod 4) case is also harmonious. Chen also proved that if H has at
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least one edge, H + K; is harmonious, and n is odd, then nH + K is harmonious.

Shee [1054] has proved K, , + K; is harmonious and observed that various cases of Ky, , +
K; violate the harmonious parity condition in [484]. Liu and Zhang [812] have proved that
Ky + K3+ - -+ Ky is harmonious. Yuan and Zhu [1316] proved that K, , + K> is graceful and
harmonious. Gnanajothi [471, pp. 80-127] obtained the following: C,, + K> is harmonious when
n is odd and not harmonious when n = 2,4,6 (mod 8); S,, + K; is harmonious; and P, + K; is
harmonious. Balakrishnan and Kumar [178] have proved that the join of K, and two disjoint
copies of K is harmonious if and only if n is even. Ramirez-Alfonsin [955] has proved that if
G is graceful and |V (G)| = |E(G)| = e and either 1 or e is not a vertex label then G + K; is
graceful for all £.

Seoud and Youssef [1021] have proved: the join of any two stars is graceful and harmonious;
the join of any path and any star is graceful; and C,, + K; is harmonious for every ¢ when n
is odd. They also prove that if any edge is added to K, , the resulting graph is harmonious
if m or n is at least 2. Deng [353] has shown certain cases of C,, + K; are harmonious. Seoud
and Youssef [1018] proved: the graph obtained by appending any number of edges from the two
vertices of degree n > 2 in Kj , is not harmonious; dragons D,, ,, (i.e., Py, is appended to C,)
are not harmonious when m + n is odd; and the disjoint union of any dragon and any number
of cycles is not harmonious when the resulting graph has odd order. Youssef [1303] has shown
that if GG is a graceful graph with p vertices and g edges with p = ¢+ 1, then G+ S,, is graceful.

Sethuraman and Elumalai [1031] have proved that for every graph G with p vertices and ¢
edges the graph G+ K+ K,, is graceful when m > 2P —p—1—gq. As a corollary they deduce that
every graph is a vertex induced subgraph of a graceful graph. Balakrishnan and Sampathkumar
[179] ask for which m > 3 is the graph mKs + K, graceful for all n. Bhat-Nayak and Gokhale
[229] have proved that 2K + K, is not graceful. Youssef [1303] has shown that mKs + K, is
graceful if m = 0 or 1 (mod 4) and that mKs + K,, is not graceful if n is odd and m = 2 or 3
(mod 4). Ma [829] proved that if G is a graceful tree then, G + K, is graceful. Amutha and
Kathiresan [62] proved that the graph obtained by attaching a pendent edge to each vertex of
2K, + K, is graceful.

Wu [1265] proves that if G is a graceful graph with n edges and n + 1 vertices then the join
of G and K, and the join of G and any star are graceful. Wei and Zhang [1249] proved that for
n > 3 the disjoint union of P; + P,, and a star, the disjoint union of P, + P, and P; + P»,, and
the disjoint union of P, + K,, and a graceful graph with n edges are graceful. More technical
results on disjoint unions and joins are given in [1248],[1249], [1250],[1247], and [285].

2.7 Miscellaneous Results

It is easy to see that P2 is harmonious [481] while a proof that P? is graceful has been given
by Kang, Liang, Gao, and Yang [626]. (P¥, the kth power of P,, is the graph obtained from
P, by adding edges that join all vertices u and v with d(u,v) = k.) This latter result proved
a conjecture of Grace [481]. Seoud, Abdel Magsoud, and Sheehan [1007] proved that P2 is
harmonious and conjecture that P¥ is not harmonious when & > 3. The same conjecture was
made by Fu and Wu [434]. However, Youssef [1310] has proved that P¢ is harmonious and
PF is harmonious when k is odd. Yuan and Zhu [1316] proved that P2?* is harmonious when
1 <k < (n—1)/2. Selvaraju [1001] has shown that P2 and the graphs obtained by joining the
centers of any two stars with the end vertices of the path of length n in P3 are harmonious.
Cahit [279] proves that the graphs obtained by joining p disjoint paths of a fixed length
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k to single vertex are harmonious when p is odd and when k = 2 and p is even. Gnanajothi
[471, p. 50] has shown that the graph that consists of n copies of Cg that have exactly Py in
common is graceful if and only if n is even. For a fixed n, let v;1, vi2, v;3 and vy (1 < i < n) be
consecutive vertices of n 4-cycles. Gnanajothi [471, p. 35] also proves that the graph obtained
by joining each v;; to viy1,3 is graceful for all n and the generalized Petersen graph P(n,k)
is harmonious in all cases (see also [743]). Recall P(n,k), where n > 5 and 1 < k < n, has
vertex set {ag,a1,...,apn—1,b0,b1,...,b,—1} and edge set {a;a;41 |1 =0,1,...,n—1}U{a;b; | i =
0,1,...,n—1}U{bibjrx | i =0,1,...,n—1} where all subscripts are taken modulo n [1246]. The
standard Petersen graph is P(5,2).) Redl [956] has used a constraint programming approach
to show that P(n, k) is graceful for n = 5,6,7,8,9, and 10. In [1202] and [1204] (see [1205] for
a correction) Vietri proved that P(8t,3) and P(8t + 4, 3) are graceful for all . She conjectures
that the graphs P(8t,3) have a stronger form a graceful labeling called an a-labeling (see §3.1).
The gracefulness of the generalized Petersen graphs is an open problem. A conjecture in the
graph theory book by Chartrand and Lesniak [304, p. 266] that graceful graphs with arbitrarily
large chromatic numbers do not exist was shown to be false by Acharya, Rao, and Arumugam
[30] (see also Mahmoody [841]).

Sethuraman and Selvaraju [1042] define a graph H to be a supersubdivision of a graph G,
if every edge uv of G is replaced by Kj,, (m may vary for each edge) by identifying v and v
with the two vertices in K3 ,, that form the partite set with exactly two members. Sethuraman
and Selvaraju prove that every supersubdivision of a path is graceful and every cycle has some
supersubdivision that is graceful. They conjecture that every supersubdivision of a star is
graceful and that paths and stars are the only graphs for which every supersubdivision is graceful.
Barrientos [195] disproved this latter conjecture by proving that every supersubdivision of a y-
trees is graceful (recall a y-tree is obtained from a path by appending an edge to a vertex of
a path adjacent to an end point). Barrientos asks if paths and y-trees are the only graphs for
which every supersubdivision is graceful. This seems unlikely to be the case. The conjecture
that every supersubdivision of a star is graceful was proved by Kathiresan and Amutha [634]. In
[1046] Sethuraman and Selvaraju prove that every connected graph has some supersubdivision
that is graceful. They pose the question as to whether this result is valid for disconnected
graphs. They also ask if there is any graph other than K5 ,, that can be used to replace an edge
of a connected graph to obtain a supersubdivision that is graceful. In [1045] Sethuraman and
Selvaraju present an algorithm that permits one to start with any non-trivial connected graph
and successively form supersubdivisions that have a strong form of graceful labeling called an
a-labeling (see §3.1 for the definition).

Kathiresan [631] uses the notation P, to denote the graph obtained by identifying the end
points of b internally disjoint paths each of length a. He conjectures that P, is graceful except
when a is odd and b = 2 (mod 4 and proves the conjecture for the case that a is even and b is
odd. Liang and Zuo [789] proved that the graph P, is graceful when both a and b are even.
Sekar [1000] has shown that P, is graceful when a # 4r +1, r > 1,0 = 4m, and m > r. Yang
(see [1289]) proved that P, is graceful when a = 3,5,7, and 9 and b is odd and when a = 2,4, 6,
and 8 and b is even (see [1289]). Yang, Rong, and Xu [1289] proved that P, is graceful when
a = 10,12, and 14 and b is even. Kathiresan also shows that the graph obtained by identifying
a vertex of K,, with any noncenter vertex of the star with 2"~1 — n(n — 1)/2 edges is graceful.

For a family of graphs Gy (u1,u2), Go(u2,u3), ..., Gp(Um, Ums1) where u; and u;4q are ver-
tices in G; Cheng, Yao, Chen, and Zhang [320] define a graph-block chain H,, as the graph
obtained by identifying u;1q of G; with w;11 of G;j41 for i = 1,2,...,m. They denote this graph
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by Hy, = G1(ui,u2) ® Ga(ug,us) ® -+ @ G (U, um+1). The case where each G; has the form
P,, p, they call a path-block chain. The vertex u; is called the initial vertezx of H,,. They define a
generalized spider S}, as a graph obtained by starting with an initial vertex ug and m path-block
graphs and join ug with each initial vertex of each of the path-block graphs. Similarly, they
define a generalized caterpillar T, as a graph obtained by starting with m path-block chains
H{,Hs, ..., H, and a caterpillar T" with m isolated vertices v, vo, ..., v, and join each v; with
the initial vertex of each H;. They prove several classes of path-block chains, generalized spiders,
and generalized caterpillars are graceful.

The graph T,, with 3n vertices and 6n — 3 edges is defined as follows. Start with a trian-
gle T7 with vertices vy 1,v12 and vy 3. Then T;y; consists of T; together with three new ver-
tices Vi+1,15 Vi+1,2, Vi+1,3 and edges Vi4+1,1V4,2, Vi41,1V4,3, Vi+1,2V4 1, Vi41,2V4,3, Vi+1,3Vi 1, Vi41,3V5,2.
Gnanajothi [471] proved that T, is graceful if and only if n is odd. Sekar [1000] proved T, is
graceful when n is odd and 7;, with a pendant edge attached to the starting triangle is graceful
when n is even.

For a graph G, the splitting graph of G, S'(G), is obtained from G by adding for each vertex
v of G a new vertex v! so that v! is adjacent to every vertex that is adjacent to v. Sekar [1000]
has shown that S'(P,) is graceful for all n and S'(C,,) is graceful for n = 0,1 (mod 4).

The total graph T'(P,) has vertex set V(P,) U E(P,) with two vertices adjacent whenever
they are neighbors in P,. Balakrishnan, Selvam, and Yegnanarayanan [180] have proved that
T(P,) is harmonious.

For any graph G with vertices vy, ..., v, and a vector m = (myq,...,m,) of positive integers
the corresponding replicated graph, Ry (G), of G is defined as follows. For each v; form a stable
set S; consisting of m; new vertices i = 1,2,...,n (a stable set S consists of a set of vertices such

that there is not an edge v;v; for all pairs v, v; in S); two stable sets .S;, Sj,i # j, form a complete
bipartite graph if each v;v; is an edge in G and otherwise there are no edges between S; and S;.
Ramirez-Alfonsin [955] has proved that Ry, (P,) is graceful for all m and all n > 1 (see §3.2 for
a stronger result) and that Ry, 1..1)(Can), Re21,..1)(Crn) (n > 8) and, Ria91,...1)(Can) (n > 12)
are graceful.

For any permutation f on 1,...,n, the f-permutation graph on a graph G, P(G, f), consists
of two disjoint copies of G, G1 and G, each of which has vertices labeled vy, vo,...,v, with n
edges obtained by joining each v; in G1 to vy(;) in Ga. In 1983 Lee (see [779]) conjectured that for
all n > 1 and all permutations on 1,2,...,n, the permutation graph P(P,, f) is graceful. Lee,
Wang, and Kiang [779] proved that P(Pyy, f) is graceful when f = (12)(34) --- (k,k+1)--- (2k—
1,2k). They conjectured that if G is a graceful nonbipartite graph with n vertices, then for any
permutation f on 1,2,...,n, the permutation graph P(G, f) is graceful. Fan and Liang [404]
have shown that if f is a permutation in S,, where n > 2(m — 1) + 2 then the permutation
graph P(P,, f) is graceful if the disjoint cycle form of f is 2_:10(m + 2k, m + 2k + 1), and if
n > 2(m — 1) 4+ 4l the permutation graph P(P,, f) is graceful the disjoint cycle form of f is

Z;IO(m +4k,m+4k+2)(m+4k+1, m+4k+ 3). Some families of graceful permutation graphs
are given in [711], [786], and [503].

Gnanajothi [471, p. 51] calls a graph G bigraceful if both G and its line graph are graceful.
She shows the following are bigraceful: P,,; P, x P,; C, if and only if n = 0,3 (mod 4); Sy;
K, if and only if n < 3; and B,, if and only if n = 3 (mod 4). She also shows that K, , is not
bigraceful when n = 3 (mod 4). (Gangopadhyay and Hebbare [447] used the term “bigraceful”
to mean a bipartite graceful graph.) Murugan and Arumugan [887] have shown that graphs
obtained from C}j by attaching two disjoint paths of equal length to two adjacent vertices are
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bigraceful.

Several well-known isolated graphs have been examined. Graceful labelings have been found
for the Petersen graph [428], the cube [453], the icosahedron and the dodecahedron. Graham
and Sloane [484] showed that all of these except the cube are harmonious. Winters [1260)]
verified that the Grétzsch graph (see [251, p. 118]), the Heawood graph (see [251, p. 236]),
and the Herschel graph (see [251, p. 53]) are graceful. Graham and Sloane [484] determined all
harmonious graphs with at most five vertices. Seoud and Youssef [1020] did the same for graphs
with six vertices.

A number of authors have investigated the gracefulness of the directed graphs obtained from
copies of directed cycles C,, that have a vertex in common or have an edge in common. A
digraph D(V, E) is said to be graceful if there exists an injection f:V(G) — {0,1,...,|E|} such
that the induced function f: E(G) — {1,2,...,|E|} that is defined by f'(u,v) = (f(v) — f(u))
(mod |E| + 1) for every directed edge wv is a bijection. The notations n - Cy, and n — C,, are
used to denote the digraphs obtained from n copies of ém with exactly one point in common
and the digraphs obtained from n copies of C,, with exactly one edge in common. Du and Sun
[374] proved that a necessary condition for n — C,, to be graceful is that mn is even and that
n-C, is graceful when m is even. They conjectured that n - C,, is graceful for any odd m and
even n. In a series of papers it was proved that n — C,, is graceful for m = 5,7,9,...,23 and
n even. Finally, Jirimutu, Xu, Feng, and Bao [618] proved the conjecture of Du and Sun [374]
that n - 5m is graceful for any odd m and even n. Xu, Jirimutu, Wang, and Min [1276] prove
that n — Cp, is graceful for m = 4,6,8,10 and even n.

Marr [844] and [843] summarizes previously known results on graceful directed graphs and
presents some new results on directed paths, stars, wheels, and umbrellas.

In 2009 Zak [1319] defined the following generalization of harmonious labelings. For a graph
G(V,E) and a positive integer ¢ > |E| a function h from V(G) to Z; (the additive group of
integers modulo t) is called a t-harmonious labeling of G if h is injective for ¢t > |V| or surjective
for t < |V|, and h(u) + h(v) # h(z) + h(y) for all distinct edges uv and zy. The smallest such
t for which G has a t-harmonious labeling is called the harmonious order of G . Obviously, a
graph G(V, E)with |E| > |V| is harmonious if and only if the harmonious order of G is |E|. Zak
determines the harmonious order of complete graphs, complete bipartite graphs, even cycles,
some cases of Pff, and 2nK3. He presents some results about the harmonious order of the
Cartesian products of graphs, the disjoint union of copies of a given graph, and gives an upper
bound for the harmonious order of trees. He conjectures that the harmonious order of a tree of
order n is n + o(n).

For a graph with e edges Vietri [1205] generalizes the notion of a graceful labeling by allowing
the vertex labels to be real numbers in the interval [0, ¢]. For a simple graph G(V, E) she defines
an injective map 7 from V to [0, e| to be a real-graceful labeling of G provided that

Z 97 (u ) 4 2@ =(W) — getl _g9—e

where the sum is taken over all edges uv. In the case that the labels are integers, she shows that
a real-graceful labeling is equivalent to a graceful labeling. In contrast to the case for graceful
labelings, she shows that the cycles Cy;11 and Cyyo have real-graceful labelings. She also shows
that the non-graceful graphs K5, K¢ and K7 have real-graceful labelings. With one exception,
her real-graceful labels are integers.
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2.8 Summary

The results and conjectures discussed above are summarized in the tables following. The letter
G after a class of graphs indicates that the graphs in that class are known to be graceful; a
question mark indicates that the gracefulness of the graphs in the class is an open problem:;
we put a question mark after a “G” if the graphs have been conjectured to be graceful. The
analogous notation with the letter H is used to indicate the status of the graphs with regard
to being harmonious. The tables impart at a glimpse what has been done and what needs to
be done to close out a particular class of graphs. Of course, there is an unlimited number of
graphs one could consider. One wishes for some general results that would handle several broad
classes at once but the experience of many people suggests that this is unlikely to occur soon.
The Graceful Tree Conjecture alone has withstood the efforts of scores of people over the past
four decades. Analogous sweeping conjectures are probably true but appear hopelessly difficult
to prove.

THE ELECTRONIC JOURNAL OF COMBINATORICS 18 (2011), #DS6 24



Table 1: Summary of Graceful Results

Graph Graceful
trees G if < 35 vertices [405]
G if symmetrical [221]
G if at most 4 end-vertices [564]
G? Ringel-Kotzig
G caterpillars [973]
G? lobsters [217]
cycles Cp, G iff n =0,3 (mod 4) [973]
wheels W, G [428], [554]
helms (see §2.2) G [79]
webs (see §2.2) G [626]
gears (see §2.2) G [832]

cycles with Pg-chord (see §2.2)

C,, with k consecutive chords (see §2.2)
unicyclic graphs

Py

cV (see §2.2)

G [352], [831], [661], [943]

Gif k=2,3,n— 3 [651], [658]

G?iff G # Cp,n=1,2 (mod 4) [1185]
G if k = 2 [626]

n=3Giff t=0,1 (mod 4)

[218], [220]

G?ifnt=0,3 (mod 4) [652]

G if n = 6,t even [652]
Gifn=4,¢>1 [1055]
Gifn=>5t>1[1287]
Gifn="7and t=0,3 (mod 4) [1293]
Gifn=9and t=0,3 (mod 4) [1294]
Gift=2n#1 (mod 4) [947], [249]
G if n =11 [1278]
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Table 1: Summary of Graceful Results continued

Graph

Graceful

triangular snakes (see §2.2)
Kj-snakes (see §2.2)
quadrilateral snakes (see §2.2)
crowns C,, ® K;

Cn O P,

grids P, X P,

prisms C,,, X P,

Km,n © Ky

torus grids C,, x C,

vertex-deleted C), X P,
edge-deleted C), x P,
Mobius ladders M, (see §2.3)

stacked books Sy, x P, (see §2.3)

n-cube Ky x Ko X --- x Ky

G iff number of blocks = 0,1 (mod 4) [883]

?

G [471], [947]

G [428]

@ [1000]

G [24]

G if n = 2 [431], [1290]

G if m even [565]

G if m odd and 3 <n <12 [565]

Q if m = 3 [1089)]

G if m = 6 see [1292]

G if m =2 (mod 4) and n = 3 (mod 4) [1292]

G if (m,n) = (4,2),(4,3),(4,4),(4,5),(5,2)[1113]
not G if (’I’)’L, ’I’L) = (37 3)7 (67 2)7 (77 2)7 (87 2)7 (97 2)(107 2) [1113]
not G? for (m,2) with m > 5 [1113]

G [613]

G if m =0 (mod 4), n even [621]
not G if m,n odd (parity condition)

G if n = 2 [446]
G if n = 2 [446]
G [441]

n =2, Giff m # 3 (mod 4) [839], [351], [445]
G if m even [445]
G [671]
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Table 1: Summary of Graceful Results continued

Graph Graceful

Ky x P, G ifn=2,3,4,5 [927]
K, G iff n <4 [475], [1088]
Kin G [973], [475]

Kimmn G [73]

Ki1,mn G [471]

windmills K™ )(n > 3) (see §2.4)

B(n,r,m) r > 1 (see §2.4)

mkK,, (see §2.5)

CsUP,

C,UC,

G if n = 4,m < 1000 [565],[1],[1239],[461]
G?if n=4,m >4 [217]

not G if n =4,m = 2,3 [217]

not G if (m,n) = (2,5) [220]

not G if n > 5 [658]

Qif (n,7) = (3,2), (4,3) [653], (4,2) [351]
G (n,r,m) = (5,2,2) [1113]
not G for (n,2,2) for n > 5 [219], [1113]

Giff m=1,n <4 [675)]

? Giff s+n > 7 [432)

G if s = 3 [430], s = 4 [432], s = 5 [650]
Gif s >4,n = 2 [449]

G if s = 2n + 1 [430]

G if s = 2k,n >k + 1 [1009]

Giff p+¢=0,3 (mod 4) [11]
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Table 1: Summary of Graceful Results continued

Graph

Graceful

Ch UKy,

K; UKy,
U§:1 K n,

Cm U Uf:l Kmimi

G+ K,

double cones C,, + Ko

t-point suspension C,, + K;

P2 (see §2.7)

Petersen P(n, k) (see §2.7)

forn > 8 G iff n = 0,3 (mod 4) [1306]
G Cﬁ X K172n+1 [193]

G Cy x Ky p iff m,n > 2 [1019]

G Cy X Ky iff (m,n) # (1,1)[1019]
G C7 x Kpp [1019]

G Cg x Ky, [1019]

G [193]
G2<m; <n [193]

G 2 <m; < n;,
m =0 or 3 (mod 4), m > 11 [193]

G for connected G

G forn =3,4,5,7,8,9,11,12
not G for n = 2 (mod 4)

G if n =0 or 3 (mod 12) [230]

not G if ¢ is even and n = 2,6,10 (mod 12)
Gifn=4,711 or 19 [230]
Gifn=>5o0r9 and ¢t =2 [230]

G [710]

G for n =5,6,7,8,9,10 [956], (n, k) = (8¢, 3)[1202]
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Table 2: Summary of Harmonious Results

Graph Harmonious
trees H if < 26 vertices [51]
H? [484]
H caterpillars [484]
? lobsters
cycles C, Hiff n =1,3 (mod 4) [484]
wheels W, H [484]
helms (see §2.2) H [471], [809]

webs (see §2.2)

gears (see §2.2)

cycles with Pg-chord (see §2.2)

C,, with k consecutive chords (see §2.2)
unicyclic graphs

Py

ct (see §2.2)
triangular snakes (see §2.2)
K -snakes (see §2.2)

quadrilateral snakes (see §2.2)

crowns C,, ® K3

grids P, X P,

H if cycle is odd
H [311]

?

?
Hif k=2 [481], k = 3 [1007]
H if k is even and k/2 < (n —1)/2 [1316]

n =3 Hiff t # 2 (mod 4) [484]
Hif n=4, t > 1[1055]

H if number of blocks is odd [1275]
not H if number of blocks = 2
(mod 4) [1275]

H [482]

?

H [481], [811]

H iff (m,n) # (2,2) [621]
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Table 2: Summary of Harmonious Results continued

Graph Harmonious

prisms Cp, x P, Hif n = 2,m # 4 [446]
H if n odd [484]
Hif m =4 and n > 3 [621]

torus grids Cy, x Ch, Hif m=4,n>1[621]
not H if m # 0 (mod 4) and n odd [621]

vertex-deleted C), x P, H if n = 2 [446]
edge-deleted Cy, x P, H if n = 2 [446]
Mébius ladders M, (see §2.3) H iff n # 3 [441]

stacked books Sy, x P, (see §2.3) | n =2, H if m even [480], [961]
not Hm =3 (mod 4), n =2,
(parity condition)

Hif m =1 (mod 4), n =2 [471]

n-cube Ky x Ko x --- x Ko H if and only if n > 4 [571]
Ky x P, H [961]

K, H iff < 4 [484]

Kom Hiff m or n =1 [484]
Kimn H [73]

Kiimn H [471]

windmills K™ (n > 3) (see §2.4) | Hif n =4 [559]

m =2, H? iff n = 4 [484]

not H if m = 2,n odd or 6 [484]
not H for some cases m = 3 [799]
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Table 2: Summary of Harmonious Results continued

Graph

Harmonious

B(n,r,m) r > 1 (see §2.4)

mK, (see §2.5)

nG

an

CsUP,

fans F,, = P, + K3

nCyp, + K1 n # 0 mod 4

double fans P, + Ko

t-point suspension P, + K; of P,
Sm + K

t-point suspension C,, + K; of C),

P2 (see §2.7)

n

Petersen P(n, k) (see §2.7)

(n,7) = (3,2),(4,3) [1016]

Hn =3, m odd [812]
not H for n odd, m = 2 (mod 4) [812]

H when G is harmonious and n odd [1304]
H when G is harmonious and n odd [1304]
?

H [484]

H [311]

H [484]

H [961]

H [471], [205]

H if n odd and ¢ = 2 [961], [471]
not Hif n=2,4,6 (mod 8) and ¢ = 2 [471]

H [481], [811]

H [471], [743]
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3 Variations of Graceful Labelings

3.1 «a-labelings

In 1966 Rosa [973] defined an a-labeling (or a-valuation) as a graceful labeling with the additional
property that there exists an integer k so that for each edge zy either f(x) < k < f(y) or
fly) <k < f(z). (Other names for such labelings are balanced, interlaced, and strongly graceful.)
It follows that such a k must be the smaller of the two vertex labels that yield the edge labeled
1. Also, a graph with an a-labeling is necessarily bipartite and therefore can not contain a cycle
of odd length. Wu [1268] has shown that a necessary condition for a bipartite graph with n
edges and degree sequence dy,ds, ..., d, to have an a-labeling is that the ged(dy,ds,. .., dy,n)
divides n(n —1)/2.

A common theme in graph labeling papers is to build up graphs that have desired labelings
from pieces with particular properties. In these situations, starting with a graph that possesses
an a-labeling is a typical approach. (See [295], [481], [310], and [621].) Moreover, Jungreis and
Reid [621] showed how sequential labelings of graphs (see Section 4.1) can often be obtained by
modifying a-labelings of the graphs.

Graphs with a-labelings have proved to be useful in the development of the theory of graph
decompositions. Rosa [973], for instance, has shown that if G is a graph with ¢ edges and has an
a-labeling, then for every natural number p, the complete graph Ks,,41 can be decomposed into
copies of GG in such a way that the automorphism group of the decomposition itself contains the
cyclic group of order p. In the same vein El-Zanati and Vanden Eynden [385] proved that if G
has ¢ edges and admits an a-labeling then K, 4, can be partitioned into subgraphs isomorphic
to G for all positive integers m and n. Although a proof of Ringel’s conjecture that every tree
has a graceful labeling has withstood many attempts, examples of trees that do not have a-
labelings are easy to construct (see [973]). Kotzig [669] has shown however that almost all trees
have a-labelings.

As to which graphs have a-labelings, Rosa [973] observed that the n-cycle has an a-labeling
if and only if n = 0 (mod 4) whereas P,, always has an a-labeling. Other familiar graphs that
have a-labelings include caterpillars [973], the n-cube [668], Mobius ladders M,, when n is odd
(see §2.3) for the definition) [923], Bap+1 (i-e., books with 4n + 1 pages) [445], Cop, U Cay, and
Cim UCy U Cyyy, for all m > 1 [670], Clyn U Cyy U Clyy, for all (m, n) 75 1, 1) [399], P, xQ, [839],
K1,2k X Qn [839], Cam U Cymn U Ca, U Ca, [695], Cym U Cypgo U Cypio, Coyy U Cyyy U Cyye when
m+mn <71 [11], Cypy UCh UCy UCys when m > n+r+s [7], Cyp UCyp U Cypyo UCygyo when
m>n+r+s+1[7, (m+1)241)Cy for all m [1326], k2Cy for all k [1326], and (k% + k)Cy for
all k£ [1326]. Abrham and Kotzig [9] have shown that kC4 has an a-labeling for 1 < k£ < 10 and
that if £C4 has an a-labeling then so does (4k + 1)Cy, (5k + 1)C4 and (9% + 1)Cy. Eshghi [394]
proved that 5Cy; has an a-labeling for all k. In [399] Eshghi and Carter show several families
of graphs of the form Cyy,, U Cyp, U - - U C4y, have a-labelings. Pei-Shan Lee [703] proved that
Cs X Poiy1 and gear graphs have a-labelings. He raises the question of whether Cup,y9 X Poryq
has an a-labeling for all m.

Figueroa-Centeno, Ichishima, and Muntaner-Batle [415] have shown that if m = 0 (mod 4)
then the one-point union of 2, 3, or 4 copies of C), admits an a-labeling, and if m = 2 (mod 4)
then the one-point union of 2 or 4 copies of C,,, admits an a-labeling. They conjecture that the
one-point union of n copies of Cy, admits an a-labeling if and only if mn = 0 (mod 4).

In his 2001 Ph. D. thesis Selvaraju [1001] investigated the one-point union of complete bipar-
tite graphs. He proves that the one-point unions of the following forms have an a-labeling:
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Kpn, and Ky poy Kigng, Kmgne, and Ky, p, where myp < mo < mg and ny < ng <
n3; Kmyn, Kmon, and Ky, , where m; < mg < ms < 2n.

Zhile [1326] uses C,,(n) to denote the connected graph all of whose blocks are C,, and whose
block-cutpoint-graph is a path. He proves that for all positive integers m and n, Cjy,(n) has
an a-labeling but C,(n) does not have an a-labeling when m is odd.

Abrham and Kotzig [11] have proved that C,, U C,, has an a-labeling if and only if both m
and n are even and m +n = 0 (mod 4). Kotzig [670] has also shown that Cy U Cy U Cy does
not have an a-labeling. He asked if n = 3 is the only integer such that the disjoint union of n
copies of Cy does not have an a-labeling. This was confirmed by Abrham and Kotzig in [10].
Eshghi [393] proved that every 2-regular bipartite graph with 3 components has an a-labeling
if and only if the number of edges is a multiple of four except for Cy U Cy U Cy. In [396] Eshghi
gives more results on the existence of a-labelings for various families of disjoint union of cycles.

Jungreis and Reid [621] investigated the existence of a-labelings for graphs of the form
P,, x P,,Cy, x P,, and C), x C), (see also [444]). Of course, the cases involving C,,, with m odd
are not bipartite, so there is no a-labeling. The only unresolved cases among these three families
are Cymt2 X Popt1 and Cyppo X Cypia. All other cases result in a-labelings. Balakrishman [174]
uses the notation @, (G) to denote the graph P, X Py x -+ X P, X G where P, occurs n — 1
times. Snevily [1116] has shown that the graphs @,,(Cyy) and the cycles Cy,, with the path
P,, adjoined at each vertex have a-labelings. He [1117] also has shown that compositions of
the form G[K,] (see §2.3 for the definition) have an a-labeling whenever G does (see §2.3 for
the definition of composition). Balakrishman and Kumar [177] have shown that all graphs of
the form @, (G) where G is K33, K44, or P, have an a-labeling. Balakrishman [174] poses the
following two problems. For which graphs G does @,,(G) have an a-labeling? For which graphs
G does Q,(G) have a graceful labeling?

Rosa [973] has shown that K, , has an o-labeling (see also [190]). Barrientos [190] has
shown that for n even the graph obtained from the wheel W,, by attaching a pendant edge at
each vertex has an a-labeling. In [197] Barrientos shows how to construct graceful graphs that
are formed from the one-point union of a tree that has an a-labeling, P, and the cycle C,. In
some cases, P» is not needed. Qian [947] has proved that quadrilateral snakes have a-labelings.
Yu, Lee, and Chin [1314] showed that Qs3-and Qs-snakes have a-labelings. Fu and Wu [434]
showed that if T is a tree that has an a-labeling with partite sets V; and Vs then the graph
obtained from 7' by joining new vertices wi,ws, ..., wy to every vertex of V] has an a-labeling.
Similarly, they prove that the graph obtained from 7' by joining new vertices wi, wo, ..., ws to
the vertices of Vi and new vertices uy,us,...,us to every vertex of V5 has an a-labeling. They
also prove that if one of the new vertices of either of these two graphs is replaced by a star and
every vertex of the star is joined to the vertices of Vi or the vertices of both V; and V5, the
resulting graphs have a-labelings. Fu and Wu [434] further show that if 7" is a tree with an
a-labeling and the sizes of the two partite sets of 1" differ at by at most 1, then T x P, has an
a-labeling.

Lee and Liu [718] investigated the mirror graph M (m,n) of Ky, ,, (see §2.3 for the definition)
for a-labelings. They proved: M (m,n) has an a-labeling when n is odd or m is even; M(1,n)
has an a-labeling when n = 0 (mod 4); M(m,n) does not have an a-labeling when m is odd
and n = 2 (mod 4), or when m = 3 (mod 4) and n =4 (mod 8).

Barrientos [191] defines a chain graph as one with blocks Bi, Bo, ..., B, such that for every
i, B; and B;y; have a common vertex in such a way that the block-cutpoint graph is a path.
He shows that if By, Bs, ..., By, are blocks that have a-labelings then there exists a chain graph
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G with blocks By, Bo, ..., B,, that has an «a-labeling. He also shows that if By, Bs,..., By, are
complete bipartite graphs, then any chain graph G obtained by concatenation of these blocks
has an a-labeling.

Wu ([1267] and [1269]) has given a number of methods for constructing larger graceful
graphs from graceful graphs. Let G, G, ..., G) be disjoint connected graphs. Let w; be in G;
for 1 < i < p. Let w be a new vertex not in any G;. Form a new graph &,,(G1,Ga,...,G,)
by adjoining to the graph G; U G2 U --- U Gy, the edges wwq,wws, ..., wwy. In the case where
each of G1,Go,...,G) is isomorphic to a graph G that has an a-labeling and each w; is the
isomorphic image of the same vertex in G;, Wu shows that the resulting graph is graceful.
If f is an a-labeling of a graph, the integer k£ with the property that for any edge uv either
flu) <k < f(v) or f(v) <k < f(u) is called the boundary value or critical number of f. Wu
[1267] has also shown that if G1, Gy, ..., G, are graphs of the same order and have a-labelings
where the labelings for each pair of graphs G; and G)—;41 have the same boundary value for
1 <i < n/2, then @,(G1,Ga,...,Gp) is graceful. In [1265] Wu proves that if G has n edges
and n + 1 vertices and G has an a-labeling with boundary value A, where |n — 2\ — 1| < 1, then
G x P, is graceful for all m.

Ajitha, Arumugan, and Germina [56] use a construction of Koh, Tan, and Rogers [660] to
create trees with a-labelings from smaller trees with graceful labelings. These in turn allows
them to generate large classes of trees that have a type of called edge-antimagic labelings (see
§6.1).

Mavonicolas and Michael [849] say that trees (14,601, w1) and (T%, 62, we) with roots wy and
we and |V (T1)| = |V (T»)| are gracefully consistent if either they are identical or they have a-
labelings with the same boundary value and 61 (w;) = 02(w3). They use this concept to show
that a number of known constructions of new graceful trees using several identical copies of a
given graceful rooted tree can be extended to the case where the copies are replaced by a set
of pairwise gracefully consistent trees. In particular, let (T',0,w) and (T, 0y, wo) be gracefully
labeled trees rooted at w and wg respectively. They show that the following four constructions
are adaptable to the case when a set of copies of (T,0,w) is replaced by a set of pairwise
gracefully consistent trees. When 6(w) = |E(T)| the garland construction due to Koh, Rogers,
and Tan [654] gracefully labels the tree consisting of h copies of (T', w) with their roots connected
to a new vertex r. In the case when 6(w) = |E(T')| and whenever uw € E(T) and 6(u) # 0,
then vw € E(T) where 0(u) + 6(v) = |E(T)|, the attachment construction of Koh, Tan and
Rogers [660] gracefully labels the tree formed by identifying the roots of h copies of (T, w). The
A-construction given by Koh, Tan and Rogers [660] gracefully labels the tree formed by merging
each vertex of (Tp, wg) with the root of a distinct copy of (T, w). When 0y(wg) = |E(Tp)|, let
N Dbe the set of neighbors of wy and let x be the vertex of T at even distance from w with
O(x) = 0 or 6(z) = |E(T)|. Then the A j-construction Burzio and Ferrarese [269] gracefully
labels the tree formed by merging each non-root vertex of T with the root of a distinct copy of
(T, w) so that for each v € N the edge vwy is replaced with a new edge zwy (where z is in the
corresponding copy of T').

Snevily [1117] says that a graph G eventually has an a-labeling provided that there is a graph
H, called a host of GG, which has an a-labeling and that the edge set of H can be partitioned
into subgraphs isomorphic to G. He defines the a-labeling number of G to be G, = min{t :
there is a host H of G with |[E(H)| = t|G|}. Snevily proved that even cycles have a-labeling
number at most 2 and he conjectured that every bipartite graph has an a-labeling number.
This conjecture was proved by El-Zanati, Fu, and Shiue [383]. There are no known examples
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of a graph G with G, > 2. In [1117] Snevily conjectured that the a-labeling number for a tree
with n edges is at most n. Shiue and Fu [1082] proved that a-labeling number for a tree with
n edges and radius r is at most [r/2]n. They also prove that a tree with n edges and radius r
decomposes K; for some ¢t < (r + 1)n? + 1.

Given two bipartite graphs G; and G with partite sets H; and Ly and Hs and Lo, re-
spectively, Snevily [1116] defines their weak tensor product G1®G2 as the bipartite graph with
vertex set (Hl X Hoy, L1 X Lg) and with edge (hl,hg)(ll,lg) if hily € E(Gl) and hsly € E(Gg)
He proves that if G; and G5 have a-labelings then so does 01®G2. This result considerably
enlarges the class of graphs known to have a-labelings.

The sequential join of graphs G1,Go,..., G, is formed from Gy UGy U --- U G,, by adding
edges joining each vertex of G; with each vertex of G;11 for 1 <i < n — 1. Lee and Wang [767]
have shown that for all n > 2 and any positive integers ai,as,...,a, the sequential join of the
graphs K, ,Ka,,- .., K,, has an a-labeling.

In [442] Gallian and Ropp conjectured that every graph obtained by adding a single pendant
edge to one or more vertices of a cycle is graceful. Qian [947] proved this conjecture and in the
case that the cycle is even he shows the graphs have an a-labeling. He further proves that for n
even any graph obtained from an n-cycle by adding one or more pendant edges at some vertices
has an a-labeling as long as at least one vertex has degree 3 and one vertex has degree 2.

For any tree T(V, E) whose vertices are properly 2-colored Rosa and Siran [976] define a
bipartite labeling of T as a bijection f : V — {0,1,2,...,|E|} for which there is a k such that
whenever f(u) < k < f(v), then u and v have different colors. They define the a-size of a tree
T as the maximum number of distinct values of the induced edge labels |f(u) — f(v)|,uv € E,
taken over all bipartite labelings f of T'. They prove that the a-size of any tree with n edges is at
least 5(n + 1)/7 and that there exist trees whose a-size is at most (5n +9)/6. They conjectured
that minimum of the a-sizes over all trees with n edges is asymptotically 5n/6. This conjecture
has been proved for trees of maximum degree 3 by Bonnington and Siran [270]. Heinrich and
Hell [547] defined the gracesize of a graph G with n vertices as the maximum, over all bijections
f:V(G) — {1,2,...,n}, of the number of distinct values |f(u) — f(v)| over all edges uv of G.
So, from Rosa and Sira’s result, the gracesize of any tree with n edges is at least 5(n -+ 1)/7.

In [446] Gallian weakened the condition for an a-labeling somewhat by defining a weakly
a-labeling as a graceful labeling for which there is an integer k so that for each edge zy either
f(@) <k < f(y) or f(y) < k < f(x). Unlike a-labelings, this condition allows the graph to
have an odd cycle, but still places a severe restriction on the structure of the graph; namely,
that the vertex with the label k£ must be on every odd cycle. Gallian, Prout, and Winters [446]
showed that the prisms C,, x P, with a vertex deleted have a-labelings. The same paper reveals
that C,, x P, with an edge deleted from a cycle has an a-labeling when n is even and a weakly
a-labeling when n > 3.

A special case of a-labeling called strongly graceful was introduced by Maheo [839] in 1980.
A graceful labeling f of a graph G is called strongly graceful if G is bipartite with two partite
sets A and B of the same order s, the number of edges is 2t + s, there is an integer k with
t—s<k<t+s—1suchthatifa € A, f(a) < k, and if b € B, f(b) > k, and there is an
involution 7 that is an automorphism of G such that: 7 exchanges A and B and the s edges
am(a) where a € A have as labels the integers between t + 1 and ¢ 4+ s. Maheo’s main result is
that if G is strongly graceful then so is G X @,,. In particular, she proved that (P, x @) x Ko,
Boyy,, and By, x @, have strongly graceful labelings.

in 1999 Broersma and Hoede [255] conjectures that every tree containing a perfect matching
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is strongly graceful. Yao, Cheng, Yao, and Zhao [1296] proved that this conjecture is true for
every tree with diameter at most 5 and provided a method for constructing strongly graceful
trees.

El-Zanati and Vanden Eynden [386] call a strongly graceful labeling a strong a-labeling. They
show that if G has a strong a-labeling, then G x P, has an a-labeling. They show that K, o x Ko
has a strong a-labeling and that K,, 2 x P, has an a-labeling. They also show that if G is a
bipartite graph with one more vertex than the number of edges, and if G has an a-labeling such
that the cardinalities of the sets of the corresponding bipartition of the vertices differ by at most
1, then G x K3 has a strong a-labeling and G x P, has an a-labeling. El-Zanati and Vanden
Eynden [386] also note that K33 x K3, K34 x Ko, K44 X Ky, and Cy, x K3 all have strong
a-labelings. El-Zanati and Vanden Eynden proved that K,, 2 x @), has a strong a-labeling and
that K, 2 X P, has an a-labeling for all n. They also prove that if G’ is a connected bipartite
graph with partite sets of odd order such that in each partite set each vertex has the same
degree, then G' x Ky does not have a strong a-labeling. As a corollary they have that K, , X Ko
does not have a strong a-labeling when m and n are odd.

An o-labeling f of a graph G is called free by El-Zanati and Vanden Eynden in [387] if the
critical number k (in the definition of a-labeling) is greater than 2 and if neither 1 nor k — 1 is
used in the labeling. Their main result is that the union of graphs with free a-labelings has an
a-labeling. In particular, they show that K,, ,, m > 1, n > 2, has a free a-labeling. They also
show that @, n >3, and K, 2 X @, m > 1, n > 1, have free a-labelings. El-Zanati [personal
communication]| has shown that the Heawood graph has a free a-labeling.

For connected bipartite graphs Grannell, Griggs, and Holroyd [485] introduced a labeling
that lies between a-labelings and graceful labelings. They call a vertex labeling f of a bipartite
graph G with ¢ edges and partite sets D and U gracious if f is a bijection from the vertex set of
G to {0,1,...,q} such that the set of edge labels induced by f(u) — f(v) for every edge uv with
ueUandv e Dis {1,2,...,q}. Thus a gracious labeling of G with partite sets D and U is a
graceful labeling in which every vertex in D has a label lower than every adjacent vertex. They
verified by computer that every tree of size up to 20 has a gracious labeling. This led them to
conjecture that every tree has a gracious labeling. For any k& > 1 and any tree T" Grannell et al.
say that T has a gracious k-labeling if the vertices of 1" can be partitioned into sets D and U in
such a way that there is a function f from the verticies of G to the integers modulo k such that
the edge labels induced by f(u) — f(v) where w € U and v € D have the following properties:
the number of edges labeled with 0 is one less than the number of verticies labeled with 0 and for
each nonzero integer ¢ the number of edges labeled with t is the same as the number of verticies
labeled with t. They prove that every nontrivial tree has a k-gracious labeling for £ = 2, 3,4,
and 5 and that caterpillars are k-gracious for all k > 2.

The same labeling that is called gracious by Grannell, Griggs, and Holroyd is called a near
a-labeling by El-Zanati, Kenig, and Vanden Eynden [384]. The latter prove that if G is a graph
with n edges that has a near a-labeling then there exists a cyclic G-decomposition of Kopgy1
for all positive integers x and a cyclic G-decomposition of K, ,,. They further prove that if G
and H have near a-labelings, then so does their weak tensor product (see earlier part of this
section) with respect to the corresponding vertex partitions. They conjecture that every tree
has a near a-labeling.

Another kind of labelings for trees was introduced by Ringel, Llado, and Serra [964] in an
approach to proving their conjecture K, , is edge-decomposable into n copies of any given tree
with n edges. If T is a tree with n edges and partite sets A and B, they define a labeling f from
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the set of vertices to {1,2,...,n} to be a bigraceful labeling of T if f restricted to A is injective,
f restricted to B is injective, and the edge labels given by f(y) — f(z) where yz is an edge with
y in B and x in A is the set {0,1,2,...,n—1}. (Notice that this terminology conflicts with that
given in Section 2.7 In particular, the Ringel, Llado, and Serra bigraceful does not imply the
usual graceful.) Among the graphs that they show are bigraceful are: lobsters, trees of diameter
at most 5, stars Sy, with k spokes of paths of length m, and complete d-ary trees for d odd.
They also prove that if T is a tree then there is a vertex v and a nonnegative integer m such
that the addition of m leaves to v results in a bigraceful tree. They conjecture that all trees are
bigraceful.

Table 3 summarizes some of the main results about a-labelings. « indicates that the graphs
have an a-labeling.
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Table 3: Summary of Results on a-labelings

Graph a-labeling

cycles C, a iff n =0 (mod 4) [973]
caterpillars a [973]

n-cube a [668]

books Ba,, Bini1 a [839],[445]

Mobius ladders Moy q a [923]

CnUC,

Cym U Cypy U Cyyy (m > 1)
Cam U Cypy U Cayy U Cypy
P, xQy

Baon X Qn

Kin x Qn

K2 X Qn

Ko x Py
PbxPyx---xPyxG
Py x Py X+ x Py x Py,
Py X Py x - X Po X Kipy

G[K,]

a iff m,n are even and m 4+ n = 0 (mod 4)[11]
a [670]

a [670]

a [839]

a [839]

a [839]

o [386]

o [386]

a when G = Cyy,, Py, K33, K44 [1116]
a [1116]

a [1116] when m = 3 or 4

a when G is a [1117]
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3.2 k-graceful Labelings

A natural generalization of graceful graphs is the notion of k-graceful graphs introduced inde-
pendently by Slater [1107] in 1982 and by Maheo and Thuillier [840] in 1982. A graph G with ¢
edges is k-graceful if there is labeling f from the vertices of G to {0,1,2,...,q+k— 1} such that
the set of edge labels induced by the absolute value of the difference of the labels of adjacent
vertices is {k,k + 1,...,q + k — 1}. Obviously, 1-graceful is graceful and it is readily shown
that any graph that has an a-labeling is k-graceful for all k. Graphs that are k-graceful for all
k are sometimes called arbitrarily graceful. Ng [895] has shown that there are graphs that are
k-graceful for all £ but do not have an a-labeling.

Results of Maheo and Thuillier [840] together with those of Slater [1107] show that: C,, is
k-graceful if and only if either n = 0 or 1 (mod 4) with k even and k < (n—1)/2, or n = 3 (mod
4) with k odd and k < (n? —1)/2. Maheo and Thuillier [840] also proved that the wheel Wy
is k-graceful and conjectured that Wy is k-graceful when k # 3 or k # 4. This conjecture was
proved by Liang, Sun, and Xu [788]. Kang [624] proved that P, x Cy, is k-graceful for all k.
Lee and Wang [765] showed that the graphs obtained from a nontrivial path of even length by
joining every other vertex to one isolated vertex (a lotus), the graphs obtained from a nontrivial
path of even length by joining every other vertex to two isolated vertices (a diamond), and the
graphs obtained by arranging vertices into a finite number of rows with ¢ vertices in the ith row
and in every row the jth vertex in that row is joined to the jth vertex and j + 1st vertex of the
next row (a pyramid) are k-graceful. Liang and Liu [783] have shown that K, , is k-graceful.
Bu, Gao, and Zhang [262] have proved that P, x Py and (P, X P,) U (P, X P») are k-graceful for
all k. Acharya (see [15]) has shown that a k-graceful Eulerian graph with ¢ edges must satisfy
one of the following conditions: ¢ =0 (mod 4), ¢ =1 (mod 4) if k is even, or ¢ = 3 (mod 4) if k
is odd. Bu, Zhang, and He [267] have shown that an even cycle with a fixed number of pendant
edges adjoined to each vertex is k-graceful. Lu, Pan, and Li [828] have proved that K ,, U K, 4
is k-graceful when k > 1, and p and g are at least 2. Jirimutu, Bao, and Kong [614] have shown
that the graphs obtained from Kj, (n > 2) and K3, (n > 3) by attaching r > 2 edges at each
vertex is k-graceful for all k& > 2. Seoud and Elsakhawi [1012] proved: paths and ladders are
arbitrarily graceful; and for n > 3, K, is k-graceful if and only if kK =1 and n = 3 or 4.

Yao, Cheng, Zhongfu, and Yao [1297] have shown: a tree of order p with maximum degree
at least p/2 is k-graceful for some k; if a tree T' has an edge ujus such that the two components
T) and Ty of T' — ujug have the properties that dr, (u1) > |T1]/2 and dr,(u2) > |T2|/2, then
T is k-graceful for some positive k; if a tree T" has two edges ujus and wgus such that the
three components T4, T, and T3 of T — {ujug, ugus} have the properties that dr, (u1) > |T1]/2,
dr, (uz) > |Ta|/2, and dp, (u3) > |T3|/2, then T is k-graceful for some k > 1; and every Skolem-
graceful (see §3.4 for the definition) tree is k-graceful for all k£ > 1. They conjecture that every
tree is k-graceful for some k > 1.

Several authors have investigated the k-gracefulness of various classes of subgraphs of grid
graphs. Acharya [13] proved that all 2-dimensional polyminoes that are convex and Eulerian are
k-graceful for all k; Lee [704] showed that Mongolian tents and Mongolian villages are k-graceful
for all k& (see §2.3 for the definitions); Lee and K. C. Ng [724] proved that all Young tableaus
(see §2.3 for the definitions) are k-graceful for all k. (A special case of this is P, x P,.) Lee
and H. K. Ng [724] subsequently generalized these results on Young tableaus to a wider class of
planar graphs.

Duan and Qi [375] use Gt(mq,n1;ma,no;...;ms, ng) to denote the graph composed of the s
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complete bipartite graphs Ky, i, Kmongs - - s Ky, that have only ¢

(1 <t <min{mq,ma,...,ms}) common vertices but no common edge and G(mq,n1;ma,ng) to
denote the graph composed of the complete bipartite graphs K, n,, Km, n, With exactly one
common edge. They prove that these graphs are k-graceful graphs for all &.

Let ¢,m,p1,p2,...,pm be positive integers. For i = 1,2,...,m, let S; be a set of p; + 1
integers and let D; be the set of positive differences of the pairs of elements of S;. If all these
differences are distinct then the system Dy, Ds, ..., D,, is called a perfect system of difference
pi+1

2
relationship between k-graceful graphs and perfect systems of difference sets. A perfect system
of difference sets starting with ¢ describes a c-graceful labeling of a graph that is decomposable
into complete subgraphs. A survey of perfect systems of difference sets is given in [5].

Acharya and Hegde [27] generalized k-graceful labelings to (k,d)-graceful labelings by per-
mitting the vertex labels to belong to {0,1,2,...,k + (¢ — 1)d} and requiring the set of edge
labels induced by the absolute value of the difference of labels of adjacent vertices to be
{k,k +d,k+2d,...,k+ (¢ — 1)d}. They also introduce an analog of a-labelings in the ob-
vious way. Notice that a (1,1)-graceful labeling is a graceful labeling and a (k,1)-graceful
labeling is a k-graceful labeling. Bu and Zhang [266] have shown: K, , is (k,d)-graceful for
all k and d; for n > 2, K, is (k,d)-graceful if and only if ¥ = d and n < 4; if m;,n; > 2 and
max{m;,n;} > 3, then Ky, n, U Ky po U+ UKy, 5, is (k,d)-graceful for all k,d, and r; if G
has an a-labeling, then G is (k, d)-graceful for all k and d; a k-graceful graph is a (kd, d)-graceful
graph; a (kd, d)-graceful connected graph is k-graceful; and a (k, d)-graceful graph with ¢ edges
that is not bipartite must have k£ < (¢ — 2)d.

Let T be a tree with adjacent vertices ug and vy and pendant vertices v and v such that
the length of the path ug — w is the same as the length of the path vy — v. Hegde and Shetty
[539] call the graph obtained from T by deleting ugvy and joining u and v an elementary parallel
transformation of T'. They say that a tree T' is a T),-tree if it can be transformed into a path by a
sequence of elementary parallel transformations. They prove that every T)-tree is (k, d)-graceful
for all £ and d and every graph obtained from a T)-tree by subdividing each edge of the tree is
(k, d)-graceful for all k and d.

Yao, Cheng, Zhongfu, and Yao [1297] have shown: a tree of order p with maximum degree
at least p/2 is (k,d)-graceful for some k and d; if a tree T has an edge ujug such that the
two components 77 and Ty of T' — ujug have the properties that dp, (u;) > |T1]/2 and T; is a
caterpillar, then T' is Skolem-graceful (see §3.4 for the definition); if a tree 7" has an edge ujus
such that the two components 77 and T of T — ujus have the properties that dp, (u1) > |T31|/2
and dr,(u2) > |Ts|/2, then T is (k,d)-graceful for some k& > 1 and d > 1; if a tree T has two
edges ujug and usus such that the three components Ty, To, and T3 of T' — {ujus, ugus} have
the properties that dp (u1) > |T1]/2, dr,(u2) > |T2|/2, and dpy(uz) > |T3|/2, then T is (k,d)-
graceful for some k > 1 and d > 1; and every Skolem-graceful tree is (k, d)-graceful for k > 1
and d > 0. They conjecture that every tree is (k,d)-graceful for some k£ > 1 and d > 1.

Hegde [527] has proved the following: if a graph is (k,d)-graceful for odd k and even d,
then the graph is bipartite; if a graph is (k, d)-graceful and contains Cy;41 as a subgraph, then
k<jdlq—j—1); K, is (k,d)-graceful if and only if n < 4; Cy; is (k, d)-graceful for all k& and
d; Cyq1 is (2t,1)-graceful; Cypqo is (2t — 1, 2)-graceful; and Cyyqg is (2t + 1, 1)-graceful.

Hegde [525] calls a (k,d)-graceful graph (k,d)-balanced if it has a (k,d)-graceful labeling f
with the property that there is some integer m such that for every edge wv either f(u) < m

sets starting at c if the union of all the sets D; is ¢,c+1,...,c—1+> ", . There is a
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and f(v) > m, or f(u) > m and f(v) < m. He proves that if a graph is (1, 1)-balanced then
it is (k, d)-graceful for all k£ and d and that a graph is (1, 1)-balanced graph if and only if it is
(k, k)-balanced for all k. He conjectures that all trees are (k,d)-balanced for some values of k
and d.

Slater [1110] has extended the definition of k-graceful graphs to countable infinite graphs in
a natural way. He proved that all countably infinite trees, the complete graph with countably
many vertices, and the countably infinite Dutch windmill is k-graceful for all k.

More specialized results on k-graceful labelings can be found in [704], [724], [727], [1107],
[261], [263], [262], and [308].

3.3 ~7-Labelings

In 2004 Chartrand, Erwin, VanderJagt, and Zhang [296] define a ~-labeling of a graph G of

size m as a one-to-one function f from the vertices of G to {0,1,2,...,m} that induces an

edge labeling f’ defined by f'(uv) = |f(u) — f(v)] for each edge uv. They define the following

parameters of a v-labeling: val(f) = Xf/(e) over all edges e of G; valmax(G) = max{val(f) :

[ is a y-labeling of G}, val ;) (G) =

min{val(f) : f is a v — labeling of G}. Among their results are the following:

val i (Pn) = valmax (Pn) = [(n?—2)/2];val;, (Cn) = 2(n—1); for n > 4, n even, valmax(Cy) =
n(n+2)/2; for n > 3, n odd, valmax(Cr) = (n—1)(n+3)/2; val,i, (Ky) = ( " ;_ 1 >; for odd

n, valmax(Kp) = (n?—1)(3n%—5n+6)/24; for even n, valmax(K,) = n(3n®—5n2+6n—4)/24;

for every n > 3, val : (K ) - VLTHJ 4 VLTHW .
= I, min 1,n—1 2 9 ;

valmax (K1 pn—1) = < g ); for a connected graph of order n and size m, val;,,(G) = m if and

only if GG is isomorphic to P,; if G is maximal outerplanar of order n > 2, val};,,(G) > 3n — 5
and equality occurs if and only if G = P?; if G is a connected r-regular bipartite graph of order
n and size m where r > 2, then valmax(G) = rn(2m — n + 2)/4.

In another paper on 7-labelings of trees Chartrand, Erwin, VanderJagt, and Zhang [297]
prove for p,q > 2, valj);;,(Spq) (that is, the graph obtained by joining the centers of K, and
Ki4 by an edge)= (1p/2] +1)* + ([a/2] + 1)* = (ny[p/2] +1)* + (ng|(q + 2)/2] + 1)*), where
n; is 1 if 4 is even and n; is 0 if n; is odd; valy;, (Spq) = (P + ¢* + 4pg — 3p — 3q + 2)/2;
for a connected graph G of order n at least 4, val;,(G) = n if and only if G is a caterpillar
with maximum degree 3 and has a unique vertex of degree 3; for a tree T of order n at least 4,
maximum degree A, and diameter d, val i, (T) > (8n 4+ A% — 6A — 4d + 6a)/4 where 4 is 0
if A is even and da is 0 if A is odd. They also give a characterization of all trees of order n at
least 5 whose minimum value is n + 1.

3.4 Skolem-Graceful Labelings

A number of authors have invented analogues of graceful graphs by modifying the permissible
vertex labels. For instance, Lee (see [752]) calls a graph G with p vertices and ¢ edges Skolem-
graceful if there is an injection from the set of vertices of G to {1,2,...,p} such that the edge
labels induced by |f(x) — f(y)]| for each edge xy are 1,2,...,q. A necessary condition for a graph
to be Skolem-graceful is that p > ¢ + 1. Lee and Wui [780] have shown that a connected graph
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is Skolem-graceful if and only if it is a graceful tree. Yao, Cheng, Zhongfu, and Yao [1297] have
shown that a tree of order p with maximum degree at least p/2 is Skolem-graceful. Although
the disjoint union of trees cannot be graceful, they can be Skolem-graceful. Lee and Wui [780)]
prove that the disjoint union of 2 or 3 stars is Skolem-graceful if and only if at least one star
has even size. In [331] Choudum and Kishore show that the disjoint union of k copies of the
star Ko, is Skolem graceful if £ < 4p 4 1 and the disjoint union of any number of copies of
K 5 is Skolem graceful. For k > 2, let St(ni,ng,...,ni) denote the disjoint union of k stars
with nq,ne,...,n; edges. Lee, Wang, and Wui [773] showed that the 4-star St(ni,n2,ns,ny)
is Skolem-graceful for some special cases and conjectured that all 4-stars are Skolem-graceful.
Denham, Leu, and Liu [354] proved this conjecture. Kishore [650] has shown that a necessary
condition for St(ni,ng,...,nk) to be Skolem graceful is that some n; is even or k = 0 or 1
(mod 4) (see also [1315] . He conjectures that each one of these conditions is sufficient. Yue,
Yuan-sheng, and Xin-hong [1315] show that for & at most 5, a k-star is Skolem-graceful if at one
star has even size or k = 0 or 1 (mod 4). Choudum and Kishore [329] proved that all 5-stars
are Skolem graceful.

Lee, Quach, and Wang [738] showed that the disjoint union of the path P, and the star of
size m is Skolem-graceful if and only if n = 2 and m is even or n > 3 and m > 1. It follows from
the work of Skolem [1101] that nP», the disjoint union of n copies of P, is Skolem-graceful if
and only if n = 0 or 1 (mod 4). Harary and Hsu [508] studied Skolem-graceful graphs under the
name node-graceful. Frucht [430] has shown that P, U P, is Skolem-graceful when m + n > 5.
Bhat-Nayak and Deshmukh [226] have shown that P,, U P,, U P,, is Skolem-graceful when
ny < ng < ng, ng =t(ng +2)+ 1 and nq is even and when ny < ng < nz, ng =t(ng +3) +1
and n; is odd. They also prove that the graphs of the form P,, UP,, U---UP,, where i > 4 are
Skolem-graceful under certain conditions. In [358] Deshmukh states the following results: the
sum of all the edges on any cycle in a Skolem graceful graph is even; Cs U K1, if and only if
n=1or 2; Csg UKy, if and only if n = 2 or 4.

Youssef [1303] proved that if G is Skolem-graceful, then G+ K, is graceful. In [1307] Youssef
shows that that for all n > 2, P, U.S,, is Skolem-graceful if and only if n > 3 or n = 2 and m is
even. Yao, Cheng, Zhongfu, and Yao [1297] have shown that if a tree T has an edge ujus such
that the two components 71 and T5 of T'— ujug have the properties that dr, (u1) > |T1]/2 and
T; is a caterpillar or have the properties that dp, (u1) > |T1|/2 and dp, (uz) > |T2|/2, then T is
Skolem-graceful.

Mendelsohn and Shalaby [861] defined a Skolem labeled graph G(V, E) as one for which there
is a positive integer d and a function L: V — {d,d+1,...,d+m}, satisfying (a) there are exactly
two vertices in V' such that L(v) = d+1i, 0 < ¢ < m; (b) the distance in G between any two
vertices with the same label is the value of the label; and (c) if G’ is a proper spanning subgraph
of G, then L restricted to G’ is not a Skolem labeled graph. Note that this definition is different
from the Skolem-graceful labeling of Lee, Quach, and Wang. A hooked Skolem sequence of order
n is a sequence sy, Sg, ..., S2,+1 such that s, = 0 and for each j € {1,2,...,n}, there exists
a unique ¢ € {1,2,...,2n — 1,2n + 1} such that s; = s;4+; = j. Mendelsohn [860] established
the following: any tree can be embedded in a Skolem labeled tree with O(v) vertices; any
graph can be embedded as an induced subgraph in a Skolem labeled graph on O(v3) vertices;
for d = 1, there is a Skolem labeling or the minimum hooked Skolem (with as few unlabeled
vertices as possible) labeling for paths and cycles; for d = 1, there is a minimum Skolem labeled
graph containing a path or a cycle of length n as induced subgraph. In [860] Mendelsohn and
Shalaby prove that the necessary conditions in [861] are sufficient for a Skolem or minimum
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hooked Skolem labeling of all trees consisting of edge-disjoint paths of the same length from
some fixed vertex. Graham, Pike, and Shalaby [483] obtained various Skolem labeling results
for grid graphs. Among them are P; x P,, and P, x P,, have Skolem labelings if and only if n = 0
or 1 mod 4; and P,, X P, has a Skolem labeling for all m and n at least 3.

3.5 0dd-Graceful Labelings

Gnanajothi [471, p. 182] defined a graph G with g edges to be odd-graceful if there is an injection f
from V(G) to {0,1,2,...,2¢g—1} such that, when each edge zy is assigned the label |f(x)— f(y)],
the resulting edge labels are {1,3,5,...,2¢—1}. She proved that the class of odd-graceful graphs
lies between the class of graphs with a-labelings and the class of bipartite graphs by showing
that every graph with an a-labeling has an odd-graceful labeling and every graph with an odd
cycle is not odd-graceful. She also proved the following graphs are odd-graceful: P,; C,, if and
only if n is even; K, ,; combs P, ® K; (graphs obtained by joining a single pendant edge to
each vertex of P,); books; crowns C,, ® K; (graphs obtained by joining a single pendant edge
to each vertex of C),) if and only if n is even; the disjoint union of copies of Cy; the one-point
union of copies of Cy; C, x K if and only if n is even; caterpillars; rooted trees of height 2;
the graphs obtained from P, (n > 3) by adding exactly two leaves at each vertex of degree 2
of P,; the graphs obtained from P, x P, by deleting an edge that joins to end points of the
P, paths; the graphs obtained from a star by adjoining to each end vertex the path P3 or by
adjoining to each end vertex the path P;. She conjectures that all trees are odd-graceful and
proves the conjecture for all trees with order up to 10. Barrientos [196] has extended this to
trees of order up to 12. Eldergill [378] generalized Gnanajothi’s result on stars by showing that
the graphs obtained by joining one end point from each of any odd number of paths of equal
length is odd-graceful. He also proved that the one-point union of any number of copies of Cg
is odd-graceful. Kathiresan [633] has shown that ladders and graphs obtained from them by
subdividing each step exactly once are odd-graceful. Barrientos [199] and [196] has proved the
following graphs are odd-graceful: every forest whose components are caterpillars; every tree
with diameter at most five is odd-graceful; and all disjoint unions of caterpillars. He conjectures
that every bipartite graph is odd-graceful. Seoud, Diab, and Elsakhawi [1010] have shown that
a connected complete r-partite graph is odd-graceful if and only if » = 2 and that the join of
any two connected graphs is not odd-graceful.

Sekar [1000] has shown the following graphs are odd-graceful: C,, ® P, (the graph obtained
by identifying an end point of P, with every vertex of C,) where n > 3 and m is even; P, ; when
a > 2 and b is odd (see §2.7); Pop and b > 2; Pyp and b > 2; P, when a and b are even and

a >4 and b > 4; Pyr41 4r+2; Par—1,4r; all n-polygonal snakes with n even; Cr(f) (see §2.2 for the
definition); graphs obtained by beginning with Cgs and repeatedly forming the one-point union
with additional copies of Cg in succession; graphs obtained by beginning with Cs and repeatedly
forming the one-point union with additional copies of Cy in succession; graphs obtained from
even cycles by identifying a vertex of the cycle with the endpoint of a star; Cg, and Cs,, (see
§2.7); the splitting graph of P, (see §2.7) the splitting graph of C),,n even; lobsters, banana
trees, and regular bamboo trees (see §2.1).

Yao, Cheng, Zhongfu, and Yao [1297] have shown the following: if a tree 7" has an edge ujus
such that the two components 77 and T of T' — ujus have the properties that dp, (u1) > |T31|/2
and Ty is a caterpillar, then T is odd-graceful; and if a tree T" has a vertex of degree at least |T'|/2,
then T is odd-graceful. They conjecture that for trees the properties of being Skolem-graceful
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and odd-graceful are equivalent. Recall a banana tree is a graph obtained by starting with any
number os stars and connecting one end-vertex from each to a new vertex. Zhenbin [1325] has
shown that graphs obtained by starting with any number of stars, appending an edge to exactly
one edge from each star, then joining the vertices at which the appended edges were attached
to a new vertex are odd-graceful.

Gao [450] has proved the following graphs are odd-graceful: the union of any number of
paths; the union of any number of stars; the union of any number of stars and paths; C,, U Py;
Cyn U Cy; and the union of any number of cycles each of which has order divisible by 4.

Acharya, Germina, Princy, and Rao [23] prove that every bipartite graph G can be embedded
in an odd-graceful graph H. The construction is done in such a way that if G is planar and
odd-graceful, then so is H.

In [306] Chawathe and Krishna extend the definition of odd-gracefulness to countably infinite
graphs and show that all countably infinite bipartite graphs that are connected and locally finite
have odd-graceful labelings.

Solairaju and Chithra [1119] defined a graph G with ¢ edges to be edge-odd graceful if there
is an bijection f from the edges of the graph to {1,3,5,...,2¢ — 1} such that, when each vertex
is assigned the sum of all the edges incident to it mod 2¢, the resulting vertex labels are distinct.
They prove they following graphs are odd-graceful: paths with at least 3 vertices; odd cycles;
ladders P, x P, (n > 3); stars with an even number of edges; and crowns C,, ® K;. In [1120]
they prove the following graphs have edge-odd graceful labelings: P, (n > 1) with a pendant
edge attached to each vertex (combs); the graph obtained by appending 2n + 1 pendant edges to
each endpoint of P or P3; and the graph obtained by subdividing each edge of the star K 2.

3.6 Graceful-like Labelings

As a means of attacking graph decomposition problems, Rosa [973] invented another analogue
of graceful labelings by permitting the vertices of a graph with ¢ edges to assume labels from the
set {0,1,...,q+ 1}, while the edge labels induced by the absolute value of the difference of the
vertex labels are {1,2,...,¢—1,q} or {1,2,...,q—1,q+ 1}. He calls these p-labelings. Frucht
[430] used the term nearly graceful labeling instead of p-labelings. Frucht [430] has shown that
the following graphs have nearly graceful labelings with edge labels from {1,2,...,¢—1,q+ 1}:
PLUP,; SnUSy; SUP,; GUK, where G is graceful; and C3U KoUS,,, where m is even or m = 3
(mod 14). Seoud and Elsakhawi [1011] have shown that all cycles are nearly graceful. Barrientos
[189] proved that C,, is nearly graceful with edge labels 1,2,...,n—1,n+ 1 if and only if n = 1
or 2 (mod 4). Gao [451] shows that a variation of banana trees is odd graceful and in some
cases has a nearly gracefullabeling. Rosa [975] conjectured that triangular snakes with ¢ =0 or
1 (mod 4) blocks are graceful and those with ¢t = 2 or 3 (mod 4) blocks are nearly graceful (a
parity condition ensures that the graphs in the latter case cannot be graceful). Moulton [883]
proved Rosa’s conjecture while introducing the slightly stronger concept of almost graceful by
permitting the vertex labels to come from {0,1,2,...,q — 1,q + 1} while the edge labels are
1,2,...,q—1,q,0r 1,2,...,g—1,qg+1. Seoud and Elsakhawi [1011] and [1012] have shown that
the following graphs are almost graceful: C,; Py + Km; P, + K1 m; Ko Ktmons K2.2.m5 Ki.1.mon;
P, x P3 (n>3); Ks UKy p; KeU Ky, and ladders.

The symmetric product G1 ® Gy of G and Gy is the graph with vertex set V(G1) x V(G2)
and edge set {(u1,v1)(uz,v2)} where ujug is an edge in Gy or vivy is an edge in G but not
both ujusg is an edge in G7 and v1vs is an edge in Go. In [1012] Seoud and Elsakhawi show that
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P, ® Ko (n > 2) is arbitrarily graceful.

For a graph G with p vertices, g edges, and 1 < k < ¢, Eshghi [395] defines a holey a-labeling
with respect to k as an injective vertex labeling f for which f(v) € {1,2,...,¢ + 1} for all
v, {|f(u)— f(v)| | for all edges uv} ={1,2,...,k—1,k+1,...,q+1}, and there exist an integer
v with 0 < v < ¢ such that min{f(u), f(v)} <~ < max{f(u), f(v)}. He proves the following:
P, has a holey a-labeling with respect to all k; C,, has a holey a-labeling with respect to k if
and only if either n = 2 (mod 4), k is even, and (n, k) # (10,6), or n =0 (mod 4) and k is odd.

Recall from Section 2.2 that a kC,-snake is a connected graph with k blocks whose block-
cutpoint graph is a path and each of the k blocks is isomorphic to C,,. In addition to his results
on the graceful kC),-snakes given in Section 2.2, Barrientos [193] proved that when £ is odd the
linear kCg-snake is nearly graceful and that C,, U K1, is nearly graceful when m = 3,4,5, and
6.

Yet another kind of labeling introduced by Rosa in his 1967 paper [973] is a p-labeling. A
p-labeling (or p-valuation) of a graph is an injection from the vertices of the graph with ¢ edges
to the set {0,1,...,2q}, where if the edge labels induced by the absolute value of the difference
of the vertex labels are ay,as,...,aq, then a; = i or a; = 2¢+ 1 —i. Rosa [973] proved that
a cyclic decomposition of the edge set of the complete graph Ky, into subgraphs isomorphic
to a given graph G with ¢ edges exists if and only if G has a p-labeling. (A decomposition
of K, into copies of G is called cyclic if the automorphism group of the decomposition itself
contains the cyclic group of order n.) It is known that every graph with at most 11 edges has a
p-labeling and that all lobsters have a p-labeling (see [289]). Donovan, El-Zanati, Vanden Eyden,
and Sutinuntopas [365] prove that rC), has a p-labeling (or a more restrictive labeling) when
r < 4. They conjecture that every 2-regular graph has a p-labeling. Aguado, El-Zanati, Hake,
Stob, and Yayla [40] give a p-labeling of C, U Cs U C; for each of the cases where r =0, s = 1,
t=1 (mod4);r=0,s=3,t=3 (mod4);andr=1,s=1,t=3 (mod4); (iv) r = 1,
s=2,t=3 (mod4); (v)r=3,s=3,t=3 (mod4). Caro, Roditty, and Schénheim [289]
provide a construction for the adjacency matrix for every graph that has a p-labeling. They
ask the following question: If H is a connected graph having a p-labeling and ¢ edges and G is
a new graph with ¢ edges constructed by breaking H up into disconnected parts, does G also
have a p-labeling? Kézdy [643] defines a stunted tree as one whose edges can be labeled with
e1,€e,...,6y 50 that e; and ey are incident and, for all j = 3,4,...,n, edge ¢; is incident to at
least one edge e}, satisfying 2k < j — 1. He uses Alon’s “Combinatorial Nullstellensatz” to prove
that if 2n + 1 is prime, then every stunted tree with n edges has a p-labeling.

In [424] Froncek generalizes the notion of an a-labeling by showing that if a graph G on n
edges allows a certain type of p-labeling), called as-labeling, then for any positive integer k the
complete graph Ko, 11 can be decomposed into copies of G.

In their investigation of cyclic decompositions of complete graphs El-Zanati, Vanden Eynden,
and Punnim [389] introduced two kinds of labelings. They say a bipartite graph G with n
edges and partite sets A and B has a 0-labeling h if h is a one-to-one function from V(G) to
{0,1,...,2n} such that {|h(b) — h(a)| ab € E(G),a € A,b € B} = {1,2,...,n}. They call h
a pT-labeling of G if h is a one-to-one function from V(G) to {0,1,...,2n} and the integers
h(xz) — h(y) are distinct modulo 2n + 1 taken over all ordered pairs (z,y) where xy is an edge
in G, and h(b) > h(a) whenever a € A,b € B and ab is an edge in G. Note that #-labelings are
pT-labelings and pT-labelings are p-labelings. They prove that if G is a bipartite graph with n
edges and a pt-labeling, then for every positive integer x there is a cyclic G-decomposition of
Ko,z41. They prove the following graphs have p*-labelings: trees of diameter at most 5, Cy,,
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lobsters, and comets (that is, graphs obtained from stars by replacing each edge by a path of
some fixed length). They also prove that the disjoint union of graphs with a-labelings have a
f-labeling and conjecture that all forests have p-labelings.

A o-labeling of G(V,E) is a one-to-one function f from V to {0,1,...,2|F|} such that
{lf(w)=f(v)| |uv € E(G)} ={1,2,...,|E|}. Suchalabeling of G yields cyclic G-decompositions
of Kopy1 and of Kopio — F, where F' is a 1-factor of Ks,9. El-Zanati and Vanden Eynden
(see [39]) have conjectured that that every 2-regular graph with n edges has a p-labeling and,
if n =0 or 3 (mod 4), then every 2-regular graph has a o-labeling. Aguado and El-Zanati [39]
have proved that the latter conjecture holds when the graph has at most three components.

Given a bipartite graph G with partite sets X and Y and graphs H; with p vertices and
Hy with g vertices, Fron¢ek and Winters [427] define the bicomposition of G and H; and
H,, G[H1, H3], as the graph obtained from G by replacing each vertex of X by a copy of Hi,
each vertex of Y by a copy of Hz, and every edge xy by a graph isomorphic to K, , with
the partite sets corresponding to the vertices x and y. They prove that if G is a bipartite
graph with n edges and G has a 6-labeling that maps the vertex set V= X UY into a subset
of {0,1,2,...,2n}, then the bicomposition G[K,, K,] has a #-labeling for every p,q > 1. As
corollaries they have: if a bipartite graph G with n edges and at most n + 1 vertices has a
gracious labeling (see §3.1), then the bicomposition graph G [FP,E] has a gracious labeling for
every p,q > 1, and if a bipartite graph G with n edges has a #-labeling, then for every p,q > 1,
the bicomposition G [FP,E] decomposes the complete graph Ko,pq41.

In a paper published in 2009 [388] El-Zannati and Vanden Eynden survey “Rosa-type”
labelings. That is, labelings of a graph G that yield cyclic G-decompositions of Ks,41 or
Kopay1 for all natural numbers x. The 2009 survey by Froncek [423] includes generalizations of
p- and a-labelings that have been used for finding decompositions of complete graphs that are
not covered in [388].

Blinco, El-Zanati, and Vanden Eynden [233] call a non-bipartite graph almost-bipartite if the
removal of some edge results in a bipartite graph. For these kinds of graphs G they call a labeling
f a v-labeling of G if the following conditions are met: f is a p-labeling; G is tripartite with
vertex tripartition A, B,C with C = {c} and b € B such that {b,c} is the unique edge joining
an element of B to c; if av is an edge of G with a € A, then f(a) < f(v); and f(c) — f(b) = n.
(In § 3.3 the term ~-labeling is used for a different kind of labeling.) They prove that if an
almost-bipartite graph G with n edges has a ~«-labeling then there is a cyclic G-decomposition
of Kopzt1 for all . They prove that all odd cycles with more than 3 vertices have a -labeling
and that C3 U Cy,, has a y-labeling if and only if m > 1. In [268] Bunge, El-Zanati, and Vanden
Eynden prove that every 2-regular almost bipartite graph other than C3 and C3 U Cy have a
~-labeling.

In [233] Blinco, El-Zanati, and Vanden Eynden consider a slightly restricted p*-labeling for
a bipartite graph with partite sets A and B by requiring that there exists a number A with the
property that p*(a) < A for all a € A and p*(b) > \ for all b € B. They denote such a labeling
by p™*. They use this kind of labeling to show that if G is a 2-regular graph of order n in
which each component has even order then there is a cyclic G-decomposition of Ko, 41 for all
x. They also conjecture that every bipartite graph has a p-labeling and every 2-regular graph
has a p-labeling.

Dufour [376] and Eldergill [378] have some results on the decomposition of complete graphs
using labeling methods. Balakrishnan and Sampathkumar [179] showed that for each positive
integer n the graph K, + 2K admits a p-labeling. Balakrishnan [174] asks if it is true that
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K,, + mKy admits a p-labeling for all n and m. Fronéek [422] and Fronéek and Kubesa [426]
have introduced several kinds of labelings for the purpose of proving the existence of special
kinds of decompositions of complete graphs into spanning trees.

For (p,q)-graphs with p = ¢ + 1, Frucht [430] has introduced a stronger version of al-
most graceful graphs by permitting as vertex labels {0,1,...,¢ — 1,¢ + 1} and as edge labels
{1,2,...,q}. He calls such a labeling pseudograceful. Frucht proved that P, (n > 3), combs,
sparklers (i.e., graphs obtained by joining an end vertex of a path to the center of a star),
C3U P, (n#3), and Cy U P, (n # 1) are pseudograceful whereas K, (n > 3) is not. Kishore
[650] proved that Cs U P, is pseudograceful when s > 5 and n > (s + 7)/2 and that Cs U S, is
pseudograceful when s = 3,s =4, and s > 7. Seoud and Youssef [1023] and [1019] extended the
definition of pseudograceful to all graphs with p < ¢+ 1. They proved that K,, is pseudograceful
if and only if m = 1,3, or 4 [1019]; K, ,, is pseudograceful when n > 2, and P, + K;, (m > 2)
[1023] is pseudograceful. They also proved that if G is pseudograceful, then GU K, ,, is graceful
for m > 2 and n > 2 and G U K, , is pseudograceful for m > 2,n > 2 and (m,n) # (2,2)
[1019]. They ask if GU K> 5 is pseudograceful whenever G is. Seoud and Youssef [1019] observed
that if G is a pseudograceful Eulerian graph with ¢ edges, then ¢ = 0 or 3 (mod 4). Youssef
[1306] has shown that C, is pseudograceful if and only if n = 0 or 3 (mod 4), and for n > 8 and
n =0 or 3 (mod 4), C, UK, , is pseudograceful for all p,q > 2 except (p,q) = (2,2). Youssef
[1303] has shown that if H is pseudograceful and G has an a-labeling with k being the smaller
vertex label of the edge labeled with 1 and if either k + 2 or £ — 1 is not a vertex label of G,
then G U H is graceful. In [1307] Youssef shows that if G is (p,q) pseudograceful graph with
p=q+1, then GU S, is Skolem-graceful. As a corollary he obtains that for all n > 2, P, U.S,,
is Skolem-graceful if and only if n > 3 or n = 2 and m is even.

McTavish [857] has investigated labelings of graphs with ¢ edges where the vertex and edge
labels are from {0,...,q,q+1}. She calls these p-labelings. Graphs that have p-labelings include
cycles and the disjoint union of P, or S,, with any graceful graph.

Frucht [430] has made an observation about graceful labelings that yields nearly graceful
analogs of a-labelings and weakly a-labelings in a natural way. Suppose G(V, E) is a graceful
graph with the vertex labeling f. For each edge xy in E, let [f(x), f(y)] (where f(z) < f(y))
denote the interval of real numbers r with f(z) <7 < f(y). Then the intersection N[f(x), f(y)]
over all edges zy € E is a unit interval, a single point, or empty. Indeed, if f is an a-labeling
of GG then the intersection is a unit interval; if f is a weakly a-labeling, but not an a-labeling,
then the intersection is a point; and, if f is a graceful but not a weakly a-labeling, then the
intersection is empty. For nearly graceful labelings, the intersection also gives three distinct
classes.

Singh and Devaraj [1095] call a graph G with p vertices and ¢ edges triangular graceful if
there is an injection f from V(G) to {0,1,2,...,T,} where Tj, is the gth triangular number and
the labels induced on each edge uv by |f(u) — f(v)| are the first ¢ triangular numbers. They
prove the following graphs are triangular graceful: paths, level 2 rooted trees, olive trees (see
§ 2.1 for the definition), complete n-ary trees, double stars, caterpillars, Cy,, Cy, with pendent
edges, the one-point union of C3 and P,,, and unicyclic graphs that have C3 as the unique cycle.
They prove that wheels, helms, flowers (see §2.2 for the definition) and K, with n > 3 are not
triangular graceful. They conjecture that all trees are triangular graceful. In [1051] Sethuraman
and Venkatesh introduced a new method for combining graceful trees to obtain trees that have
a-labelings.

Van Bussel [1199] considered two kinds of relaxations of graceful labelings as applied to trees.
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He called a labeling range-relazed graceful it is meets the same conditions as a graceful labeling
except the range of possible vertex labels and edge labels are not restricted to the number of
edges of the graph (the edges are distinctly labeled but not necessarily labeled 1 to ¢ where g
is the number of edges). Similarly, he calls a labeling vertez-relazed graceful if it satisfies the
conditions of a graceful labeling while permitting repeated vertex labels. He proves that every
tree T with ¢ edges has a range-relaxed graceful labeling with the vertex labels in the range
0,1,...,2¢q—d where d is the diameter of T and that every tree on n vertices has a vertex-relaxed
graceful labeling such that the number of distinct vertex labels is strictly greater than n/2.
Sekar [1000] calls an injective function ¢ from the vertices of a graph with ¢ edges to
{0,1,3,4,6,7,...,3(qg—1),3¢—2} one modulo three graceful if the edge labels induced by labeling
each edge wv with |p(u) — ¢(v)| is {1,4,7,...,3¢ — 2}. He proves that the following graphs are

one modulo three graceful: P,,; C, if and only if n = 0 mod 4; K,, »; Céi) (the one-point union

of two copies of Cy,); C’,(Lt) forn =4 or 8 and t > 2; C’ét) and ¢t > 4; caterpillars; stars; lobsters;
banana trees; rooted trees of height 2; ladders; the graphs obtained by identifying the endpoints
of any number of copies of P,; the graph obtained by attaching pendent edges to each endpoint
of two identical stars and then identifying one endpoint from each of these graphs; the graph
obtained by identifying a vertex of Cyr.o with an endpoint of a star; n-polygonal snakes (see
§2.2) for n = 0 (mod 4); n-polygonal snakes for n = 2 (mod 4) where the number of polygons is
even; crowns C,, ® K; for n even; Co, ® P, (C2, with P, attached at each vertex of the cycle)
for m > 3; chains of cycles (see §2.2) of the form Cy,,, Cs2m, and Cg . He conjectures that
every one modulo three graceful graph is graceful.

Kathiresan and Amutha [635] define a function f : V(G) — {0,1,2,..., F,} where Fy is the
qth Fibonacci number, to be Fibonacci graceful labeling if the induced edge labeling f(uv) =
|f(u) — f(v)] is a bijection onto the set {Fy, Fy, ..., F,}. If a graph admits a Fibonacci graceful
labeling, it is is called a Fibonacci graceful graph. They prove the following: K, is Fibonacci
graceful if and only if n < 3; if an Eulerian graph with ¢ edges is Fibonacci graceful then
g = 0 (mod 3); paths are Fibonacci graceful; fans P, ® K; are Fibonacci graceful; squares
of paths P2 are Fibonacci graceful; and caterpillars are Fibonacci graceful. They define a
function f : V(G) — {0,Fy, Fs,...,F,} where F; is the ith Fibonacci number, to be super
Fibonacci gracefulabeling if the induced labeling f(uv) = | f(u) — f(v)| is a bijection onto the set
{F1,Fy,...,F;}. They show that bistars B, , are Fibonacci graceful but not super Fibonacci
graceful for n > 5; cycles C), are super Fibonacci graceful if and only if n = 0 (mod 3); and if G
is Fibonacci or super Fibonacci graceful then G ® K3 is Fibonacci graceful.

In [254] Bresar and Klavzar define a natural extension of graceful labelings of certain tree
subgraphs of hypercubes. A subgraph H of a graph G is called isometric if for every two vertices
u, v of H, there exists a shortest u-v path that lies in H. The isometric subgraphs of hypercubes
are called partial cubes. Two edges zy, uv of G are in O-relation if
da(z,u)+da(y,v) # da(z,v) +dg(y,u). A ©-relation is an equivalence relation that partitions
E(G) into O-classes. A O-graceful labeling of a partial cube G on n vertices is a bijection
f:V(G) — {0,1,...,n—1} such that, under the induced edge labeling, all edges in each ©-class
of G have the same label and distinct O-classes get distinct labels. They prove that several
classes of partial cubes are ©-graceful and the Cartesian product of ©-graceful partial cubes is
O-graceful. They also show that if there exists a class of partial cubes that contains all trees
and every member of the class admits a ©-graceful labeling then all trees are graceful.
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3.7 Cordial Labelings

Cahit [274] has introduced a variation of both graceful and harmonious labelings. Let f be a
function from the vertices of G to {0, 1} and for each edge zy assign the label |f(z)— f(y)|. Call
f a cordial labeling of G if the number of vertices labeled 0 and the number of vertices labeled
1 differ by at most 1, and the number of edges labeled 0 and the number of edges labeled 1
differ at most by 1. Cahit [275] proved the following: every tree is cordial; K, is cordial if and
only if n < 3; K, is cordial for all m and n; the friendship graph Cét) (i.e., the one-point
union of ¢ 3-cycles) is cordial if and only if ¢ Z 2 (mod 4); all fans are cordial; the wheel W,
is cordial if and only if n # 3 (mod 4) (see also [372]); maximal outerplanar graphs are cordial;
and an Eulerian graph is not cordial if its size is congruent to 2 (mod 4). Kuo, Chang, and
Kwong [686] determine all m and n for which mK, is cordial. Youssef [1307] proved that every
Skolem-graceful graph (see §3.4 for the definition) is cordial. Liu and Zhu [813] proved that a
3-regular graph of order n is cordial if and only if n # 4 (mod 8).

A k-angular cactus is a connected graph all of whose blocks are cycles with k vertices. In
[275] Cahit proved that a k-angular cactus with ¢ cycles is cordial if and only if kt # 2 (mod
4). This was improved by Kirchherr [648] who showed any cactus whose blocks are cycles is
cordial if and only if the size of the graph is not congruent to 2 (mod 4). Kirchherr [649] also
gave a characterization of cordial graphs in terms of their adjacency matrices. Ho, Lee, and
Shee [553] proved: P, X Cy, is cordial for all m and all odd n; the composition G and H is
cordial if G is cordial and H is cordial and has odd order and even size (see §2.3 for definition
of composition); for n > 4 the composition C,[Ks] is cordial if and only if n # 2 (mod 4); the
Cartesian product of two cordial graphs of even size is cordial. He, Lee, and Shee [552] showed
that a unicyclic graph is cordial unless it is Cyr1o and that the generalized Petersen graph (see
§2.7 for the definition) P(n,k) is cordial if and only if n # 2 (mod 4). Du [372] determines
the maximal number of edges in a cordial graph of order n and gives a necessary condition for
a k-regular graph to be cordial. Riskin [965] proved that Mobius ladders M,, (see §2.3 for the
definition) are cordial if and only if n > 3 and n # 2 (mod 4). (See also [1012].)

Seoud and Abdel Maqusoud [1006] proved that if G is a graph with n vertices and m edges
and every vertex has odd degree, then G is not cordial when m +n = 2 (mod 4). They also
prove the following: for m > 2, C,, x Py, is cordial except for the case Cyp 1o x Py; P2 is cordial
for all n; P3 is cordial if and only if n # 4; and Py is cordial if and only if n # 4,5, or 6. Seoud,
Diab, and Elsakhawi [1010] have proved the following graphs are cordial: P, + P,, for all m and
n except (m,n) = (2,2); Cp, + Cp if m # 0 (mod 4) and n # 2 (mod 4); Cp, + K ,, for n # 3
(mod 4) and odd m except (n,m) = (3,1); C, + K,, when n is odd, and when n is even and
m is odd; K1 mn; K22 m; the n-cube; books B, if and only if n # 3 (mod 4); B(3,2,m) for all
m; B(4,3,m) if and only if m is even; and B(5,3,m) if and only if m # 1 (mod 4) (see §2.4 for
the notation B(n,r,m)).

Diab [361] and [362] proved the following graphs are cordial: C, + P, if and only if (m,n) #
(3,3),(3,2), or (3,1); Py, + Ky, if and only if (m,n) # (1,2); Py, UK, if and only if (m,n) #
(1,2); Cr, UK 1 Crn+ Ky, for all m and n except m = 3 (mod 4) and n odd, and m = 2 (mod 4)
and n even; C,,, UK, for all m and n except m = 2 (mod 4); P, + K,; P UK,; P2 U P2 except
for (m,n) = (2,2) or (3,3); P? + P, except for (m,n) = (3,1),(3,2),(2,2),(3,3) and (4,2);
P2 U P, except for (n,m) = (2,2),(3,3) and (4,2); P? + C,, if and only if (n,m) # (1,3),(2,3)
and (3,3).

Youssef [1309] has proved the following: If G and H are cordial and one has even size, then
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G U H is cordial; if G and H are cordial and both have even size, then G + H is cordial; if G
and H are cordial and one has even size and either one has even order, then G + H is cordial;
Cyn U Cy, is cordial if and only if m +n # 2 (mod 4); mC,, is cordial if and only if mn # 2 (mod
4); Cp, + C,, is cordial if and only if (m,n) # (3,3) and {m (mod 4),n (mod 4)} # {0,2}; and if
PF is cordial, then n > k+1++/k — 2. He conjectures that this latter condition is also sufficient.
He confirms the conjecture for £ = 5,6,7,8, and 9.

In [1308] Youssef obtained the following results: Cy with one pendant edge is not (2k + 1)-
cordial for k > 1; K, is 4-cordial if and only if n < 6; C? is 4-cordial if and only if n # 2
(mod 4); and K, ,, is 4-cordial if and only if n # 2 (mod 4); He also provides some necessary
conditions for a graph to be k-cordial.

Lee and Liu [719] have shown that the complete n-partite graph is cordial if and only if at
most three of its partite sets have odd cardinality (see also [372]). Lee, Lee, and Chang [700]
prove the following graphs are cordial: the Cartesian product of an arbitrary number of paths;
the Cartesian product of two cycles if and only if at least one of them is even; and the Cartesian
product of an arbitrary number of cycles if at least one of them has length a multiple of 4 or at
least two of them are even.

Shee and Ho [1056] have investigated the cordiality of the one-point union of n copies of
various graphs. For C,(ff ), the one-point union of n copies of C,,, they prove:

(i) If m = 0 (mod 4), then ™ is cordial for all n;

(ii) If m =1 or 3 (mod 4), then c{ is cordial if and only if n # 2 (mod 4);

(iii) If m = 2 (mod 4), then c{™ is cordial if and only if n is even.

For K}(n), the one-point union of n copies of K,,, Shee and Ho [1056] prove:
i) If m = 0 (mod 8), then K is not cordial for n = 3 (mod 4);

ii) If m = 4 (mod 8), then K™ is not cordial for n = 1 (mod 4);

iii) If m =5 (mod 8), then K is not cordial for all odd n;

iv) K n is cordial if and only if n # 1 (mod 4);

v) K: " is cordial if and only if n is even;

vi) K, n 1s cordial if and only if n > 2;

vii) K, is cordial if and only if n # 2 (mod 4);

viii) Ky ( is cordial if and only if n has the form p? or p® + 1.

(
(
(
(
(
(
(vi
(

For W,g? ), the one-point union of n copies of the wheel W,,, with the common vertex being
the center, Shee and Ho [1056] show:

(i) If m =0 or 2 (mod 4), then W™ s cordial for all n;

(i) If m = 3 (mod 4), then Wi is cordial if n # 1 (mod 4);

(iii) If m = 1 (mod 4), then W is cordial if n # 3 (mod 4).

For all n and all m > 1 Shee and Ho [1056] prove Fy(rfl ), the one-point union of n copies of
the fan F,,, = P, + K; with the common point of the fans being the center, is cordial (see also
[792]). The flag Fl,, is obtained by joining one vertex of C), to an extra vertex called the root.
Shee and Ho [1056] show all F’ lgf), the one-point union of n copies of Fl,, with the common
point being the root, are cordial. In his 2001 Ph.D. thesis Selvaraju [1001] proves that the
one-point union of any number of copies of a complete bipartite graph is cordial. Benson and

)

Lee [212] have investigated the regular windmill graphs K™ and determined precisely which
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ones are cordial for m < 14.

Andar, Boxwala, and Limaye [63], [64], and [67] have proved the following graphs are cordial:
helms; closed helms; generalized helms obtained by taking a web (see 2.2 for the definitions)
and attaching pendent vertices to all the vertices of the outermost cycle in the case that the
number cycles is even; flowers (graphs obtained by joining the vertices of degree one of a helm
to the central vertex); sunflower graphs (that is, graphs obtained by taking a wheel with the
central vertex vy and the n-cycle vy, v9,...,v, and additional vertices wi,wo,...,w, where w;
is joined by edges to v;, v;+1, where i + 1 is taken modulo n); multiple shells (see §2.2); and the
one point unions of helms, closed helms, flowers, gears, and sunflower graphs, where in each case
the central vertex is the common vertex.

Du [373] proved that the disjoint union of n > 2 wheels is cordial if and only if n is even or n
is odd and the number of vertices of in each cycle is not 0 (mod 4) or n is odd and the number
of vertices of in each cycle is not 3 (mod 4).

Elumalai and Sethurman [381] proved: cycles with parallel cords are cordial and n-cycles
with parallel Pg-chords (see §2.2 for the definition) are cordial for any odd positive integer k
at least 3 and any n #Z 2 (mod 4) of length at least 4. They call a graph H an even-multiple
subdivision graph of a graph G if it is obtained from G by replacing every edge uv of G by a
pair of paths of even length starting at u and ending at v. They prove that every even-multiple
subdivision graph is cordial and that every graph is a subgraph of a cordial graph. In [1252]
Wen proves that generalized wheels C,, + mK; are cordial when m is even and n # 2 (mod 4)
and when m is odd and n # 3 (mod 4).

Vaidya, Ghodasara, Srivastav, and Kaneria investigated graphs obtained by joining two
identical graphs by a path. They prove: graphs obtained by joining two copies of the same
cycle by a path are cordial [1190]; graphs obtained by joining two copies of the same cycle that
has two chords with a common vertex with opposite ends of the chords joining two consecutive
vertices of the cycle by a path are cordial [1190]; graphs obtained by joining two rim verticies
of two copies of the same wheel by a path are cordial [1192]; and graphs obtained by joining
two copies of the same Petersen graph by a path are cordial [1192]. They also prove that
graphs obtained by replacing one vertex of a star by a fixed wheel or by replacing each vertex
of a star by a fixed Petersen graph are cordial [1192]. In [1197] Vaidya, Ghodasara, Srivastav,
and Kaneria investigated graphs obtained by joining two identical cycles that have a chord are
cordial and the graphs obtained by starting with copies G1,Ga,...,G, of a fixed cycle with a
chord that forms a triangle with two consecutive edges of the cycle and joining each G; to G411
(1=1,2,...,n—1) by an edge that is incident with the endpoints of the chords in G; and G,
are cordial. Vaidya, Dani, Kanani, and Vihol [1187] proved that the graphs obtained by starting
with copies G1,Go,...,G, of a fixed star and joining each center of G; to the center of G;41
(i=1,2,...,n—1) by an edge are cordial.

S. Vaidya, K. Kanani, S. Srivastav, and G. Ghodasara [1194] proved: graphs obtained by
subdividing every edge of a cycle with exactly two extra edges that are chords with a common
endpoint and whose other end points are joined by an edge of the cycle are cordial; graphs
obtained by subdividing every edge of the graph obtained by starting with C),, and adding
exactly three chords that result in two 3-cycles and a cycle of length n — 3 are cordial; graphs
obtained by subdividing every edge of a Petersen graph are cordial.

Recall the shell C'(n,n — 3) is the cycle C),, with n — 3 cords sharing a common endpoint.
Vaidya, Dani, Kanani, and Vihol [1188] proved that the graphs obtained by starting with copies
G1,Go, ..., Gy, of a fixed shell and joining common endpoint of the chords of G; to the common
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endpoint of the chords of G;41 (i = 1,2,...,n—1) by an edge are cordial. Vaidya, Dani, Kanani
and Vihol [1195] define C),(C,,) as the graph obtained by subdividing each edge of C,, and
connecting the new n vertices to form a copy of C), inscribed the original C,,. They prove that
Cn(Cy) is cordial if n # 2 (mod 4); the graphs obtained by starting with copies G, Go, ..., Gy
of Cp,(Cy) the graph obtained by joining a vertex of degree 2 in G; to a vertex of degree 2 in
Giy1 (i=1,2,...,n — 1) by an edge are cordial; and the graphs obtained by joining vertex of
degree 2 from one copy of C(Cy) to a vertex of degree 2 to another copy of C(C},) by any finite
path are cordial.

In [67] Andar et al. define a t-ply graph P,(u,v) as a graph consisting of ¢ internally disjoint
paths joining vertices v and v. They prove that P;(u,v) is cordial except when it is Eulerian and
the number of edges is congruent to 2 (mod 4). In [68] Andar, Boxwala, and Limaye prove that
the one-point union of any number of plys with an endpoint as the common vertex is cordial if
and only if it is not Eulerian and the number of edges is congruent to 2 (mod 4). They further
prove that the path union of shells obtained by joining any point of one shell to any point of
the next shell is cordial; graphs obtained by attaching a pendant edge to the common vertex of
the cords of a shell are cordial; and cycles with one pendant edge are cordial.

For a graph G and a positive integer ¢, Andar, Boxwala, and Limaye [65] define the t-uniform
homeomorph P,(G) of G as the graph obtained from G by replacing every edge of G by vertex
disjoint paths of length ¢. They prove that if G is cordial and ¢ is odd, then P;(G) is cordial; if
t =2 (mod 4) a cordial labeling of G can be extended to a cordial labeling of P;(G) if and only
if the number of edges labeled 0 in G is even; and when t = 0 (mod 4) a cordial labeling of G
can be extended to a cordial labeling of P;(G) if and only if the number of edges labeled 1 in G
is even. In [66] Ander et al. prove that P;(Ky,) is cordial for all ¢ > 2 and that P,(Kgp,41) is
cordial if and only if £ = 0 (mod 4) or ¢ is odd and n #Z 2 (mod 4), or t = 2 (mod 4) and n is
even.

In [68] Andar, Boxwala, and Limaya show that a cordial labeling of G can be extended to
a cordial labeling of the graph obtained from G by attaching 2m pendant edges at each vertex
of GG. For a binary labeling g of the vertices of a graph GG and the induced edge labels given by
g(e) = |g(u) — g(v)| let vy(j) denote the number of vertices labeled with j and e,4(j) denote the
number edges labeled with j. Let i(G) = min{|ey(0) —e,4(1)|} taken over all binary labelings g of
G with |vg(0) —vg(1)] < 1. Andar et al. also prove that a cordial labeling g of a graph G with p
vertices can be extended to a cordial labeling of the graph obtained from G by attaching 2m + 1
pendant edges at each vertex of G if and only if G does not satisfy either of the conditions: (1)
G has an even number of edges and p = 2 (mod 4); (2) G has an odd number of edges and either
p =1 (mod 4) with e4(1) = e4(0) +i(G) or n = 3 (mod 4) and e4(0) = e4(1) + i(G). Andar,
Boxwala, and Limaye [69] also prove: if g is a binary labeling of the n vertices of graph G with
induced edge labels given by g(e) = |g(u) — g(v)| then g can be extended to a cordial labeling
of G ® Koy, if and only if n is odd and i(G) = 2 (mod 4); K,, ® Ka,, is cordial if and only if
n # 4 (mod 8); K, ® Kop,y1 is cordial if and only if n # 7 (mod 8); if g is a binary labeling of
the n vertices of graph G with induced edge labels given by g(e) = |g(u) — g(v)| then g can be
extended to a cordial labeling of G ® Cy if t # 3 mod 4, n is odd and e4(0) = e4(1). For any
binary labeling g of a graph G with induced edge labels given by g(e) = |g(u) — g(v)| they also
characterize in terms of i(G) when g can be extended to graphs of the form G ® Koy, 41.

For graphs G1,Gj,...,Gy, (n > 2) that are all copies of a fixed graph G, Shee and Ho [1057]
call a graph obtained by adding an edge from G; to G;4+1 for i =1,...,n — 1 a path-union of G
(the resulting graph may depend on how the edges are chosen). Among their results they show
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the following graphs are cordial: path-unions of cycles; path-unions of any number of copies of
K,, when m = 4,6, or 7; path-unions of three or more copies of K3; and path-unions of two
copies of K, if and only if m — 2, m, or m + 2 is a perfect square. They also show that there
exist cordial path-unions of wheels, fans, unicyclic graphs, Petersen graphs, trees, and various
compositions.

Lee and Liu [719] give the following general construction for the forming of cordial graphs
from smaller cordial graphs. Let H be a graph with an even number of edges and a cordial
labeling such that the vertices of H can be divided into t parts Hy, Ho, ..., H; each consisting
of an equal number of vertices labeled 0 and vertices labeled 1. Let G be any graph and
G1,Ga,...,G¢ be any t subsets of the vertices of G. Let (G, H) be the graph that is the disjoint
union of G and H augmented by edges joining every vertex in G; to every vertex in H; for all
i. Then G is cordial if and only if (G, H) is. From this it follows that: all generalized fans
Fon= K., + P, are cordial; the generalized bundle B, n, is cordial if and only if m is even or
n # 2 (mod 4) (B, consists of 2n vertices vy, va, ..., vy, U1, U2, ..., u, with an edge from v;
to u; and 2m vertices X1, %2, ... Tm,Y1,Y2, - - - , Ym With x; joined to v; and y; joined to wu;); if m
is odd the generalized wheel W, ,, = K,, + C), is cordial if and only if n # 3 (mod 4). If m is
even, W, ,, is cordial if and only if n # 2 (mod 4); a complete k-partite graph is cordial if and
only if the number of parts with an odd number of vertices is at most 3.

Sethuraman and Selvaraju [1049] have shown that certain cases of the union of any number
of copies of K, with one or more edges deleted and one edge in common are cordial. Youssef
[1310] has shown that the kth power of C), is cordial for all n when k£ = 2 (mod 4) and for
all even n when £ = 0 (mod 4). Ramanjaneyulu, Venkaiah, and Kothapalli [954] give cordial
labelings for a family of planar graphs for which each face is a 3-cycle and a family for which
each face is a 4-cycle. Acharya, Germina, Princy, and Rao [23] prove that every graph G can be
embedded in a cordial graph H. The construction is done in such a way that if G is planar or
connected, then so is H.

Recall from §2.7 that a graph H is a supersubdivision of a graph G, if every edge uv of G
is replaced by K3, (m may vary for each edge) by identifying u and v with the two vertices in
K5, that form the partite set with exactly two members. Vaidya and Kanani [1193] prove that
supersubdivisions of paths and stars are cordial. They also prove that supersubdivisions of C),
are cordial provided that n and the various values for m are odd.

Cahit [280] calls a graph H -cordial if it is possible to label the edges with the numbers from
the set {1, —1} in such a way that, for some k, at each vertex v the sum of the labels on the edges
incident with v is either k£ or —k and the inequalities |v(k) — v(—k)| < 1 and |e(1) —e(—1)| < 1
are also satisfied, where v(i) and e(j) are, respectively, the number of vertices labeled with ¢
and the number of edges labeled with j. He calls a graph H,,-cordial if it is possible to label the
edges with the numbers from the set {£1,+2,...,+n} in such a way that, at each vertex v the
sum of the labels on the edges incident with v is in the set {£1,£2,...,4+n} and the inequalities
|v(i) —v(—i)| < 1 and |e(i) — e(—i)] < 1 are also satisfied for each ¢ with 1 < i < n. Among
Cahit’s results are: K, , is H-cordial if and only if n > 2 and n is even; and K,, ,,m # n, is
H-cordial if and only if n = 0 (mod 4), m is even and m > 2,n > 2. Unfortunately, Ghebleh and
Khoeilar [468] have shown that other statements in Cahit’s paper are incorrect. In particular,
Cahit states that K,, is H-cordial if and only if n = 0 (mod 4); W), is H-cordial if and only if
n =1 (mod 4); and K, is Hy-cordial if and only if n = 0 (mod 4) whereas Ghebleh and Khoeilar
instead prove that K, is H-cordial if and only if n = 0 or 3 (mod 4) and n # 3; W, is H-cordial
if and only if n is odd; K, is Ha-cordial if n = 0 or 3 (mod 4); and K,, is not Hs-cordial if
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n =1 (mod 4). Ghebleh and Khoeilar also prove every wheel has an Hs-cordial labeling. Cahit
generalizes the notion of H-cordial labelings in [280].

Cahit and Yilmaz [284] call a graph Ej-cordial if it is possible to label the edges with the
numbers from the set {0,1,2,...,k — 1} in such a way that, at each vertex v, the sum of the
labels on the edges incident with v modulo k satisfies the inequalities |v(i) — v(j)| < 1 and
le(i) —e()] < 1, where v(s) and e(t) are, respectively, the number of vertices labeled with s and
the number of edges labeled with ¢. Cahit and Yilmaz prove the following graphs are Fs3-cordial:
P, (n > 3); stars S, if and only if n # 1 (mod 3); K,, (n > 3); C,, (n > 3); friendship graphs;
and fans F,, (n > 3). They also prove that S,, (n > 2) is Ej-cordial if and only if n # 1 (mod
k) when k is odd or n # 1 (mod 2k) when k is even and k # 2.

Bapat and Limaye [187] provide FEs-cordial labelings for: K, (n > 3); snakes whose blocks
are all isomorphic to K,, where n = 0 or 2 (mod 3); the one-point union of any number of copies
of K,, where n = 0 or 2 (mod 3); graphs obtained by attaching a copy of K,, where n = 0 or
3 (mod 3) at each vertex of a path; and K, ® K,. Rani and Sridharan [958] proved: for odd
n>1and k > 2, P, ® Kj is Eg-cordial; for n even and n # k/2, P, ® K is Ej-cordial; and
certain cases of fans are Ej-cordial.

Hovey [556] has introduced a simultaneous generalization of harmonious and cordial label-
ings. For any Abelian group A (under addition) and graph G(V, E) he defines G to be A-cordial
if there is a labeling of V' with elements of A such that for all @ and b in A when the edge ab
is labeled with f(a) + f(b), the number of vertices labeled with a and the number of vertices
labeled b differ by at most one and the number of edges labeled with a and the number labeled
with b differ by at most one. In the case where A is the cyclic group of order k, the labeling
is called k-cordial. With this definition we have: G(V,FE) is harmonious if and only if G is
|E|-cordial; G is cordial if and only if G is 2-cordial.

Hovey has obtained the following: caterpillars are k-cordial for all k; all trees are k-cordial
for k = 3,4, and 5; odd cycles with pendant edges attached are k-cordial for all k; cycles are
k-cordial for all odd k; for k even, Co,,i4; is k-cordial when 0 < j < % +2 and when k < j < 2k;
Cm+1)k is not k-cordial; K, is 3-cordial; and, for k even, K is k-cordial if and only if m = 1.

Hovey advances the following conjectures: all trees are k-cordial for all k; all connected
graphs are 3-cordial; and Cy,i4; is k-cordial if and only if j # k, where k and j are even and
0 < j < 2k. The last conjecture was verified by Tao [1171]. Tao’s result combined with those
of Hovey show that for all positive integers k the n-cycle is k-cordial with the exception that
k is even and n = 2mk + k. Tao also proved that the crown with 2mk + j vertices is k-cordial
unless j = k is even, and for 4 < n < k the wheel W, is k-cordial unless k¥ = 5 (mod 8) and
n=(k+1)/2.

In [1045] Sethuraman and Selvaraju present an algorithm that permits one to start with
any non-trivial connected graph G and successively form supersubdivisions (see §2.7 for the
definition) that are cordial in the case that every edge in G is replaced by K> ,, where m is even.
Sethuraman and Selvaraju [1044] also show that the one-vertex union of any number of copies
of Ky, ,, is cordial and that the one-edge union of k copies of shell graphs C'(n,n —3) (see §2.2)
is cordial for all n > 4 and all k. They conjectured that the one-point union of any number of
copies of graphs of the form C(n;, n; — 3) for various n; > 4 is cordial. This was proved by Yue,
Yuansheng, and Liping in [1318]. Riskin [967] claimed that K, is Zs x Zs-cordial if and only if
n is at most 3 and K, ,, is Z3 x Z3 cordial if and only if (m,n) # (2,2). However, Pechenik and
Wise [925] report that the correct statement for Ky, ,, is K, n is Za x Z3 cordial if and only if
mv and n are not both congruent to 2 mod 4.
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In [925] Pechenik and Wise investigate Zs X Zs-cordiality of complete bipartite graphs, paths,
cycles, ladders, prisms, and hypercubes. They proved that all complete bipartite graphs are
Zy X Za-cordial except K, , where m,n = 2 mod 4; all paths are Zy x Z>-cordial except P, and
Ps; all cycles are Zy x Zs-cordial except Cy, C5, C), where k = 2 mod 4; and all ladders P, x Py
are Zy X Zy-cordial except Cy. They also introduce a generalization of A-cordiality involving
digraphs and quasigroups, and we show that there are infinitely many G-cordial digraphs for
every quasigroup Q.

Cairnie and Edwards [287] have determined the computational complexity of cordial and
k-cordial labelings. They prove the conjecture of Kirchherr [649] that deciding whether a graph
admits a cordial labeling is NP-complete. As a corollary, this result implies that the same
problem for k-cordial labelings is NP-complete. They remark that even the restricted problem
of deciding whether connected graphs of diameter 2 have a cordial labeling is also NP-complete.

In [303] Chartrand, Lee, and Zhang introduced the notion of uniform cordiality as follows.
Let f be a labeling from V(G) to {0,1} and for each edge xy define f*(xy) = |f(x) — f(y)|.
For i = 0 and 1, let v;(f) denote the number of vertices v with f(v) = i and e;(f) denote the
number of edges e with f*(e) =i. They call a such a labeling f friendly if |vo(f) — v1(f)] < 1.
A graph G for which every friendly labeling is cordial is called uniformly cordial. They prove
that a connected graph of order n > 2 is uniformly cordial if and only if n = 3 and G = K3, or
n is even and G = Ky 1.

In [965] Riskin introduced two measures of the noncordiality of a graph. He defines the
cordial edge deficiency of a graph G as the minimum number of edges, taken over all friendly
labelings of GG, needed to be added to G such that the resulting graph is cordial. If a graph G has
a vertex labeling f using 0 and 1 such that the edge labeling f. given by f.(xy) = |f(z) — f(y)|
has the property that the number of edges labeled 0 and the number of edges labeled 1 differ by
at most 1, the cordial vertex deficiency defined as oo. Riskin proved: the cordial edge deficiency
of K, (n > 1) is | 5| —1; the cordial vertex deficiency of K, is j —1if n = j2 46, when 6 is —2,0
or 2, and oo otherwise. In [965] Riskin determines the cordial edge deficiency and cordial vertex
deficiency for the cases when the Mdbius ladders and wheels are not cordial. In [966] Riskin
determines the cordial edge deficiencies for complete multipartite graphs that are not cordial
and obtains a upper bound for their cordial vertex deficiencies.

If f is a binary vertex labeling of a graph G Lee, Liu, and Tan [720] defined a partial edge
labeling of the edges of G by f*(uv) =0 if f(u) = f(v) =0 and f*(uwv) =1 if f(u) = f(v) = 1.
They let eg(G) denote the number of edges uv for which f*(uv) = 0 and e1(G) denote the
number of edges uv for which f*(uv) = 1. They say G is balanced if it has a friendly labeling
f such that if |eg(f) — e1(f)| < 1. In the case that the number of vertices labeled 0 and the
number of vertices labeled 1 are equal and the number of edges labeled 0 and the number of
edges labeled 1 are equal they say the labeling is strongly balanced. They prove: P, is balanced
for all n and is strongly balanced if n is even; K, ,, is balanced if and only if m and n are even,
m and n are odd and differ by at most 2, or exactly one of m or n is even (say n = 2t) and
t=-1,0,1 (mod |m —n|); a k-regular graph with p vertices is strongly balanced if and only if p
is even and is balanced if and only if p is odd and k& = 2; and if G is any graph and H is strongly
balanced, the composition G[H] (see §2.3 for the definition) is strongly balanced. In [666] Kong,
Lee, Seah, and Tang show: C,, x P, is balanced if m and n are odd and is strongly balanced if
either m or n is even; and C,, ® K is balanced for all m > 3 and strongly balanced if m is even.
They also provide necessary and sufficient conditions for a graph to be balanced or strongly
balanced. Lee, Lee, and Ng [698] show that stars are balanced if and only if the number of edges
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of the star is at most 4. Kwong, Lee, Lo, and Wang [692] define a graph G to be uniformly
balanced if |eg(f) — e1(f)| < 1 for every vertex labeling f that satisfies if |vg(f) — v1(f)] < 1.
They present several ways to construct families of uniformly balanced graphs. Kim, Lee, and
Ng [645] prove the following: for any graph G, mG is balanced for all m; for any graph G, mG
is strongly balanced for all even m; if G is strongly balanced and H is balanced, then G U H is
balanced; mK,, is balanced for all m and strongly balanced if and only if n = 3 or mn is even;
if H is balanced and G is any graph, the G x H is strongly balanced; if one of m or n is even,
then P,,[P,] is balanced; if both m and n are even, then P,,[P,] is balanced; and if G is any
graph and H is strongly balanced, then the tensor product G ® H is strongly balanced.

3.8 The Friendly Index—Balance Index

Recall a function f from V(G) to {0,1} where for each edge zy, f*(zy) = |f(x)— f(y)], vi(f) is
the number of vertices v with f(v) = i, and e;(f) is the number of edges e with f*(e) = i is called
friendly if |vo(f) — vi(f)] < 1. Lee and Ng [726] define the friendly index set of a graph G as
FI(G)= {leo(f) — e1(f)| where f runs over all friendly labelings f of G}. They proved: for any
graph G with ¢ edges FI(G) C {0,2,4,...,q} if ¢ is even and FI(G)C {1,3,...,¢} if ¢ is odd; for
1<m<n, FI(Kun)={(m—2i)2|0 <i< |m/2]}if m+nis even; and FI(K,, ,)= {i(i+1)] 0 <
i <m} if m+n is odd. In [730] Lee and Ng prove the following: FI(C2,) = {0,4,8,...,2n}
when n is even; FI(Cy,) = {2,6, 10, ...,2n} when n is odd; and FI(Cy,+1) = {1,3,5,...,2n—1}.
Elumalai [380] defines a cycle with a full set of chords as the graph PC,, obtained from C,, =
vg, V1,02, ... ,Un_1 by adding the cords v1v,_1,voUp_2, ... s V(n—2)/2> V(n42)/2 when n is even and
V1Un—1,V20n-2, - - - , V(n—3)/2, V(n+3)/2 When n is odd. Lee and Ng [728] prove: FI(PCypny1) =
{83m—2,3m—4,3m—6,...,0} when m is even and FI(PCq,+1) = {3m—2,3m—4,3m—6,...,1}
when m is odd; FI(PCy) = {1, 3}; for m > 3, FI(PCyy,) = {3m—5,3m —7,3m—9,...,1} when
m is even; FI(PCyy,) = {3m — 5,3m — 7,3m —9,...,0} when m is odd.

Salehi and Lee [985] determined the friendly index for various classes of trees. Among their
results are: for a tree with ¢ edges that has a perfect matching, the friendly index is the odd
integers from 1 to ¢ and for n > 2, FI(P,)={n—1-2i| 0 < i|(n—1)/2]. Lee and Ng [728] define
PC(n,p) as the graph obtained from the cycle C,, with consecutive vertices vy, v1, v, ..., Vp—1
by adding the p cords joining v; to vy,_; for 1 < p|n/2| — 1. They prove FI(PC(2m + 1,p)) =
{2m+p—-1,2m+p—3,2m+p—>5,...,1} if p is even and FI(PC(2m + 1,p)) = {2m +p —
1,2m+p—3,2m+p—>5,...,0} if pis odd; FI(PC(2m,1)) = {2m—1,2m—3,2m—5,...,1}; for
m >3, and p > 2, FI(PC(2m,p)) = {2m+p—4,2m+p—6,2m+p—38,...,0} when p is even,
and FI(PC(2m,p)) = {2m+p—4,2m+p—6,2m+p—38,...,1} when p is odd. More generally,
they show that the integers in the friendly index of a cycle with an arbitrary nonempty set of
parallel chords form an arithmetic progression with a common difference 2. Shiu and Kwong
[1063] determine the friendly index of the grids P, x P». The maximum and minimum friendly
indices for Cy, x P,, were given by Shiu and Wong in [1081].

In [729] Lee and Ng prove: for n > 2, FI(Cy, x P») = {0,4,8,...,6n — 8,6n} if n is even
and FI(Cyy, x P») = {2,6,10,...,6n — 8,6n} if n is odd; FI(C3 x P;) = {1,3,5}; for n > 2,
FI(Comi1 X P3) = {6n — 1} U {6n — 5 — 2k| where k > 0 and 6n — 5 — 2k > 0}; FI(My,) (here
My, is the Mobius ladder with 4n steps) = {6n — 4 — 4k| where k > 0 and 6n — 4 — 4k > 0};
FI(Myp42) = {6n + 3} U {6n — 5 — 2k| where £ > 0 and 6n — 5 — 2k > 0}. In [693] Kwong,
Lee, and Ng completely determine the friendly index of 2-regular graphs with two components.
As a corollary, they show that C,, U C,, is cordial if and only if m +n = 0,1 or 3 (mod 4).

THE ELECTRONIC JOURNAL OF COMBINATORICS 18 (2011), #DS6 56



Ho, Lee, and Ng [550] determine the friendly index sets of stars and various regular windmills.
In [1252] Wen determines the friendly index of generalized wheels C,, + mK; for all m > 1. In
[984] Salehi and De determine the friendly index sets of certain caterpillars of diameter 4 and
disprove a conjecture of Lee and Ng [730] that the friendly index sets of trees form an arithmetic
progression. The maximum and minimum friendly indices for for C), x P, were given by Shiu
and Wong in [1081]. Salehi and Bayot [982] have determined the friendly index set of P, x P,.

For positive integers a < b < ¢, Lee, Ng, amd Tong [734] define the broken wheel W (a, b, c)
with three spokes as the graph obtained from K, with vertices uq, uo, us, ¢ by inserting vertices
T11,%1,2,--.21,4—1 along the edge ujug, r2 1,222, ... 21 along the edge usus, 31,732, ... 73,1
along the edge uzuq. They determine the friendly index set for broken wheels with three spokes.

Lee and Ng [728] define a parallel chord of C,, as an edge of the form v;v,,—; (i < n—1) that is
not an edge of C,,. For n > 6, they call the cycle C),, with consecutive vertices vy, vs,...,v, and
the edges vivp—1, V2002, ..., Vn_2)/2V(n+2)/2 fOr n even and vavn_1,v30n-2; .., V(n_1)/2V(n+3)/2
for n odd, C,, with a full set of parallel chords. They determine the friendly index of these graphs
and show that for any cycle with an arbitrary non-empty set of parallel chords the numbers in
its friendly index set form an arithmetic progression with common difference 2.

For a graph G(V, E) and a graph H rooted at one of its vertices v, Ho, Lee, and Ng [549]
define a root-union of (H,v) by G as the graph obtained from G by replacing each vertex of G
with a copy of the root vertex v of H to which is appended the rest of the structure of H. They
investigate the friendly index set of the root-union of stars by cycles.

For a graph G(V, E), the total graph T(G) of G, is the graph with vertex set V' U E and edge
set EU{(v,uv)| v € V,uv € E}. Note that the total graph of the n-star is the friendship graph
and the total graph of P, is a triangular snake. Lee and Ng [725] use SP(1™,m) to denote the
spider with one central vertex joining n isolated vertices and a path of length m. They show:
FI(K; + 2nK>3) (friendship graph with 2n triangles) = {2n,2n — 4,2n — 8,...,0} if n is even;
{2n,2n—4,2n—38,...,2} if nis odd; FI(K; + (2n+1)K3) = {2n+1,2n—1,2n—3,...,1}; for n
odd, FI(T'(P,)) = {3n—"7,3n—11,3n—15,...,z} where z = 0if n = 1 (mod 4) and z = 2if n = 3
(mod 4); for n even, FI(T'(P,)) = {3n—"7,3n—11,3n—15,... ,n+1}U{n—1,n—3,n—>5,...,1};
for m < n —1 and m+ n even, FI(T(SP(1",m))) = {3(m +n) —4,3(m +n) — 8,3(m +n) —
12,...,(m+n) (mod 4)}; for m+n odd, FI(T(SP(1",m))) = {3(m+n)—4,3(m+n)—8,3(m+
n)—12,....m+n+2}U{m+nm+n—-2m+n—4,...,1}; for n > m and m + n even,
FI(T'(SP(1",m))) = {|4k —3(m +n)| |(n —m +2)/2 < k < m+n}; for n > m and m + n odd,
FI(T'(SP(1",m))) = {|4k —3(m +n)| |(n —m +3)/2 <k <m+n}.

Kwong and Lee [689] determine the friendly index any number of copies of C5 that share
an edge in common and the friendly index any number of copies of C4 that share an edge in
common.

In [646] Kim, Lee, and Ng define the balance index set of a graph G as {|eo(f) — e1(f)|}
where f runs over all friendly labelings f of G. Zhang, Lee, and Wen [698] investigate the
balance index sets for the disjoint union of up to four stars and Zhang, Ho, Lee, and Wen [1320)]
investigate the balance index sets for trees with diameter at most four. Kwong, Lee, and Sarvate
[694] determine the balance index sets for cycles with one pendant edge, flowers, and regular
windmills. Lee, Ng, and Tong [733] determine the balance index set of certain graphs obtained
by starting with copies of a given cycle and successively identifying one particular vertex of one
copy with a particular vertex of the next. For graphs G and H and a bijection « from G to H,
Lee and Su [754] define Perm(G, 7, H) as the graph obtaining from the disjoint union of G and
H by joining each v in G to 7(v) with an edge. They determine the balanced index sets of the
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disjoint union of cycles and the balanced index sets for graphs of the form Perm (G, 7, H) where
G and H are regular graphs, stars, paths, and cycles with a chord. They conjecture that the
balanced index set for every graph of the form Perm(G, 7, H) is an arithmetic progression. Wen
[1251] determines the balance index set of the graph that is constructed by identifying the center
of a star with one vertex from each of two copies of C,, and provides a necessary and sufficient
for such graphs to be balanced. In [756] Lee, Su, and Wang determine the balance index sets of
the disjoint union of a variety of regular graphs of the same order. Kwong [687] determines the
balanced index sets of rooted trees of height at most 2, thereby settling the problem for trees
with diameter at most 4. His method can be used to determine the balance index set of any
tree.

In[1064] Shiu and Kwong made a major advance by introducing an easier approach to find
the balance index sets of a large number of families of graphs in a unified and uniform manner.
They use this method to determine the balance index sets for r-regular graphs, amalgamations
of r-regular graphs, complete bipartite graphs, wheels, one point unions of regular graphs, sun
graphs, generalized theta graphs, m-ary trees, spiders, grids P,, x P,, and cylinders C,,, X P,.
They provide a formula that enables one to determine the balance index sets of many biregular
graphs (that is, graphs with the property that there exist two distinct positive integers r and s
such that every vertex has degree r or s).

In [1063] Shiu and Kwong define the full friendly index set of a graph G as {eo(f) — e1(f)}
where f runs over all friendly labelings of GG. The full friendly index for P, x P, is given by Shiu
and Kwong in [1063]. The full friendly index of C,, x C), is given by Shiu and Ling in [1074].

In [326] and [690] Chopra, Lee and Su and Kwong and Lee introduce a dual of balance index
sets as follows. For an edge labeling f using 0 and 1 they define a partial vertex labeling f* by
assigning 0 or 1 to f*(v) depending on whether there are more 0-edges or 1-edges incident to v
and leaving f*(v) undefined otherwise. For i = 0 or 1 and a graph G(V, E), let ef(i) = [{uv €
E : f(uv) =i}| and vs(i) = [{v € V : f*(v) = i}|. They define the edge-balance index of G as
EBI(G) = {|vf(0) —vf(1)| : the edge labeling f satisfies |ef(0) —ef(1)| < 1}. Among the graphs
whose edge-balance index sets have been investigated by Lee and his colleagues are: fans and
wheels [326]; generalized theta graphs [690]; flower graphs [691] and [691]; stars, paths, spiders,
and double stars [762]; (p, p+1)-graphs [759]; prisms and Mo6bius ladders [1243]; 2-regular graphs,
complete graphs [1242]; and the envelope graphs of stars, paths, and cycles [334]. (The envelope
graph of G(V, E) is the graph with vertex set V(G) U E(G) and set E(G) U {(u, (u,v)) : U €
V. (u,v) € E)}).

Chopra, Lee, and Su [328] prove that the edge-balanced index of the fan P; + K is {0,1,2}
and edge-balanced index of the fan P, + Ky, n > 4, is {0,1,2,...,n — 2}. They define the
broken fan graphs BF'(a,b) as the graph with V(BF(a,b)) = {c} U {v1,...,va} U{us, ..., up}
and F(BF(a,b)) = {(c,v)| i=1,...,a} U{(c,uw;)| 1,...,0} UE(P,) UE(P) (a > 2 and b > 2).
They prove the edge-balance index set of BF(a,b) is {0,1,2,...,a+b—4}. In [699] Lee, Lee,
and Su present a technique that determines the balance index sets of a graph from its degree
sequence. In addition, they give an explicit formula giving the exact values of the balance indices
of generalized friendship graphs, envelope graphs of cycles, and envelope graphs of cubic trees.

In 1990 Cahit [276] proposed the idea of distributing the vertex and edge labels among
{0,1,...,k — 1} as evenly as possible to obtain a generalization of graceful labelings as follows.
For any graph G(V, E) and any positive integer k, assign vertex labels from {0,1,...,k — 1} so
that when the edge labels induced by the absolute value of the difference of the vertex labels,
the number of vertices labeled with ¢ and the number of vertices labeled with j differ by at most
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one and the number of edges labeled with ¢ and the number of edges labeled with j differ by
at most one. Cahit has called a graph with such an assignment of labels k-equitable. Note that
G(V, E) is graceful if and only if it is |E| + 1-equitable and G(V, E) is cordial if and only if it is
2-equitable. Cahit [275] has shown the following: C,, is 3-equitable if and only if n #Z 3 (mod 6);
the triangular snake with n blocks is 3-equitable if and only if n is even; the friendship graph
C?(,n) is 3-equitable if and only if n is even; an Eulerian graph with ¢ = 3 (mod 6) edges is not
3-equitable; and all caterpillars are 3-equitable [275]. Cahit [275] claimed to prove that W, is
3-equitable if and only if n # 3 (mod 6) but Youssef [1305] proved that W,, is 3-equitable for
all n > 4. Youssef [1303] also proved that if G is a k-equitable Eulerian graph with ¢ edges and
k=2 or 3 (mod 4) then ¢ # k (mod 2k). Cahit conjectures [275] that a triangular cactus with
n blocks is 3-equitable if and only if n is even. In [276] Cahit proves that every tree with fewer
than five end vertices has a 3-equitable labeling. He conjectures that all trees are k-equitable
[277]. In 1999 Speyer and Szaniszlé [1130] proved Cahit’s conjecture for k = 3.

Vaidya, Ghodasara, Srivastav, and Kaneria [1191] have shown that the graphs obtained by
replacing each vertex of a star by a fixed cycle are 3-equitable. Vaidya, Dani, Kanani and Vihol
[1187] proved that the graphs obtained by starting with copies G, Gs, ..., G, of a fixed star and
joining each center of G; to the center of G; 41 (i = 1,2,...,n — 1) by an edge are 3-equitable.
Recall the shell C'(n,n — 3) is the cycle C,, with n — 3 cords sharing a common endpoint called
the apex. Vaidya, Dani, Kanani, and Vihol [1188] proved that the graphs obtained by starting
with copies G1,Ga,...,G), of a fixed shell and joining each apex of G; to the apex of G;41
(i=1,2,...,n—1) by an edge are 3-equitable. For a graph G and vertex v of G, Vaidya, Dani,
Kanani, and Vihol [1189] define the duplication of v as the graph obtained from G by adding
a new vertex v’ to G and joining v’ to every vertex in G incident with v. They prove that the
graphs obtained from the wheel W,,, n > 5, by duplicating any rim vertex is 3-equitable and the
graphs obtained from the wheel W,, by duplicating the center is 3-equitable when n is even and
not 3-equitable when n is odd and at least 5. They also show that the graphs obtained from the
wheel W,,, n # 5, by duplicating every vertex is 3-equitable.

Bhut-Nayak and Telang have shown that crowns C,, ® K1, are k-equitable for k =n,...,2n—1
[231] and C), ® K7 is k-equitable for all n when k = 2,3,4,5, and 6 [232].

In [1005] Seoud and Abdel Magsoud prove: a graph with n vertices and ¢ edges in which
every vertex has odd degree is not 3-equitable if n = 0 (mod 3) and ¢ = 3 (mod 6); all fans
except P, + K are 3-equitable; all double fans P, + K except Py + Ko are 3-equitable; Pg is 3-
equitable for all n except 3; K11, is 3-equitable if and only if n = 0 or 2 (mod 3); Kj 2, n > 2,
is 3-equitable if and only if n = 2 (mod 3); K, 3 < m < n, is 3-equitable if and only if
(m,n) = (4,4); and K1, 3 <m < n, is 3-equitable if and only if (m,n) = (3,4).

Bapat and Limaye [185] have shown the following graphs are 3-equitable: helms H,,, n > 4;
flowers (see §2.2 for the definition); the one-point union of any number of helms; the one-point
union of any number of copies of Ky; Ky-snakes (see §2.2 for the definition); Cy-snakes where
t = 4 or 6; Cs-snakes where the number of blocks is not congruent to 3 modulo 6. A multiple
shell MS{nﬁl, ...,nlr} is a graph formed by t; shells each of order n;, 1 < i < r, that have a
common apex. Bapat and Limaye [186] show that every multiple shell is 3-equitable and Chitre
and Limaye [321] show that every multiple shell is 5-equitable.

Szaniszl6 [1170] has proved the following: P, is k-equitable for all k; K, is 2-equitable if and
only if n = 1,2, or 3; K, is not k-equitable for 3 < k < n; S, is k-equitable for all k; Ky, is
k-equitable if and only if n =k —1 (mod k), or n =0,1,2,...,|k/2] —1 (mod k), or n = |k/2]
and k is odd. She also proves that C,, is k-equitable if and only if & meets all of the following
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conditions: n # k; if k = 2,3 (mod 4), then n # k — 1 and n #Z k (mod 2k).

Vickrey [1201] has determined the k-equitability of complete multipartite graphs. He shows
that for m > 3 and k > 3, K, is k-equitable if and only if K, ,, is one of the following graphs:
Ky for k = 3; K31 for all k; or K,y ,, for k > mn. He also shows that when £ is less than or
equal to the number of edges in the graph and at least 3, the only complete multipartite graphs
that are k-equitable are Kjy,ir—121 and Kjy,ip—11,1. Partial results on the k-equitability of
K, were obtained by Krussel [684].

In [819] Lopez, Muntaner-Batle, and Rius-Font prove that if n is an odd integer and F' is
optimal k-equitable for all proper divisors k of |E(F)|, then nF' is optimal k-equitable for all
proper divisors k of |[E(F')|. They also prove that if m — 1 and n are odd, then then nC,, is
optimal k-equitable for all proper divisors k of |E(F)|.

As a corollary of the result of Cairnie and Edwards [287] on the computational complexity
of cordially labeling graphs it follows that the problem of finding k-equitable labelings of graphs
is NP-complete as well.

Seoud and Abdel Magsoud [1006] call a graph k-balanced if the vertices can be labeled from
{0,1,...,k—1} so that the number of edges labeled i and the number of edges labeled j induced
by the absolute value of the differences of the vertex labels differ by at most 1. They prove that
P2 is 3-balanced if and only if n = 2,3,4, or 6; for k > 4, P2 is not k-balanced if k <n — 2 or
n+1<k<2n-3;for k >4, P2is k-balanced if k > 2n—2; for k,m,n > 3, K, ,, is k-balanced
if and only if £ > mn; for m < n, Ky, is k-balanced if and only if (i) m =1, n =1 or 2, and
k=3;(it)y m=1land k=n-+1orn+2;or (iti) k> (m+1)(n+1).

Bloom has used the term k-equitable to describe another kind of labeling (see [1261] and
[1262]). He calls a graph k-equitable if the edge labels induced by the absolute value of the
difference of the vertex labels have the property that every edge label occurs exactly k£ times.
Bloom calls a graph of order n minimally k-equitable if the vertex labels are 1, 2,..., n and
it is k-equitable. Both Bloom and Wojciechowski [1261], [1262] proved that C,, is minimally
k-equitable if and only if k is a proper divisor of n. Barrientos and Hevia [201] proved that
if G is k-equitable of size ¢ = kw (in the sense of Bloom), then §(G) < w and A(G) < 2w.
Barrientos, Dejter, and Hevia [200] have shown that forests of even size are 2-equitable. They
also prove that for Kk = 3 or k = 4 a forest of size kw is k-equitable if and only if its maximum
degree is at most 2w and that if 3 divides mn + 1, then the double star S, ,, is 3-equitable if
and only if ¢/3 <m < |(¢ —1)/2]. (Sym,n is P> with m pendant edges attached at one end and
n pendant edges attached at the other end.) They discuss the k-equitability of forests for & > 5
and characterize all caterpillars of diameter 2 that are k-equitable for all possible values of k.
Acharya and Bhat-Nayak [33] have shown that coronas of the form Cy, ® K are minimally
4-equitable. In [188] Barrientos proves that the one-point union of a cycle and a path (dragon)
and the disjoint union of a cycle and a path are k-equitable for all k£ that divide the size of the
graph. Barrientos and Havia [201] have shown the following: C), x K3 is 2-equitable when n is
even; books B, (n > 3) are 2-equitable when n is odd; the vertex union of k-equitable graphs
is k-equitable; and wheels W, are 2-equitable when n #Z 3 (mod 4). They conjecture that W,
is 2-equitable when n = 3 (mod 4) except when n = 3. Their 2-equitable labelings of C,, x Ko
and the n-cube utilized graceful labelings of those graphs.

M. Acharya and Bhat-Nayak [34] have proved the following: the crowns Cs, ® K; are min-
imally 2-equitable, minimally 2n-equitable, minimally 4-equitable, and minimally n-equitable;
the crowns Cs,, ©® K7 are minimally 3-equitable, minimally 3n-equitable, minimally n-equitable,
and minimally 6-equitable; the crowns C5, ® K; are minimally 5-equitable, minimally 5n-
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equitable, minimally n-equitable, and minimally 10-equitable; the crowns Cy,+1 ® K7 are mini-
mally (2n + 1)-equitable; and the graphs Py, 11 are k-equitable.

In [190] Barrientos calls a k-equitable labeling optimal if the vertex labels are consecutive
integers and complete if the induced edge labels are 1,2, ..., w where w is the number of distinct
edge labels. Note that a graceful labeling is a complete 1-equitable labeling. Barrientos proves
that C),, ® nK; (that is, an m-cycle with n pendant edges attached at each vertex) is optimal
2-equitable when m is even; C3 ®nkK; is complete 2-equitable when n is odd; and that C3 ®nKk;
is complete 3-equitable for all n. He also shows that C, ® K is k-equitable for every proper
divisor k of the size 2n. Barrientos and Havia [201] have shown that the n-cube (n > 2) has a
complete 2-equitable labeling and that K, , has a complete 2-equitable labeling when m or n
is even. They conjecture that every tree of even size has an optimal 2-equitable labeling.

3.9 Hamming-graceful Labelings

Mollard, Payan, and Shixin [879] introduced a generalization of graceful graphs called Hamming-
graceful. A graph G = (V, E) is called Hamming-graceful if there exists an injective labeling
g from V to the set of binary |F|-tuples such that {d(g(v),g(u))| uwv € E} = {1,2,...,|E|}
where d is the Hamming distance. Shixin and Yu [1084] have shown that all graceful graphs are
Hamming-graceful; all trees are Hamming-graceful; C,, is Hamming-graceful if and only if n = 0
or 3 (mod 4); if K,, is Hamming-graceful, then n has the form k2 or k2 +2; and K, is Hamming-
graceful for n = 2,3,4,6,9,11,16, and 18. They conjecture that K, is Hamming-graceful for n
of the forms k2 and k2 + 2 for k > 5.

4 Variations of Harmonious Labelings

4.1 Sequential and Strongly c-harmonious Labelings

Chang, Hsu, and Rogers [295] and Grace [480], [481] have investigated subclasses of harmonious
graphs. Chang et al. define an injective labeling f of a graph G with ¢ vertices to be strongly
c-harmonious if the vertex labels are from {0,1,...,¢ — 1} and the edge labels induced by
f(x) + f(y) for each edge zy are c,...,c+ g — 1. Grace called such a labeling sequential. In
the case of a tree, Chang et al. modify the definition to permit exactly one vertex label to
be assigned to two vertices whereas Grace allows the vertex labels to range from 0 to ¢ with
no vertex label being used twice. For graphs other than trees, we use the term k-sequential
labelings interchangeably with strongly k-harmonious labelings. By taking the edge labels of a
sequentially labeled graph with ¢ edges modulo g, we obviously obtain a harmoniously labeled
graph. It is not known if there is a graph that can be harmoniously labeled but not sequentially
labeled. Grace [481] proved that caterpillars, caterpillars with a pendant edge, odd cycles with
zero or more pendant edges, trees with a-labelings, wheels Wo, 11, and P? are sequential. Liu
and Zhang [811] finished off the crowns Cy, ® Kj. (The case Co,+1 ©® K7 was a special case
of Grace’s results. Liu [808] proved crowns are harmonious.) Bu [258] also proved that crowns
are sequential as are all even cycles with m pendant edges attached at each vertex. Figueroa-
Centeno, Ichishima, and Muntaner-Batle [414] proved that all cycles with m pendant edges
attached at each vertex are sequential. Wu [1266] has shown that caterpillars with m pendant
edges attached at each vertex are sequential.

Singh has proved the following: C,, ® K3 is sequential for all odd n > 1 [1091]; C), ® Pj is
sequential for all odd n [1092]; Ko ® C), (each vertex of the cycle is joined by edges to the end
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points of a copy of K») is sequential for all odd n [1092]; helms H,, are sequential when n is even
[1092]; and K1, + K2, K1, + K2, and ladders are sequential [1094]. Santhosh [991] has shown
that C,, ©® Py is sequential for all odd n > 3. Both Grace [480] and Reid (see [445]) have found
sequential labelings for the books By,,. Jungreis and Reid [621] have shown the following graphs
are sequential: P, x B, (m,n) # (2,2); Cym X By (m,n) # (1,2); Cymia X Pon; Comi1 X Py
and Cy x Cy, (n > 1). The graphs Cupmi2 X Copy1 and Copypq X Capyq fail to satisfy a necessary

parity condition given by Graham and Sloane [484]. The remaining cases of C), x P, and C,,, x C,,
are open. Gallian, Prout, and Winters [446] proved that all graphs C,, x P, with a vertex or an
edge deleted are sequential.

Gnanajothi [471, pp. 68-78] has shown the following graphs are sequential: K, n; mCh,
the disjoint union of m copies of C,, if and only if m and n are odd; books with triangular pages
or pentagonal pages; and books of the form By, 1, thereby answering a question and proving a
conjecture of Gallian and Jungreis [445]. Sun [1149] has also proved that B, is sequential if and
only if n # 3 (mod 4). Ichishima and Oshima [574] pose determining whether or not mKj; is
sequential as a problem.

Yuan and Zhu [1316] have shown that mC), is sequential when m and n are odd. Although
Graham and Sloane [484] proved that the M&bius ladder Mz is not harmonious, Gallian [441]
established that all other Mobius ladders are sequential (see §2.3 for the definition of Mdbius
ladder). Chung, Hsu, and Rogers [295] have shown that K,,, + Ki, which includes S, + K,
is sequential. Seoud and Youssef [1018] proved that if G is sequential and has the same number
of edges as vertices, then G + K, is sequential for all n. Recall that ©(C,,)" denotes the book
with n m-polygonal pages. Lu [826] proved that ©(Ca,,y1)?" is 2mn-sequential for all n and
m=1,2,3,4 and ©(C,,)? is (m — 2)-sequential if m > 3 and m = 2,3,4,7 (mod 8).

Zhou and Yuan [1329] have shown that for every k-sequential graph G with p vertices and ¢
edges and any positive integer m the graph (G + K,,,) + K,, is also k-sequential when ¢ —p+1 <
m < ¢—p+k. Zhou [1328] has shown that the analogous results hold for strongly k-harmonious
and strongly k-elegant graphs. Zhou and Yuan [1329] have shown that for every k-sequential
graph G with p vertices and ¢ edges and any positive integer m the graph (G + K,,) + K, is
k-sequential when g —p+1<m<qg—p+k.

Shee [743] proved that every graph is a subgraph of a sequential graph. Acharya, Ger-
mina, Princy, and Rao [23] prove that every connected graph can be embedded in a strongly
c-harmonious graph for some c¢. Lu [825] provides three techniques for constructing larger se-
quential graphs from some smaller one: an attaching construction, an adjoining construction,
and the join of two graphs. Using these, he obtains various families of sequential or strongly
k-indexable graphs.

Youssef [1308] observed that a strongly c-harmonious graph with ¢ edges is k-cordial for all
k > ¢q and a strongly k-indexable graph is k-cordial for every k. The converse of this latter result
is not true.

In [571] Ichishima and Oshima show that the hypercube @,, (n > 2) is sequential if and only
if n > 4. They also introduce a special kind of sequential labeling of a graph G with size 2t + s
by defining a sequential labeling f to be a partitional labeling if G is bipartite with partite sets
X and Y of the same cardinality s such that f(z) <t+s—1forall z € X and f(y) >t — s for
all y € Y, and there is a positive integer m such that the induced edge labels are partitioned into
three sets [m,m+t—1],[m+t,m+t+s—1|,and [m+t+s,m+ 2t + s — 1] with the properties
that there is an involution 7, which is an automorphism of G such that 7 exchanges X and Y,
zm(z) € E(G) for all z € X, and {f(z)+ f(n(2z))| 2 € X} = [m+t,m+t+s—1]. They prove if
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G has a partitional labeling, then G x @,, has a partitional labeling for every nonnegative integer
n. Using this together with existing results and the fact that every graph that has a partitional
labeling is sequential, harmonious, and felicitous (see §4.5) they show that the following graphs
are partitional, sequential, harmonious, and felicitous: for n > 4, hypercubes @,; generalized
books Sa,, X Qn; and generalized ladders Pog,+1 X Q.

In [572] Ichishma and Oshima proved the following: if G is a partitional graph, then G' x Ko
is partitional, sequential, harmonious and felicitous; if G is a connected bipartite graph with
partite sets of distinct odd order such that in each partite set each vertex has the same degree,
then G x K5 is not partitional; for every positive integer m, the book B,, is partitional if and
only if m is even; the graph Bs,, X @, is partitional if and only if (m,n) # (1,1); the graph
K2 X @Qp is partitional if and only if (m,n) # (2,1); for every positive integer n, the graph
K, 3 x @y is partitional when m = 4,8,12, or 16. As open problems they ask which m and n
is Ky,n X Ky partitional and for which [, m and n is Kj,, x @, partitional?

Ichishma and Oshima [572] also investigated the relationship between partitional graphs
and strongly graceful graphs (see §3.1 for the definition) and partitional graphs and strongly
felicitous graphs (see §4.5 for the definition). They proved the following. If G is a partitional
graph, then G x K> is partitional, sequential, harmonious and felicitous. Assume that G is a
partitional graph of size 2t + s with partite sets X and Y of the same cardinality s, and let f be
a partitional labeling of G such that Ay = max{f(z) : x € X} and Ay = max{f(y) : y € Y}.
If \i+1=m+2t+s— Ao, where m = min{f(z) + f(y) : 2y € E(G)} = min{f(y) :y € Y},
then G has a strong a-valuation. Assume that G is a partitional graph of size 2t + s with
partite sets X and Y of the same cardinality s, and let f be a partitional labeling of G such
that A} = max{f(z) : x € X} and A2 = max{f(y) :y € Y}. I\ +1=m+2t+s— Ay,
where m = min{f(z) + f(y) : zy € E(G)} = min{f(y) : y € Y}, then G is strongly felicitous.
Assume that G is a partitional graph of size 2t + s with partite sets X and Y of the same
cardinality s, and let f be a partitional labeling of G such that y; = f(z1) = min{f(z) :
x € X} and py = f(y1) = min{f(y) : y € Y}. ft+s=m+1and pg + puo = m, where
m = min{f(z) + f(y) : zy € E(G)} and z1y; € E(G), then G has a strong a-valuation and
strongly felicitous labeling.

Singh and Varkey [1097] call a graph with ¢ edges odd sequential if the vertices can be
labeled with distinct integers from the set {0,1,2,...,q} or, in the case of a tree, from the set
{0,1,2,...,2q — 1}, such that the edge labels induced by addition of the labels of the endpoints
take on the values {1,3,5,...,2¢ — 1}. They prove that combs, grids, stars, and rooted trees
of level 2 are odd sequential whereas odd cycles are not. Singh and Varkey call a graph G
bisequential if both G and its line graph have a sequential labeling. They prove paths and cycles
are bisequential.

Among the strongly 1-harmonious (also called strongly harmonious) graphs are: fans F),
with n > 2 [295]; wheels W), with n # 2 (mod 3) [295]; K, + K7 [295]; French windmills Kf)
[559], [627]; the friendship graphs C’?(,") if and only if n =0 or 1 (mod 4) [559], [627], [1283]; C’Sﬁ)
[1150]; and helms [952].

Seoud, Diab, and Elsakhawi [1010] have shown that the following graphs are strongly harmo-
nious: K, , with an edge joining two vertices in the same partite set; K ,, ,; the composition
P, [P] (see §2.3 for the definition); B(3,2,m) and B(4,3,m) for all m (see §2.4 for the notation);
P2 (n > 3); and P2 (n > 3). Seoud et al. [1010] have also proved: Ba, is strongly 2n-harmonious;
P, is strongly |n/2]-harmonious; ladders Loy are strongly (k + 1)-harmonious; and that if G
is strongly c-harmonious and has an equal number of vertices and edges, then G + K, is also
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strongly c-harmonious.

Sethuraman and Selvaraju [1048] have proved that the graph obtained by joining two com-
plete bipartite graphs at one edge is graceful and strongly harmonious. They ask whether these
results extend to any number of complete bipartite graphs.

For a graph G(V, E) Gayathri and Hemalatha [458] define an even sequential harmonious la-
beling f of G as an injection from V to {0, 1,2,...,2|F|} with the property that the induced map-
ping f* from E to {2,4,6,...,2|E|} defined by f*(uv) = f(u)+ f(v) when f(u)+ f(v) is even,
and f*(uv) = f(u)+ f(v) +1 when f(u)+ f(v) is odd, is an injection. They prove the following
have even sequential harmonious labelings (all cases are the nontrivial ones): P, P.F, Cy,(n > 3),
triangular snakes, quadrilateral snakes, Mobius ladders, P, x P, (m > 2,n > 2), K, »; crowns
Cp © Ky, graphs obtained by joining the centers of two copies of K1, by a path; banana trees
(see §2.1), P2, closed helms (see §2.2), C3 ® nKy(n > 2); D ® K;, where D is a dragon (see
§2.2); (K1, : m) (m,n > 2) (see §4.5); the wreath product P, * Ky (n > 2) (see §4.5); combs
P, ® Kj; the one-point union of the end point of a path to a vertex of a cycle (tadpole); the
one-point union of the end point of a tadpole and the center of a star; the graphs PC,, obtained
from Cy, = vg,v1,v2,...,v,—1 by adding the cords viv,—1,v20n-2, ..., V(n-2)/2; V(nt2)/2 When n
is even and v1v,_1,V2Vn2, .., V(n-3)/2, V(n+3)/2 When n is odd (that is, cycles with a full set
of cords); P, - nK7i; the one-point union of a vertex of a cycle and the center of a star; graphs
obtained by joining the centers of two stars with an edge; graphs obtained by joining two disjoint
cycles with an edge (dumbbells); graphs consisting of two even cycles of the same order sharing
a common vertex with an arbitrary number of pendant edges attached at the common vertex
(butterflies).

4.2 (k,d)-arithmetic Labelings

Acharya and Hegde [27] have generalized sequential labelings as follows. Let G be a graph with
q edges and let k and d be positive integers. A labeling f of G is said to be (k,d)-arithmetic if
the vertex labels are distinct nonnegative integers and the edge labels induced by f(z) + f(y)
for each edge zy are k,k + d,k + 2d,...,k + (¢ — 1)d. They obtained a number of necessary
conditions for various kinds of graphs to have a (k, d)-arithmetic labeling. The case where k = 1
and d = 1 was called additively graceful by Hegde [521]. Hegde [521] showed: K, is additively
graceful if and only if n = 2, 3, or 4; every additively graceful graph except K> or K 5 contains a
triangle; and a unicyclic graph is additively graceful if and only if it is a 3-cycle or a 3-cycle with
a single pendant edge attached. Jinnah and Singh [612] noted that P2 is additively graceful.
Hegde [522] proved that if G is strongly k-indexable, then G and G + K,, are (kd, d)-arithmetic.
Acharya and Hegde [29] proved that K, is (k,d)-arithmetic if and only if n > 5 (see also [264]).
They also proved that a graph with an a-labeling is a (k, d)-arithmetic for all k£ and d. Bu and
Shi [264] proved that K, is (k,d)-arithmetic when k is not of the form id for 1 <i <n — 1.
For all d > 1 and all r > 0, Acharya and Hegde [27] showed the following: K, ,, 1 is (d + 2r,d)-
arithmetic; Cyyq1 is (2dt + 2r, d)-arithmetic; Cyryo is not (k,d)-arithmetic for any values of
k and d; Cyys is ((2t + 1)d 4 2r, d)-arithmetic; Wyyyo is (2dt + 2r,d)-arithmetic; and Wy, is
((2t + 1)d + 2r,d)-arithmetic. They conjecture that Cyy1 is (2dt + 2r, d)-arithmetic for some
r and that Cy13 is (2dt + d + 2r, d)-arithmetic for some r. Hegde and Shetty [537] proved the
following: the generalized web W (t,n) (see §2.2 for the definition) is ((n — 1)d/2, d)-arithmetic
and ((3n — 1)d/2,d)-arithmetic for odd n; the join of the generalized web W (¢,n) with the
center removed and K, where n is odd is ((n — 1)d/2, d)-arithmetic; every T),-tree (see §3.2
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for the definition) with ¢ edges and every tree obtained by subdividing every edge of a T)-tree
exactly once is (k + (¢ — 1)d, d)-arithmetic for all £ and d. Lu, Pan, and Li [828] proved that
K UK, is (k,d)-arithmetic when £ > (¢ —1)d + 1 and d > 1.

Yu [1312] proved that a necessary condition for Cy;11 to be (k, d)-arithmetic is that k = 2dt+r
for some r > 0 and a necessary condition for Cy;43 to be (k, d)-arithmetic is that k = (2¢t+1)d+2r
for some r > 0. These conditions were conjectured by Acharya and Hegde [27]. Singh proved
that the graph obtained by subdividing every edge of the ladder L, is (5, 2)-arithmetic [1090]
and that the ladder L, is (n, 1)-arithmetic [1093]. He also proves that P,, x Cy, is ((n —1)/2,1)-
arithmetic when n is odd [1093]. Acharya, Germina, and Anandavally [21] proved that the
subdivision graph of the ladder L,, is (k, d)-arithmetic if either d does not divide k or k = rd for
some r > 2n and that P, x P, and the subdivision graph of the ladder L,, are (k, k)-arithmetic
if and only if k is at least 3. Lu, Pan, and Li [828] proved that S,, U K, 4 is (k,d)-arithmetic
when k£ > (¢ —1)d+ 1 and d > 1.

A graph is called arithmetic if it is (k,d)-arithmetic for some k and d. Singh and Vilfred
[1099] showed that various classes of trees are arithmetic. Singh [1093] has proved that the union
of an arithmetic graph and an arithmetic bipartite graph is arithmetic. He conjectures that the
union of arithmetic graphs is arithmetic. He provides an example to show that the converse is
not true.

Germina and Anandavally [465] investigated embedding of graphs in arithmetic graphs. They
proved: every graph can be embedded as an induced subgraph of an arithmetic graph; every
bipartite graph can be embedded in a (k, d)-arithmetic graph for all k£ and d such that d does not
divide k; and any graph containing an odd cycle cannot be embedded as an induced subgraph
of a connected (k, d)-arithmetic with k < d.

4.3 (k,d)-indexable Labelings

Acharya and Hegde [27] call a graph with p vertices and ¢ edges (k,d)-indexable if there is an
injective function from V to {0,1,2,...,p—1} such that the set of edge labels induced by adding
the vertex labels is a subset of {k,k + d,k + 2d,...,k + q(d — 1)}. When the set of edges is
{k,k+d,k+2d,... ,k+q(d—1)} the graph is said to be strongly (k,d)-indexable. A (k,1)-graph
is more simply called k-indexable and strongly 1-indexable graphs are simply called strongly
indexable. Notice that strongly indexable graphs are a stronger form of sequential graphs and for
trees and unicyclic graphs the notions of sequential labelings and strongly k-indexable labelings
coincide. Hegde and Shetty [542] have shown that the notions of (1, 1)-strongly indexable graphs
and super edge-magic total labelings (see §5.2) are equivalent.

Zhou [1328] has shown that for every k-indexable graph G with p vertices and ¢ edges the
graph (G + Kq,_pyk) + K, is strongly k-indexable. Acharaya and Hegde prove that the only
nontrivial regular graphs that are strongly indexable are Ko, K3, and K9 x K3, and that every
strongly indexable graph has exactly one nontrivial component that is either a star or has a
triangle. Acharya and Hegde [27] call a graph with p vertices indezxable if there is an injective
labeling of the vertices with labels from {0,1,2,...,p — 1} such that the edge labels induced
by addition of the vertex labels are distinct. They conjecture that all unicyclic graphs are
indexable. This conjecture was proved by Arumugam and Germina [75] who also proved that
all trees are indexable. Bu and Shi [265] also proved that all trees are indexable and that all
unicyclic graphs with the cycle C5 are indexable. Hegde [522] has shown the following: every
graph can be embedded as an induced subgraph of an indexable graph; if a connected graph
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with p vertices and g edges (¢ > 2) is (k,d)-indexable, then d < 2; P,, x P, is indexable for all
m and n; if G is a connected (1,2)-indexable graph, then G is a tree; the minimum degree of
any (k,1)-indexable graph with at least two vertices is at most 3; a caterpillar with partite sets
of orders a and b is strongly (1,2)-indexable if and only if |a — b| < 1; in a connected strongly
k-indexable graph with p vertices and g edges, K < p — 1; and if a graph with p vertices and ¢
edges is (k, d)-indexable, then ¢ < (2p —3 — k +d)/d. As a corollary of the latter, it follows that
K, (n >4) and wheels are not (k,d)-indexable.

Lee and Lee [697] provide a way to construct a (k,d)-strongly indexable graph from two
given (k,d)-strongly indexable graphs. Lee and Lo [721] show that every given (1,2)-strongly
indexable spider can extend to an (1,2)-strongly indexable spider with arbitrarily many legs.

Hegde and Shetty [541] also prove that if G is strongly k-indexable Eulerian graph with ¢
edges then ¢ = 0,3 (mod 4) if k is even and ¢ = 0,1 (mod 4) if &k is odd. They further showed
how strongly k-indexable graphs can be used to construct polygons of equal internal angles with
sides of different lengths.

Germina [462] has proved the following: fans P, + Kj are strongly indexable if and only if
n=1,2,3,4,5,6; P, + K5 is strongly indexable if and only if n < 2; the only strongly indexable
complete m-partite graphs are Ky, and K1 1,; ladders P, x P, are [%]-strongly indexable, if n
is odd; K, x P is a strongly indexable if and only if n = 3; C}, x P, is 2-strongly indexable if
m is odd and n > 2; Ky, + K; is not strongly indexable for n > 2; for G; = K ,, 1 <i < n,
the sequential join G = (G1 + G2) U (G2 + G3) U --- U (Gp,—1 + Gy,) is strongly indexable if and
only if, either it =n=1ori=2andn=1o0r = 1,n = 3; P, UPF, is strongly indexable if
and only if n < 3; P, U P, is not strongly indexable; P, U P, is ["T”]—Strongly indexable; mC,,
is k-strongly indexable if and only if m and n are odd; K, U K1 p41 is strongly indexable; and
mK1,p, is [22%1]-strongly indexable when m is odd.

Acharya and Germina [18] proved that every graph can be embedded in a strongly index-
able graph and gave an algorithmic characterization of strongly indexable unicyclic graphs. In
[19] they provide necessary conditions for an Eulerian graph to be strongly k-indexable and
investigate strongly indexable (p, ¢)-graphs for which ¢ = 2p — 3.

Hegde and Shetty [537] proved that for n odd the generalized web graph W (¢,n) with the
center removed is strongly (n — 1)/2-indexable. Hegde and Shetty [542] define a level joined
planar grid as follows. Let u be a vertex of P, X P, of degree 2. For every pair of distinct
vertices v and w that do not have degree 4, introduce an edge between v and w provided that
the distance from w to v equals the distance from u to w. They prove that every level joined
planar grid is strongly indexable. For any sequence of positive integers (a1, as,...,ay,) Lee and
Lee [712] show how to associate a strongly indexible (1,1)-graph. As a corollary, they obtain
the aforementioned result Hegde and Shetty on level joined planar grids.

Section 5.2 of this survey includes a discussion of a labeling method called super edge-magic.
In 2002 Hegde and Shetty [542] showed that a graph has a strongly k-indexable labeling if and
only if it has a super edge-magic labeling.

4.4 Elegant Labelings

In 1981 Chang, Hsu, and Rogers [295] defined an elegant labeling f of a graph G with ¢ edges
as an injective function from the vertices of G to the set {0,1,...,q} such that when each edge
xy is assigned the label f(x)+ f(y) (mod (¢ + 1)) the resulting edge labels are distinct and
nonzero. Note that in contrast to the definition of a harmonious labeling, for an elegant labeling
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it is not necessary to make an exception for trees. Whereas the cycle C,, is harmonious if and
only if n is odd, Chang et al. [295] proved that C), is elegant when n = 0 or 3 (mod 4) and
not elegant when n = 1 (mod 4). Chang et al. further showed that all fans are elegant and the
paths P, are elegant for n #Z 0 (mod 4). Cahit [273] then showed that Py is the only path that
is not elegant. Balakrishnan, Selvam, and Yegnanarayanan [181] have proved numerous graphs
are elegant. Among them are K,,, and the mth-subdivision graph of Kj o, for all m. They
prove that the bistar B, ,, (K2 with n pendant edges at each endpoint) is elegant if and only if
n is even. They also prove that every simple graph is a subgraph of an elegant graph and that
several families of graphs are not elegant. Deb and Limaye [348] have shown that triangular
snakes (see §2.2 for the definition) are elegant if and only if the number of triangles is not equal
to 3 (mod 4). In the case where the number of triangles is 3 (mod 4) they show the triangular
snakes satisfy a weaker condition they call semi-elegant whereby the edge label 0 is permitted.
In [349] Deb and Limaye define a graph G with ¢ edges to be near-elegant if there is an injective
function f from the vertices of G to the set {0, 1,..., ¢} such that when each edge zy is assigned
the label f(x) + f(y) (mod (¢ + 1)) the resulting edge labels are distinct and not equal to g.
Thus, in a near-elegant labeling, instead of 0 being the missing value in the edge labels, ¢ is the
missing value. Deb and Limaye show that triangular snakes where the number of triangles is 3
(mod 4) are near-elegant. For any positive integers aw < < v where [ is at least 2, the theta
graph 0, - consists of three edge disjoint paths of lengths «, 3, and v having the same end
points. Deb and Limaye [349] provide elegant and near-elegant labelings for some theta graphs
where a = 1,2, or 3. Seoud and Elsakhawi [1011] have proved that the following graphs are
elegant: K1 yn; Ki1mn; Ko+ K; K3+ K,,; and K, with an edge joining two vertices of
the same partite set. Sethuraman and Elumalai [1031] have proved that for every graph G with
p vertices and g edges the graph G + K| + K, is graceful when m > 2P —p — q.

Sethuraman and Elumalai [1031] proved that every graph is a vertex induced subgraph
of a elegant graph and present an algorithm that permits one to start with any non-trivial
connected graph and successively form supersubdivisions (see §2.7) that have a strong form of
elegant labeling. Acharya, Germina, Princy, and Rao [23] prove that every (p,q)-graph G can
be embedded in a connected elegant graph H. The construction is done in such a way that if G
is planar and elegant (harmonious), then so is H.

In [1030] Sethuraman and Elumalai define a graph H to be a K p,-star extension of a graph
G with p vertices and ¢ edges at a vertex v of G where m > p—1—deg(v) if H is obtained from
G by merging the center of the star K ,, with v and merging p — 1 — deg(v) pendent vertices of
K, with the p — 1 — deg(v) nonadjacent vertices of v in G. They prove that for every graph G
with p vertices and ¢ edges and for every vertex v of G and every m > 2P~1 — 1 — ¢, there is a
K1 y,-star extension of G that is both graceful and harmonious. In the case where m > or—l_g,
they show that G has a K ,,-star extension that is elegant. Sethuraman and Selvaraju [1049]
have shown that certain cases of the union of any number of copies of K4 with one or more edges
deleted and one edge in common are elegant.

Gallian extended the notion of harmoniousness to arbitrary finite Abelian groups as follows.
Let G be a graph with ¢ edges and H a finite Abelian group (under addition) of order q. Define
G to be H-harmonious if there is an injection f from the vertices of G to H such that when each
edge xy is assigned the label f(x)+ f(y) the resulting edge labels are distinct. When G is a tree,
one label may be used on exactly two vertices. Beals, Gallian, Headley, and Jungreis [206] have
shown that if H is a finite Abelian group of order n > 1 then C,, is H-harmonious if and only
if H has a non-cyclic or trivial Sylow 2-subgroup and H is not of the form Zs x Z x -+ X Zs.
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Thus, for example, C1y is not Zja-harmonious but is (Zy x Zs X Z3)-harmonious. Analogously,
the notion of an elegant graph can be extended to arbitrary finite Abelian groups. Let G be a
graph with ¢ edges and H a finite Abelian group (under addition) with ¢ + 1 elements. We say
G is H-elegant if there is an injection f from the vertices of G to H such that when each edge
xy is assigned the label f(x)+ f(y) the resulting set of edge labels is the non-identity elements
of H. Beals et al. [206] proved that if H is a finite Abelian group of order n with n # 1 and
n # 3, then C,_ is H-elegant using only the non-identity elements of H as vertex labels if and
only if H has either a non-cyclic or trivial Sylow 2-subgroup. This result completed a partial
characterization of elegant cycles given by Chang, Hsu, and Rogers [295] by showing that C,,
is elegant when n = 2 (mod 4). Mollard and Payan [878] also proved that C, is elegant when
n = 2 (mod 4) and gave another proof that P, is elegant when n # 4.

For a graph G(V, E') and an Abelian group H Valentin [1198] defines a polychrome labeling of
G by H to be a bijection f from V to H such that the edge labels induced by f(uv) = f(v)+ f(u)
are distinct. Valentin investigates the existence of polychrome labelings for paths and cycles for
various Abelian groups.

4.5 Felicitous Labelings

Another generalization of harmonious labelings are felicitous labelings. An injective function
f from the vertices of a graph G with ¢ edges to the set {0,1,...,q} is called felicitous if the
edge labels induced by f(z)+ f(y) (mod q) for each edge zy are distinct. (Recall a harmonious
labeling only allows the vertex labels 0,1,...,¢ — 1.) This definition first appeared in a paper
by Lee, Schmeichel, and Shee in [743] and is attributed to E. Choo. Acharya, Germina, Princy,
and Rao [23] observed that every harmonious labeling of a graph is also a felicitous labeling of
the graph. Balakrishnan and Kumar [178] proved the conjecture of Lee, Schmeichel, and Shee
[743] that every graph is a subgraph of a felicitous graph by showing the stronger result that
every graph is a subgraph of a sequential graph. Among the graphs known to be felicitous are:
C, except when n = 2 (mod 4) [743]; Ky, when m,n > 1 [743]; P> U Copqq [743]; P U Coy,
[1175]; P3 U Captq [743]; Sp U Copsq [743]; K, if and only if n < 4 [1032]; P, + K.y, [1032]; the
friendship graph C?(,n) for n odd [743]; P, UCs5 [1058]; P,, U Cypy3 [1175]; and the one-point union
of an odd cycle and a caterpillar [1058]. Shee [1054] conjectured that P, UC), is felicitous when
n > 2 and m > 3. Lee, Schmeichel, and Shee [743] ask for which m and n is the one-point union
of n copies of (), felicitous. They showed that in the case where mn is twice an odd integer
the graph is not felicitous. In contrast to the situation for felicitous labelings, we remark that
Cyr, and Ky, , where m,n > 1 are not harmonious and the one-point union of an odd cycle
and a caterpillar is not always harmonious. Lee, Schmeichel, and Shee [743] conjectured that
the n-cube is felicitous. This conjecture was proved by Figueroa-Centeno and Ichishima in 2001
[409].

Balakrishnan, Selvam, and Yegnanarayanan [180] obtained numerous results on felicitous
labelings. The wreath product, G * H, of graphs G and H has vertex set V(G) x V(H) and
(g91,h1) is adjacent to (g2, h2) whenever g1g2 € E(G) or g1 = g2 and h1hy € E(H). They define
H,, , as the graph with vertex set {uq,...,un;v1,...,v,} and edge set {u;v;] 1 < i < j < n}.
They let (K, : m) denote the graph obtained by taking m disjoint copies of K7 ,, and joining
a new vertex to the centers of the m copies of K ,. They prove the following are felicitous:
Hyny Pt Koy (Kim :m); (K12:m) when m # 0 (mod 3), or m = 3 (mod 6), or m = 6 (mod
12); (K2, : m) for all m and n > 2; (Kj 2441 : 2n+1) whenn > ¢; PFwhen k =n—1andn # 2
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(mod 4), or k = 2t and n > 3 and k < n — 1; the join of a star and K,,; and graphs obtained by
joining two end vertices or two central vertices of stars with an edge. Yegnanarayanan [1298]
conjectures that the graphs obtained from an even cycle by attaching n new vertices to each
vertex of the cycle is felicitous. This conjecture was verified by Figueroa-Centeno, Ichishima,
and Muntaner-Batle in [414]. In [1045] Sethuraman and Selvaraju [1049] have shown that certain
cases of the union of any number of copies of K, with 3 edges deleted and one edge in common are
felicitous. Sethuraman and Selvaraju [1045] present an algorithm that permits one to start with
any non-trivial connected graph and successively form supersubdivisions (see §2.7) that have a
felicitous labeling. Krisha and Dulawat [682] give algorithms for finding graceful, harmonious,
sequential, felicitous, and antimagic (see §5.7) labelings of paths.

Figueroa-Centeno, Ichishima, and Muntaner-Batle [415] define a felicitous graph to be strongly
felicitous if there exists an integer k so that for every edge wv, min{f(u), f(v)}
< k < max{f(u), f(v)}. For a graph with p vertices and ¢ edges with ¢ > p — 1 they show that
G is strongly felicitous if and only if G has an a-labeling (see §3.1). They also show that for
graphs G1 and Gy with strongly felicitous labelings f; and fy the graph obtained from G; and
G9 by identifying the vertices u and v such that fi(u) = 0 = fa(v) is strongly felicitous and
that the one-point union of two copies of C),, where m > 4 and m is even is strongly felicitous.
As a corollary they have that the one-point union of n copies of C,, where m is even and at
least 4 and n = 2 (mod 4) is felicitous. They conjecture that the one-point union of n copies of
C'y, is felicitous if and only if mn = 0,1, or 3 (mod 4). In [419] Figueroa-Centeno, Ichishima,
and Muntaner-Batle prove that 2C,, is strongly felicitous if and only if n is even and at least 4.
They conjecture [419] that mC,, is felicitous if and only if mn # 2 (mod 4) and that C,, UC), is
felicitous if and only if m +n # 2 (mod 4).

As consequences of their results about super edge-magic labelings (see §5.2) Figueroa-Centeno,
Ichishima, Muntaner-Batle, and Oshima [419] have the following corollaries: if m and n are odd
with m > 1 and n > 3, then mC, is felicitous; 3C,, is felicitous if and only if n # 2 (mod 4);
and C5 U P, is felicitous for all n.

Chang, Hsu, and Rogers [295] have given a sequential counterpart to felicitous labelings.
They call a graph with ¢ edges strongly c-elegant if the vertex labels are from {0,1,...,q} and
the edge labels induced by addition are {¢,c+1,...,c+qg—1}. (A strongly 1-elegant labeling has
also been called a consecutive labeling.) Notice that every strongly c-elegant graph is felicitous
and that strongly c-elegant is the same as (¢, 1)-arithmetic in the case where the vertex labels
are from {0,1,...,¢q}. Chang et al. [295] have shown: K, is strongly l-elegant if and only
if n = 2,3,4; C, is strongly 1l-elegant if and only if n = 3; and a bipartite graph is strongly
1-elegant if and only if it is a star. Shee [1055] has proved that K, , is strongly c-elegant for a
particular value of ¢ and obtained several more specialized results pertaining to graphs formed
from complete bipartite graphs.

Seoud and Elsakhawi [1013] have shown: K,, , (m < n) with an edge joining two vertices of
the same partite set is strongly c-elegant for ¢ = 1,3,5,...,2n + 2; K, is strongly c-elegant
for c=1,3,5,...,2m when m = n, and for ¢ = 1,3,5,...,m+n+ 1 when m # n; K1 1mm is
strongly c-elegant for ¢ = 1,3,5,...,2m + 1; P, + K,, is strongly |n/2]-elegant; C,, + K, is
strongly c-elegant for odd m and all n for c = (m—1)/2,(m —1)/2+2,...,2m when (m —1)/2
is even and for ¢ = (m —1)/2,(m —1)/2 +2,...,2m — (m — 1)/2 when (m — 1)/2 is odd;
ladders Logy1 (k > 1) are strongly (k + 1)-elegant; and B(3,2,m) and B(4,3,m) (see §2.4 for
notation) are strongly l-elegant and strongly 3-elegant for all m; the composition P,[Ps] (see
§2.3 for the definition) is strongly c-elegant for ¢ = 1,3,5,...,5n — 6 when n is odd and for
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c=1,3,5,...,5n — 5 when n is even; P, is strongly |n/2]-elegant; P2 is strongly c-elegant for
c=1,3,5,...,q where ¢ is the number of edges of P2; and P2 (n > 3) is strongly c-elegant for
c=1,3,5,...,6k—1whenn=4k; c=1,3,5,...,6k4+1 whenn=4k+1;¢c=1,3,5,...,6k+3
when n =4k +2; ¢ =1,3,5,...,6k + 5 when n = 4k + 3.

4.6 Odd-harmonious Labelings

A function f is said to be an odd-harmonious labeling of a (p, ¢)-graph G if f is an injection from
the vertices of GG to the integers from 0 to 2¢—1 such that the induced mapping f* from the edges
of G to the odd integers between 1 to 2¢ — 1 is a bijection. A function f is said to be an strongly
odd-harmonious labeling of a (p, ¢)-graph G if f is an injection from the vertices of G to the
integers from 0 to ¢ such that the induced mapping f* from the edges of G to the odd integers
between 1 to 2q — 1 is a bijection. Liang and Bai [787] have show the following: odd-harmonious
graphs are bipartite; if a (p, ¢)-graph is odd-harmonious, then 2,/q < p < 2¢ — 1; if a (p, q)-
graph with degree sequence (di,ds,...,d,) is odd-harmonious, then gecd(dy,ds,...,d,) divides
¢*; P,(n > 1) is odd-harmonious and strongly odd-harmonious; C,, is odd-harmonious if and
only if n = 0 mod 4; K, is odd-harmonious if and only if n = 2; K, p, . n, is odd-harmonious
if and only if k¥ = 2; K! is odd-harmonious if and only if n = 2; P,, x P, is odd-harmonious;
the tadpole graph obtained by identifying the endpoint of a path with a vertex of a cycle odd-
harmonious if n = 0 mod 4; the graph obtained by appending two or more pendant edges to
each vertex of Cy, is odd-harmonious; the graph obtained by subdividing every edge of the cycle
of a wheel (gear graphs) is odd-harmonious; the graph obtained by appending an edge to each
vertex of a strongly odd-harmonious graph is odd-harmonious; and caterpillars and lobsters are
odd-harmonious. They conjecture that every tree is odd-harmonious.

5 Magic-type Labelings

5.1 Magic Labelings

Motivated by the notion of magic squares in number theory, magic labelings were introduced by
Sedlacek [998] in 1963. Responding to a problem raised by Sedlacek, Stewart [1134] and [1135]
studied various ways to label the edges of a graph in the mid 1960s. Stewart calls a connected
graph semi-magic if there is a labeling of the edges with integers such that for each vertex v
the sum of the labels of all edges incident with v is the same for all v. (Berge [213] used the
term “regularisable” for this notion.) A semi-magic labeling where the edges are labeled with
distinct positive integers is called a magic labeling. Stewart calls a magic labeling supermagic if
the set of edge labels consists of consecutive positive integers. The classic concept of an n x n
magic square in number theory corresponds to a supermagic labeling of K, ,. Stewart [1134]
proved the following: K, is magic for n = 2 and all n > 5; K, ,, is magic for all n > 3; fans
F,, are magic if and only if n is odd and n > 3; wheels W,, are magic for n > 4; and W,, with
one spoke deleted is magic for n = 4 and for n > 6. Stewart [1134] also proved that K, , is
semi-magic if and only if m = n. In [1135] Stewart proved that K, is supermagic for n > 5
if and only if n > 5 and n #Z 0 (mod 4). Sedlacek [999] showed that Mdbius ladders M, (see
§2.3 for the definition) are supermagic when n > 3 and n is odd and that C,, x P» is magic,
but not supermagic, when n > 4 and n is even. Shiu, Lam, and Lee [1069] have proved: the
composition of C,,, and K,, (see §2.3 for the definition) is supermagic when m > 3 and n > 2;
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the complete m-partite graph Ky, ., is supermagic when n > 3, m > 5 and m # 0 (mod 4);
and if G is an r-regular supermagic graph, then so is the composition of G and K,, for n > 3.
Ho and Lee [548] showed that the composition of K,, and K, is supermagic for m = 3 or 5 and
n = 2 or n odd. Baca, Hollander, and Lih [132] have found two families of 4-regular supermagic
graphs. Shiu, Lam, and Cheng [1066] proved that for n > 2, mK,, , is supermagic if and only
if n is even or both m and n are odd. Ivanco [577] gave a characterization of all supermagic
regular complete multipartite graphs. He proved that @), is supermagic if and only if n = 1 or
n is even and greater than 2 and that C,, x C,, and Csy,, x (9, are supermagic. He conjectures
that Cp, x C), is supermagic for all m and n. Trenklér [1181] has proved that a connected magic
graph with p vertices and ¢ edges other than P, exits if and only if 5p/4 < ¢ < p(p — 1)/2. In
[1151] Sun, Guan, and Lee give an efficient algorithm for finding a magic labeling of a graph. In
[1255] Wen, Lee, and Sun show how to construct a supermagic multigraph from a given graph
G by adding extra edges to G.

In [678] Kovar provides a general technique for constructing supermagic labelings of copies
of certain kinds of regular supermagic graphs. In particular, he proves: if G is a supermagic
r-regular graph (r > 3) with a proper edge r coloring, then nG is supermagic when r is even
and supermagic when 7 and n are odd; if G is a supermagic r-regular graph with m vertices and
has a proper edge r coloring and H is a supermagic s-regular graph with n vertices and has a
proper edge s coloring, then G x H is supermagic when r is even or n is odd and is supermagic
when s or m is odd.

In [369] Drajnova, Ivanc¢o, and Semanic¢ovd proved that the maximal number of edges in a
supermagic graph of order n is 8 for n = 5 and @ for 6 <n=#0 (mod4), and @ -1
for 8 < n =0 (mod4). They also establish some bounds for the minimal number of edges
in a supermagic graph of order n. Ivanco, and Semanicova [584] proved that every 3-regular
triangle-free supermagic graph has an edge such that the graph obtained by contracting that
edge is also supermagic and the graph obtained by contracting one of the edges joining the two
n-cycles of Cy, x Ky (n > 3) is supermagic.

Sedlacek [999] proves that graphs obtained from an odd cycle with consecutive vertices
UL,y Uy -+ oy Upyy U1, Uy - - -, 01 (M > 2) by joining each u; to v; and v; 41 and ug t0 Vg1, Uy, tO
vy and v1 t0 vy,4+1 are magic. Trenklér and Vetchy [1184] have shown that if G has order at least
5, then G™ is magic for all n > 3 and G? is magic if and only if G is not P5 and G does not have
a 1-factor whose every edge is incident with an end-vertex of G. Avadayappan, Jeyanthi, and
Vasuki [77] have shown that k-sequential trees are magic (see §4.1 for the definition). Seoud and
Abdel Magsoud [1005] proved that K7, , is magic for all m and n and that P? is magic for all n.
However, Serverino has reported that P2 is not magic for n = 2,3, and 5 [467]. Jeurissan [591]
characterized magic connected bipartite graphs. Ivanco [578] proved that bipartite graphs with
p > 8 vertices, equal sized partite sets, and minimum degree greater than p are magic. Baca
[98] characterizes the structure of magic graphs that are formed by adding edges to a bipartite
graph and proves that a regular connected magic graph of degree at least 3 remains magic if an
arbitrary edge is deleted.

Ivanco [579] proved: the complement of a d-regular bipartite graph of order 8k is supermagic
if and only if d is odd; the complement of a d-regular bipartite graph of order 2n where n is
odd and d is even is supermagic if and only if (n,d) # (3,2); if G; and G are disjoint d-regular
Hamiltonian graphs of odd order and d > 4 and even, then the join Gy @ G4 is supermagic; and
if G7 is d-regular Hamiltonian graph of odd order n, G5 is d — 2-regular Hamiltonian graph of
order n and 4 < d =0 (mod 4), then the join G; @ G2 is supermagic.
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A prime-magic labeling is a magic labeling for which every label is a prime. Sedlacek [999]
proved that the smallest magic constant for prime-magic labeling of K3 3 is 53 while Baca and
Hollénder [128] showed that the smallest magic constant for a prime-magic labeling of Ky 4 is
114. Letting o, be the smallest natural number such that no, is equal to the sum of n? distinct
prime numbers we have that the smallest magic constant for a prime-magic labeling of K, , is
on. Baca and Hollaédnder [128] conjecture that for n > 5, K, , has a prime-magic labeling with
magic constant o,,. They proved the conjecture for 5 < n < 17 and confirm the conjecture for
n=2>5,6 and 7.

Characterizations of regular magic graphs were given by Doob [368] and necessary and
sufficient conditions for a graph to be magic were given in [591], [609], and [357]. Some sufficient
conditions for a graph to be magic are given in [366], [1180], and [884]. The notion of magic
graphs was generalized in [367] and [990].

Let m,n,ay,as9,...,a, be positive integers where 1 < a; < [n/2]| and the a; are distinct.
The circulant graph Cy(ay,as,...,ay) is the graph with vertex set {vy,vs,...,v,} and edge
set {Viviq; | 1 < i <n, 1 <j < m} where addition of indices is done modulo n. In [1003]
Semanicova characterizes magic circulant graphs and 3-regular supermagic circulant graphs. In
particular, if G = C, (a1, ag, ..., an) has degree r at least 3 and d = ged(aq,n/2) then G is magic
if and only if » = 3 and n/d = 2 (mod 4), a1/d =1 (mod 2), or r > 4 (a necessary condition
for Cp(ay,as,...,a,) to be 3-regular is that n is even). In the 3-regular case, Cy(a1,n/2) is
supermagic if and only n/d = 2 (mod 4), a;/d = 1 (mod 2) and d = 1 (mod 2). Semanicova
also notes that a bipartite graph that is decomposable into an even number of Hamilton cycles
is supermagic. As a corollary she obtains that C), (a1, as, ..., as) is supermagic in the case that
n is even, every q; is odd, and ged(agj—1,a2j,n) =1fori=1,2,...,2k and j =1,2,... k.

Ivanco, Kovér, and Semanicova-Feniovckova [581] characterize all pairs n and r for which an
r-regular supermagic graph of order n exists. They prove that for positive integers r and n with
n > r+1 there exists an r-regular supermagic graph of order n if and only if one of the following
statements holds: r =1l andn=2;3<r=1 (mod2)andn =2 (mod4);and4 <r =0
(mod 2) and n > 5. The proof of the main result is based on finding supermagic labelings of
circulant graphs. The authors construct supermagic labelings of several circulant graphs.

In [577] Ivanco completely determines the supermagic graphs that are the disjoint unions of
complete k-partite graphs where every partite set has the same order.

Trenklér [1182] extended the definition of supermagic graphs to include hypergraphs and
proved that the complete k-uniform n-partite hypergraph is supermagic if n # 2 or 6 and k > 2
(see also [1183]).

For connected graphs of size at least 5, Ivanco, Lastivkova, and Semanicové [583] provide
a forbidden subgraph characterization of the line graphs that can be magic. As a corollary
they obtain that the line graph of every connected graph with minimum degree at least 3 is
magic. They also prove that the line graph of every bipartite regular graph of degree at least 3
is supermagic.

In 1976 Sedlacek [999] defined a connected graph with at least two edges to be pseudo-magic
if there exists a real-valued function on the edges with the property that distinct edges have
distinct values and the sum of the values assigned to all the edges incident to any vertex is the
same for all vertices. Sedlacek proved that when n > 4 and n is even, the Mobius ladder M, is
not pseudo-magic and when m > 3 and m is odd, ), X P, is not pseudo-magic.

Kong, Lee, and Sun [667] used the term “magic labeling” for a labeling of the edges with
nonnegative integers such that for each vertex v the sum of the labels of all edges incident with
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v is the same for all v. In particular, the edge labels need not be distinct. They let M (G) denote
the set of all such labelings of G. For any L in M(G), they let s(L) = max{L(e):e in E} and
define the magic strength of G as m(G) = min{s(L): L in M(G)}. To distinguish these notions
from others with the same names and notation, which we will introduced in the next section for
labelings from the set of vertices and edges, we call the Kong, Lee, and Sun version the edge
magic strength and use em(G) for min{s(L): L in M(G)} instead of m(G). Kong, Lee, and Sun
[667] use DS(k) to denote the graph obtained by taking two copies of K j and connecting the
k pairs of corresponding leafs. They show: for k > 1, em(DS(k)) =k —1; em(P, + K1) =1
for k=1 or 2, em(P, + K1) = k if k is even and greater than 2, and 0 if £ is odd and greater
than 1; for k& > 3, em(W(k)) = k/2 if k is even and em(W(k)) = (k — 1)/2 if k is odd;
em(Py x Py) =1, em(Py x P,) =2ifn >3, em(P, x P,) =3 if m or n is even and greater
than 2; em(C’?(,n)) = 1if n = 1 (Dutch windmill, — see §2.4), and em(Cg()")) =2n—1ifn > 1.
They also prove that if G and H are magic graphs then G x H is magic and em(G x H) =
max{em(G),em(H)} and that every connected graph is an induced subgraph of a magic graph
(see also [390] and [412]). They conjecture that almost all connected graphs are not magic.
In [740] Lee, Saba, and Sun show that the edge magic strength of P is 0 when k and n are
both odd. Sun and Lee [1152] show that the Cartesian, conjunctive, normal, lexicographic, and
disjunctive products of two magic graphs are magic and the sum of two magic graphs is magic.
They also determine the edge magic strengths of the products and sums in terms of the edge
magic strengths of the components graphs.

In [50] Akka and Warad define the super magic strength of a graph G, sms(G) as the minimum
of all magic constants ¢(f) where the minimum is taken over all super magic labeling f of G
if there exist at least one such super magic labeling. They determine the super magic strength
of paths, cycles, wheels, stars, bistars, P?, < K, : 2 > (the graph obtained by joining the
centers of two copies of K, by a path of length 2), and (2n + 1)P.

A Halin graph Halin ia a planar 3-connected graphs that consist of a tree and a cycle con-
necting the end vertices of the tree. Let G be a (p,q)-graph in which the edges are labeled
k,k+1,...,k+q—1, where k > 0. In [757] Lee, Su, and Wang define a graph with p vertices to
be k-edge-magic for every vertex v the sum of the labels of the incident edges at v are constant
modulo p. They investigate some classes of Halin graphs that are k-edge-magic.

S. M. Lee and colleagues [777] and [714] call a graph G k-magic if there is a labeling from
the edges of G to the set {1,2,...,k — 1} such that for each vertex v of G the sum of all edges
incident with v is a constant independent of v. The set of all k£ for which G is k-magic is denoted
by IM(G) and called the integer-magic spectrum of G. In [777] Lee and Wong investigate the
integer-magic spectrum of powers of paths. They prove: IM(P?) is {4,6,8,10,...}; for n > 5,
IM(P?) is the set of all positive integers except 2; for all odd d > 1, IM(PZ)) is the set of all
positive integers except 1; IM(P}) is the set of all positive integers; for all odd n > 5, IM(P2)
is the set of all positive integers except 1 and 2; and for all even n > 6, IM(P3) is the set of all
positive integers except 2. For k > 3 they conjecture: IM(PF) is the set of all positive integers
when n = k + 1; the set of all positive integers except 1 and 2 when n and k are odd and n > k;
the set of all positive integers except 1 and 2 when n and k are even and k > n/2; the set of
all positive integers except 2 when n is even and k is odd and n > k; and the set of all positive
integers except 2 when n and k are even and k < n/2. In [755] Lee, Su, and Wang showed
that besides the natural numbers there are two types of the integer-magic spectra of honeycomb
graphs.

In [714] Lee, Lee, Sun, and Wen investigated the integer-magic spectrum of various graphs
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such as stars, double stars (trees obtained by joining the centers of two disjoint stars K ,, and
K ,, with an edge), wheels, and fans. In [983] Salehi and Bennett report that a number of the
results of Lee et al. are incorrect and provide a detailed accounting of these errors as well as
determine the integer-magic spectra of caterpillars.

Lee, Lee, Sun, and Wen [714] use the notation C,,@QC,, to denote the graph obtained by
starting with C,, and attaching paths P, to C,, by identifying the endpoints of the paths with
each successive pairs of vertices of C,. They prove that IM(C,,QC},) is the set of all positive
integers if m or n is even and IM(C,,@QC},) is the set of all even positive integers if m and n are
odd.

Lee, Valdés, and Ho [764] investigate the integer magic spectrum for special kinds of trees.
For a given tree T they define the double tree DT of T as the graph obtained by creating a
second copy T™ of T' and joining each end vertex of T to its corresponding vertex in 7*. They
prove that for any tree T, IM(DT) contains every positive integer with the possible exception
of 2 and IM(DT) contains all positive integers if and only if the degree of every vertex that is
not an end vertex is even. For a given tree T they define ADT, the abbreviated double tree of
T, as the the graph obtained from DT by identifying the end vertices of T" and T™. They prove
that for every tree T', IM(ADT') contains every positive integer with the possible exceptions of
1 and 2 and IM(ADT') contains all positive integers if and only if 7" is a path.

Lee, Salehi, and Sun [742] have investigated the integer-magic spectra of trees with diameter
at most four. Among their findings are: if n > 3 and the prime power factorization of n — 1 =
PPy -+ pp¥, then IM(K ;) = p1NUpoNU- - -U piN (here p;N means all positive integer multiples
of p;); for m,n > 3, the double star IM(D.S(m,m)) (that is, stars K, ; and K, ; that have an
edge in common) is the set of all natural numbers excluding all divisors of m — 2 greater than 1;
if the prime power factorization of m —n = pi'p5? - - - p;* and the prime power factorization of
n—2 = pi'p5?- - py¥, (the exponents are permitted to be 0) then IM(DS(m,n)) = AjUAzU---U
Ay, where A; = p2-1+siN if r; >s;>0and A; =0 if s; > r; > 0; for m,n >3, IM(DS(m,n)) =0
if and only if m — n divides n — 2; if m,n > 3 and |m —n| = 1, then DS(m,n) is not magic. Lee
and Salehi [741] give formulas for the integer-magic spectra of trees of diameter four but they
are too complicated to include here.

For a graph G(V, E) and a function f from the V' to the positive integers, Salehi and Lee [986]
define the functional extension of G by f, as the graph H with V(H) = U{u;| u € V(G) and i =
1,2,...,f(u)} and E(H) = U{wu;| ww € E(G),i = 1,2,...,f(u);j = 1,2,..., f(v)}. They
determine the integer-magic spectra for P, P3 and Py.

More specialized results about the integer-magic spectra of amalgamations of stars and cy-
cles are given by Lee and Salehi in [741].

Table 4 summarizes the state of knowledge about magic-type labelings. In the table
SM means semi-magic

M means magic

SPM means supermagic.

A question mark following an abbreviation indicates that the graph is conjectured to have
the corresponding property. The table was prepared by Petr Kovar and Tereza Kovarova.
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Table 4: Summary of Magic Labelings

Graph Types Notes
K, M ifn=2 n>5[1134]
SPM forn>5ifn>5
n # 0 (mod 4) [1135]
Ko SM if n >3 [1134]
Ko M if n > 3 [1134]
fans f, M iff n is odd, n > 3 [1134]

not SM | if n > 2 [467]
wheels W, M if n >4 [1134]

SM if n=>5or 6 [467]
wheels with one M ifn=4,n>6[1134]
spoke deleted
Mobius ladders M, SPM if n > 3, n is odd [999]
Cn X Py not SPM | for n > 4, n even [999]
CnlKy] SPM if m >3, n> 2 [1069]
Kn,n’“"n SPM n23,p>5and

N———
P
p #Z 0 (mod 4) [1069]
composition of r-regular | SPM if n > 3 [1069]
SPM graph and K,
Ki[K ) SPM if k=3 or5 n=2ornodd [548]
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Table 4: Summary of Magic Labelings continued

Graph Types | Notes

mk, SPM | for n > 2 iff n is even or
both n and m are odd [1066]

Qn SPM |iff n=1orn > 2 even [577]

Cm x Cp, SPM | m =n or m and n are even [577]

Cm x Cp, SPM? | for all m and n [577]

connected (p, q)-graph | M iff 5p/4 < q < p(p—1)/2 [1181]

other than P,

G M |G| > 5,1 >3 [1184]

G? M G # P5 and G does not have a
1-factor whose every edge is incident with
an end-vertex of G [1184]

K1 mn M for all m, n [1005]

P? M for all n except 2, 3, 5 [1005], [467]

GxH M iff G and H are magic [667]
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5.2 Edge-magic Total and Super Edge-magic Total Labelings

In 1970 Kotzig and Rosa [673] defined a magic valuation of a graph G(V, E) as a bijection f
from VU FE to {1,2,...,|V U E|} such that for all edges zy, f(x)+ f(y) + f(zy) is constant
(called the magic constant). This notion was rediscovered by Ringel and Llad( [963] in 1996 who
called this labeling edge-magic. To distinguish between this usage from that of other kinds of
labelings that use the word magic we will use the term edge-magic total labeling as introduced
by Wallis [1228] in 2001. (We note that for 2-regular graphs a vertex-magic total labeling is
an edge-magic total labeling and vice versa.) Inspired by Kotzig-Rosa notion, Enomoto, Lladd,
Nakamigawa, and Ringel [390] called a graph G(V, E) with an edge-magic total labeling that
has the additional property that the vertex labels are 1 to |V| super edge-magic total labeling.
Kotzig and Rosa proved: K,,, has an edge-magic total labeling for all m and n; C), has an
edge-magic total labeling for all n > 3 (see also [472], [970], [216], and [390]); and the disjoint
union of n copies of P, has an edge-magic total labeling if and only if n is odd. They further
state that K, has an edge-magic total labeling if and only if n = 1,2,3,5 or 6 (see [674], [341],
and [390]) and ask whether all trees have edge-magic total labelings. Wallis, Baskoro, Miller,
and Slamin [1232] enumerate every edge-magic total labeling of complete graphs. They also
prove that the following graphs are edge-magic total: paths, crowns, complete bipartite graphs,
and cycles with a single edge attached to one vertex. Enomoto, Llado, Nakamigana, and Ringel
[390] prove that all complete bipartite graphs are edge-magic total. They also show that wheels
W, are not edge-magic total when n = 3 (mod 4) and conjectured that all other wheels are
edge-magic total. This conjecture was proved when n = 0,1 (mod 4) by Phillips, Rees, and
Wallis [933] and when n = 6 (mod 8) by Slamin, Baca, Lin, Miller, and Simanjuntak [1103].
Fukuchi [438] verified all cases of the conjecture independently of the work of others. Slamin et
al. further show that all fans are edge-magic total. Ringel and Llado [963] prove that a graph
with p vertices and ¢ edges is not edge-magic total if ¢ is even and p + ¢ = 2 (mod 4) and each
vertex has odd degree. Ringel and Llado conjecture that trees are edge-magic total. In [165]
Babujee and Rao show that the path with n vertices has an edge-magic total labeling with magic
constant (5n+2)/2 when n is even and (5n+1)/2 when n is odd. For stars with n vertices they
provide an edge-magic total labeling with magic constant 3n. In [398] Eshghi and Azimi discuss
a zero-one integer programming model for finding edge-magic total labelings of large graphs.

Santhosh [994] proved that for n odd and at least 3, the crown C),, ® P» has an edge-magic
total labeling with magic constant (27n + 3)/2 and for n odd and at least 3, C,, ® P3 has an
edge-magic total labeling with magic constant (39n + 3)/2.

Ahmad, Baig, and Imran [47] define a zig-zag triangle as the graph obtained from the path

r1,%2,...,T, by adding n new vertices yi,¥yo, ..., Y, and new edges Y121, YnTn_1; Tiy; for 1 <
1 < n; yix;—1yixir1 for 2 < i <n — 1. They define a graph Cb,, as one obtained from the path
x1,T2,...,T, adding n — 1 new vertices y1,y2, - .-, Yn—1 and new edges y;z;41 for 1 <i<mn—1.

The graph Cb} is obtained from the Cb,, by joining a new edge x1y;. They prove that zig-zag
triangles, graphs that are the disjoint union of a star and a banana tree, certain disjoint unions
of stars, and for n > 4, Cb} U (CB,_; are super edge-magic total.

Beardon [208] extended the notion of edge-magic total to countable infinite graphs G(V, E)
(that is, V' U E is countable). His main result is that a countably infinite tree that processes
an infinite simple path has a bijective edge-magic total labeling using the integers as labels. He
asks whether all countably infinite trees have an edge-magic total labeling with the integers as
labels and whether the graph with the integers as vertices and an edge joining every two distinct
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vertices has a bijective edge-magic total labeling using the integers.

Cavenagh, Combe, and Nelson [292] investigate edge-magic total labelings of countably in-
finite graphs with labels from a countable Abelian group A. Their main result is that if G
is a countable graph that has an infinite set of mutually disjoint edges and A is isomorphic
to a countable subgroup of the real numbers under addition then for any k in A there is an
edge-magic labeling of G with elements from A that has magic constant k.

Balakrishnan and Kumar [178] proved that the join of K,, and two disjoint copies of K3 is
edge-magic total if and only if n = 3. Yegnanarayanan [1299] has proved the following graphs
have edge-magic total labelings: nPs; where n is odd; P, + Ki; P, x C3 (n > 2); the crown
C, ® K1; and P, x ('3 with n pendant vertices attached to each vertex of the outermost C3. He
conjectures that for all n, C,, ® K,,, the n-cycle with n pendant vertices attached at each vertex
of the cycle, and nP; have edge-magic total labelings. In fact, Figueroa-Centeno, Ichishima,
Muntaner-Batle, and Oshima [419] have proved the stronger statement that for all n > 3, the
corona C,, ® K, admits an edge-magic labeling where the set of vertex labels is {1,2,...,|V]}.
Yegnanarayanan [1299] also introduces several variations of edge-magic labelings and provides
some results about them. Kotzig [1230] provides some necessary conditions for graphs with an
even number of edges in which every vertex has odd degree to have an edge-magic total labeling.
Craft and Tesar [341] proved that an r-regular graph with r odd and p = 4 (mod 8) vertices can
not be edge-magic total. Wallis [1228] proved that if G is an edge-magic total r-regular graph
with p vertices and ¢ edges where r = 2's +1 (¢t > 0) and ¢ is even, then 2!*2 divides p.

Figueroa-Centeno, Ichishima, and Muntaner-Batle [413] have proved the following graphs
are edge-magic total: Py UnkKsy for n odd; P3 UnKsy;, P; UnKs; nP; for n odd and 7 =
3,4,5; 2P,; PLURU---UP,; mKy,; CpnonKy; K1 ©nKs for n even; Way,; Ko x K,, nKs
for n odd (the case nK3 for n even and larger than 2 is done in [852]); binary trees, generalized
Petersen graphs (see also [898]), ladders (see also [1257]), books, fans, and odd cycles with
pendant edges attached to one vertex.

In [419] Figueroa-Centeno, Ichishima, Muntaner-Batle, and Oshima, investigate super edge-
magic labelings of graphs with two components. Among their results are: C3 U C), is super
edge-magic if and only if n > 6 and n is even; Cy U C), is super edge-magic if and only if n > 5
and n is odd; C5 U C,, is super edge-magic if and only if n > 4 and n is even; if m is even with
m > 4 and n is odd with n > m/2 + 2, then C,, U C,, is super edge-magic; for m = 6,8, or 10,
Cin U Cy, is super edge-magic if and only if n > 3 and n is odd; 2C,, is strongly felicitous if and
only if n > 4 and n is even (the converse was proved by Lee, Schmeichel, and Shee in [743]);
Cs3U P, is super edge-magic for n > 6; C4 U P, is super edge-magic if and only if n # 3; C5 U P,
is super edge-magic for n > 4; if m is even with m > 4 and n > m/2 + 2 then C,, U P, is super
edge-magic; P, U P, is super edge-magic if and only (m,n) # (2,2) or(3,3); and P, U P, is
edge-magic if and only (m,n) # (2,2).

Enomoto, Llado, Nakamigawa, and Ringel [390] conjecture that if G is a graph of order
n 4+ m that contains K, then G is not edge-magic total for n > m. Wijaya and Baskoro [1257]
proved that P, x C,, is edge-magic total for odd n at least 3. Ngurah and Baskoro [898] state
that P x C), is not edge-magic total. Hegde and Shetty [533] have shown that every T,-tree
(see §4.4 for the definition) is edge-magic total. Ngurah, Simanjuntak, and Baskoro [905] show
that certain subdivisions of the star K 3 have edge-magic total labelings. Wallis [1228] proves
that a cycle with one pendent edge is edge-magic total. In [1228] Wallis poses a large number
of research problems about edge-magic total graphs.

For n > 3, Lopez, Muntaner-Batle, and Rius-Font [819] let .S;, denote the set of all super edge-
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magic total 1-regular labeled digraphs of order n where each vertex takes the name of the label
that has been assigned to it. For m € S,,. they define a generalization of generalized Petersen
graphs that they denote by GG P(n; ), which consists of an outer n-cycle g, x1,...,Zn—_1,Z0, &
set of n-spokes x;y;, 0 <7 <n—1, and n inner edges defined by y;y(;),7 =0,...,n —1. Notice
that, for the permutation 7 defined by 7 (i) = i + k (mod n) we have GGP(n;7) = P(n;k).

They define a second generalization of generalized Petersen graphs, GGP(n;m, ..., Ty), as
the graphs with ve_rtex'sets U;”Zl{ajﬁ :1=20,...,n— 1}, an outer n-cycle x(l),a:%, . ,x}l_l,x(l),
and inner edges :Ef_lxg and xi:nﬁrj(i), for j = 2,...,m, and ¢ = 0,...,n — 1. Notice that,

GGP(n;m,...,Tm) = Py x Cp, when 7j(1) = ¢ + 1 (mod n) for every j = 2,...,m. Among
their results are the Petersen graphs are super edge-magic total; for each m with 1 <1 < m
and 1 < k < 2, the graph GGP(5;m2,...,my), where m; = oy for i # | and m; = oy, is super
edge-magic total; for each 1 < k < 2, the graph P(5n;k + 5r) where r is the smallest integer
such that &+ 5r =1 (mod n) is super edge-magic total.

In 1996 Erdés asked for M (n), the maximum number of edges that an edge-magic total graph
of order n can have (see [341]). In 1999 Craft and Tesar [341] gave the bound |n?/4] < M(n) <
|n(n — 1)/2]. For large n this was improved by Pikhurko [936] in 2006 to 2n?/7 + O(n) <
M(n) < (0.489 + - - - + o(1)n?).

Enomoto, Lladé, Nakamigawa, and Muntaner-Batle [390] proved that a super edge-magic
total graph G(V, E) with |V| > 4 and with girth at least 4 has at most 2|V| — 5 edges. They
prove this bound is tight for graphs with girth 4 and 5 in [390] and [570].

In his Ph.D. thesis, Barrientos [192] introduced the following notion. Let L, Lo, ..., Ly be
ordered paths in the grid P. x P, that are maximal straight segments such that the end vertex
of L; is the beginning vertex of L;;1 for i = 1,2,...h — 1. Suppose for some ¢ with 1 < < h
we have V(L;) = {ug,vp} where ug is the end vertex of L;_; and the beginning vertex of L;
and vg is the end vertex of L; and the beginning vertex of L;y;. Let u € V(L;—1) — {up} and
v € V(Lijt1) — {vo}. The replacement of the edge ugvg by a new edge wv is called an elementary
transformation of the path P,. A tree is called a path-like tree if it can be obtained from P, by a
sequence of elementary transformations on an embedding of P, in a 2-dimensional grid. In [144]
Baca, Lin, and Muntaner-Batle proved that if 17,75, ...,T,, are path-like trees each of order
n > 4 where m is odd and at least 3, then 77 U T, U--- U T, has a super edge-magic labeling.
In [143] Baca, Lin, Muntaner-Batle and Rius-Font proved that the number of such trees grows
at least exponentially with m. As an open problem Baca, Lin, Muntaner-Batle and Rius-Font
ask if graphs of the form T3 UT, U --- U T;,, where T1,T5,...,T,, are path-like trees each of
order n > 2 and m is even have a super edge-magic labeling. In [192] Barrientos proved that all
path-like trees admit an a-valuation. Using Barrientos’s result, it is very easy to obtain that all
path-like trees are a special kind of super edge-magic by using a super edge-magic labeling of
the path P,, and hence they are also super edge-magic. Furthermore in [7] Figueroa-Centeno at
al. proved that if a tree is super edge-magic, then it is also harmonious. Therefore all path-like
trees are also harmonious. In [817] Lépez, Muntaner-Batle, and Rius-Font also use a variation
of the Kronecker product of matrices in order to obtain lower bounds for the number of non
isomorphic super edge-magic labeling of some types of path-like trees. As a corollary they obtain
lower bounds for the number of harmonious labeling of the same type of trees.

Let G = (V, E) be a (p, q)-linear forest. In [143] Bac¢a, Lin, Muntaner-Batle, and Rius-Font
call a labeling f a strong super edge-magic labeling of G and G a strong super edge-magic graph
if f:VUE — {1,2,...,p+ ¢} with the extra property that if uv € E,u/,v" € V(G) and
da(u,u') = dg(v,v") < +oo, then we have that f(u) + f(v) = f(u') + f(¢v/). In [49] Ahmad,
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Loépez, Muntaner-Batle, and Rius-Font define the concept of strong super edge-magic labeling
of a graph with respect to a linear forest as follows. Let G = (V, E) be a (p, ¢)-graph and let F’
be any linear forest contained in G. A strong super edge-magic labeling of G with respect to F
is a super edge-magic labeling f of G with the extra property with if uv € E(F),u',v" € V(F)
and dp(u,u’) = dp(v,v’) < +o0o then we have that f(u) + f(v) = f(u') + f(v'). If a graph G
admits a strong super edge-magic labeling with respect to some linear forest F', they say that
G is a strong super edge-magic graph with respect to F'. They prove that if m is odd and G is
an acyclic graph which is strong super edge-magic with respect to a linear forest F, then mG
is strong super edge-magic with respect to Fy U F5 U...U F},, where F; ~ F fori=1,2,...,m
and every regular caterpillar is strong super edge-magic with respect to its spine.

Noting that for a super edge-magic graph GG with p vertices and ¢ edges, the magic constant
k is given by the formula: k = (3, deg(u)f(u) + Zf;rgﬂ i)/q, Lépez, Muntaner-Batle and
Rius-Font [818] define the set

g, _ {Zuev deg(u)g(u) + 371 i
6=

. : the function g : V' — {i}!_; is bijective} .

If [min S| < |[max S| then the super edge-magic interval of G I is the set
I = [[min S¢||max Sg|] N N.
The super edge-magic set g of G is
og = {k € I : there exists a super edge-magic labeling of G with valence k}.

They call a graph G perfect super edge-magic if I = 0. They show that the family of paths P,
is a family of perfect super edge-magic graphs with |Ip | =1 1if n is even and |Ip, | = 2 if n is
odd and raise the question of whether there is an infinite family § = {F}, F5, ...} of graphs such
that each member of the family is perfect super edge-magic and lim;_, |IF,| = +00. They
show that graphs G = Cpx (O K,, where p > 2 is a prime is such a family.

McSorley and Trono [856] define a relaxed version of edge-magic total labelings of a graph
as follows. An edge-magic injection p of a graph G is an injection u from the set of vertices and
edges of G to the natural numbers such that for every edge uv the sum p(u) + p(v) + p(uv) is
some constant k,. They investigate x(G), the smallest &k, among all edge-magic injections of a
graph G. They determine x(G) in the cases that G is Ky, K3, K5, Kg (recall that these are the
only complete graphs that have edge-magic total labelings), a path, a cycle, or certain types of
trees. They also show that every graph has an edge-magic injection and give bounds for x(K,,).

Avadayappan, Vasuki, and Jeyanthi [78] define the edge-magic total strength of a graph G
as the minimum of all constants over all edge-magic total labelings of G. We denote this by
emt(G). They use the notation < K7 ,, : 2 > for the tree obtained from the bistar B,, ,, (the graph
obtained by joining the center vertices of two copies of K, with an edge) by subdividing the
edge joining the two stars. They prove: emt(Ps,) = bn+1; emt(Popy1) = dn+3; emt(< Kqp
2 >) =4n+9; emt(By, ) = 5n+6; emt((2n+1)P,) = In+6; emt(Copt1) = 5n+4; emt(Cay) =
5n+2; emt(Ky ) = 2n+4; emt(P?) = 3n; and emt(K,,m) < (m+2)(n+1) where n < m. Using
an analogous definition for super edge-magic total strength, Swaninathan and Jeyanthi [1166],
[1166], [1167] provide results about the super edge-magic strength of trees, fire crackers, unicyclic
graphs, and generalized theta graphs. Ngurah, Simanjuntak, and Baskoro [905] show that
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certain subdivisions of the star K 3 have super edge-magic total labelings. In [390] Enomoto,
Llado, Nakamigawa and Ringel conjectured that all trees have a super edge-magic total labeling.
Ichishima, Muntaner-Batle, and Rius-Font [569] have shown that any tree of order p is contained
in a tree of order at most 2p — 3 that has a super edge-magic total labeling.

In [143] Baca, Lin, Muntaner-Batle, and Rius-Font call a super edge-magic labeling f of a
linear forest G of order p and size ¢ satisfying f:V(G) U E(G) — {1,2,...,p + ¢} with the
additional property that if uv € E(G), v'v' ¢ E(G) and dg(u,v') = dg(v,v") < oo, then
fw)+ fv) = f(W)+ f(v') a strong super edge-magic labeling of G. They use a generalization of
the Kronecker product of matrices introduced by Figueroa-Centeno, Ichishima, Muntaner-Batle,
and Rius-Font [421] to obtain an exponential lower bound for the number of non-isomorphic
strong super edge-magic labelings of the graph mFP,, for m odd and any n, starting from the
strong super edge-magic labeling of P,. They prove that the number of non-isomorphic strong
super edge-magic labelings of the graph mP,,, n > 4, is at least gZL%J +1 where m > 3 is an odd
positive integer. This result allows them to generate an exponential number of non-isomorphic
super edge-magic labelings of the forest F' = U;nzl T;, where each Tj is a path-like tree of order
n and m is an odd integer.

Lépez, Muntaner-Batle, and Rius-Font [816] introduced a generalization of super edge-magic
graphs called super edge-magic models and prove some results about them.

Yegnanarayanan and Vaidhyanathan [1300] use the term nice (1,1) edge-magic labeling for
a super edge-magic total labeling. They prove: a super edge-magic total labeling f of a (p, q)-
graph G satisfies QZUEV(G) f(w)deg(v) = 0 mod g¢; if G is (p,q) r-regular graph (r > 1) with a
super edge-magic total labeling then ¢ is odd and the magic constant is (4p + q + 3)/2; every
super edge-magic total labeling has at least two vertices of degree less than 4; fans P, + K are
edge-magic total for all n and super edge-magic total if and only if is is at most 6; books B,
are edge-magic total for all n; a super edge-magic total (p, q)-graph with ¢ > p is sequential; a
super edge-magic total tree is sequential; and a super edge-magic total tree is cordial.

Hegde and Shetty [539] (see also [538]) define the mazimum magic strength of a graph G
as the maximum magic constant over all edge-magic total labelings of G. We use eMt(G) to
denote the maximum magic strength of G. Hegde and Shetty call a graph G with p vertices
strong magic if eMt(G) = emt(G); ideal magic if 1 < eMt(G) — emt(G) < p; and weak magic if
eMt(G) — emt(G) > p. They prove that for an edge-magic total graph G with p vertices and ¢
edges, eMt(G) =3(p+ q+ 1) — emt(G). Using this result they obtain: P, is ideal magic for
n > 2; Ky is strong magic; K; 2 and K3 are ideal magic; and K1, is weak magic for n > 3;
B, , is ideal magic; (2n + 1) P, is strong magic; cycles are ideal magic; and the generalized web
W (t,3) (see §2.2 for the definition) with the central vertex deleted is weak magic.

Santhosh [994] has shown that for n odd and at least 3, eMt(C, ® P;) = (27n + 3)/2 and
for n odd and at least 3, (39n+3)/2 < eMt(C, ® P») < (40n+ 3)/2. Moreover, he proved that
for n odd and at least 3 both C,, ® P» and C,, ©® P3 are weak magic. In [323] Chopra and Lee
provide an number of families of super edge-magic graphs that are weak magic.

In [886] Murugan introduces the notions of almost-magic labeling, relazed-magic labeling,
almost-magic strength, and relared-magic strength of a graph. He determines the magic strength
of Huffman trees and twigs of odd order and the almost-magic strength of nP» (n is even) and
twigs of even order. Also, he obtains a bound on the magic strength of the path-union P,(m)
and on the relaxed-magic strength of kS, and kP,.

Enomoto, Llado, Nakamigawa, and Ringel [390] call an edge-magic total labeling super edge-
magic if the set of vertex labels is {1,2,...,|V|} (Wallis [1228] calls these labelings strongly edge-
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magic). They prove the following: C,, is super edge-magic if and only if n is odd; caterpillars
are super edge-magic; K, ,, is super edge-magic if and only if m =1 or n = 1; and K, is super
edge-magic if and only if n = 1,2, or 3. They also prove that if a graph with p vertices and
q edges is super edge-magic then, ¢ < 2p — 3. In [838] MacDougall and Wallis study super
edge-magic (p, q)-graphs where ¢ = 2p — 3. Enomoto et al. [390] conjecture that every tree
is super edge-magic. Lee and Shan [751] have verified this conjecture for trees with up to 17
vertices with a computer. Fukuchi, and Oshima, [440] have shown that if T is a tree of order
n > 2 such that T has diameter greater than or equal to n — 5, then T has a super edge-magic
labeling.

Various classes of banana trees that have super edge-magic total labelings have been found
by Swaminathan and Jeyanthi [1166] and Hussain, Baskoro, and Slamin [567]. In [43] Ahmad,
Ali, and Baskoro [43] investigate the existence of super edge-magic labelings of subdivisions of
banana trees and disjoint unions of banana trees. The pose three open problems.

Kotzig and Rosa’s ([673] and [674]) proof that n K> is edge-magic total when n is odd actually
shows that it is super edge-magic. Kotzig and Rosa also prove that every caterpillar is super-
edge magic. Figueroa-Centeno, Ichishima, and Muntaner-Batle prove the following: if G is a
bipartite or tripartite (super) edge-magic graph, then nG is (super) edge-magic when n is odd
[416]; if m is a multiple of n+ 1, then K ,,, UK}, is super edge-magic [416]; K1 2 U K7 ,, is super
edge-magic if and only if n is a multiple of 3; Ky ,, U K1, is edge-magic if and only if mn is
even [416]; K13 U K, is super edge-magic if and only if n is a multiple of 4 [416]; Py, U K1,
is super edge-magic when m > 4 [416]; 2P, is super edge-magic if and only if n is not 2 or 3;
K1 m U2nKy is super edge-magic for all m and n [416]; C3 U C,, is super edge-magic if and only
if n > 6 and n is even [419] (see also [486]); Cy U C), is super edge-magic if and only if n > 5
and n is odd [419] (see also [486]); C5 U (), is super edge-magic if and only if n > 4 and n is
even [419]; if m is even and at least 6 and n is odd and satisfies n > m/2 + 2, then C,, UC,, is
super edge-magic [419]; C4 U P, is super edge-magic if and only if n # 3 [419]; C5 U P, is super
edge-magic if n > 4 [419]; if m is even and at least 6 and n > m/2 + 2, then C,,, U P, is super
edge-magic [419]; and P,, U P, is super edge-magic if and only if (m,n) # (2,2) or (3,3) [419].
They [416] conjecture that K ,,, U K1 ,, is super edge-magic only when m is a multiple of n + 1
and they prove that if G is a super edge-magic graph with p vertices and ¢ edges with p > 4 and
q > 2p — 4, then G contains triangles. In [419] Figueroa-Centeno et al. conjecture that C, UC),
is super edge-magic if and only if m +n > 9 and m + n is odd. In [439] Fukuchi and Oshima
describe a construction of super-edge-magic labelings of some families of trees with diameter 4.
Salman, Ngurah, and Izzati [988] use S]* (n > 3) to denote the graph obtained by inserting m
vertices in every edge of the star S,,. They prove that S]" is super edge-magic when m =1 or 2.

Muntaner-Batle calls a bipartite graph with partite sets Vi and Vs special super edge-magic
if is has a super edge-magic total labeling f with the property that f(V7) = {1,2,...,|Vi|}. He
proves that a tree has a special super edge-magic labeling if and only if it has an a-labeling (see
§3.1 for the definition). Figueroa-Centeno, Ichishima, Muntaner-Batle, and Rius-Font [421] use
matrices to generate edge-magic total labeling and define the concept of super edge-magic total
labelings for digraphs. They prove that if G is a graph with a super edge-magic total labeling then
for every natural number d there exists a natural number k such that G has a (k, d)-arithmetic
labeling (see §4.2 for the definition). In [697] Lee and Lee prove that a graph is super edge-magic
if and only if it is (k, 1)-strongly indexable (see §4.3 for the definition of (k, d)-strongly indexable
graphs). They also provide a way to construct (k,d)-strongly indexable graphs from two given
(k, d)-strongly indexable graphs. This allows them to obtain several existing results about super
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edge-magic graphs as special cases of their constructions. Acharya and Germina [18] proved
that the class of strongly indexable graphs is a proper subclass of super edge-magic graphs.

In [568] Ichishima, Lépez, Muntaner-Batle and Rius-Font show how one can use the product
®p, of super edge-magic 1-regular labeled digraphs and digraphs with harmonious, or sequen-
tial labelings to create new undirected graphs that have harmonious, sequential labelings or
partitional labelings (see §4.1 for the definition). They define the product ®; as follows. Let
D= (V,E) be a digraph with adjacency matrix A(ﬁ) = (a;j) and let I' = {F;}7*, be a family
of m digraphs all with the same set of vertices V’. Assume that h : E — T is any function that
assigns elements of I to the arcs of D. Then the digraph 3®hf is defined by V(D®,T') = V x V'
and ((a1,b1), (az,b2)) € E(D®,T") <= [(a1,a2) € E(D)A(b1,b2) € E(h(a1,a2))]. An alternative
way of defining the same product is through adjacency matrices, since one can obtain the adja-
cency matrix of D ®p I as follows: if a;; = 0 then a;; is multiplied by the p’ x p’ 0-square matrix,
where p’ = |V'|. If a;; = 1 then a;; is multiplied by A(h(z, 7)) where A(h(7, 7)) is the adjacency
matrix of the digraph h(i, 7). They prove the following. Let D= (V, E) be a harmonious (p, q)-
digraph with p < ¢ and let h be any function from E to the set of all super edge-magic 1-regular
labeled digraphs of order n, which we denote by S,,. Then the undirected graph und(ﬁ ®p Sn)
is harmonious. Let D = (V, E) be a sequential digraph and let h : B — S,, be any function.
Then und(ﬁ ®p Sp) is sequential. Let D be a partitional graph and let h : E — S,, be any
function, where D= (V,E) is the digraph obtained by orienting all edges from one stable set
to the other one. Then

In [820] Lépez, Muntaner-Batle and Rius-Font introduce the concept of {H; }ier-super edge-
magic decomposable as follows: Let G = (V, E) be any graph and let {H;};c; be a set of graphs
such that G = @®;crH; (that is to say G decomposes into the graphs in the set {H;};cr). Then
we say that G is {H;}ier-super edge-magic decomposable if there is a bijection 8 : V — [1, |V]]
such that for each i € I the subgraph H; meets the following two requirements: (i) 5(V (H;)) =
[1, |V (H;)|] and (ii) {B(a) + B(b) : ab € E(H;)} is a set of consecutive integers. Such function 3
is called an {H;};cr-super edge-magic labeling of G. When H; = H for every i € I we just use
the notation H-super edge-magic decomposable labeling.

Among their results are the following. Let G = (V, E) be a (p, ¢)-graph which is {H;, Hs}-
super edge-magic decomposable for a pair of graphs Hy and Hs. Then G is super edge-bimagic;
Let n be an even integer. Then the cycle C), is (n/2)Ks-super edge-magic decomposable if and
only if n = 2 (mod 4). Let n be odd. Then for any super edge-magic tree 1" there exists a
bipartite connected graph G = G(T,n) such that G is (nT)-super edge-magic decomposable.
Let G be a {H;};cr-super edge magic decomposable graph, where H; is an acyclic digraph for
cach i € I. Assume that G is any orientation of G and h : E(a) — S is any function. Then
und(G @y, Sp) is {pH;}icr-super edge magic decomposable.

As a corollary of the last result they have that if G is a 2-regular, (1-factor)-super edge-magic
decomposable graph and G is any orientation of G and h : E(a)) — Sp is any function, then
und(a> ®p, Sp) is a 2-regular, (1-factor)-super edge-magic decomposable graph. Moreover, if we
denote the 1-factor of G by F' then pF' is the 1-factor of umd(a> ®n Sp)-

They pose the following two open questions: Fix p € N. Find the maximum r € N such
that there is a r-regular graph of order p which is (p/2)Ks-super edge-magic decomposable.
Characterize the set of 2-regular graphs of order n, n = 2 (mod 4), such that each component
has even order and admits an (n/2)Ks-super edge-magic decomposition.

In connection to open question 1 they prove: For all » € N, there is n € N such that there
exists a k-regular bipartite graph B(n), with £ > r and |V (B(n))| = 2 - 3", such that B(n) is
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(3" Ky)-super edge-magic decomposable.

Avadayappan, Jeyanthi, and Vasuki [77] define the super magic strength of a graph G as
sm(G) = min{s(L)} where L runs over all super edge-magic labelings of G. They use the
notation < Kj, : 2 > for the tree obtained from the bistar B, , (the graph obtained by
joining the center vertices of two copies of K, with an edge) by subdividing the edge joining
the two stars. They prove: sm(Pa,) = bn + 1; sm(Paq1) = 5n + 3; sm(< Ky 0 2 >) =
dn +9; sm(Bny) = dn+6; sm((2n + 1)P2) = 9n + 6; sm(Copq1) = dn + 4; emt(Cyy) =
5n+2; sm(Ky,) = 2n+4; and sm(P2) = 3n. Note that in each case the super magic strength
of the graph is the same as its magic strength.

Santhosh and Singh [993] proved that C,, ® P, and C,, ©® P5 are super edge-magic for all odd
n > 3 and prove for odd n > 3, sm(C,, ® P») = (156n + 3)/2 and (20n + 3) < sm(C,, ® P3) <
(21n + 3)/2.

In his Ph.D. thesis [487] Gray proves that Cs U C,, is super edge-magic if and only if n > 6
and C4 U C, is super edge-magic if and only if n > 5. His computer search shows that Cs U2Cj3
does not have a super edge-magic labeling.

In [1228] Wallis posed the problem of investigating the edge-magic properties of C), with the
path of length t attached to one vertex. Kim and Park [647] call such a graph an (n,t)-kite.
They prove that an (n,1)-kite is super edge-magic if and only if n is odd and an (n, 3)-kite is
super edge-magic if and only if n is odd and at least 5. Park, Choi, and Bae [922] show that
(n,2)-kite is super edge-magic if and only if n is even. Wallis [1228] also posed the problem of
determining when Ko UC,, is super edge-magic. In [922] and [647] Park et al. prove that Ko UC),
is super edge-magic if and only if n is even. Kim and Park [647] show that the graph obtained
by attaching a pendant edge to a vertex of degree one of a star is super-edge magic and that a
super edge-magic graph with edge magic constant k£ and ¢ edges satisfies ¢ < 2k/3 — 3.

Lee and Kong [710] use St(a1, ag, ..., a,) to denote the disjoint union of the n stars St(a;),
St(az), ..., St(ay). They prove the following graphs are super edge-magic: St(m,n) where n =0
mod(m + 1); St(1,1,n); St(1,2,n); St(1,n,n); St(2,2,n); St(2,3,n); St(1,1,2,n) (n > 2);
St(1,1,3,n); St(1,2,2,n); and St(2,2,2,n). They conjecture that St(ay,as,...,a,) is super
edge-magic when n > 1 is odd.

In [837] MacDougall and Wallis investigate the existence of super edge-magic labelings of
cycles with a chord. They use C! to denote the graph obtained from C,, by joining two vertices
that are distance t apart in C,. They prove: C},, ., (m > 3) has a super edge-magic labeling
for every t except 4m — 4 and 4m —8; C} (m > 3) has a super edge-magic labeling when ¢t = 2
mod 4; and that C},, ., (m > 1) has a super edge-magic labeling for all odd ¢ other than 5, and
for t = 2 and 6. They pose the problem of what values of ¢ does C} have a super edge-magic
labeling.

Enomoto, Masuda, and Nakamigawa [391] have proved that every graph can be embedded
in a connected super edge-magic graph as an induced subgraph. Slamin, Baca, Lin, Miller,
Simanjuntak [1103] proved that the friendship graph consisting of n triangles is super edge-
magic if and only if n is 3, 4, 5 or 7. Fukuchi proved [437] the generalized Petersen graph
P(n,2) (see §2.7 for the definition) is super edge-magic if n is odd and at least 3 while Xu,
Yang, Xi, Haque, and Shen [1281] showed that P(n,3) is super edge-magic for odd n is odd and
at least 5. Baskoro and Ngurah [204] showed that n P is super edge-magic for n > 4 and n even.

Hegde and Shetty [542] showed that a graph is super edge-magic if and only if it is strongly
k-indexable (see §4.1 for the definition). Figueroa-Centeno, Ichishima, and Muntaner-Batle [412]
proved that a graph is super edge-magic if and only if it is strongly 1-harmonious and that every
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super edge-magic graph is cordial. They also proved that P2 and Ky x Co,1 are super edge-
magic. In [413] Figueroa-Centeno et al. show that the following graphs are super edge-magic:
P; U kP, for all k; kP, when k is odd; k(P> U P,) when k is odd and n = 3 or n = 4; and
fans F,, if and only if n < 6. They conjecture that kPs is not super edge-magic when k is even.
This conjecture has been proved by Z. Chen [314] who showed that kP, is super edge-magic if
and only if k£ is odd. Figueroa-Centeno et al. proved that the book B, is not super edge-magic
when n =1,3,7 (mod 8) and when n = 4. They proved that B,, is super edge-magic for n = 2
and 5 and conjectured that for every n > 5, B, is super edge-magic if and only if n is even or
n = 5(mod) 8. Yuansheng, Yue, Xirong, and Xinhong [1317] proved this conjecture for the case
that n is even.

They prove that every tree with an a-labeling is super edge-magic. Yokomura (see [390]) has
shown that Py,4+1 X P and Cay, 1 X Py, are super edge-magic (see also [412]). In [414], Figueroa-
Centeno et al. proved that if G is a (super) edge-magic 2-regular graph, then G ® K, is (super)
edge-magic and that C,, ® K, is super edge-magic. Fukuchi [436] shows how to recursively create
super edge-magic trees from certain kinds of existing super edge-magic trees. Ngurah, Baskoro,
and Simanjuntak [902] provide a method for constructing new (super) edge-magic graphs from
existing ones. One of their results is that if G has an edge-magic total labeling and G has order
p and size p or p — 1, then G ® nK; has an edge-magic total labeling.

Lee and Lee [713] investigate the existence of total edge-magic labelings and super edge-
magic labelings of unicylic graphs. They obtain a variety of positive and negative results and
conjecture that all unicyclic are edge-magic total.

Shiu and Lee [1072] investigated edge labelings of multigraphs. Given a multigraph G with
q edges they call a bijection from the set of edges of G to {1,2,...,q} with the property that for
each vertex v the sum of all edge labels incident to v is a constant independent of v a supermagic
labeling of G. They use Ka[n] to denote the multigraph consisting of n edges joining 2 vertices
and mKs[n] to denote the disjoint union of m copies of Ks[n]. They prove that for m and n at
least 2, mKs[n] is supermagic if and only if n is even or if both m and n are odd.

In 1970 Kotzig and Rosa [673] defined the edge-magic deficiency, u(G), of a graph G as the
minimum n such that GUnK; is edge-magic total. If no such n exists they define u(G) = oo. In
1999 Figueroa-Centeno, Ichishima, and Muntaner-Batle [418] extended this notion to super edge-
magic deficiency, us(G), is the analogous way. They prove the following: pus(nks) = u(nks) =
n — 1 (mod 2); us(Cp) = 0 if n is odd; pus(Cp) = 1 if n = 0 (mod 4); pus(Cp) = oo if n = 2
(mod 4); ps(Ky) = oo if and only if n > 5; pus(Kpp) < (m—1)(n —1); ps(Kop) =n—1;
and ps(F) is finite for all forests F. They also prove that if a graph G has ¢ edges with ¢/2
odd, and every vertex is even, then ;5(G) = oo and conjecture that ps(Ky,,) < (m—1)(n—1).
This conjecture was proved for m = 3,4, and 5 by Hegde, Shetty, and Shankaran [543] using the
notion of strongly k-indexable labelings.

In [171] Baig, Ahmad, Baskoro, and Simanjuntak provide an upper bound for the super
edge-magic deficiency of a forest formed by paths, stars, combs, banana trees, and subdivisions
of K1 3. Baig, Baskoro, and Semanicova-Fenovcikova [172] investigate the super edge-magic
deficiency of forests consisting of stars. Among their results are: a forest consisting of k& > 3
stars has super edge-magic deficiency at most k—2; for every positive integer n a forest consisting
of 4 stars with exactly 1, n,n, and n + 2 leaves has a super edge-magic total labeling; for every
positive integer n a forest consisting of 4 stars with exactly 1, n + 5,2n + 6, and n + 1 leaves
has a super edge-magic total labeling; and for every positive integers n and & a forest consisting
of k identical stars has super edge-magic deficiency at most 1 when k is even and deficiency 0
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when k is odd.

In [417] Figueroa-Centeno, Ichishima, and Muntaner-Batle proved that ps(P, U Ki,) =1
if m = 2 and n is odd, or m = 3 and n is not congruent to 0 mod 3, whereas in all other
cases ps(Py, U K1) = 0. They also proved that p15(2K7 ) = 1 when n is odd and ps(2K; ) <
1 when n is even. They conjecture that ps(2K;,) = 1 in all cases. Other results in [417]
are: ps(Py U P,) = 1 when (m,n) = (2,2) or (3,3) and ps(Pp U P,) = 0 in all other cases;
s (K1 m UK ) = 0 when mn is even and ps(Ky ;UK ) = 1 when mn is odd; p(Pr UK ) =1
when m = 2 and n is odd and p(P, U K;,) = 0 in all other cases; u(FP, U P,) = 1 when
(m,n) = (2,2) and u(Py, U P,) = 0 in all other cases; ps(2Cy,) = 1 when n is even and oo
when n is odd; us(3C,) = 0 when n is odd; ps(3Cy,) = 1 when n = 0 (mod 4); us(3C,) = o
when n = 2 (mod 4); and us(4C,) = 1 when n = 0 (mod 4). They conjecture the following:
ws(mCy) = 0 when mn is odd; us(mCy,) = 1 when mn = 0 (mod 4); ps(mC,) = oo when
mn = 2 (mod 4); pus(2K, ) = 1; and if F' is a forest with two components, then p(F) <1 and
ws(F) < 1. Santhosh and Singh [992] proved: for n odd at least 3, us(K2® Cy,) < (n—3)/2; for
n>1, 1< us(P,[P]) =[(n—1)/2]; and for n > 1, 1 < ps(P, x K4) < n.

Ichishima and Oshima [574] prove the following: if a graph G(V, E) has an a-labeling and
no isolated vertices, then us(G) < |E| — |V| + 1; if a graph G(V, E) has an a-labeling, is not
sequential, and has no isolated vertices, then us(G) = |E| — |V| + 1; and, if m is even, then
ps(mKy ) < 1. As corollaries of the last result they have: p4(2K; ) = 1; when m = 2 (mod 4)
and n is odd, ps(mKi,) = 1; ps(mKi3) =0 when m =4 (mod 8) or m is odd; ps(mKi3) =1
when m = 2 (mod 4); ps(mKas) = 1; for n >4, (n —4)2"72 +3 < pug(Qn) < (n—2)277 1 — 4;
and for s > 2 and t > 2, ps(mKs;) < m(st —s —t)+ 1. They conjecture that for s > 2 and
t > 2, us(mKsy) = m(st —s —t) + 1 and pose as a problem determining the exact value of
s (Qn)-

Ichishima and Oshima [573] determined the super edge-magic deficiency of graphs of the
form C,, U C,, for m and n even and for arbitrary n when m = 3,4,5, and 7. They state a
conjecture for the super edge-magic deficiency of Cy, U C,, in the general case.

A block of a graph is a maximal subgraph with no cut-vertex. The block-cut-vertex graph
of a graph G is a graph H whose vertices are the blocks and cut-vertices in G; two vertices
are adjacent in H if and only if one vertex is a block in G and the other is a cut-vertex in G
belonging to the block. A chain graph is a graph with blocks By, Bs, Bs, ..., By such that for
every 1, B; and B;;11 have a common vertex in such a way that the block-cut-vertex graph is
a path. The chain graph with k blocks where each block is identical and isomorphic to the
complete graph K, is called the kK, -path.

Ngurah, Baskoro, and Simanjuntak [901] investigate the exact values of ps(kK,-path) when
n = 2 or 4 for all values of k and when n = 3 for £k = 0,1,2 (mod 4), and give an upper
bound for £k = 3 (mod 4). They determine the exact super edge-magic deficiencies for fans,
double fans, wheels of small order and provide upper and lower bounds for the general case as
well as bounds for some complete partite graphs. They also include some open problems. Lee
and Wang [769] show that various chain graphs with blocks that are complete graphs are super
edge-magic.

Figueroa-Centeno and Ichishima [410] introduce the notion of the sequential number o(G)
of a graph G without isolated vertices to be either the smallest positive integer n for which it is
possible to label the vertices of G with distinct elements from the set {0,1,...,n} in such a way
that each uv € E(G) is labeled f(u)+ f(v) and the resulting edge labels are |E(G)| consecutive
integers or +oco if there exists no such integer n. They prove that o(G) = us(G) + |V(G)| — 1
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for any graph G' without isolated vertices, and o(K,,,) = mn, which settles the conjecture of
Figueroa-Centeno, Ichishima, and Muntaner-Batle [418] that us(K,,,n) = (m —1)(n —1).

Z. Chen [314] has proved: the join of K with any subgraph of a star is super edge-magic; the
join of two nontrivial graphs is super edge-magic if and only if at least one of them has exactly
two vertices and their union has exactly one edge; and if a k-regular graph is super edge-magic,
then k£ < 3. Chen also obtained the following: there is a connected super edge-magic graph
with p vertices and ¢ edges if and only if p — 1 < ¢ < 2p — 3; there is a connected 3-regular
super edge-magic graph with p vertices if and only if p = 2 (mod 4); and if G is a k-regular
edge-magic total graph with p vertices and ¢ edges then (p+¢)(1+p+¢) = 0 (mod 2d) where d =
ged(k —1,q). As a corollary of the last result, Chen observes that nKs + nKs is not edge-magic
total.

Another labeling that has been called “edge-magic” was introduced by Lee, Seah, and Tan in
1992 [749]. They defined a graph G = (V, E) to be edge-magic if there exists a bijection f: E —
{1,2,...,|E[} such that the induced mapping f*:V — N defined by f*(u) = 3>, ,yep f(u,v)
(mod |V]) is a constant map. Lee (see [737]) conjectured that a cubic graph with p vertices is
edge-magic if and only if p = 2 (mod 4). Lee, Pigg, and Cox [737] verified this conjecture for
prisms and several other classes of cubic graphs. They also show that C,, x K> is edge-magic if
and only if n is odd. Shiu and Lee [1072] showed that the conjecture is not true for multigraphs
and disconnected graphs. In [1072] Lee’s conjecture was modified by restricting it to simple
connected cubic graphs. A computer search by Lee, Wang, and Wen [772] showed that the new
conjecture was false for a graph of order 10. Lee, Seah, and Tan [749] establish that a necessary
condition for a multigraph with p vertices and ¢ edges to be edge-magic is that p divides ¢(g+1)
and they exhibit several new classes of cubic edge-magic graphs. They also proved: K, , (n > 3)
is edge-magic and K, is edge-magic for n = 1,2 (mod 4) and for n = 3 (mod 4) (n > 7). Lee,
Seah, and Tan further proved that following graphs are not edge-magic: all trees except Ps;
all unicyclic graphs; and K, where n = 0 (mod 4). Schaffer and Lee [997] have proved that
Cyn x C,, is always edge-magic. Lee, Tong, and Seah [763] have conjectured that the total graph
of a (p, p)-graph is edge-magic if and only if p is odd. They prove this conjecture for cycles. Lee,
Kitagaki, Young, and Kocay [709] proved that a maximal outerplanar graph with p vertices is
edge-magic if and only if p = 6. Shiu [1062] used matrices with special properties to prove that
the composition of P, with K,, and the composition of P, with K}, where kn is odd and n is
at least 3 have edge-magic labelings.

Chopra, Dios, and Lee [322] investigated the edge-magicness of joins of graphs. Among their
results are: Ka,, is edge-magic if and only if m = 4 or 10; the only possible edge-magic graphs
of the form K3 ,, are those with m = 3,5, 6,15, 33, and 69; for any fixed m there are only finitely
many n such that K, , is edge-magic; for any fixed m there are only finitely many trees 7" such
that T+ K,, is edge-magic; and wheels are not edge-magic.

For any graph G and any positive integer k the graph G[k], called the k-fold G, is the hy-
pergraph obtained from G by replacing each edge of G with k parallel edges. Lee, Seah, and
Tan [749] proved that for any graph G with p vertices, G[2p] is edge-magic and, if p is odd,
G|p] is edge-magic. Shiu, Lam, and Lee [1070] show that if G is an (n + 1, n)-multigraph, then
G is edge-magic if and only if n is odd and G is isomorphic to the disjoint union of Ko and
(n — 1)/2 copies of K3[2]. They also prove that if G is a (2m + 1, 2m)-multigraph and k > 2,
then G[k] is edge-magic if and only if 2m + 1 divides k(k — 1). For a (2m,2m — 1)-multigraph
G and k at least 2, they show that G[k| is edge-magic if 4m divides (2m — 1)k((2m — 1)k + 1)
or if 4m divides (2m + k — 1)k. In [1068] Shiu, Lam, and Lee characterize the (p, p)-multigraphs
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that are edge-magic as mK»[2] or the disjoint union of mK3[2] and two particular multigraphs
or the disjoint union of Ky, mK>[2], and four particular multigraphs. They also show for every
(2m+1,2m + 1)-multigraph G, G[k] is edge-magic for all k at least 2. Lee, Seah, and Tan [749]
prove that the multigraph C,,[k] is edge-magic for k > 2.

Tables 5 and 6 summarize what is known about edge-magic total labelings and super edge-
magic total labelings. We use SEM to indicate the graphs have super edge-magic total labelings
and EMT to indicate the graphs have edge-magic total labelings. A question mark following
SEM or EMT indicates that the graph is conjectured to have the corresponding property. The
table was prepared by Petr Kovar and Tereza Kovarova.
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Table 5: Summary of Edge-magic Total Labelings

Graph Types Notes

2 EMT [1232]

trees EMT? [674], [963]

Cp EMT for n > 3 [673], [472], [970], [216]

K, EMT iff n=1,2,3,4,5, or 6 [674], [341], [390]
enumeration of all EMT of K, [1232]

Kpon EMT for all m and n [673]

crowns Cy, ® K EMT [1232]

Ko EMT [1232]

C), with a single edge | EMT [1232]

attached to one vertex

wheels W, EMT iff n # 3 (mod 4) [390],[437]

fans EMT [1103], [412], [413]

(p, q)-graph not EMT | if ¢ even and p + ¢ = 2 (mod 4) [963]
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Table 5: Summary of Edge-magic Total continued

Graph Types Notes

nP, EMT iff n odd [673]

P+ K, EMT [1299]

P, x Cy EMT n > 2 [1299]

crown C), ® K; EMT [1299]

r-regular graph not EMT | r odd and p =4 (mod 8) [341]
P3;UnKsy and PsUnKy | EMT [412], [413]

PyUnK> EMT n odd [412], [413]

nP; EMT nodd, i = 3,4,5 [1299] [412],[413]
nP; EMT? | [1299]

2P, EMT [412], [413]

PLUPRU---UP, EMT [412], [413]

MKy, EMT [412], [413]

Cr © Ky, EMT [412], [413]

unicylic graphs EMT? [713]
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Table 5: Summary of Edge-magic Total continued

Graph Types Notes

K ©nKy EMT n even [412], [413]

Ky x K, EMT [412], [413]

nks EMT iff n # 2 odd [412], [413], [852]
binary trees EMT [412], [413]

P(m,n) (generalized EMT [412], [413], [898]

Petersen graph see §2.7)

ladders EMT [412], [413]

books EMT [412], [413]

odd cycle with pendant edges | EMT [412], [413]

attached to one vertex

P, xCy, EMT n odd n > 3 [1257]

P, x Py EMT m odd m > 3 [1257]

P, x C, not EMT | [898]

KimUKi, EMT iff mn is even [416]

GoK, EMT if G is EMT 2-regular graph [414]
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Table 6: Summary of Super Edge-magic Labelings

Graph Types | Notes

Chn SEM | iff n is odd [390]

caterpillars SEM | [390], [673], [674]

Kpm SEM | iff m =1 orn=1 [390]

K, SEM | iff n = 1,2 or 3 [390]

trees SEM? | [390]

nks SEM | iff n odd [314]

nG SEM | if G is a bipartite or tripartite
SEM graph and n odd [416]

Kim UK, SEM | if m is a multiple of n + 1 [416]

Kim UK, SEM? | iff m is a multiple of n + 1 [416]

Kip UKy, SEM | iff n is a multiple of 3 [416]

Ki3UKi, SEM | iff n is a multiple of 4 [416]

P, UK, SEM | if m >4 is even [416]

2P, SEM | iff n is not 2 or 3 [416]

2Py, SEM | for all n [416]

Ky mU2nK;o | SEM | for all m and n [416]
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Table 6: Summary of Super Edge-magic Labelings continued

Graph Types | Notes

CsUCy, SEM | iff n > 6 even [419], [486]

CiUC, SEM | iff n > 5 odd [419], [486]

CsUC, SEM | iff n > 4 even [419]

CnUCy SEM | if m > 6 even and n odd n > m/2 + 2 [419]
Cm UGy, SEM? | iff m +mn > 9 and m + n odd [419]

CaU P, SEM | iff n # 3 [419]

CsUP, SEM | if n # 4 [419]

Cn UP, SEM | if m > 6 even and n > m/2 + 2 [419]
P,UP, SEM | iff (m,n) # (2,2) or (3,3) [419]

corona Cp, ® K,,, | SEM | n > 3 [419]

St(m,n) SEM | n =0 (mod m + 1) [710]
St(1,k,n) SEM | k=1,2 or n [710]

St(2, k,n) SEM | k= 2,3 [710]
St(1,1,k,n) SEM | k = 2,3 [710]
St(k,2,2,n) SEM | k = 1,2 [710]

St(ay,...,an) SEM? | for n > 1 odd [710]
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Table 6: Summary of Super Edge-magic Labelings continued

Graph Types | Notes

cr SEM | [837]

ot SEM | [837]

friendship graph SEM | iff n =3,4,5, or 7 [1103]

of n triangles

generalized Petersen SEM | if n > 3 odd [436]

graph P(n,2) (see §2.7)

nPs SEM | if n > 4 even [204]

P2 SEM | [412]

Ky x Coni1 SEM | [412]

Py U kP, SEM | for all k [413]

kP, SEM | if k is odd [413]

k(P U P,) SEM | if k is odd and n = 3,4 [413]
fans F), SEM | iff n <6 [413]

books B, SEM | if n even [1317]

books B, SEM? | if n even or n =5 (mod 8)[413]
trees with a-labelings SEM | [413]
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Table 6: Summary of Super Edge-magic Labelings continued

Graph Types Notes

P2m+1 X P2 SEM [390], [412]

Comai1 X P SEM [390], [412]

GoK, SEM if G is SEM 2-regular graph [414]
Cn ® K, SEM [414]

join of Ky with any subgraph | SEM [314]

of a star

if G is k-regular SEM graph then k < 3 [314]

G is connected (p, q)-graph SEM G exists iff p—1 < g < 2p— 3 [314]
G is connected 3-regular SEM iff p =2 (mod 4) [314]

graph on p vertices

nkKy + nks not SEM | [314]
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5.3 Vertex-magic Total Labelings

MacDougall, Miller, Slamin, and Wallis [834] introduced the notion of a vertex-magic total
labeling in 1999. For a graph G(V, E) an injective mapping f from VUE to theset {1,2,...,|V]|+
|E|} is a vertez-magic total labeling if there is a constant k, called the magic constant, such that
for every vertex v, f(v)+ > f(vu) = k where the sum is over all vertices u adjacent to v (some
authors use the term “vertex-magic” for this concept). They prove that the following graphs
have vertex-magic total labelings: Cp; P, (n > 2); Ky (m > 1); Ky — e (m > 2); and
K, for n odd. They also prove that when n > m + 1, K,,, does not have a vertex-magic
total labeling. They conjectured that K, ,,+1 has a vertex-magic total labeling for all m and
that K, has vertex-magic total labeling for all n > 3. The latter conjecture was proved by
Lin and Miller [794] for the case that n is divisible by 4 while the remaining cases were done
by MacDougall, Miller, Slamin, and Wallis [834]. McQuillan [851] provided many vertex-magic
total labelings for cycles Cyy for & > 3 and odd n > 3 using given vertex-magic labelings for
Ck. Gray, MacDougall, and Wallis [496] then gave a simpler proof that all complete graphs
are vertex-magic total. Krishnappa, Kothapalli, and Venkaiah [665] gave another proof that all
complete graphs are vertex-magic total.

In [834] MacDougall, Miller, Slamin, and Wallis conjectured that for n > 5, K, has a vertex-
magic total labeling with magic constant k if and only if A is an integer satisfying n®+3n < 4h <
n3 4+ 2n? + n. In [853] McQuillan and Smith proved that this conjecture is true when n is odd.
Armstrong and McQuillan [74] proved that if n = 2 (mod 4) (n > 6) then K, has a vertex-magic
total labeling with magic constant h for each integer h satisfying n®+6n < 4h < n34+2n2—2n. If,
in addition, n = 2 (mod 8), then K, has a vertex-magic total labeling with magic constant h for
each integer h satisfying n®+4n < 4h < n3+2n2. They further showed that for each odd integer
n > 5, 2K, has a vertex-magic total labeling with magic constant h for each integer h such that
n? +5n < 2h < n3+2n? — 3n. If, in addition, n = 1(mod 4), then 2K, has a vertex-magic total
labeling with magic constant h for each integer h such that n? + 3n < 2h < n? 4 2n% — n.

In [852] McQuillan and McQuillan investigate the existence of vertex-magic labelings of nCj.
They prove: for every even integer n > 4, nCjs is vertex-magic (and therefore also edge-magic);
for each even integer n > 6, nC's has vertex-magic total labelings with at least 2n — 2 different
magic constants; if n = 2 mod 4, two extra vertex-magic total labelings with the highest possible
and lowest possible magic constants exist; if n = 2- 3%, k > 1, nC3 has a vertex-magic total
labeling with magic constant k if and only if (1/2)(15n +4) < k < (1/2)(21n + 2); if n is
odd, there are vertex-magic total labelings for nCs with n+ 1 different magic constants. In [850]
McQuillan provides a technique for constructing vertex-magic total labelings of 2-regular graphs.
In particular, if m is an odd positive integer, G = C,, U Cp, U --- U Cy, has a vertex-magic
total labeling, and J is any subset of I = {1,2,...,k} then (U;c;s mC,,) U (Ujer—s mCy,) has a
vertex-magic total labeling.

Lin and Miller [794] have shown that K, ,, is vertex-magic total for all m > 1 and that K,
is vertex-magic total for all n = 0 (mod 4). Phillips, Rees, and Wallis [934] generalized the Lin
and Miller result by proving that K, ,, is vertex-magic total if and only if m and n differ by at
most 1. Cattell [290] has shown that a necessary condition for a graph of the form H + K, to
be vertex-magic total is that the number of vertices of H is at least n — 1. As a corollary he gets
that a necessary condition for Ky, m,... m,n Where n is the largest size of any partite set to be
vertex-magic total is that mi+mo+---4+m, > n. He poses as an open question whether graphs
that meet the conditions of the theorem are vertex-magic total. Cattell also proves that K1, 5
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has a vertex-magic total labeling when n is odd and K, , has a vertex-magic total labeling
when n = 3 (mod 4).

Miller, Ba¢a, and MacDougall [865] have proved that the generalized Petersen graphs P(n, k)
(see §2.7) for the definition) are vertex-magic total when n is even and k < n/2 — 1. They
conjecture that all P(n,k) are vertex-magic total when k < (n —1)/2 and all prisms C, x P»
are vertex-magic total. Baca, Miller, and Slamin [154] proved the first of these conjectures (see
also [1104] for partial results) while Slamin and Miller prove the second. Slamin, Prihandoko,
Setiawan, Rosita and Shaleh [1105] constructed vertex-magic total labelings for the disjoint union
of two copies of P(n,k) and Silaban, Parestu, Herawati, Sugeng, and Slamin [1085] extended
this to any number of copies of P(n,k). More generally, they proved that for n; > 3 and
1 <k; <[(n; —1)/2], the union P(ni, k1)U P(ng, k2) U---U P(n, ki) has a vertex-magic total
labeling with vertex magic constant 10(ny 4+ ng + -+ + ng) + 2. In the same article Silaban et
al. define the union of ¢ special circulant graphs U;ZlCn(l,mj) as the graph with vertex set

{vf] 0<i<n-1,1<j <t} and edge set {vgvgﬂ\ 0<i<n-1,1 §j§t}u{vgvg+mj] 0<
i <n—1,1<j <t} They prove that for odd n at least 5 and m; € {2,3,...,(n —1)/2}, the
disjoint union U;ZlCn(l, m;) has a vertex-magic total labeling with constant 8tn+ (n—10/2+3.

MacDougall et al. ([834], [836] and [494]) have shown: W, has a vertex-magic total labeling if
and only if n < 11; fans F}, have a vertex-magic total labelings if and only if n < 10; friendship
graphs have vertex-magic total labelings if and only if the number of triangles is at most 3;
Kppn (m > 1) has a vertex-magic total labeling if and only if m and n differ by at most 1.
Wallis [1228] proved: if G and H have the same order and G U H is vertex-magic total then so
is G + H; if the disjoint union of stars is vertex-magic total, then the average size of the stars
is less than 3; if a tree has n internal vertices and more than 2n leaves then it does not have a
vertex-magic total labeling. Wallis [1229] has shown that if G is a regular graph of even degree
that has a vertex-magic total labeling then the graph consisting of an odd number of copies of
G is vertex-magic total. He also proved that if G is a regular graph of odd degree (not K;)
that has a vertex-magic total labeling then the graph consisting of any number of copies of G is
vertex-magic total.

Gray, MacDougall, McSorley, and Wallis [495] investigated vertex-magic total labelings of
forests. They provide sufficient conditions for the nonexistence of a vertex-magic total labeling
of forests based on the maximum degree and the number of internal vertices, and leaves or
the number of components. They also use Skolem sequences to prove a star forest with each
component a K72 has a vertex-magic total labeling.

Recall a helm H,, is obtained from a wheel W,, by attaching a pendant edge at each vertex
of the n-cycle of the wheel. A generalized helm H(n,t) is a graph obtained from a wheel W,, by
attaching a path on ¢ vertices at each vertex of the n-cycle. A generalized web W(n,t) is a graph
obtained from a generalized helm H(n,t) by joining the corresponding vertices of each path
to form an n-cycle. Thus W(n,t) has (¢t + 1)n + 1 vertices and 2(t + 1)n edges. A generalized
Jahangir graph Jj s is a graph on ks + 1 vertices consisting of a cycle C}, and one additional
vertex that is adjacent to k vertices of Cjs at distance s to each other on Ci,. Rahim, Tomescu,
and Slamin [951] prove: H, has no vertex-magic total labeling for any n > 3; W(n,t) has a
vertex-magic total labeling for n = 3 or n = 4 and ¢ = 1, but it is not vertex-magic total for
n > 17t+12 and t > 0; and J, 141 is vertex-magic total for n = 3 and ¢ = 1, but it does not have
this property for n > 7t + 11 and ¢ > 1. Recall a flower is the graph obtained from a helm by
joining each pendant vertex to the central vertex of the helm. Ahmad and Tomescu [48] proved
that flower graph is vertex-magic if and only if the underlying cycle is Cj.
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Froncek, Kovér, and Kovéarovd [425] proved that C), x Copi1 and K5 X Ca,q1 are vertex-
magic total. Kovar [676] furthermore proved some general results about products of certain
regular vertex-magic total graphs. In particular, if G is a (2r 4+ 1)-regular vertex-magic total
graph that can be factored into an (r+1)-regular graph and an r-regular graph, then G x K5 and
G x C, for n even are vertex-magic total. He also proved that if G an r-regular vertex-magic
total graph and H is a 2s-regular supermagic graph that can be factored into two s-regular
factors, then their Cartesian product G x H is vertex-magic total if either r is odd, or r is even
and |H| is odd.

Beardon [207] has shown that a necessary condition for a graph with ¢ components, p vertices,
q edges and a vertex of degree d to be vertex-magic total is (d42)? < (7¢?+ (6¢+5)q+c? +3c)/p.
When the graph is connected this reduces to (d + 2)? < (7¢% + 11q + 4)/p. As a corollary, the
following are not vertex-magic total: wheels W,, when n > 12; fans F,, when n > 11; and
friendship graphs C?(,n) when n > 4.

MacDougall has conjectured (see [677]) that every r-regular (r > 1) graph with the exception
of 2K3 has a vertex-magic total labeling. As a corollary of a general result Kovar [677] has
shown that every 2r-regular graph with an odd number of vertices and a Hamiltonian cycle has
a vertex-magic total labeling.

Beardon [209] has investigated how vertices of small degree effect vertex-magic total labelings.
Let G(p,q) be a graph with a vertex-magic total labeling with magic constant k and let dy be
the minimum degree of any vertex. He proves k < (1 +dp)(p + ¢ — do/2) and ¢ < (1 + dp)q.
He also shows that if G(p,q) is a vertex-magic graph with a vertex of degree one and t is the
number of vertices of degree at least two, then ¢ > ¢/3 > (p — 1)/3. Beardon [209] has shown
that the graph obtained by attaching a pendant edge to K, is vertex-magic total if and only if
n =23, or 4.

Meissner and Zwierzyriski [858] used finding vertex-magic total labelings of graphs as a way
to compare the efficiency of parallel execution of a program versus sequential processing.

MacDougall, Miller, and Sugeng [835] define a super vertex-magic total labeling of a graph
G(V,E) as a vertex-magic total labeling f of G with the additional property that f(V) =
{1,2,...,|V]} and f(E) ={|V|+1,|V|+2,...,|V]|+ |E|} (some authors use the term “super
vertex-magic” for this concept). They show that a (p,q)-graph that has a super vertex-magic
total labeling with magic constant k satisfies the following conditions: k = (p+¢q)(p+q+1)/v—
(v+1)/2; k> (41p+ 21)/18; if G is connected, k > (7p — 5)/2; p divides ¢(q + 1) if p is odd,
and p divides 2¢q(q + 1) if p is even; if G has even order either p = 0 (mod 8) and ¢ = 0 or 3
(mod 4) or p =4 (mod 8) and ¢ = 1 or 2 (mod 4); if G is r-regular and p and r have opposite
parity then p = 0 (mod 8) implies ¢ = 0 (mod 4) and p = 4 (mod 8) implies ¢ = 2 (mod 4).
They also show: C), has a super vertex-magic total labeling if and only if n is odd; and no wheel,
ladder, fan, friendship graph, complete bipartite graph or graph with a vertex of degree 1 has a
super vertex-magic total labeling. They conjecture that no tree has a super vertex-magic total
labeling and that K4, has a super vertex-magic total labeling when n > 1. The latter conjecture
was proved by Gémez in [476]. In [477] Gémez proved that if G is a d-regular graph that has
a vertex-magic total labeling and k is a positive integer such that (k — 1)(d + 1) is even, then
kG has a super vertex-magic total labeling. As a corollary, we have that if n and k are odd or
if n =0 (mod 4) and n > 4, then kK, has a super vertex-magic total labeling. Gémez also
shows how graphs with super vertex-magic total labeling can be constructed from a given graph
G with super vertex-magic total labeling by adding edges to G in various ways.

Swaminathan and Jeyanthi [1164] prove the following graphs are super vertex-magic total:
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P, if and only if n is odd and n > 3; C,, if and only if n is odd; the star graph if and only if
it is Py; and mC,, if and only if m and n are odd. In [1165] they prove the following: no super
vertex-magic total graph has two or more isolated vertices or an isolated edge; a tree with n
internal edges and tn leaves is not super vertex-magic total if ¢ > (n + 1)/n; if A is the largest
degree of any vertex in a tree T with p vertices and A > (=3 + /T + 16p)/2, then T is not
super vertex-magic total; the graph obtained from a comb by appending a pendant edge to each
vertex of degree 2 is super vertex-magic total; the graph obtained by attaching a path with ¢
edges to a vertex of an n-cycle is super vertex-magic total if and only if n + ¢ is odd. Ali, Baca,
and Bashir [53] proved that mPs; and m Py have no super vertex-magic total labeling

For n > 1 and distinct odd integers =,y and z in [1,n — 1] Javaid, Ismail, and Salman [588]
define the chordal ring of order n CR,(x,y,z), as the graph with vertex set Z,, the additive
group of integers modulo n, and edges (4,7 + x), (i,i + y), (i, + z) for all even i. They prove
that CR,,(1,3,n — 1) has a super vertex-magic total labeling when n = 0 mod 4 and n > 8 and
conjecture that for an odd integer A, 3 <A <n—3,n=0mod 4, CR,(1,A,n—1) has a super
vertex-magic total labeling with magic constant 23n/4 + 2.

The Knéddel graphs Wa ,, with n even and degree A, where 1 < A < | logyn| have vertices
pairs (i,7) with ¢ = 1,2 and 0 < j < n/2 — 1 where for every 0 < j < n/2 — 1 and there is an
edge between vertex (1,5) and every vertex (2, (j + 2¥ — 1) mod n/2), for k = 0,1,...,A — 1.
Xi, Yang, Mominul, and Wong [1270] have shown that W3, is super vertex-magic total when
n =0 mod 4.

Balbuena, Barker, Das, Lin, Miller, Ryan, and Slamin [173] call a vertex-magic total labeling
of G(V, E) a strongly vertex-magic total labeling if the vertex labels are {1,2,...,|V|}. They
prove: the minimum degree of a strongly vertex-magic total graph is at least 2; for a strongly
vertex-magic total graph G with n vertices and e edges, if 2¢ > v/10n2 — 6n + 1 then the
minimum degree of G is at least 3; and for a strongly vertex-magic total graph G with n vertices
and e edges if 2e < v/10n? — 6n + 1 then the minimum degree of G is at most 6. They also
provide strongly vertex-magic total labelings for certain families of circulant graphs. In [850]
McQuillan provides a technique for constructing vertex-magic total labelings of 2-regular graphs.
In particular, if m is an odd positive integer, G = C,,, U Cy, U --- U Oy, has a strongly vertex-
magic total labeling, and J is any subset of I = {1,2,...,k} then (Ujcy mCy,) U (Uijcr—g mCh,)
has a strongly vertex-magic total labeling.

Gray [487] proved that if G is a graph with a spanning subgraph H that possesses a strongly
vertex-magic total labeling and G — FE(H) is even regular, then G also possesses a strongly
vertex-magic total labeling. As a corollary one has that regular Hamiltonian graphs of odd
order have a strongly vertex-magic total labelings.

In a series of papers Gray and MacDougall expand on McQuillan’s technique to obtain a
variety of results. In [490] Gray and MacDougall show that for any r > 4, every r-regular
graph of odd order at most 17 has a strong vertex-magic total labeling. They also show that
several large classes of r-regular graphs of even order, including some Hamiltonian graphs, have
vertex-magic total labelings. They conjecture that every 2-regular graph of odd order possesses
a strong vertex-magic total labeling if and only if it is not of the form (2t —1)C3UC} or 2tC5UCs5.
They include five open problems.

In [491] Gray and MacDougall introduce a procedure called a mutation that transforms one
vertex-magic totaling labeling into another one by swapping sets of edges among vertices that
may result in different labeling of the same graph or a labeling of a different graph. Among their
results are: a description of all possible mutations of a labeling of the path and the cycle; for
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all n > 2 and all 4 from 1 to n — 1 the graphs obtained by identifying an end points of paths of
lengths 4,7+ 1, and 2n — 2i — 1 have a vertex-magic total labeling; for odd n, the graph obtained
by attaching a path of length n —m to an m cycle, (such graphs are called (m;n — m)-kites )
have strong vertex-magic total labelings for m = 3,...,n—2; Co,11UCypniq and 3Co,41 have a
strong vertex-magic total labeling; and for n > 2, Cy, U Cg,—1 has a strong vertex-magic total
labeling. They conclude with three open problems.

Gray and MacDougall [492] show how to construct vertex-magic total labelings for several
families of non-regular graphs, including the disjoint union of two other graphs already possessing
vertex-magic total labelings. They prove that if G is a d-regular graph of order v and H a t-
regular graph of order u with each having a strong vertex magic total labeling and vd? + 2d +
20 + 2u = 2tvd + 2t + ut® then G U H possesses a strong vertex-magic total labeling. They also
provide bounds on the minimum degree of a graph with a vertex-magic total labeling.

In [493] Gray and MacDougall establish the existence of vertex-magic total labelings for
several infinite classes of regular graphs. Their method enables them to begin with any even-
regular graph and construct a cubic graph possessing a vertex-magic total labeling that produces
strong vertex-magic total labelings for many even order regular graphs. The construction also
extends to certain families of non-regular graphs.

Rahim and Slamin [949] give the bounds for the number of vertices for Jahangir graphs,
helms, webs, flower graphs and sunflower graphs when the graphs considered are not vertex-
magic total.

Thirusangu, Nagar, and Rajeswari [1177] show that certain Cayley digraphs of cyclic groups
have vertex-magic total labelings.

Balbuena, Barker, Lin, Miller, and Sugeng [175] call vertex-magic total labeling an a-vertex
consecutive magic labeling if the vertex labels are {a,a + 1,...,a + |V|}. For an a-vertex
consecutive magic labeling of a graph G with p vertices and ¢ edges they prove: if G has one
isolated vertex, then a = ¢ and (p — 1)? + p? = (2¢ + 1)?; if ¢ = p — 1, then p is odd and
a =p—1; if p = g, then p is odd and if G has minimum degree 1, then a = (p + 1)/2 or
a = p; if G is 2-regular, then p is odd and a = 0 or p; and if G is r-regular, then p and r have
opposite parities. They also define an b-edge consecutive magic labeling analogously and state
some results for these labelings.

Wood [1263] generalizes vertex-magic total and edge-magic total labelings by requiring only
that the labels be positive integers rather than consecutive positive integers. He gives upper
bounds for the minimum values of the magic constant and the largest label for complete graphs,
forests, and arbitrary graphs.

Exoo, Ling, McSorley, Phillips, and Wallis [403] call a function A a totally magic labeling of
a graph G if A is both an edge-magic total and a vertex-magic total labeling of G. A graph with
such a labeling is called totally magic. Among their results are: Pj3 is the only connected totally
magic graph that has a vertex of degree 1; the only totally magic graphs with a component Ky
are K1 and K7 U P3; the only totally magic complete graphs are K7 and Kj3; the only totally
magic complete bipartite graph is K 2; nk3 is totally magic if and only if n is odd; P3 Unk3
is totally magic if and only if n is even. In [1231] Wallis asks: Is the graph K ,, UnKs ever
totally magic? That question was answered by Calhoun, Ferland, Lister, and Polhill [286] who
proved that if K ,, UnkKs3 is totally magic then m = 2 and K2 UnkK3 is totally magic if and
only if n is even.

McSorley and Wallis [855] examine the possible totally magic labelings of a union of an odd
number of triangles and determine the spectrum of possible values for the sum of the label on
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a vertex and the labels on its incident edges and the sum of an edge label and the labels of the
endpoints of the edge for all known totally magic graphs.

Gray and MacDougall [488] define an order n sparse semi-magic square to be an n X n array
containing the entries 1,2,...,m once (for some m < n?), has its remaining entries equal to 0,
and whose rows and columns have a constant sum of k. They prove some basic properties of
such squares and provide constructions for several infinite families of squares, including squares
of all orders n > 3. Moreover, they show how such arrays can be used to construct vertex-magic
total labelings for certain families of graphs.

In Tables 7, 8 and 9
VMT means vertex-magic total labeling
SVMT means super vertex magic total
TM means totally magic labeling.

A question mark following an abbreviation indicates that the graph is conjectured to have
the corresponding property. The table was prepared by Petr Kovai and Tereza Kovarova and
updated by J. Gallian in 2007.
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Table 7: Summary of Vertex-magic Total Labelings

Graph Labeling | Notes
Cr VMT | [834]
B, VMT | n>2[834]
Kym —e€ VMT m > 2 [834]
Ko VMT | iff [m — n| < 1 [934],[834],[836]
K, VMT for n odd [834]
for n =2 (mod 4),n > 2 [794]
nks VMT | iff n #£ 2 [412], [413], [852]
mK, VMT m > 1, n >4 [854]
Petersen P(n,k) | VMT [154]
prisms C,, x P, | VMT [1104]
W, VMT | iff n < 11 [834],[836]
F, VMT | iff n < 10 [834],[836]
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Table 7: Summary of Vertex-magic Total Labelings continued

Graph Labeling | Notes
friendship graphs VMT iff # of triangles < 3 [834],[836]
G+H VMT V(G| =|V(H)|

and G U H is VMT [1228]
unions of stars VMT [1228]

tree with n internal vertices | not VMT | [1228]
and more than 2n leaves
nG VMT n odd, G regular of even
degree, VMT [1229]

G is regular of odd

degree, VMT, but not K7 [1229]

Cyp % Comi1 VMT [425]

K5 x Coni1 VMT [425]

G x Cyp VMT G 2r + 1-regular VMT [676]
G x Kj VMT G 2r + l-regular VMT [676]
Gx H VMT G r-regular VMT, r odd

or r even and |H| odd,
H 2s-regular supermagic [676]
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Table 8: Summary of Super Vertex-magic Total Labelings

Graph Labeling Notes

B, SVMT i > 11s odd [1164]

Chn SVMT iff n is odd [1164] and [835]
Kin SVMT iff n =1 [1164]

mCh, SVMT iff m and n are odd [1164]
W, not SVMT | [835]

ladders not SVMT | [835]

friendship graphs not SVMT | [835]

Kpn not SVMT | [835]

dragons (see §2.2) SVMT iff order is even [1165], [1165]
Knodel graphs W3, SVMT n =0 (mod 4) [1270]
graphs with minimum degree 1 | not SVMT | [835]

Kun SVMT n > 1 [476]

Table 9: Summary of Totally Magic Labelings

Graph Labeling | Notes

Ps ™ the only connected TM graph
with vertex of degree 1 [403]

K, T™ iff n = 1,3 [403]

Ko ™ iff Ko = K12 [403]

nkjs ™ iff n is odd [403]

P; UnKs ™ iff n is even [403]

KimUnKs | TM iff m =2 and n is even [286]
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5.4 Magic Labelings of Type (a,b,c)

A magic-type method for labeling the vertices, edges, and faces of a planar graph was introduced
by Lih [791] in 1983. Lih defines a magic labeling of type (1,1,0) of a planar graph G(V, E) as
an injective function from {1,2,...,|V|+ |E|} to V U E with the property that for each interior
face the sum of the labels of the vertices and the edges surrounding that face is some fixed value.
Similarly, Lih defines a magic labeling of type (1,1,1) of a planar graph G(V, E) with face set F'
as an injective function from {1,2,...,|V|+|E|+ |F|} to VU E U F with the property that for
each interior face the sum of the labels of the face and the vertices and the edges surrounding
that face is some fixed value. Lih calls a labeling involving the faces of a plane graph consecutive
if for every integer s the weights of all s-sided faces constitute a set of consecutive integers. Lih
gave consecutive magic labelings of type (1, 1,0) for wheels, friendship graphs, prisms, and some
members of the Platonic family. In [99] Baca shows that the cylinders C, x P, have magic
labelings of type (1,1,0) when m > 2,n > 3,n # 4. In [109] Baca proves that the generalized
Petersen graph P(n, k) (see §2.7 for the definition) has a consecutive magic labeling if and only
if n is even and at least 4 and k < n/2 — 1.

Baca gave magic labelings of type (1,1, 1) for fans [93], ladders [93], planar bipyramids (that
is, 2-point suspensions of paths) [93], grids [102], hexagonal lattices [101], Mobius ladders [96],
and P, x P3 [97]. Kathiresan and Ganesan [636] show that the graph P,; consisting of b > 2
internally disjoint paths of length a > 2 with common end points has a magic labeling of type
(1,1,1) when b is odd, and when a = 2 and b = 0 (mod 4). They also show that P,; has a
consecutive labeling of type (1,1,1) when b is even and a # 2.

Baca [95], [94], [105], [103], [97], [104] and Baca and Hollander [129] gave magic label-
ings of type (1,1,1) and type (1,1,0) for certain classes of convex polytopes. Kathiresan and
Gokulakrishnan [638] provided magic labelings of type (1,1,1) for the families of planar graphs
with 3-sided faces, 5-sided faces, 6-sided faces, and one external infinite face. Baca [100] also
provides consecutive and magic labelings of type (0,1,1) (that is, an injective function from
{1,2,...,|E| 4+ |F|} to EUF with the property that for each interior face the sum of the labels
of the face and the edges surrounding that face is some fixed value) and a consecutive labeling
of type (1,1,1) for a kind of planar graph with hexagonal faces.

A magic labeling of type (1,0,0) of a planar graph G with vertex set V' is an injective function
from {1,2,...,|V|} to V with the property that for each interior face the sum of the labels of
the vertices surrounding that face is some fixed value. Kathiresan, Muthuvel, and Nagasubbu
[639] define a lotus inside a circle as the graph obtained from the cycle with consecutive vertices
ai,as,...,a, and the star with central vertex by and end vertices by, bo, ..., b, by joining each
b; to a; and a;11 (ap+1 = a1). They prove that these graphs (n > 5) and subdivisions of
ladders have consecutive labelings of type (1,0,0). Devaraj [360] proves that graphs obtained
by subdividing each edge of a ladder exactly the same number of times has a magic labeling of
type (1,0,0).

Baca, Baskoro, Jendrol, and Miller [118] investigated various d-antimagic labelings for graphs
in the shape of hexagonal honeycombs. They use H," to denote the honeycomb graph with m
rows, n columns, and mn 6-sided faces. They prove: for n odd H,", has a 0-antimagic vertex
labeling and a 2-antimagic edge labeling; if n is odd and mn > 1, H,"* has a 1-antimagic face la-
beling; for n odd and mn > 1, H)" has d-antimagic labelings of type (1,1,1) ford = 1, 2,3, and 4.

In Table 10 we use following abbreviations
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M(a, b, c¢) magic labeling of type (a, b, c)
CM(a,b,c) consecutive magic labeling of type (a,b, c).

A question mark following an abbreviation indicates that the graph is conjectured to have the
corresponding property. The table was prepared by Petr Kovar and Tereza Kovaiova.
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Table 10: Summary of Magic Labelings of Type (a,b,c)

Graph Labeling Notes

W, CM(1,1,0) | [791]

friendship graphs CM(1,1,0) | [791]

prisms CM(1,1,0) | [791]

cylinders C), x P, M(1,1,0) | m>2,n>3,n#4][99
fans F), M(1,1,1) [93]

ladders M(1,1,1) [93]

planar bipyramids (see §5.3) M(1,1,1) [93]

grids M(1,1,1) | [102]

hexagonal lattices M(1,1,1) [101]

Mobius ladders M(1,1,1) [96]

P, x P M(1,1,1) | [97]

certain classes of M(1,1,1) | [95], [105], [103], [97]
convex polytopes M(1,1,0) [104], [129]

certain classes of planar graphs | M(0,1,1) [100]
with hexagonal faces CM(0,1,1)
CM(1,1,1)

lotus inside a circle (see §5.3) CM(1,0,0) | n > 5 [639]

subdivisions of ladders M(1,0,0) [360]
CM(1,0,0) | [639]

THE ELECTRONIC JOURNAL OF COMBINATORICS 18 (2011), #DS6 107



5.5 Sigma Labelings/1-vertex magic labelings

In 1987 Vilfred [1213] (see also [1214]) defined a sigma-labeling of a graph G with n vertices
as a bijection f from the vertices of G to {1,2,...,n} such that there is a constant k with
the property that, at any vertex v the sum Y f(u) taken over all neighbors u of v is k. In
[1215] Vilfred and Jinnah give a number of necessary conditions for a graph to have a sigma
labeling. One of them is that if v and v are vertices of a graph with a sigma labeling, then
the order of the symmetric difference of N(u) and N(v) (neighborhoods of w and v) is not 1
or 2. This condition rules out a large class of graphs as having sigma labelings. Rao, Singh,
and Parameswaran [960] have shown C,, x C,, has a sigma labeling if and only if m = n = 2
(mod 4) and K,, x K,,, m > 2,n > 3 does not have a sigma labeling. In [210] Benna gives
necessary and sufficient condition for K, , to be a sigma labeled graph and proves that if G
and G9 are connected graphs with minimum degree 1 and at least three vertices, then G1 x Ga
does not have a sigma labeling. Rao, Sighn, and Parameswaran [32] prove that every graph is
an induced subgraph of a regular graph that has a sigma labeling. As open problems, Rao [959]
asks for a characterize 4-regular graphs that have sigma labelings and which graphs of the form
Cp X Cp, m=n =2 (mod 4) have sigma labelings. Acharaya, Rao, Signh, and Parameswaran
[31] proved P, x C,, does not have a sigma labeling when m is at least 3 and provide necessary
and sufficient conditions for K, , to have a sigma labeling.

The concept of sigma labeling was independently studied in 2003 by Miller, Rodger, and
Simanjuntak in [869] under the name 1-vertex magic vertex. Among their results are: the only
trees that have a 1-vertex magic labeling are P; and P5; C), has a 1-vertex magic labeling if and
only if n = 4; K, has a 1-vertex magic labeling if and only if n = 1; the wheel W,, = C,, + P,
has a 1-vertex magic labeling if and only if n = 4; the complete graph K, , ., with p partite
sets has a 1-vertex magic labeling if and only if n is even or both n and p are odd; an r-regular
graph where n is odd does not have a 1-vertex magic labeling; and G x K»,, has a 1-vertex magic
labeling for any regular graph G. They also give necessary and sufficient conditions for complete
tripartite graphs to have a 1-vertex magic labeling.

In [1008] Seoud, Magsoud, and Aldiban determined whether or not the following families of

graphs have a 1-vertex magic vertex labeling: K, — {e}; K, — {2e}; P¥; C2; K,, x Cp; Cp, +
Pp; Ci+ Cy; Py + Py Kl,r,s? Kl,r,m,m K2,r,m,n?
Kpn+Pi; Kpn+Cr; Cpo+ Ky P+ Ky Py X Py Ky X Py Ky X Py the splitting graph
of Km,m K, +G; Kp, +K_n§ Ky + Cn; Ky + Py Km,n + K5 Cpy X Py Cpy ¥ Kl,n§ Cn X
Ky pny Cp x Ky i1y Ky X Ky and Ky, X K. Typically, 1-vertex magic labelings exist only
a few low parameter cases.

5.6 Other Types of Magic Labelings

In 2004 Babujee [80] and [81] introduced the notion of bimagic labeling in which there exist
two constants k1 and ko such that the sums involved in a specified type of magic labeling is kq
or ko. Thus a vertex-bimagic total labeling with bimagic constants k1 and ko is the same as
a vertex-magic total labeling except for each vertex v the sum of the label of v and all edges
adjacent to v may be ki or k3. A bimagic labeling is of interest for graphs that do not have a
magic labeling of a particular type. Bimagic labelings for which the number of sums equal to
k1 and the number of sums equal to ko differ by at most 1 are called equitable. When all sums
except one are the same the labeling is called almost magic. Although the wheel W,, does not
have an edge-magic total labeling when when n = 3 (mod 4), Marr, Phillips and Wallis [845]
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showed that these wheels have both equitable bimagic and almost magic labelings. They also
show that whereas nK> has an edge-magic total labeling if and only if n is odd, nKs has an
edge-bimagic total labeling when n is even and although even cycles do not have super edge-
magic total labelings all cycles have super edge-bimagic total labelings. They conjecture that
there is a constant N such that K, has a edge-bimagic total labeling if and only if n is at most
N. They show that such an N must be at least 8. They also prove that if G has an edge-magic
total labeling then 2G has an edge-bimagic total equitable labeling.

Babujee and Jagadesh [81], [86], [87], and [85] proved the following graphs have super edge
bimagic labelings: cycles of length 3 with a nontrivial path attached; P3 © Ky, n even; P, +
K3 (n odd);Py + mKy (m > 2); 2P, (n > 2); the disjoint union of two stars; 3Ky, (n > 2);
P,UP,q1 (n>2); C3UK; ,;Pp; Ky 55 Ki n; the graphs obtained by joining the centers of any
two stars with an edge or a path of length 2; the graphs obtained by joining the centers of two
copies of K1, (n > 3) with a path of length 2 then joining the center one of copies of Kj ,, to
the center of a third copy of K, with a path of length 2; combs P, ® Kj; cycles; wheels; fans;
gears; K, if and only if n < 5.

In [819] Lépez, Muntaner-Batle, and Rius-Font give a necessary condition for a complete
graph to be edge bimagic in the case that the two constants have the same parity.

In [83] Babujee, Babitha, and Vishnupriya make the following definitions. For any natural
number a, a graph G(p, q) is said to be a-additive super edge bimagic if there exists a bijective
function f from V(G)UE(G) to {a+1,a+2,...,a+ p+ ¢} such that for every edge uv, f(u)+
f()+ f(uv) = kq or k. For any natural number a, a graph G(p, q) is said to be a-multiplicative
super edge bimagic if there exists a bijective f from V(G) U E(G) to {a,2a,...,(p + q)a} such
that for every edge wv, f(u)+ f(v) + f(uv) = ki or k. A graph G(p,q) is said to be super
edge-odd bimagic if there exists a bijection f from V(G)UE(G) to {1,3,5,...,2(p+¢) — 1} such
that for every edge wv f(u) + f(v) + f(uv) = ki or ko. If f is a super edge bimagic labeling,
then a function g from E(G) to {0,1} with the property that for every edge uv, g(uv) = 0 if
fu)+ f(v)+ f(uv) = ky and g(uv) = 1if f(u)+ f(v)+ f(uv) = ks is called a super edge bimagic
cordial labeling if the number of edges labeled with 0 and the number of edges labeled with 1
differ by at most 1. They prove: super edge bimagic graphs are a-additive super edge bimagic;
super edge bimagic graphs are a-multiplicative super edge bimagic; if G is super edge-magic,
then G + K is super edge bimagic labeling; the union of two super edge magic graphs is super
edge bimagic; and P,, (s, and K1, are super edge bimagic cordial.

For any nontrivial Abelian group A under addition a graph G is said to be A-magic if there
exists a labeling f of the edges of G with the nonzero elements of A such that the vertex labeling
fT defined by f*(v) = Xf(vu) over all edges vu is a constant. In [1131] and [1132] Stanley
noted that Z-magic graphs can be viewed in the more general context of linear homogeneous
diophantine equations. Shiu, Lam, and Sun [1071] have shown the following: the union of two
edge-disjoint A-magic graphs with the same vertex set is A-magic; the Cartesian product of
two A-magic graphs is A-magic; the lexicographic product of two A-magic connected graphs is
A-magic; for an Abelian group A of even order a graph is A-magic if and only if the degrees of
all of its vertices have the same parity; if G and H are connected and A-magic, G composed
with H is A-magic; K, , is A-magic when m,n > 2 and A has order at least 4; K, with an
edge deleted is A-magic when n > 4 and A has order at least 4; all generalized theta graphs
(§4.4 for the definition) are A-magic when A has order at least 4; C,, + K, is A-magic when
n > 3,m > 2 and A has order at least 2; wheels are A-magic when A has order at least 4; flower
graphs C,,QC,, are A-magic when m,n > 2 and A has order at least 4 (C,,@QC,, is obtained
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from C), by joining the end points of a path of length m — 1 to each pair of consecutive vertices
of Cy).

In [739] Lee, Saba, Salehi, and Sun investigate graphs that are A-magic where A = Vj ~
Zo @ Zy is the Klein four-group. Many of theorems are special cases of the results of Shiu, Lam,
and Sun [1071] given in the previous paragraph. They also prove the following are Vj-magic: a
tree if and only if every vertex has odd degree; the star K ,, if and only if n is odd; K, ,, for all
m,n > 2; K,, — e (edge deleted K,,) when n > 3; even cycles with & pendent edges if and only if
k is even; odd cycles with k pendent edges if and only if k is odd; wheels; C,, + Ko; generalized
theta graphs; graphs that are copies of C,, that share a common edge; and G + K, whenever G
is Vi-magic.

Babujee and Shobana [92] prove that the following graphs have Zs-magic labelings: Cay;
K, (n>4); Kpom (m > 3); ladders P, x P, (n > 4); bistars Bs,_1 3n—1; and cyclic, dihedral
and symmetric Cayley digraphs for certain generating sets. In [327] Chou and Lee investigate
Zs-magic graphs. They also show that every graph is an induced subgraph of an A-magic
graph for any non-trivial Abelian group A. Thus it is impossible to find a Kuratowski type
characterization of A-magic graphs. Low and Lee [821] have shown that if a graph is A;-magic
then it is As-magic for any subgroup As of A; and for any nontrivial Abelian group A every
Eulerian graph of even size is A-magic. For a connected graph G, Low and Lee define T'(G) to
be the graph obtained from G by adding a disjoint uv path of length 2 for every pair of adjacent
vertices u and v. They prove that for every finite nontrivial Abelian group A the graphs T'(Pay)
and T'(K1 2,+1) are A-magic. Shiu and Low [1077] show that Ky, 1, . . (ki > 2) is A-magic, for
all A where |A| > 3. Lee, Salehi and Sun [742] have shown that for m,n > 3 the double star
DS(m,n) is Z-magic if and only if m = n.

In [688] Kwong and Lee call the set of all k for which a graph is Zx-magic the integer-magic
spectrum of the graph. They investigate the integer-magic spectra of the coronas of some specific
graphs including paths, cycles, complete graphs, and stars. Low and Sue [824] have obtained
some results on the integer-magic spectra of tessellation graphs. Shiu and Low [1078] provide the
integer-magic spectra of sun graphs. Chopra and Lee [325] determined the integer-magic spectra
of all graphs consisting of any number of pairwise disjoint paths with common end vertices (that
is, generalized theta graphs). Low and Lee [821] show that Eulerian graphs of even size are
A-magic for every finite nontrivial Abelian group A whereas Wen and Lee [1253] provide two
families of Eularian graphs that are not A-magic for every finite nontrivial Abelian group A and
eight infinite families of Eulerian graphs of odd sizes that are A-magic for every finite nontrivial
Abelian group A. Low and Lee [821] also prove that if A is an Abelian group and G and H are
A-magic, then so are G x H and the lexicographic product of G and H. Low and Shiu [823]
prove: Ki, x Ki, has a Z,;1-magic labeling with magic constant 0; if G x H is Zy-magic,
then so are G and H; if G is Z,,-magic and H is Z,-magic, then the integer-magic spectra of
G x H contains all common multiples of m and n; if n is even and k; > 3 then the integer-magic
spectra of Py, X Py, X -+ x P, = {3,4,5,...}. In [1080] Shiu and Low determine all positive
integers k for which fans and wheels have a Zx-magic labeling with magic constant 0.

Shiu and Low [1079] have introduced the notion of ring-magic as follows. Given a com-
mutative ring R with unity, a graph G is called R-ring-magic if there exists a labeling f of
the edges of G with the nonzero elements of R such that the vertex labeling f* defined by
fT(v) = X f(vu) over all edges vu and vertex labeling f* defined by f*(v) = ILf(vu) over all
edges vu are constant. They give some results about R-ring-magic graphs.

In [281] Cahit says that a graph G(p,q) is total magic cordial (TMC) provided there is a
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mapping f from V(G) U E(G) to {0,1} such that (f(a) + f(b) + f(ab)) mod 2 is a constant
modulo 2 for all edges ab € E(G) and |f(0) — f(1)] < 1 where f(0) denotes the sum of the
number of vertices labeled with 0 and the number of edges labeled with 0 and f(1) denotes the
sum of the number of vertices labeled with 1 and the number of edges labeled with 1. He says a
graph G is total sequential cordial (TSC) if there is a mapping f from V(G)UE(G) to {0,1} such
that for each edge e = ab with f(e) = |f(a) — f(b)| it is true that |f(0) — f(1)| < 1 where f(0)
denotes the sum of the number of vertices labeled with 0 and the number of edges labeled with
0 and f(1) denotes the sum of the number of vertices labeled with 1 and the number of edges
labeled with 1. He proves that the following graphs have a TMC labeling: K,,, (m,n > 1),
trees, cordial graphs, and K, if and only if n = 2,3,5, or 6. He also proves that the following
graphs have a TSC labeling: trees; cycles; complete bipartite graphs; friendship graphs; cordial
graphs; cubic graphs other than Ky; wheels W,, (n > 3); Ky,11 if and only if & > 1 and VEk is
an integer; Kyr1o if and only if v/4k + 1 is an integer; Ky if and only if v/4k + 1 is an integer;
and Ky 3 if and only if vk + 1 is an integer.

In 2001, Simanjuntak, Rodgers, and Miller [869] defined a 1-vertex magic vertex labeling of
G(V, E) as a bijection from V to {1,2,...,|V|} with the property that there is a constant k such
that at any vertex v the sum ) f(u) taken over all neighbors of v is k. Among their results are:
H x K, has a 1-vertex-magic vertex labeling for any regular graph H; the symmetric complete
multipartite graph with p parts, each of which contains n vertices, has a 1-vertex-magic vertex
labeling if and only if whenever n is odd, p is also odd; P, has a 1-vertex-magic vertex labeling
if and only if n =1 or 3; C), has a 1-vertex-magic vertex labeling if and only if n = 4; K, has
a 1-vertex-magic vertex labeling if and only if n = 1; W, has a 1-vertex-magic vertex labeling
if and only if n = 4; a tree has a 1-vertex-magic vertex labeling if and only if it is P; or P3; and
r-regular graphs with r odd do not have a 1-vertex-magic vertex labeling.

Miller, Rogers, and Simanjuntak [869] the complete p-partite (p > 1) graph K,, , _, (n > 1)
has a 1-vertex-magic vertex labeling if and only if either n is even or np is odd. Shafiq, Ali,
Simanjuntak [1052] proved mK,, ,, ., has a 1-vertex-magic vertex labeling if n is even or mnp is
odd and m > 1,n > 1, and p > 1 and mK,, 5, .., does not have a 1-vertex-magic vertex labeling
if np is odd, p = 3 (mod 4, and m is even.

Recall if V(G) = {vi,v2,...,v,} is the vertex set of a graph G and H, Hs, ..., H, are
isomorphic copies of a graph H, then G[H] is the graph obtained from G by replacing each
vertex v; of G by H; and joining every vertex in H; to every neighbor of v;. Shafiq, Alj,
Simanjuntak [1052] proved if G is an r-regular graph (r > 1) then G[C),] has a 1-vertex-magic
vertex labeling if and only if n = 4. They also prove that for m > 1 and n > 1, mC,[K,] has
1-vertex-magic vertex labeling if and only if either n is even or mnp is odd or n is odd and p = 3
(mod 4).

Balbuena, Barker, Lin, Miller, and Sugeng [182] call a vertex-magic total labeling of a graph
G(V, E) an a-vertezx consecutive magic labeling if the vertex labels are {a+1,a+2,...,a+|V|}
where 0 < a < |E|. They prove: if a tree of order n has an a-vertex consecutive magic labeling
then n is odd and a = n — 1; if G has an a-vertex consecutive magic labeling with n vertices
and e = n edges, then n is odd and if G has minimum degree 1, then a = (n+1)/2 or a = n; if
G has an a-vertex consecutive magic labeling with n vertices and e edges such that 2a < e and
2¢ > /6n — 1, then the minimum degree of G is at least 2; if a 2-regular graph of order n has
an a-vertex consecutive magic labeling, then n is odd and a = 0 or n; and if a r-regular graph
of order n has an a-vertex consecutive magic labeling, then n and r have opposite parities.

Balbuena et al. also call a vertex-magic total labeling of a graph G(V, E) a b-edge consecutive
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magic labeling if the edge labels are {b+1,b+2,...,b+ |E|} where 0 < b < |V/|. They prove:
if G has n vertices and e edges and has a b-edge consecutive magic labeling and one isolated
vertex, then b = 0 and (n—1)2+n? = (2e+1)?; if a tree with odd order has a b-edge consecutive
magic labeling then b = 0; if a tree with even order has a b-edge consecutive magic labeling
then it is Py; a graph with n vertices and e edges such that e > 7n/4 and b > n/4 and a b-edge
consecutive magic labeling has minimum degree 2; if a 2-regular graph of order n has a b-edge
consecutive magic labeling, then n is odd and b = 0 or b = n; and if a r-regular graph of order
n has an b-edge consecutive magic labeling, then n and r have opposite parities.

Sugeng and Miller [1140] prove: If (V, E) has an a-vertex consecutive edge magic labeling,
where a # 0 and a # |E|, then G is disconnected; if (V, E) has an a-vertex consecutive edge
magic labeling, where a # 0 and a # |E|, then G cannot be the union of three trees with
more than one vertex each; for each nonnegative a and each positive n, there is an a-vertex
consecutive edge magic labeling with n vertices; the union of r stars and a set of r — 1 isolated
vertices has an s-vertex consecutive edge magic labeling, where s is the minimum order of the
stars; for every b every caterpillar has a b-edge consecutive edge magic labeling; if a connected
graph G with n vertices has a b-edge consecutive edge magic labeling where 1 < b <n — 1, then
G is a tree; the union of r stars and a set of r — 1 isolated vertices has an r-edge consecutive
edge magic labeling.

Babujee, Vishnupriya, and Jagadesh [170] introduced a labeling called a-vertex consecutive
edge bimagic total as a graph G(V, E) for which there are two positive integers k1 and ks and a
bijection f from VU E to {1,2,...,|V|+ |E|} such that f(u)+ f(v)+ f(uv) = k; or ks for all
edges uv and f(V)={a+1,a+2,...,a+|V]|}, 0 <a <|V|. They proved the following graphs
have such labelings: P,, K ,, combs, bistars By, , trees obtained by adding a pendent edge to a
vertex adjacent to the end point of a path, trees obtained by joining the centers of two stars with a
path of length 2, trees obtained from Ps by identifying the center of a copy K1, with the two end
vertices and the middle vertex. In [162] Babujee and Jagadesh proved that cycles, fans, wheels,
and gear graphs have a-vertex consecutive edge bimagic total labelings. Babujee, Jagadesh,
Vishnupriya [164] study the properties of a-vertex consecutive edge bimagic total labeling for
P;® Kyon, P+ Ky (nisodd and n > 3), (P,UmK)) + Ka, (Py+mKj) (m > 2),C,, fans
P, + K4, double fans P, + 2K7, and graphs obtained by appending a path of length at least 2
to a vertex of C3. Babujee, Jagadesh [163] prove the following graphs have a-vertex consecutive
edge bimagic total labelings: 2P, (n > 2), P,UP,+1(n > 2), K2, C, ® K, and that C3 UK,
an a-vertex consecutive edge bimagic labeling for a = n + 3

In 2005 Gutiérrez and Lladé [500] introduced the notion of an H-magic labeling of a graph,
which generalizes the concept of a magic valuation. Let H and G = (V, E) be finite simple
graphs with the property that every edge of G belongs to at least one subgraph isomorphic to
H. A bijection f:VUE — {1,...,|V|+|E|} is an H-magic labeling of G if there exists a positive
integer m(f), called the magic sum, such that for any subgraph H'(V', E’) of G isomorphic to

H, the sum
S @)+ fle)

veV’ ecE’
is equal to the magic sum, m(f). A graph is H-magic if it admits an H-magic labeling. If, in
addition, the H-magic labeling f has the property that { f(v)}yey = {1,...,|V|}, then the graph
is H-supermagic. A Ko-magic labeling is also known as an edge-magic total labeling. Gutiérrez
and Lladé investigate the cases where G = K,, or G = K,;, ,, and H is a star or a path. Among
their results are: a d-regular graph is not K j for any 1 < h < d; K,,,, is K1 ,-magic for all n;
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K, p is not K ,-supermagic for n > 1; for any integers 1 < r < s, K, 5 is K p-supermagic if and
only if h = s; P, is Py-supermagic for all 2 < h < n; K, is not Py-magic for any 2 < h < n; C),
is Pp-magic for any 2 < h < n such that ged(n, h(h—1)) = 1. They also show that by uniformly
gluing copies of H along edges of another graph G, one can construct connected H-magic graphs
from a given 2-connected graph H and an H-free supermagic graph G.

Llad6 and Moragas [814] studied cycle-magic graphs. They proved: wheels W,, are Cs3-magic
for odd n at least 5; for r > 3 and k > 2 the windmill graphs C',gk) (the one-point union of k
copies of C,.) are C,-supermagic; and if G is Cy-free supermagic graph of odd size, then G x K,
is Cy-supermagic. As corollaries of the latter result, they have that for n odd, prisms C,, x Ks
and books Ki, x Ky are Cy-magic. They define a subdivided wheel W,,(r,k) as the graph
obtained from a wheel W,, by replacing each radial edge vv;,1 < i < n by a vv;-path of size
r > 1, and every external edge v;v;+1 by a v;v;y1-path of size k£ > 1. They prove that W, (r, k) is
Cyr1k-magic for any odd n # 2r/k + 1 and that W, (r, 1) is Cy,41-supermagic. They also prove
that the graph obtained by joining the end points of any number of internally disjoint paths of
length p > 2 is Cy,-supermagic.

In [846] Maryati, Baskoro, and Salman provided Pj,-(super)magic labelings of shrubs and
banana trees. Ngurah, Salman, and Sudarsana [903] construct Cj-(super)magic labelings for
some fans and ladders. For any connected graph H, Maryati, Salman, Baskoro, and Irawati
[847] proved that the disjoint union of k isomorphic copies of a connected graph H is a H-
supermagic graph if and only if |V (H)|+ |E(H)| is even or k is odd.

[848] Maryati, Salman, Baskoro, Ryan, and Miller define a shackle as a graph obtained from
non-trivial connected graphs Gi,Ga,...,Gk (k > 2) such that G5 and G; have no common
vertex for every s and ¢ in [1, k] with |s —¢| > 2, and for every i in [1,k — 1], G; and G4+ share
exactly one common vertex that are all distinct. They prove that shackles and amalgamations
constructed from copies of a connected graph H is H-supermagic. (Recall for finite collection
of graph G1,Ga,...,Gy with a fixed vertex v; from each G;, an amalgamation, AmalG;,v;), is
the graph obtained by identifying the v;.)

Ngurah, Salman, and Susilowati [904] proved the following: chain graphs with identical
blocks each isomorphic to C, are Cp-supermagic; fans are Cs-supermagic; ladders and books
are Cy-supermagic; K1 , + K are C3-supermagic; grids P, x P, are Cj-supermagic for m > 3
and n = 3,4, and 5. They pose the case that P, x P, are C4-supermagic for n > 5 as an open
problem. They also have some results on P-(super)magic labelings of cycles.

Selvagopal and Jeyanthi proved: for any positive integer n, a the k-polygonal snake of length
n is Cg-supermagic [1002]; for m > 2, n = 3, or n > 4, C), X P,, is C4-supermagic [606]; s P, X P,
and P53 x P, are Cy-supermagic for all n > 2 [606]; the one-point union of any number of copies
of a 2-connected H is H-magic [604]; graphs obtained by taking copies Hi, Hs,...,H, of a
2-connected graph H and two distinct edges e;, e, from each H; and identifying €] of H; with
ei+1 of Hix1 where |V(H)| > 4,|E(H)| > 4 and n is odd or both n and |V (H)| + |E(H)| are
even are H-supermagic [604]. For simple graphs H and G the H-supermagic strength of G is
the minimum constant value of all H-magic total labelings of G for which the vertex labels are
{1,2,...,|V]}. Jeyanthi and Selvagopal [605] found the C),-supermagic strength of n-polygonal
snakes of any length and the H-supermagic strength of a chain of an arbitrary 2-connected
simple graph.

Let Hq, Ho, ..., H, be copies of a graph H. Let u; and v; be two distinct vertices of H;
for i = 1,2,...,n. The chain graph H, of H of length n is the graph obtained by identifying
the vertices u; and v;41 for ¢ = 1,2,...,n — 1. In [603] Jayanthi and Selvagopal show that a
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chain graph of any 2-connected simple graph H is H-supermagic and if H is a 2-connected (p, q)
simple graph, then H,, is H-supermagic if p + ¢ is even or p + ¢ + n is even.

The antiprism on 2n vertices has vertex set {1 1,...,Z1n,%21,...,%2,} and edge set
{Zji, )11t U{z14, 22} U{x14,22-1} (subscripts are taken modulo n). Jeyanthi, Selvagopal,
and Sundaram [608] proved the following graphs are Cs-supermagic: antiprisms, fans, and graphs
obtained from the ladders P, x P, with the two paths vy 1,...,v1,, and va1,...,v2, by adding
the edges vy jv2 jy1.

Jeyanthi and Selvagopal [607] show that for any 2-connected simple graph H the edge
amalogamation of a finite number of copies of H is H-supermagic. They also show that the
graph obtained by picking one endpoint v; from each of k copies of K j then creating a new
graph by joining each v; to a fixed new vertex v is K p-supermagic.

Vishnupriya, Manimekalai, and Babujee [1226] define a labeling f of a graph G(p, q) to be a
edge bimagic total labeling if there exists a bijection f from V(G)UE(G) — {1,2,...,p+q} such
that for each edge e = (u,v) € E(G) we have f(u)+ f(e)+ f(v) = k1 or ko, where ki and ko are
two constants. They provide edge bimagic total labelings for By, ,,, K1, and trees obtained
from a path by appending an edge to one of the vertices adjacent to an endpoint of the path. An
edge bimagic total labeling is G(V, E) is called an a-vertex consecutive edge bimagic total labeling
if the vertex labels are {a+1,a+2,...,a+ |V|} where 0 < a < |E|. Babujee and Jagadesh [89]
prove the following graphs a-vertex consecutive edge-bimagic total labelings: the trees obtained
from K, by adding a new pendent edge to each of the existing n pendent vertices; the trees
obtained by adding a pendent path of length 2 to each of the n pendent vertices of K ,; the
graphs obtained by joining the centers of two copies of identical stars by a path of length 2;
and the trees obtained from a path by adding new pendent edges to one pendent vertex of the
path. Babujee, Vishnupriya, and Jagadesh [170] proved the following graphs have such labelings:
P,, Ky, combs, bistars B,, ,, trees obtained by adding a pendent edge to a vertex adjacent to
the end point of a path, trees obtained by joining the centers of two stars with a path of length 2,
trees obtained from P5 by identifying the center of a copy K7, with the two end vertices and the
middle vertex. In [162] Babujee and Jagadesh proved that cycles, fans, wheels, and gear graphs
have a-vertex consecutive edge bimagic total labelings. Babujee, Jagadesh, Vishnupriya [164]
study the properties of a-vertex consecutive edge bimagic total labeling for Py ® K1 9,,, Py, + Ko
(nis odd and n > 3), (P,UmK;) + Ka, (P2 +mKi) (m > 2),C,, fans P, + Kj, double fans
P, + 2K, and graphs obtained by appending a path of length at least 2 to a vertex of C3. J.
Babujee, R. Jagadesh [163] prove the following graphs have a-vertex consecutive edge bimagic
total labelings: 2P, (n > 2), P,UP,+1(n > 2), K3 ,, C,, ® K1, and that C3U K ,, an a-vertex
consecutive edge bimagic labeling for a = n + 3 Vishnupriya, Manimekalai, and Babujee [1226]
prove that bistars, trees obtained by adding a pendent edge to a vertex adjacent to the end point
of a path, and trees obtained subdividing each edge of a star have edge bimagic total labelings.
Prathap and Babujee [941] obtain all possible edge magic total labelings and edge bimagic total
labelings for the star K ,,.

Magic labelings of directed graphs are discussed in [843] and [241].
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6 Antimagic-type Labelings

6.1 Antimagic Labelings

Hartsfield and Ringel [511] introduced antimagic graphs in 1990. A graph with ¢ edges is called
antimagic if its edges can be labeled with 1,2,...,q such that the sums of the labels of the
edges incident to each vertex are distinct. Among the graphs they prove are antimagic are:
P, (n > 3), cycles, wheels, and K, (n > 3). T. Wang [1238] has shown that the toroidal grids
Cpy X Cpy X -+ - x Cp, are antimagic and, more generally, graphs of the form G x (), are antimagic
if G is an r-regular antimagic graph with » > 1. Cheng [319] proved that all Cartesian products
or two or more regular graphs of positive degree are antimagic and that if G is j-regular and H
has maximum degree at most k&, minimum degree at least one (G and H need not be connected),
then G x H is antimagic provided that j is odd and j2 — j > 2k, or j is even and j? > 2k.
Wang and Hsiao [1240] prove the following graphs are antimagic: G x P, (n > 1) where G is
regular; G x K , where G is regular; compositions G[H] (see §2.3 for the definition) where H
is d-regular with d > 1; and the Cartesian product of any double star (two stars with an edge
joining their centers) and a regular graph. In [318] Cheng proved that P, X P, X+ - X Py, (t > 2)
is antimagic. Cranston [342] used the Marriage Theorem to prove that every regular bipartite
graph with degree at least 2 is anitmagic. Lee, Lin and Tsai [702] proved that C? is antimagic
and the vertex sums form a set of successive integers when n is odd.

Phanalasy, Miller, Rylands and Lieby [932] in 2011 showed that there is a relationship
between completely separating systems and labeling of regular graphs. Based on this relationship
they proved that some regular graphs are antimagic. Phanalasy, Miller, Iliopoulos, Pissis and
Vaezpour [930] proved the Cartesian product of regular graphs obtained from [932] is antimagic.
Ryan, Phanalasy, Miller and Rylands introduced the generalized web and flower graphs in [978]
and proved that these families of graphs are antimagic. Rylands, Phanalasy, Ryan and Miller
extended the concept of generalized web graphs to the single apex multi-generalized web graphs
and they proved these graphs to be antimagic in [980]. Ryan, Phanalasy, Rylands and Miller
extended the concept of generalized flower to the single apex multi-(complete) generalized flower
graphs and constructed antimagic labeling for this family of graphs in [979]. For more about
antimagicness of generalized web and flower graphs see [867]. Phanalasy, Ryan, Miller and
Arumugam [931] introduced the concept of generalized pyramid graphs and they constructed
antimagic labeling for these graphs. Baca, Miller, Phanalasy and Fenovéikovéa proved that some
join graphs and incomplete join graphs are antimagic in [152].

A split graph is a graph that has a vertex set that can be partitioned into a clique and an
independent set. Tyshkevich (see [202]) defines a canonically decomposable graph as follows.
For a split graph S with a given partition of its vertex set into an independent set A and a
clique B (denoted by S(A, B)), and an arbitrary graph H the composition S(A4, B) o H is the
graph obtained by taking the disjoint union of S(A, B) and H and adding to it all edges having
an endpoint in each of B and V(H). If G contains nonempty induced subgraphs H and S
and vertex subsets A and B such that G = S(A, B) o H, then G is canonically decomposable;
otherwise G is canonically indecomposable. Barrus [202] proved that every connected graph on
at least 3 vertices that is split or canonically decomposable is antimagic.

Hartsfield and Ringel [511] conjecture that every tree except P, is antimagic and, moreover,
every connected graph except P is antimagic. Alon, Kaplan, Lev, Roditty, and Yuster [58] use
probabilistic methods and analytic number theory to show that this conjecture is true for all
graphs with n vertices and minimum degree (log n). They also prove that if G is a graph with
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n > 4 vertices and A(G) > n—2, then G is antimagic and all complete partite graphs except Ko
are antimagic. Chawathe and Krishna [307] proved that every complete m-ary tree is antimagic.

Kaplan, Lev, and Roditty [629] prove that every non-trivial rooted tree for which every
vertex that is a not a leaf has at least two children is antimagic. For a graph H with m vertices
and an Abelian group G they define H to be G-antimagic if there is a one-to-one mapping from
the edges of H to the nonzero elements of G such that the sums of the labels of the edges incident
to v, taken over all vertices v of H, are distinct. For any n > 2 they show that a non-trivial
rooted tree with n vertices for which every vertex that is a not a leaf has at least two children
is Z,-antimagic if and only if n is odd. They also show that these same trees are G-antimagic
for elementary Abelian groups G with prime exponent congruent to 1 (mod 3).

Sonntag [1125] has extended the notion of antimagic labelings to hypergraphs. He shows
that certain classes of cacti, cycle, and wheel hypergraphs have antimagic labelings. In [145]
Baca, MacDougall, Miller, Slamin, and Wallis survey results on antimagic, edge-magic total,
and vertex-magic total labelings.

In [519] Hefetz, Miitze, and Schwartz investigate antimagic labelings of directed graphs. An
antimagic labeling of a directed graph D with n vertices and m arcs is a bijection from the set
of arcs of D to the integers {1,...,m} such that all n oriented vertex sums are pairwise distinct,
where an oriented vertex sum is the sum of labels of all edges entering that vertex minus the
sum of labels of all edges leaving it. Hefetz et al. raise the questions “Is every orientation of
any simple connected undirected graph antimagic? and “Given any undirected graph G, does
there exist an orientation of G which is antimagic?” They call such an orientation an antimagic
orientation of G. Regarding the first question, they state that, except for K 2 and K3, they know
of no other counterexamples. They prove that there exists an absolute constant C' such that for
every undirected graph on n vertices with minimum degree at least C'log n every orientation is
antimagic. They also show that every orientation of S,,, n # 2, is antimagic; every orientation
of W, is antimagic; and every orientation of K,, n # 3, is antimagic. For the second question
they prove: for odd r, every undirected r-regular graph has an antimagic orientation; for even r
every undirected r-regular graph that admits a matching that covers all but at most one vertex
has an antimagic orientation; and if G is a graph with 2n vertices that admits a perfect matching
and has an independent set of size n such that every vertex in the independent set has degree at
least 3, then G has an antimagic orientation. They conjecture that every connected undirected
graph admits an antimagic orientation and ask if it true that every connected directed graph
with at least 4 vertices is antimagic.

Hefetz [518] calls a graph with ¢ edges k-antimagic if its edges can be labeled with 1,2,..., g+
k such that the sums of the labels of the edges incident to each vertex are distinct. In particular,
antimagic is the same as O-antimagic. More generally, given a weight function w from the vertices
to the natural numbers Hefetz calls a graph with ¢ edges (w, k)-antimagic if its edges can be
labeled with 1,2,...,q+ k such that the sums of the labels of the edges incident to each vertex
and the weight assigned to each vertex by w are distinct. In particular, antimagic is the same
as (w, 0)-antimagic where w is the zero function. Using Alon’s combinatorial nullstellensatz [57]
as his main tool, Hefetz has proved the following: a graph with 3™ vertices and a K3 factor
is antimagic; a graph with ¢ edges and at most one isolated vertex and no isolated edges is
(w,2q — 4)-antimagic; a graph with p > 2 vertices that admits a 1-factor is (p — 2)-antimagic; a
graph with p vertices and maximum degree n — k, where k > 3 is any function of p is (3k — 7)-
antimagic and, in the case that p > 6k2, is (k — 1)-antimagic. Hefetz, Saluz, and Tran [520]
improved the first of Hefetz’s results by showing that a graph with p™ vertices, where p is an
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odd prime and m is positive, and a C), factor is antimagic.

The concept of an (a, d)-antimagic labelings was introduced by Bodendiek and Walther [244]
in 1993. A connected graph G = (V, E) is said to be (a,d)-antimagic if there exist positive
integers a, d and a bijection f:E — {1,2,...,|E|} such that the induced mapping g¢:V — N,
defined by g¢(v) = > {f(uv)| wv € E(G)}, is injective and g¢(V) = {a,a +d,...,a + (|]V| —
1)d}. (In [795] Lin, Miller, Simanjuntak, and Slamim called these (a, d)-vertez-antimagic edge
labelings). Bodendick and Walther ([246] and [247]) prove the Herschel graph is not (a,d)-
antimagic and obtain both positive and negative results about (a,d)-antimagic labelings for
various cases of graphs called parachutes P, . (P,, is the graph obtained from the wheel W,
by deleting p consecutive spokes.) In [130] Bac¢a and Hollander prove that necessary conditions
for C,, x P5 to be (a,d)-antimagic are d = 1, a = (Tn +4)/2 or d = 3, a = (3n + 6)/2 when
n is even, and d = 2, a = (bn +5)/2 or d = 4, a = (n+ 7)/2 when n is odd. Bodendiek
and Walther [245] conjectured that C), x Py (n > 3) is ((7n + 4)/2, 1)-antimagic when n is even
and is ((5n + 5)/2,2)-antimagic when n is odd. These conjectures were verified by Baca and
Hollander [130] who further proved that C,, x Py (n > 3) is ((3n + 6)/2, 3)-antimagic when n
is even. Baca and Holldnder [130] conjecture that C,, x Py is ((n + 7)/2,4)-antimagic when n
is odd and at least 7. Bodendiek and Walther [245] also conjectured that C,, x P, (n > 7)
is ((n + 7)/2,4)-antimagic. Miller and Baca [863] prove that the generalized Petersen graph
P(n,2) is ((3n + 6)/2, 3)-antimagic for n = 0 (mod 4), n > 8 and conjectured that P(n,k) is
((3n+6)/2, 3)-antimagic for even n and 2 < k <n/2—1 (see §2.7 for the definition of P(n,k)).
This conjecture was proved for k& = 3 by Xu, Yang, Xi, and Li [1282]. Jirimutu and Wang proved
that P(n,2) is ((5n + 5)/2,2)-antimagic for n = 3 (mod 4) and n > 7. Xu, Xu, Lii, Baosheng,
and Nan [1277] proved that P(n,2) is ((3n 4 6)/2, 2)-antimagic for n = 2 (mod 4) and n > 10.
Xu, Yang, Xi, and Li [1280] proved that P(n,3) is ((3n + 6)/2, 3)-antimagic for even n > 10.

Bodendiek and Walther [248] proved that the following graphs are not (a, d)-antimagic: even

cycles; paths of even order; stars; C’ék); C’ﬁk); trees of odd order at least 5 that have a vertex that
is adjacent to three or more end vertices; n-ary trees with at least two layers when d = 1; the
Petersen graph; K, and K3 3. They also prove: Pagi; is (k, 1)-antimagic; Copyg is (kK +2,1)-
antimagic; if a tree of odd order 2k + 1 (k > 1) is (a,d)-antimagic, then d = 1 and a = k;
if Ky (k> 2) is (a,d)-antimagic, then d is odd and d < 2k(4k — 3) + 1; if K10 is (a,d)-
antimagic, then d is even and d < (2k +1)(4k — 1) + 1; and if Kop41 (k > 2) is (a, d)-antimagic,
then d < (2k + 1)(k — 1). Lin, Miller, Simanjuntak, and Slamin [795] show that no wheel
W,, (n > 3) has an (a,d)-antimagic labeling.

In [585] Ivanco, and Semanic¢ova show that a 2-regular graph is super edge-magic if and only
if it is (a,1)-antimagic. As a corollary we have that each of the following graphs are (a,1)-
antimagic: kC,, for n odd and at least 3; k(C3 UC,,) for n even and at least 6; k(Cy UC),) for n
odd and at least 5; k(C5 U C,,) for n even and at least 4; k(C,, U C,,) for m even and at least 6,
n odd, and n > m/2 + 2. Extending a idea of Kovar they prove if G is (a;, 1)-antimagic and H
is obtained from G by adding an arbitrary 2k-factor then H is (ag, 1)-antimagic for some ag. As
corollaries they observe that the following graphs are (a, 1)-antimagic: circulant graphs of odd
order; 2r-regular Hamiltonian graphs of odd order; and 2r-regular graphs of odd order n < 4r.
They further show that if G is an (a, 1)-antimagic r-regular graph of order n and n —r — 1 is a
divisor of the non-negative integer a + n(1 +r — (n+ 1)/2), then G @ K; is supermagic. As a
corollary of this result they have if G is (n — 3)-regular for n odd and n > 7 or (n — 7)-regular
for n odd and n > 15, then G & K7 is supermagic.

Bertault, Miller, Feria-Purén, and Vaezpour [222] approached labeling problems as combina-
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torial optimization problems. They developed a general algorithm to determine whether a graph
has a magic labeling, antimagic labeling, or an (a, d)-antimagic labeling. They verified that all
trees with fewer than 10 vertices are super edge magic and all graphs of the form Py x P§ with
less than 50 vertices are antimagic.

Yegnanarayanan [1299] introduced several variations of antimagic labelings and provides
some results about them.

The antiprism on 2n vertices has vertex set {1 1,...,Z1n,%21,...,%2,} and edge set
{Zji, )11} U{z14, 224} U {14, 2251} (subscripts are taken modulo n). For n > 3 and n # 2
(mod 4) Baca [107] gives (6n + 3, 2)-antimagic labelings and (4n + 4, 4)-antimagic labelings for
the antiprism on 2n vertices. He conjectures that for n = 2 (mod 4), n > 6, the antiprism on
2n vertices has a (6n + 3,2)-antimagic labeling and a (4n + 4, 4)-antimagic labeling.

Nicholas, Somasundaram, and Vilfred [908] prove the following: If K,,, where m < n is
(a, d)-antimagic, then d divides ((m —n)(2a+d(m+n—1)))/4+dmn/2; if m+n is prime, then
Ky m, where n > m > 1, is not (a, d)-antimagic; if K,, 42 is (a, d)-antimagic, then d is even and
n+1<d< (n+1)2/2; if K, 42 is (a,d)-antimagic and n is odd, then a is even and d divides
a; if Ky, n42 is (a,d)-antimagic and n is even, then d divides 2a; if K, ,, is (a, d)-antimagic, then
n and d are even and 0 < d < n?/2; if G has order n and is unicylic and (a, d)-antimagic, then
(a,d) = (2,2) when n is even and (a,d) = (2,2) or (a,d) = ((n + 3)/2,1) when n is odd; a
cycle with m pendant edges attached at each vertex is (a, d)-antimagic if and only if m = 1; the
graph obtained by joining an endpoint of P, with one vertex of the cycle C), is (2, 2)-antimagic
if m=mnorm=mn—1;if m+ n is even the graph obtained by joining an endpoint of P,, with
one vertex of the cycle C,, is (a, d)-antimagic if and only if m = n or m = n— 1. They conjecture
that for n odd and at least 3, Ky 42 is ((n + 1)(n? —1)/2,n + 1)-antimagic and they have
obtained several results about (a, d)-antimagic labelings of caterpillars.

In [1217] Vilfred and Florida proved the following: the one-sided infinite path is (1,2)-
antimagic; P, is not (a,d)-antimagic for any a and d; Ps,4+1 is (a,d)-antimagic if and only
if (a,d) = (n,1); Copt1 has an (n + 2, 1)-antimagic labeling; and that a 2-regular graph G is
(a, d)-antimagic if and only if |V (G)| =2n + 1 and (a,d) = (n + 2,1). They also prove that for
a graph with an (a, d)-antimagic labeling, g edges, minimum degree § and maximum degree A,
the vertex labels lie between §(d + 1)/2 and A(2¢ — A +1)/2.

For n > 1 and distinct odd integers z,y and z in [1,n — 1] Javaid, Ismail, and Salman [588]
define the chordal ring of order n, CR,(z,y,z2), as the graph with vertex set Z,, the additive
group of integers modulo n, and edges (i,i + x), (i,7 + y), (i,7 + z) for all even i. They prove
that CR,(1,3,7) and CR,(1,5,n — 1) have (a,d)-antimagic labelings when n = 0 mod 4 and
conjecture that for an odd integer A, 3 < A <n—3,n=0mod 4, CR,((1,A,n — 1) has an
((7Tn + 8)/4,1)-antimagic labeling.

In [1218] Vilfred and Florida call a graph G = (V, E) odd antimagic if there exist a bijection
f+E — {1,3,5,...,2|E| — 1} such that the induced mapping g;:V — N, defined by gs(v) =
Y {f(uv)| uwv € E(G)}, is injective and odd (a, d)-antimagic if there exist positive integers a, d
and a bijection f: £ — {1,3,5,...,2|E|—1} such that the induced mapping g¢: V' — N, defined
by g¢(v) = > _{f(wv)| uwv € E(G)}, is injective and g (V) = {a,a+d,a+2d,...,a+ (|V|—-1)d}.
Although every (a,d)-antimagic graph is antimagic, Cy has an antimagic labeling but does not
have an (a,d)-antimagic labeling. They prove: Ps,y1 is not odd (a, d)-antimagic for any a and
d; Copq1 has an odd (2n + 2,2)-antimagic labeling; if a 2-regular graph G has an odd (a, d)-
antimagic labeling, then |V(G)| = 2n + 1 and (a,d) = (2n + 2,2); Cy, is odd magic; and an
odd magic graph with at least three vertices, minimum degree J, maximum degree A, and ¢ > 2
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edges has all its vertex labels between 62 and A(2g — A).

In Tables 11, 12, and 13 use the abbreviations A to mean antimagic, (a,d)-A to mean that
the graph has an (a, d)-antimagic labeling and (a, d)-EAV to mean that the graph has an (a, d)-
antimagic vertex labeling A question mark following an abbreviation indicates that the graph is
conjectured to have the corresponding property. The tables were prepared by Petr Kovar and
Tereza Kovarova and updated by J. Gallian in 2008.
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Table 11: Summary of Antimagic Labelings

Graph Labeling | Notes

P, A for n > 3 [511]
N A [511]

W, A [511]

K, A for n > 3 [511]
every tree A? [511]

except Ko

every connected graph | A? [511]

except Ko

n > 4 vertices A [58]
A(G)>n—2

all complete partite A [58]

graphs except Ko
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Table 12: Summary of (a,d)-Edge-Antimagic Vertex Labelings

Graph Labeling Notes
P, (3,2)-BEAV [1087]
not (a,d)-EAV | d > 2 [1087]
Pon (n+2,1)-EAV | [1087]
Cp not (a,d)-EAV | d > 1 [140]
Cop, not (a,d)-EAV | [1087]
C2n+1 (TL + 2, 1)-EAV [1087]
(n+3,1)-EAV | [1087]
K, not (a,d)-EAV | for n > 1 [140]
Kyn not (a,d)-EAV | for n > 3 [140]
Wy not (a,d)-EAV | [140]

C'?En) (friendship graph)

generalized Petersen
graph P(n, k)

(a,1)-EAV

not (a,d)-EAV

iff n=1,3,4,5,7 [141]

d > 1 [140]
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Table 13: Summary of (a,d)-Antimagic Labelings

Graph Labeling Notes

Con+1 not (n +2,1)-A n even [248]

Py, not (a,d)-A [248]

P2n+1 (n, 1)—A [248]

stars not (a,d)-A [248]

M ot not (a, d)-A 248]

Kot DD 1 +1)-A | 0> 3,0 0dd [243)

Ks3 not (a,d)-A [248]

Ky not (a,d)-A [248]

Petersen graph not (a,d)-A [248]

W, not (a,d)-A n > 3 [795]

antiprism on 2n (6n + 3,2)-A n >3, n#2 (mod 4) [107]

vertices (see §6.1) (4n + 4,4)-A n >3, n# 2 (mod 4) [107]
(2n +5,6)- A7 n > 4 [107]
(6n + 3,2)-A n > 6, n # 2 (mod 4) [107]
(4n + 4,4)- A7 n>6,n# 2 (mod 4) [107]

Hershel graph (see [304]) | not (a,d)-A [244], [246]

parachutes Py, (see §6.1) | (a,d)-A for certain classes [244], [246]

Chn not (a,d)-A n even [248]

prisms C,, X P

generalized Petersen
graph P(n,?2)

n >3, n even [245], [130]
n > 3, n odd [245], [130]

n >3, n even [130]

n > 17, [246], [130]

n>8, n=0 (mod 4) [131]
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6.2 (a,d)-Antimagic Total Labelings

Baca, Bertault, MacDougall, Miller, Simanjuntak, and Slamin [123] introduced the notion of
a (a,d)-vertex-antimagic total labeling in 2000. For a graph G(V, E), an injective mapping f
from V U E to the set {1,2,...,|V|+ |E|} is a (a,d)-vertex-antimagic total labeling if the set
{f(v) + > f(vu)} where the sum is over all vertices u adjacent to v for all v in G is {a,a +
d,a+2d,...,a+ (V] —1)d}. In the case where the vertex labels are 1,2, ..., |V, (a,d)-vertex-
antimagic total labeling is called a super (a,d)-vertex-antimagic total labeling. Among their
results are: every super-magic graph has an (a, 1)-vertex-antimagic total labeling; every (a, d)-
antimagic graph G(V,E) is (a + |E| + 1,d + 1)-vertex-antimagic total; and, for d > 1, every
(a,d)-antimagic graph G(V, E) is (a + |V| + |E|,d — 1)-vertex-antimagic total. They also show
that paths and cycles have (a, d)-vertex-antimagic total labelings for a wide variety of a and d.
In [124] Baca et al. use their results in [123] to obtain numerous (a, d)-vertex-antimagic total
labelings for prisms, and generalized Petersen graphs (see §2.7 for the definition). (See also [133]
and [1142] for more results on generalized Petersen graphs.)

Sugeng, Miller, Lin, and Baca [1142] prove: C,, has a super (a,d)-vertex-antimagic total
labeling if and only if d = 0 or 2 and n is odd, or d = 1; P, has a super (a, d)-vertex-antimagic
total labeling if and only if d = 2 and n > 3 is odd, or d = 3 and n > 3; no even order
tree has a super (a,1)-vertex antimagic total labeling; no cycle with at least one tail and an
even number of vertices has a super (a, 1)-vertex-antimagic labeling; and the star S,, n > 3,
has no super (a,d)-super antimagic labeling. As open problems they ask whether K, , has
a super (a,d)-vertex-antimagic total labeling and the generalized Petersen graph has a super
(a, d)-vertex-antimagic total labeling for specific values a,d, and n. Lin, Miller, Simanjuntak,
and Slamin [795] have shown that for n > 20, W,, has no (a, d)-vertex-antimagic total labeling.
Tezer and Cahit [1176] proved that neither P, nor C, has (a, d)-vertex-antimagic total labelings
for a > 3 and d > 6. Kovar [677] has shown that every 2r-regular graph with n vertices has an
(s,1)-vertex antimagic total labeling for s € {(rn+1)(r +1) +tn |t =0,1,...,7}.

Several papers have been written about vertex-antimagic total labeling of graphs that are
the disjoint union of suns. The sun graph S,, is C), ©® K;. Rahim and Sugeng [948] proved that
Sny USp,U. . US,, is (a, 0)-vertex-antimagic total (or vertex magic total); Parestu, Silaban, and
Sugeng [920] and [921] proved Sy, USy,U. .. USy, is (a, d)-vertex-antimagic total for d = 1,2, 3, 4,
and 6 and particular values of a. In [950] Rahim, Ali, Kashif, and Javaid provide (a,d)-vertex
antimagic total labelings of disjoint unions of cycles, sun graphs, and disjoint unions of sun
graphs.

In [899] Ngurah, Baskova, and Simanjuntak provide (a, d)-vertex-antimagic total labelings for
the generalized Petersen graphs P(n,m) for the cases: n >3, 1 <m < [(n—1)/2], (a,d) = (8n+
3,2);0ddn>5 m=2, (a,d) = ((16n+5)/2,1); odd n > 5, m =2, (a,d) = ((21n +5)/2,1);
oddn >7, m=3, (a,d) = ((156n+5)/2,1); odd n > 7, m =3, (a,d) = ((21In +5)/2,1); odd
n>9 m=4, (a,d) = ((16n +5)/2,1); and (a,d) = ((21n + 5)/2,1). They conjecture that
for n odd and 1 <m < [(m —1)/2], P(n,m) has an ((21n + 5)/2, 1)-vertex-antimagic la