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Abstract—This paper presents a new approach to speech
enhancement based on theH1 filtering. This approach differs
from the traditional modified Wiener/Kalman filtering approach
in the following two aspects: 1) noa priori knowledge of the noise
source statistics is required, the only assumption made is that
noise signals have a finite energy; 2) the estimation criterion for
the filter design is to minimize the worst possible amplification
of the estimation error signals in terms of the modeling errors
and additive noises. Since most additive noises in speech are non-
Gaussian, this estimation approach is highly robust and more
appropriate in practical speech enhancement. The proposed ap-
proach is straightforward to implement, as detailed in this paper.
Experimental results show consistently superior enhancement
performance of the H1 filtering algorithm over the Kalman
filtering counterpart, measured by the global signal-to-noise ratio
(SNR). Examination of the spectrogram displays for the enhanced
speech shows that theH1 filtering approach tends to be more
effective where the assumptions on the noise statistics are less
valid.

Index Terms—H1 filtering, speech enhancement.

I. INTRODUCTION

NOISE contaminated speech results in various degrees
of reduction of speech discrimination. For example,

background acoustic noise degrades speech signal quality of
mobile telephone systems; airplane engine noise affects the
conversation between a pilot and an air traffic controller.
With the objective of enhancing the quality and intelligibility
of speech, speech enhancement involves manipulation of the
contaminated speech signal to mitigate noise effects. There
have been numerous studies on this subject [1]–[5]. Based on
stochastic speech models, the previous studies have focused
on the minimization of the variance of the estimation errors of
speech signals, i.e., the celebrated Wiener and/or Kalman fil-
tering approach. With suitable assumptions on noise variances,
the Kalman filtering has certain desirable optimality properties,
namely, it minimizes the expected estimation error energy and
yields maximum-likelihood estimates. The robustness of the
Kalman filter in various situations where the statistics are
not completely known has been studied by many researchers.
However, the question is what the performance of such an
estimator will be if the assumptions on the statistics of noise
are violated or if there are modeling errors in speech model?
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In other words, is it possible that small noise and modeling
errors may lead to large estimation errors? In this paper, a
new approach based on the filtering is presented for
speech enhancement. This approach differs from the traditional
modified Wiener/Kalman filtering approach in the following
two aspects. 1) Noa priori knowledge of the noise source
statistics is required. The only assumption is that the noise
signals have a finite energy. 2) The estimation criterion in the

filter design is to minimize the worst possible effects
of the disturbances (modeling errors and additive noises)
on the signal estimation errors. This will guarantee that if
the disturbances are small (in energy), then the estimation
errors will be as small as possible (in energy). These two
aspects make the filtering approach to be more appropriate
in practical speech enhancement where there is significant
uncertainty in the statistics of noises and speech signal sys-
tems. The implementation of the filtering algorithm is
straightforward. Our experimental results have shown that the
filtering performance of the estimation has noticeably
superior to that of the Kalman estimation. The remainder of
this paper is organized as follows. In Section II, the speech
source model/vocal tract is characterized by an all-pole filter.
Such a speech source model and an observation model (taking
into account the additive noise) are then combined to create
a canonical state-space model. Section III presents the
filtering algorithm for estimating speech signal from noisy
speech. Since the filter algorithm needs the knowledge of
tap-gain parameters of the all-pole filter, an identification
algorithm based on the filtering theory is introduced in
Section IV. In Section V, the performance of the filter
for speech enhancement is evaluated. The performance is
analyzed for both stationary and nonstationary noise, based on
the following criteria: 1) the global signal-to-noise ratio (SNR),
and 2) the speech spectrogram representation for the enhanced
signal. Conclusions of this work are given in Section VI

II. PROBLEM FORMULATION

Short segments of speech can be represented by the response
of an all pole filter which models the vocal tract [1]. The filter
is excited by a pulse train separated by the pitch period for
voice sounds, or pseudorandom noise for unvoiced sounds.
Thus the speech within a segment (clean speech) is assumed
to satisfy a difference equation of the form

(1)
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Fig. 1. Noisy speech generating and filtering mechanism.

where is the number of modeled poles, are the tap-gain
parameters characterizing the filter and is an excitation.
If the speech signal is corrupted with background noise
signal , the observed (measured) noisy speech signalis
described as follows:

(2)

The speech generating mechanism is illustrated in Fig. 1.
Equations (1) and (2) can be represented by the following

state-space model

(state equation) (3)

(measurement equation) (4)

where

Since the noise contaminated speech results in various degrees
of reduction of speech discrimination, one needs to enhance
the quality and intelligibility of speech from the noisy speech,
i.e., to estimate (the last component of ) given

. The current enhancement algorithms have assumed that
both and are white or color Gaussian processes [1]–[5].
However, neither the speech nor the noises may be Gaussian.
This is because could be a pulse train for voiced speech,
random noise for unvoiced speech or the modeling error,
could be any kind of noise. The Gaussian assumptions may
provide an estimate which is highly vulnerable to statistical
outliers, i.e., a small number of large measurement errors
would have a large influence on the resulting estimate, so that
the viability of the algorithms has to be checked by experiment
[3]. In the following, we present an new approach based on the

filtering algorithm for speech enhancement, where both
and are not necessary to be white or colored Gaussian

processes. For comparison, the Kalman filtering algorithm is
briefly reviewed.

III. K ALMAN AND FILTERING ALGORITHMS

A. Kalman Filtering Algorithm

In the Kalman filtering, the clean speech signal
is considered to be a random process. Assuming that both

exciting term and observation noise (additive noise) are
white Gaussian processes with zero mean and uncorrelated
variances and

meansexpectation. The design objective of Kalman filter
is to determine the optimal estimate based on the

such that

(5)

is minimum. The estimation error is defined by the equation

(6)

For the state-space model (3)–(4), the Kalman filtering algo-
rithm is given by

(7)

with the initial condition . The filter gain and
error variance equations are

(8)

(9)

(10)

where is a Kalman gain vector,
is an a priori error covariance

matrix, is an a posteriori
error covariance matrix. The initial condition .
is an identity matrix. The estimated speech sample
can be obtained by

(11)

If the additive noise is a colored Gaussian process, the
Kalman filter algorithm for such speech estimation is given
in [3].

B. Filtering Algorithm

Consider the state space model (3)–(4). We make no as-
sumption on the nature of unknown quantities and , and
are interested not necessarily in the estimation ofbut in the
estimation of some arbitrary linear combination of using
the observations , i.e.,

(12)

where . Different from that of the modified
Wiener/Kalman filter which minimizes the variance of the
estimation error, the design criterion of the filter is to
provide a uniformly small estimation error, , for
any and . The measure of performance
is then given by

(13)
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where is ana priori estimate of
and represents unknown initial condition error,

and are the weighting
matrices. denotes a positive definite matrix that
reflectsa priori knowledge on how close the initial guess
is to . The notation is defined as the square of the
weighted (by ) norm of , i.e., . The

filter will search such that the optimal estimate of
among all possible (i.e., the worse-case performance

measure) should satisfy

(14)

where “sup” stands for supremum and is a prescribed
level of noise attenuation. The matrices and are
left to the choice of the designer and depend on performance
requirements. The above problem formulation shows that
optimal estimators guarantee the smallest estimation error
energy over all possible disturbances of finite energy. They
are, therefore, overly conservative, which results in a better
robust behavior to disturbance variations. The discrete
filtering can be interpreted as aminimax problem where the
estimator strategy plays against the exogenous inputs
and the uncertainty of the initial state , so the performance
criterion is equivalent to

(15)

where “min” stands for minimization and “max” maximiza-
tion. Note that unlike the traditional minimum variance fil-
tering approach (Wiener and/or Kalman filtering), the
filtering deals with deterministic disturbances and noa priori
knowledge of the noise statistics is required. Since the obser-
vation is given, can be uniquely determined by (2) once
the optimal values of and are found. Using

, we can rewrite the performance criterion (15) as

(16)

where .
Extensive research work for filter design has been done

in the past years [6]–[15]. The following theorem presents
a complete solution to the estimation problem for the
state-space model (3)–(4) with the performance criterion (16).

Theorem: Let be a prescribed level of noise atten-
uation. Then, there exists an filter for if and only if
there exists a stabilizing symmetric solution to the
following discrete-time Riccati type equation

(17)
If this is the case, then an filter can be given by

(18)

TABLE I
PERFORMANCE COMPARISON OFKALMAN AND H1 FILTERING ALGORITHMS

where

(19)

is the gain of the filter and is given by

(20)

The proof of the theorem is given in the Appendix. Solving
Riccati equation (17) for the solution is not trivial due to its
nonlinearity. Let , applying the following
matrix inversion lemma (MIL)

(21)

equation (17) can be rewritten as

(22)
so that we can obtain from (23) recursively.

It should be mentioned that the structure of the filter
depends, via the Riccati type equation (17), on the linear
combination of the states that we intend to estimate ,
and on the weighting matrices of the noises and
of the initial condition in the performance criterion. In other
words, the designer can choose weighting matrices based on
the performance requirements. Since the filter is designed
based on an upper bound of the estimation error, it is more
robust.

Comparing the Kalman filtering algorithm (7)–(10) and
the filtering algorithm (17)–(20), we can observe the
following.

1) The Kalman filtering algorithm gives the minimum
mean-square-error estimate of the state vectorbased
on the , independent of .

2) The filtering algorithm gives the optimal estimate of
based on the such that the effect

of the worst disturbances (noises) on the estimation error
is minimized.

3) Kalman and filters have similar observer structure.
Let weighting matrices and of filter be
same as the variances and of Kalman filter.
In the limiting case, where the parameter , the

reduces to a Kalman filter.

It is interesting to note that if we choose
, the filter is designed to minimize the worst

possible amplification of the estimation error of the first
component of the state vector , i.e. in terms of all
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Fig. 2. Spectrogram of clean speech.

exogenous inputs. The estimate should give a better
estimation of speech signal at the th instant since the
estimation is based on the . This estimation
is equivalent to the fixed-lag smoothing problem. The only
difference from the traditional fixed-lag smoothing problem is
that no additional computation is required in this case.

IV. TAP-GAIN PARAMETER ESTIMATION

The filtering algorithm for speech enhancement in
Section III requires the knowledge of tap-gain parameter
vector of the all-pole filter. Estimation
of the parameter vector from noisy speech has been a long
standing research problem with most efforts being focused on
an white/color Gaussian noise processes [3]. However, in our
case the estimation of the tap-gain parameter vector can not
be performed by Wiener or Kalman filtering algorithm since
the statistics of both noise excitation and measurement
noise are not known. In other words, both and can
be non-Gaussian. Here we apply the filtering algorithm
to identify/estimate the source model parameter vector. To
express the model of (1) and (2) in a more suitable form
for application of the identification method, we introduce the
shifting operator defined by

(23)

so that (2) can be written as

(24)

where

Let

(25)

Equation (23) becomes

(26)

In speech enhancement, the noisy speech is usually divided
into number of frames and the length of each frame is within
10 to 30 ms. In each frame interval, it is assumed theARmodel
(26) is time-invariant. In the parameter estimation problem,
is updated recursively by equating to , i.e.,

(27)

(28)

The state model (27)–(28) can be identified with the similar
estimation algorithm given in Section III. The identifier
should be chosen for the worst possible, i.e.

(29)
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Following the similar analysis given in Section III, the
identification algorithm to compute the optimal can be
obtained as

(30)

(31)

(32)

Note that the above algorithm is not suitable for on-line
recursive parameter estimation unless we can obtain an online

such that the matrix must be positive definite. In the
following, we propose an algorithm for adaptively adjusting

value to its minimum at each iteration for . In order for
to be positive definite, it requires

(33)

where indicates the maximum eigenvalue of the
matrix , and is a constant very close to one but larger than
one to ensure that is always greater than the minimum
value but is very close to it.

The adaptive approach computes the speech model
coefficients (3)–(4) from noisy speech, and these coefficients
are then used in the filter. This has the advantage of
adapting the coefficients over the utterance, at the cost of using
coefficients calculated from corrupted speech [3].

V. SPEECH ENHANCEMENT EXPERIMENTS

The and Kalman filtering algorithms described in
Sections III and IV are applied to speech enhancement by first
dividing the noisy speech into equal-length segments. Within
each segment, the parameteris first estimated according to
(30)–(33) for both and Kalman filtering algorithms, and is
then used to filter the noisy speech. The filter algorithm is
initialized only for the first segment with all the remaining seg-
ments utilizing the filtering results obtained from the previous
segments. In the experiments, we choose the initial state vector

, and weight matrix . In the subsequent seg-
ments, and are initialized using the corresponding last
values from the previous segment. There exists a tradeoff in the
choice of the length of the segments. Large segments improve
the accuracy of the prediction parameters for stationary sounds
(e.g., vowels), but short segments improve the accuracy for
nonstationary sounds. In our experiment, the segment length
used for calculating the parameters is
set to be 128 samples, which corresponds to 16 ms (with
a sampling frequence of 8 kHz). The order of the all-pole
filter is ten, which is a commonly used value in linear
predictive analysis of speech signal, and the order of state
space model is set to be equal to the order of the all-pole filter.
The input SNR varies from 0 dB to 15 dB. The parameter

is chosen to be 1.05. The expectation and maximization
(EM) algorithm [17] is used to calculate and , which are
the weighting matrices for the filter and the variances of

and for the Kalman filter, respectively. Two types of
noise are used: white noise (stationary) and helicopter noise
(nonstationary). The performance of both the filtering and
Kalman filtering algorithms is measured in terms of SNR and
speech spectrogram representation. Three sentences are tested
and the outcomes are similar. The sentences are

• “Woe betide the interviewee if he answered vaguely;”
• “Drop five forms in the box before you go out;”
• “Sometime, he coincided with my father’s being at

home.”
Experimental results obtained for the sentence “Woe betide

the interviewee if he answered vaguely” embedded in noise
are summarized in Table I.

The SNR values used to measure the enhancement perfor-
mance are the global signal to noise ratios calculated by

SNR (34)

where is the total number of samples of each sentence,is
the clean (noise-free) sequence andis the enhanced speech.
The results of Table I consistantly show moderate performance
advantage of the filtering algorithm (measured by the
output SNR values) over the Kalman filtering algorithm, for
both the white and helicopter noise. The performance gain is
about 0.5 dB for the input SNR of 0 dB, which increases to
slightly over 1 dB when the input SNR is increased to 5 and 10
dB. In order to examine the details of the speech enhancement
results, both the waveforms and wideband spectrograms are
plotted for the original clean speech signal (Fig. 2), speech
embedded in the white noise (Fig. 3), enhanced speech by the
Kalman filter (Fig. 4), and the enhanced speech by the
filter (Fig. 5). By comparing the spectrogram plots of Figs. 4
and 5, it is noted that the filter tends to perform better
than the Kalman filter in the relatively fast changing regions
of the speech. This appears to be accounted for by the fact
that in such regions with fast spectra changes, the assumption
for the driving noise being white in (3) tends to be grossly
invalid. Since the filtering approach makes no assumption
about the noise statistics, it outperforms the Kalman filtering
approach which is based on grossly inaccurate assumption
about the statistics. It is also interesting to note that in the
estimation of the noise statistics, the EM algorithm has been
used based on the maximum-likelihood principle consistent
with the Kalman filter formulation. The nevertheless inferior
performance with the Kalman filter suggests that when the
assumptions on the speech model are invalid, it is better to
resort to an approach that is robust to the statistics of the
speech model than to the one which attempts to accurately
estimate the model parameters.

VI. CONCLUSION

A new speech enhancement method based on thefil-
tering has been developed. This method exploits a waveform-
based speech production model without requiring detailed
knowledge of noise statistics. Since the design criterion of the

filtering algorithm is based on the worst case disturbances,
the method is less sensitive to uncertainty in the exogenous
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Fig. 3. Spectrogram of white noisy speech (SNR = 5 dB).

Fig. 4. Spectrogram of Kalman filtered speech.
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Fig. 5. Spectrogram ofH1 filtered speech.

signal statistics and system model dynamics. This theoretical
advantage has been confirmed in the speech enhancement
experiments where the global SNR is used to measure the
performance. The experiments have shown consistently the
superiority of the filtering approach over the Kalman
filtering conterpart.

APPENDIX

PROOF OF THEOREM

By using a set of Lagrange multipliers to adjoin the con-
straint (3)–(4) to the performance criterion (16), the resulting
Hamiltonian is

(A.1)

Taking the first variation, the necessary conditions for a
maximum are

(A.2)

(A.3)

(A.4)

These first order necessary conditions result in a two point
boundary value problem

(A.5)

with boundary conditions

(A.6)

Since the two-point boundary value problem is linear, the
solution is assumed to be of the form

(A.7)

where and are undetermined variables. and
represent optimal value of and , respectively, for any
fixed admissible functions of and . The optimal values
for and are

(A.8)

Substituting (A.7) into (A.5) results in

(A.9)

and

(A.10)



398 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 7, NO. 4, JULY 1999

From (A.9)–(A.10) we have

(A.11)

i.e.,

(A.12)

For (A.12) to hold true for arbitrary , both sides are set
identically to zero, resulting in

(A.13)
and

(A.14)
Equation (A.14) is the well-known Riccati difference equation.
It has been proofed that if the solution to the Riccati
equation (A.14) exists , then

.
Now substituting the optimal strategies (A.8) into the per-

formance (16), we obtain

(A.15)

In the sequel we will perform themin-maxoptimization of
with respect to and , respectively. Adding to (A.15)

the identically zero term

(A.16)
after lengthy algebra, results in the followingmin-maxprob-
lem:

(A.17)
subject to the dynamic constraints (A.13) and (A.14).

Let

(A.18)

Equation (A.17) becomes

(A.19)

The two independent players and in (A.19) affect the
variables , but does not appear in the performance
index, therefore the optimal strategies of and are

(A.20)

i.e.,

(A.21)

The value of the game is the value of the cost function (16).
When the optimal strategies and in (A.8) and
(A.21) are substituted into the (16)

(A.22)

giving a zero value game.
So far, the strategies of and have been

assumed to be optimal, based on satisfying the necessary
conditions for optimality. If the strategies can also satisfy
a saddle-point inequality, they represent optimal strategies.
A saddle point strategy can be obtained by solving two
optimization problems

(A.23)

(A.24)

When , the solutions to (A.23) and (A.24) produce
saddle point strategies. It can be easily shown that ifexists

, the optimal strategies and
satisfy a saddle point inequality

(A.25)

Note that the notation means that is positive
semidefinite matrix.

The right inequality can be checked by adding the identi-
cally zero term

(A.26)

to , and the left inequality can be checked
by adding the identically zero term

(A.27)
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to . The optimal strategy of the measure-
ment noise can be obtained by

(A.28)

With (A.13) and (A.21), the optimal filter is given by

(A.29)

where

(A.30)

(A.31)

and is given by (17).
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