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Abstract. This paper considers a vehicle routing problem where each vehicle performs 

delivery operations over multiple routes during its workday and where new customer 

requests occur dynamically. The proposed methodology for addressing the problem is 

based on an adaptive large neighborhood search heuristic, previously developed for the 

static version of the problem. In the dynamic case, multiple possible scenarios for the 

occurrence of future requests are considered to decide about the opportunity to include a 

new request into the current solution. It is worth noting that the real-time decision is about 

the acceptance of the new request, not about its service which can only take place in 

some future routes (a delivery route being closed as soon as a vehicle departs from the 

depot). In the computational results, a comparison is provided with a myopic approach 

which does not consider scenarios of future requests. 

Keywords. Dynamic vehicle routing, multiple routes, scenarios, acceptance rule, adaptive 

large neighborhood search. 

Acknowledgements. Financial support for this work was provided by the Natural 

Sciences and Engineering Council of Canada (NSERC). This support is gratefully 

acknowledged. 

Results and views expressed in this publication are the sole responsibility of the authors and do not 
necessarily reflect those of CIRRELT. 

Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 
_____________________________ 

* Corresponding author: Jean-Yves.Potvin@cirrelt.ca  

Dépôt légal – Bibliothèque et Archives nationales du Québec, 
                      Bibliothèque et Archives Canada, 2010 

© Copyright  Azi, Gendreau, Potvin and CIRRELT, 2010 



1 Introduction

A relatively recent development in the field of vehicle routing relates to the
study of dynamic variants, where information about the problem is revealed
as the current routes are executed by the vehicles. In general, the dynamic
aspect comes from the occurrence of new customer requests, although a few
papers address other types of events, like dynamic travel times (see, for
example, [6, 11]).

In this paper, a previous algorithm developed for a vehicle routing prob-
lem with multiple delivery routes is applied in a dynamic setting where cus-
tomer requests occur dynamically and must be responded to in real-time. It
is worth noting that the most stringent real-time decision is about accepting
or not a new request, not about finding the best possible way to integrate
it into the current solution, since the request can only be included in some
future route (a delivery route being closed as soon as the corresponding ve-
hicle departs from the depot). This is illustrated in Figure 1 for a single
vehicle’s workday. When the new customer request is received, the vehicle
is currently moving between customers i and j in route 1. Given that the
vehicle has already departed from the depot (black square) to execute route
1, this route is closed. Only planned routes 2 and 3, which contain cus-
tomers that have been assigned to the vehicle but will only be served after
the return of the vehicle to the depot, can accept the new request. This
problem is inspired from e-grocery applications where perishable goods are
delivered to customers, thus leading to multiple short vehicle routes where
the last customer in each route must be served within a given time limit
from the route start time.

The rule for accepting a new request is based on multiple possible sce-
narios for the occurrence in time and space of future requests. Given that a
mix of true and expected requests are found in the solution associated with
each scenario, the adverse effects of a myopic decision rule are alleviated. In
the literature, future requests are either considered in an implicit way (see,
for example, the double horizon approach [9]), or explicitly using different
approaches for exploiting information about requests to come, including re-
location and waiting strategies [3, 4, 7, 8, 10]. However, these methods are
used to guide the integration of new requests into the current solution, not
to accept or reject new requests based on some profit measure.

The remainder of the paper is as follow. In Section 2 the problem is
defined. Section 3 then briefly describes the algorithm previously developed
for the static version of the problem. The dynamic environment, as well
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Figure 1: Current vehicle’s workday

as the proposed methodology for deriving a non myopic acceptance rule,
are found in Section 4. Finally, computational results in Section 5 report
a comparison between the non myopic and myopic decision rules (i.e., with
and without scenarios).

2 Problem definition

The static version of the problem is defined on a directed graph G = (V, A)
with V = {0, 1, 2, ..., n} the vertex set and A the arc set. Vertex 0 is the
depot while the remaining vertices are customers. With each customer i ∈
V \{0} is associated a gain or revenue gi, a service or dwell time si and a time
window [ai, bi], where ai and bi are the earliest and latest time, respectively,
to start the service (with a0 = 0 and b0 = ∞). Thus, a vehicle has to wait
if it arrives at customer i before ai. With each arc (i, j) ∈ A is associated
a distance dij and a travel time tij . We also have a set K = {1, 2, ..., m}
of vehicles to deliver goods from the depot to customers. The duration of
each route is limited by forcing the last customer to be served within tmax

time units of the route start time. This restriction leads to short routes that
must be combined and sequenced to form vehicle workdays. Also, a setup
time for loading the vehicle, noted σr, is associated with each route r in the
solution. This setup time is proportional to the sum of service times over all
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customers in the route. The objective is to maximize the total profit, which
is the total gain associated with served customers minus the total traveled
distance. A mathematical description of this problem can be found in [1].

In the dynamic version of the problem, the customers are not known
in advance but must be responded to as the routes for serving previously
assigned customers are executed by the vehicles. Once a customer request
is received, an answer must be provided in real-time about the ability of
the fleet to accommodate or not the request. On the other hand, the real-
time aspect is much less stringent in the case of the actual service to the
customer. As a pure delivery problem is dealt with, a route is fixed as soon
as the corresponding vehicle departs from the depot to serve it. Accordingly,
a new customer request can only be inserted in routes that will be executed
later during a vehicle’s workday.

3 Problem-solving methodology

An Adaptive Large Neighborhood Search (ALNS) [12] has been previously
developed in [2] for solving the static version of the problem. First, an
initial solution is constructed with an insertion heuristic. Then, a local
search heuristic based on a large neighborhood is applied to improve this
solution. This is explained in the following

3.1 Insertion heuristic

An insertion heuristic is used to construct an initial solution or to insert new
customer requests in the current solution (in the dynamic setting). Every
customer is inserted at its best feasible insertion place over every route in
every workday, including an empty workday if one is still available. In this
work, the best insertion place corresponds to the smallest detour in distance,
where the detour is dji + dil − djl for the insertion of customer i between
customers j and l. If there is no feasible insertion place for customer i,
then each route is considered in turn and split into two subroutes, with an
additional copy of the depot between the two subroutes. Once the original
route is split, the insertion of the customer can take place in any of the two
new routes. Each route is split in every possible way (i.e., at every customer
location along the route) to find the best insertion place. If there is still no
feasible insertion place, then customer i is left aside.
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3.2 Large neighborhood search

For improving the solution, a large neighborhood structure is obtained
through the use of solution destruction and reconstruction operators. These
operators exploit the hierarchical nature of the problem by working either
at the customer, route (made of customers) or workday (made of routes)
level. The adaptive feature comes from a weight associated with each op-
erator. This weight is modified depending if the corresponding operator is
successful or not in finding improved solutions. Clearly, an operator is more
likely to be selected and applied to the current solution if its corresponding
weight is larger.

A generic description of this problem-solving methodology is shown in
pseudo-code in Algorithm 1, where s∗ is the best known solution and where
the acceptance criterion is probabilistic and based on simulated annealing
ideas. For more details, the reader is referred to [2].

Algorithm 1 ALNS

1. construct a feasible solution s;
2. s∗ ← s;
3. initialize weights;
4. while the stopping criterion is not met do

4.1 for L = workday, route, customer do

4.1.1 for I iterations do

a. probabilistically select a destruction operator at level L

and a reconstruction operator based on their current
weights;

b. apply the destruction and reconstruction operators to s

to obtain s′;
c. if s′ satisfies the acceptance criterion then

s← s′;
if s′ is better than s∗ then s∗ ← s′;

4.1.2 adjust weights;
5. return s∗.

4 Dynamic environment

The algorithm developed for the static version of the problem was integrated
into the new dynamic environment. This is described in the following, start-
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ing with the acceptance rule for new requests.

4.1 Acceptance rule

A set S of s-solutions, where each s-solution includes a possible scenario
for the occurrence of future requests, is used to evaluate the profitability of
any new incoming request. The scenarios are based on some probabilistic
knowledge that could be obtained, for example, through historical data. It
is worth noting that the use of scenarios is also reported in [3]. However,
only one scenario is associated with a solution and this scenario is used to
guide the insertion of new requests into the current solution, not to decide
about their acceptance. Acceptance rules with metrics based on true and
expected requests can be found in [5], where the authors assume that all
potential customer locations are known in advance and that a service request
probability is associated with each location.

Here, it is assumed that the customer requests are received according
to independent time-space Poisson processes. Basically, the service area is
a grid made of Z squared zones and the horizon is divided into T time
periods. The request arrival intensity within each zone z at time period t

is λzt with
∑Z

z=1
λzt = λt, t = 1, 2, ..., T . Within each zone, the request

is located uniformly randomly. Finally, the gain follows a normal law with
average 4×maxi∈V \{0} d0i and standard deviation 2×maxi∈V \{0} d0i, where
d0i is the distance between the depot and customer i. The definitions of the
average and standard deviation imply that it is always profitable to serve
a customer, since the gain exceeds the additional traveled distance needed
to serve the customer (note that non profitable customers would always be
rejected).

At the start, a s-solution is produced with the expected requests of each
scenario using our ALNS (see Section 3). Each one of these s-solutions is
a blueprint for evaluating the opportunity value of new incoming requests.
When the discrete simulation starts and time unfolds, new requests are
received. If a new request cannot be incorporated into the true solution
(made only of true requests) due to the time constraints, it is automatically
rejected. Otherwise, the opportunity value of the new request is calculated
as the sum of the differences over all scenarios of the s-solution quality with
and without the insertion of the new request. If δs

i denotes this difference for
request i and s-solution s, then the opportunity value of i is

∑
s∈S δs

i . If this
value is positive then the new request is accepted, otherwise it is rejected.
When accepted, the new request is finally inserted in the true solution and

A Dynamic Vehicle Routing Problem with Multiple Delivery Routes

CIRRELT-2010-44 5



in every s-solution. This chain of events is summarized in the pseudo-code
below.

If there is no feasible insertion place for the new request i in the true
solution ts then reject i

else

1. consider the insertion of the new request i in every s-solution;

2. calculate ∆ =
∑

s∈S δs
i ;

3. if ∆ > 0 then accept i and insert it in ts and in every s-solution

else reject i.

As time unfolds, a mix of true and expected customer requests are found
in each s-solution. Since the true requests have been incorporated into each
s-solution with the insertion heuristic described in Section 3.1, these solu-
tions are reoptimized with ALNS after the occurrence of I new requests,
to maintain s-solutions of sufficiently good quality (in our computational
results, I = 10).

4.2 Dynamic environment

There are two types of events that ask for a reaction: the occurrence of a
new request and the departure of a vehicle from the depot. This is described
in the following pseudo-code.

if “event” then

1. remove obsolete portion of every solution;

2. if event is “occurrence of a new request” then

2.1 apply the acceptance rule;

2.2 apply ALNS to the true solution ts;

3. if event is “vehicle departure” then

3.1 fix the vehicle’s current route in ts;

3.2 update every s-solution;

3.3 apply ALNS to the true solution ts.
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It is worth noting that ALNS is run on the planned portion of solution ts

in steps 2.2 and 3.3 (excluding the current route, which is fixed). Removing
the obsolete part of every solution in step 1 consists in removing customer
requests that have been served since the occurrence of the previous event. In
the case of a vehicle departure, the update in step 3.3 is aimed at maintaining
the consistency of every s-solution with the true solution ts. That is, the
current route should be the same, as well as the set of true requests to be
served in the planned routes (although they are not necessarily served in
the same order). Consider the example in Figure 2 where the sequences
of customers in the true solution ts and in some s-solution are illustrated
(for simplicity, expected customers in the s-solution are not shown). When
the currrent route of the s-solution is replaced by the current route of the
true solution ts, customer 2 is duplicated, while customer 3 is missing. To
maintain consistency, the following repair actions are taken:

1. In each case of duplication, the duplicate customer is simply removed
from the planned routes.

2. In each case of omission, the customer is reintroduced into the planned
routes using the insertion heuristic of Section 3.1.

After the repair, the s-solution is said to be consistent with the true
solution.

5 Computational results

A simulator was developed to test the proposed acceptance rule in different
operating scenarios and compare it to a myopic approach where each new re-
quest is accepted as long as it is feasible. In the following, the characteristics
of the simulator are first described. Then, a comparison is provided between
the myopic and non myopic decision rules with an increasing number of re-
quests over the same fixed horizon. Finally, the impact of the number of
scenarios on solution quality is presented.

5.1 Simulator

The service area is a 5km × 5km square divided into into a grid of Z =
2 × 2 = 4 zones. Within that square, the depot is located at coordinates
(2.0km, 2.5km). The time horizon is divided into T = 4 periods of one hour
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Figure 2: Maintaining the consistency of every s-solution

each. All vehicles move at a constant average speed of 30 km per hour.
The service or dwell time is equal to 5 minutes at each customer location
and the tmax value is set to 40 minutes. As previously mentioned, the new
requests are received according to independent time-space Poisson processes
where λzt is the request arrival intensity in zone z at time period t. Within
each zone, the request is located uniformly randomly. In the computational
results, the intensity is the same in each zone and in each time period, for
the first three time periods. In the last period, no request is generated
because it is too late to serve them the same day. The time windows of
the new customer requests correspond to a full time period of one hour and
are equally distributed among the time periods that follow the current one
(which is the time period associated with the occurrence of the new request).
Finally, the gain follows a normal law with average 4 ×maxi∈V \{0} d0i and
standard deviation 2×maxi∈V \{0} d0i, where d0i is the distance between the
depot and customer i.
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5.2 Comparison between myopic and non myopic approaches

In this section, we compare the performance of the myopic and non myopic
acceptance rules with an increasing number of customer requests. This
increase is obtained by varying the intensity parameter in the Poisson law
to obtain 24, 36 and 48 customer requests per hour, on average (for a total
of 72, 108 and 144 customers, respectively). Tables 1 and 2 show the results
for the myopic approach and the non myopic approach, respectively, with
80 scenarios and using fleets of 3 and 5 vehicles. Each number is an average
taken over 10 different instances.

As we can see, the non myopic approach provides a significant improve-
ment over the myopic one. For a fleet of 3 vehicles, the profit increase in per-
centage varies between 7.5% and 16.8%. With 5 vehicles, the improvement
is somewhat smaller but still stands between 4.8% and 9.8%. In addition
to the profit increase, the solutions obtained with the non myopic approach
systematically visit a larger number of customers. For both methods, an
increase in the number of served customers and profit is observed when the
number of vehicles increases from 3 to 5, for the same number of customers.
Each vehicle also performs a smaller number of routes during its workday.

# # # % # # Profit CPU
vehicles cust. served served routes per cust. (s)

cust. cust. workday per route
3 72.2 44.5 61.8 2.8 5.5 447.9 0.6

108.4 55.4 51.2 3.3 6.0 564.7 1.7
144.2 56.1 39.0 3.3 5.8 579.0 2.7

5 72.2 51.6 71.8 1.7 6.3 534.3 1.2
108.4 69.4 64.1 2.3 6.2 710.8 3.8
144.2 82.3 57.2 3.0 5.6 855.3 7.6

Table 1: Simulation of 4 hours with the myopic approach, fleets of 3 and 5
vehicles and an increasing number of customers

Through additional experiments, we also observed that the gap between
the two approaches vanishes as the average number of customers per vehicle
per hour becomes very high (30 customers per hour per vehicle) or very low
(2 customers per hour per vehicle). In the former case, the overwhelming
complexity of the problem does not allow any method to take the edge. In
the latter case, the simplicity of the problem has a similar impact. Between
these two values, the non myopic approach is systematically better than
the myopic one, although the gap can vary a lot, even for the same vehicle
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# # # % # # Profit CPU
vehicles cust. served served routes per cust. (s)

cust. cust. workday per route
3 72.2 48.6 67.8 2.1 8.1 508.9 204.7

108.4 57.5 53.1 2.1 9.2 606.9 272.8
144.2 62.6 43.6 2.4 8.6 676.3 471.1

5 72.2 55.6 77.3 1.5 7.8 587.0 305.6
108.4 70.2 64.9 1.6 8.9 745.0 733.4
144.2 83.1 57.9 1.8 9.2 901.6 963.7

Table 2: Simulation of 4 hours with the non myopic approach, fleets of 3
and 5 vehicles and an increasing number of customers

load. For example, by considering instances with 24 requests per hour and
2 vehicles, 36 requests per hour and 3 vehicles and 48 requests per hour and
4 vehicles, for the same average load of 12 customers per vehicle per hour,
profit increases of 17.0%, 9.4% and 6.0%, respectively, have been obtained.

Finally, Table 3 illustrates the impact of the number of scenarios on
the performance of the non myopic approach, based on simulations with 3
vehicles and 36 requests per hour on average. An improvement is observed
up to about 80 scenarios (with a corresponding increase in computation
times). Beyond that point, the performance of the method reaches a plateau.

# # # % # # Profit CPU
scenarios cust. served served routes per cust. (s)

cust. cust. workday per route
10 108.4 55.8 51.5 2.1 9.0 587.0 36.7
20 108.4 57.0 52.7 2.2 8.9 596.7 75.6
40 108.4 57.2 52.9 2.0 9.4 600.0 137.8
80 108.4 57.5 53.1 2.1 9.2 606.9 272.8
120 108.4 57.7 53.3 2.2 9.0 607.9 433.3
150 108.4 57.6 53.2 2.1 9.2 607.0 500.4

Table 3: Simulation of 4 hours with 3 vehicles, 36 requests per hour on
average and an increasing number of scenarios

6 Conclusion

This paper shows the benefits of accounting for future customer requests
when deciding about the acceptance or rejection of a new request in a dy-
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namic setting where each vehicle executes multiple routes during its work-
day. Each decision is based on the planned routes to be executed later (thus,
excluding the current route) due to the delivery nature of the problem. The
use of multiple possible scenarios for the occurrence of new requests is also
shown to be beneficial by providing solutions with an increased profit.
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