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ABSTRACT 
 

With the increasing popularity of portable devices, there is a strong demand of 
power management mechanisms for microprocessors and other subsystems. 
Advanced microprocessor and flash memory chips design now supports several 
voltage levels and allows more intelligence in managing energy consumption to 
lengthen the operating time of portable devices. In this paper, we propose a 
dynamic-voltage-adjustment method to reduce the energy consumption of a flash 
memory storage system, depending on the system workload. The usefulness of the 
proposed method is demonstrated by a series of experiments over a realistic setup, 
for which we have very encouraging results.   
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1 This paper is an extended version of a conference paper appeared in the IEEE International Conference on 
Consumer Electronics, 2001 [14]. 



1. Introduction 
 

With the increasing popularity of portable devices, there is a strong demand of energy 
management mechanisms for microprocessors and other subsystems. Advanced 
microprocessor and flash memory chips design now supports several voltage levels and allows 
more intelligence in managing energy consumption to lengthen the operating time of portable 
devices. The goal is to let a portable device operate at a low-voltage level, whenever it is 
possible, to save battery power. An intelligent energy management mechanism should be able 
to deliver reasonable system performance at the lowest possible energy consumption. 
 
Recently researchers have started investigating voltage-clock-scaling scheduling algorithms 
for microprocessors, e.g., [1,2,7,8,9]. The main idea is to let a microprocessor operate at a low 
energy consumption mode to fully utilize any possible microprocessor idle time, while the 
system is not heavily loaded. A reasonable system performance is delivered. In a portable 
device, flash memory also contributes a significant portion of energy consumption. For 
example, a typical 16MB flash memory consumes 264mW for page writes, where an ARM10 
processor consumes 275mW when running at 390MIPS. But, little work is done in the power 
management of flash memory. In particular, Douglis, et al. [5] provided a series of energy 
consumption measurement for flash memory under different percentages of capacity utilization. 
While the size of flash memory in a system is increasing, the issue for proper management of 
energy consumption becomes very critical.  
 
In this paper, we propose a dynamic-voltage-adjustment method to manage the energy 
consumption of flash memory storage systems. When the system is heavily loaded, a 
reasonable portion of operations will be performed at a high voltage level to deliver a 
reasonable performance. However, when the system workload is low, the proposed mechanism 
will try to service requests at a low voltage level without sacrificing the system performance. 
We show that the scheduling with an energy consumption constraint problem is NP-Complete. 
We then propose an efficient on-line scheduling algorithm with an objective to satisfy the 
response time of requests and, at the same time, to minimize the energy consumption of flash 
memory. The strength of the proposed mechanism is evaluated by a series of experiments over 
realistic traces and typical flash memory characteristics, for which we have very encouraging 
results. 
 
The rest of the paper is organized as follows: Section 2 summarized the related work. Section 3 
presents the system model and the system architecture for flash-memory file systems. Section 4 
proposes our dynamic-voltage-adjustment method in managing the energy consumption of 
flash memory storage systems. We also show the NP-Completeness of the problem and 
propose an O(n) on-line approximate algorithm. The optimality of the algorithm in meeting 
request deadlines (in a restrictive sense for energy consumption) is also shown. Section 5 
provides our experimental results over realistic workloads, for which we have very 
encouraging results. Section 6 is the conclusion. 
 
2. Related Work 
 
The fundamental theory behind the recently proposed voltage-clock-scaling techniques is the 
power consumption model of CMOS. The power dissipation of CMOS consists of switching 
power, short-circuit power, and leakage power. Chandrakasan et al. [17] showed that the 
switching power dominates the total power consumption, and it could be represented as: 



fVCP 2
DDLα=         (1) 

where LCα is the effective switched capacitance, V  is the supply voltage, and is the clock 
frequency. In Equation (1), we observe that the energy consumption is proportional to the 
frequency and also the square of the supplied voltage. The equation suggests the adjustment of 
voltage is the most efficient way to reduce the energy consumption. Meanwhile, with the 
demanding of a variable voltage control, Namgoong et al. [15] presented a highly-efficient 
DC-DC bulk-converter switching regulator with a variable voltage output. The proposed 
variable voltage control was efficient in voltage adjustment. 
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Mark, et al. [7] is among the pioneers who investigated the possibility of having the processor 
operating at a low-power-consumption mode, while the system still guarantees the real-time 
response of requests (in terms of deadline satisfaction). They also proposed a variable-voltage 
scheduling method based on the fact that the energy consumption is proportional to the square 
of the supplied voltage, as described in Equation (1). The energy consumption is effectively 
reduced, while no deadline violation occurs. They [7] defined a new CPU performance metric, 
named MIPJ, which denotes MIPS per Watt (note that the time factor is eliminated). They 
indicated that although the energy consumption decreases linearly with the frequency, the 
reducing of the frequency won’t reduce the total energy consumption (or MIPJ) because it 
takes a longer time to complete the computation of jobs when the frequency is low. In other 
words, MIPJ remains with the changing of the frequency. Although MIPJ remains, Nakamoto, 
et al. [2] pointed out that the adjustment of the frequency is still useful for a battery-powered 
device, because of the property of Lithium-Ion batteries. A Lithium-Ion battery does not have a 
linear relationship between the discharging current and the battery life. They measured and 
proposed the discharging property of a battery. It can be modeled approximately by the 
following formula: 

bCtI =⋅α          (2) 
where I is the discharging current, t is the usage time, 1>α  is a constant, and C  is the amount 
of the battery capacity. Obviously, the relationship of I and t is not linear. Because  and 
Equation (1), the relationship of the frequency f and the discharging current I is linear. 
Nakamoto concluded that the reducing of f effectively lengthens the endurance of the battery, 
because the reducing of the frequency also reduces the discharaging current. With a smaller 
discharging current and the property shown in Equation (2), more “energy” can be drained 
from the batteries. 

b

VIP ⋅=

 
Recently researchers started noticing that there are still many power-hungered devices in 
portable devices. Hong, et al. [9] proposed an integrated variable-voltage control mechanism 
for the micro-processor and the cache sub-system. Li [18] surveyed the energy consumption of 
disk, and he used a spin-off technique to substantially reduce the energy consumption. Douglis 
et al. [5] conducted a series of experiments on storage devices for mobile computer, such as a 
linear flash memory card and a PCMCIA flash disk. The most important conclusion of their 
work was that the energy consumption of a flash memory storage device depends on the 
capacity utilization of the device. They reported that the energy consumption of a flash 
memory with a 95% capacity utilization is increased by 70%~190%, compared to a flash 
memory with 40% capacity utilization. The rationale behind the results comes from the needs 
for garbage collection. In Section 3.1 we shall illustrate the garbage collection behavior of a 
falsh memory, and how it has impacts on the system workload.  
 
3. System Model 



 
3.1 Flash Memory Characteristics 
 
Flash memory is a non-volatile, write-once, and bulk-erase memory device. A flash memory 
chip consists of many fixed-sized blocks, where a block is the smallest erase unit. The size of a 
block varies from 8Kbytes to 64Kbytes, depends on the hardware design. Furthermore, a block 
consists of many fixed-sized pages, where a page is the smallest unit of a read / write operation. 
Typically, a page is 512 bytes large, which is identical to a disk sector. However, flash memory 
is free from any seek penalty since it is a random-access memory device. It is extremely fast on 
data retrieval. Because flash memory is write-once and bulk-erase, no in-place updating of data 
in a block is allowed unless an (bulk) erase on the block is performed first. The erase operations 
are relative slow, and each block on flash memory has an erase cycle limit, which ranges from 
100,000 to 1,000,000. A worn-out block will suffer from frequent write errors. As a result, 
flash-memory-based storage systems should try not to overwrite data on flash memory. Instead, 
a new version of data is usually written at any available space, and the old copy of the data is 
then invalidated. Flash memory Translation Layer (FTL) is introduced to emulate a block 
device for flash memory [4,11,20,28] so that users/applications have transparent access of data 
at dynamically allocated space. Note that available space is created by erasing and recycling 
data that are no longer used. Such activities are called garbage collection in flash memory. 
 
The garbage collection policy may choose to recycle unused space on a particular block while 
there are still few valid data on it. Therefore, valid data must be copied to somewhere else 
before the block erase takes place. The garbage collection consists of a series of reads, writes, 
and erases. These internally generated requests are referred as “internal requests” in this paper, 
and requests received from the file system are referred as “external requests”. Garbage 
collection is one of the major issues for flash memory management, and prior researches had 
studied this topic extensively [4,10,11,16]. A well-designed garbage collection policy should 

 
Vcc = 5 v, Block Size = 64KB 

Block Write Block Erase 
Vpp Power Consumption Performance Power Consumption Performance 
5v 375mW 0.5s 250mW 0.4s 
12v 540mW 0.4s 480mW 0.3s 

Table 1(a). 
Performance and power consumption of a typical  
NOR flash memory [20] that supports 12v and 5v. 

 
Block Size = 16KB, Page Size = 512B 

Page Read Page Write Block Erase 
Vcc Power 

Consumption Performance Power 
Consumption Performance Power 

Consumption Performance 

3.3v 330mW 0.3ms 264mW 0.9ms 264mW 1.6ms 
5v 700mW 0.182ms 600mW 0.546ms 600mW 0.975ms 

Table 1(b). 
Performance and power consumption of a typical  

NAND flash memory [22,23] that supports 3.3v and 5v. 
 

*Measured from a NAND flash memory evaluation board.



reduce the number of data copyings and, at the same time, reduce the number of erases. In the 
experiment setup of this paper, we used the greedy reclaiming policy [4], which always selects 
the block that has the largest number of invalidated data to reclaim.  

Adjustable Voltage
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Multiple Voltage Levels
Supported Flash Memory

File
System
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Block Device
Emulation

Request
Scheduling
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Control API

System Software Hardware  

Figure 1. System Architecture. 

 
There are two major different architectures in flash memory design [27]: NOR and NAND. 
NOR [20] flash memory is designed for EEPROM replacement. On the other hand, NAND 
[16,17,19] / AND [18] flash memory is specifically designed for data storage. NAND flash 
memory has a higher density and is block-oriented. In this paper, we consider NAND flash 
memories in constructing the storage system. Advanced flash memory design now supports 
multiple voltage levels. The characteristics of the flash memory are summarized in Table 1 
(note that NOR flash memories can also support multiple voltage levels). As it shown in Table 
1, flash memories have higher performance when higher voltage supplied. For example, as 
pointed out in Equation (1), NAND flash memory consumes 600mW for page writes on 5v, and 
consumes 264mW on 3.3v. The power consumption is indeed proportional to the square of the 
supplied voltage. The usefulness of energy saving can be demonstrated by a simple calculation: 
the energy consumption of a page write is 0.6*0.000546 = 0.3276mJ on 5v, and 0.264*0.0009 
= 0.2376 mJ on 3.3v, which is 72% of that on 5v. The simple calculation illustrates the 
usefulness of voltage adjustment on energy saving.  
 
3.2 System Architecture 
 
Workloads of a typical I/O subsystem are more unpredictable, compared with CPU workloads. 
Even though applications may issue I/O requests periodically, the requests still arrive at the 
corresponding block devices in a batch. The write burst could easily flood the request queue of 
the system and deteriorate the response time of requests quickly. Fortunately, the phenomenon 
may be resolved by the bandwidth reservation concept up to a certain degree [19]. The sources 
of unpredictability also include those from the occasional delay by the hardware, such as 
reading error, writing error, and calibration. Because it is not the focus of this paper, we refer 
interested readers to [19] for details. 
 
Many embedded systems are performance-sensitive. The performance of a storage system can 
be measured by the response time of requests. For the purpose of our mechanism, we assign a 
deadline to each request as a soft bound for its response time and to reflect the performance 



requirements of the system. Note that request deadlines are soft deadlines, where a similar 
concept could be found in the I2O specification [26]. In other words, the system shall try to 
fulfill soft deadlines. The percentage of deadline violations somehow reflects the satisfaction 
level of the system performance requirements.  
 
The system architecture of the flash memory storage system is illustrated in Figure 1: The file 
system issued requests, and the requests are queued in the request queue. A proper mechanism 
should schedule requests and adjust requests’ voltage levels to satisfy the performance 
requirements under a limited amount of energy consumption. The mechanism for block device 
emulation translates requests into flash memory operations and execute them according to their 
voltage assignment. 
 
In this paper, we have the following assumptions: 
 
A1: Requests can not be preempted by each another. 
A2: Each entire request is serviced at the same voltage level. 
A3: Voltage-switching introduces negligible overhead [1,2,7,8,9]. 
 
The assumption A1 and A2 are very reasonable because I/O requests can hardly be preemptible. 
Since the adjustable voltage can be generated efficiently, the voltage-switching overhead is not 
considered in this work. 
 
4. Algorithm 
 
In this section, we first define the scheduling problem and show a basic polynomial-time 
algorithm. We then prove the NP-Completeness of the problem and propose an efficient 
approximate on-line algorithm, which has a linear time complexity.  
 
4.1 The Basic Algorithm 
 
Each request Ri is associated with an arrival time Tai , a completion time Tci, and a deadline Tdi. 
The time between Tai and Tci depends on the system workload and the supplied voltage. Let S 

R1(L) R3(L)R2(L)
Td3*Td2Td1

(a) Requests are all serviced at the low
voltage level

(deadline of R2 is missed)

R1(H) R3(L)R2(L)

Td3Td2Td1

(b) R1 is serviced at the high voltage level
(all deadlines are satisfied)

 
 Figure 2. Concept of voltage-adjustment in scheduling. 

 



= {R1,R2… Rn} be a collection of pending requests for flash memory. The goal of request 
scheduling with voltage adjustment is to provide requests a good response time and, at the 
same time, minimize the total energy consumption. 
 
We propose to first schedule requests in S in an earliest deadline first (EDF) order, where EDF 
is an optimal real-time non-preemptive scheduling algorithm if all requests are ready at time 0 
[12,13,29]. Under EDF, a request with an earlier deadline is assigned a higher priority. We first 
generate an EDF schedule in polynomial time. In the schedule, requests are initially serviced at 
the low voltage level. If there is any request that can not meet its deadline, we will raise the 
voltage level of the first k requests until all requests meet their deadlines, or all requests are 
already serviced at the high voltage level. The number k must be minimized. The voltage 
adjustment have a time complexity O(n2), where n is the number of pending requests. 
Therefore, the basic algorithm has a polynomial time complexity. 
  
We shall illustrate the idea by an example, shown in Figure 2. Suppose that there are three 
pending requests R1, R2, and R3. with deadlines Td1, Td2, and Td3, where Td1 < Td2 < Td3. 
Figure 2(a) shows that R2 will miss its deadline if all requests are serviced at the low voltage 
level. As shown in Figure 2(b), when the first pending request, i.e., R1, is serviced at the high 
voltage level, all requests will meet their deadlines. 
 
4.2 The Complexity of Request Scheduling with Minimal Energy 
Consumption 
 
Definition: Request Scheduling with an Energy Consumption Constraint 
 

Suppose a flash memory supports m operating modes in handling a request. Let S = 
{R1 ,R2 , … , Rn} be a set of pending requests, where each request Ri is associated with a 
pair (Γi, Tdi), where Tdi is the deadline, and Γi = {(ei,1, ci,1), …, (ei,m, ci,m)}. ei,j and ci,j are 
the energy consumption and computation time under the corresponding operating mode. 
Given an energy consumption bound +∈ZE , does there exist a schedule and a operating 
mode assignment A for each request such that all deadlines are satisfied, and the total 
energy consumption is no more than E. 
 

Theorem 1: The Request Scheduling with an Energy Consumption Constraint problem is 
NP-complete. 
 
Proof: The Request Scheduling with an Energy Consumption Constraint problem is a NP 
problem because there exists a non-deterministic polynomial-time algorithm that can guess and 
verify a solution in a polynomial time. The NP-Hardness of the problem can be shown by a 
reduction from a well-known NP-Complete problem, e.g., the knapsack problem [18], as 
follows: 
 
The knapsack problem is defined as follows: Given a finite set U of items, the size and the 
weight of u are denoted as s(u) and v(u) for each item u U∈ , respectively, where s(u) and v(u) 
are both positive integers. The knapsack problem is to determine whether there exits a subset 

such that the following constraints are satisfied: U'U ∈
B)u(s
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U = {u1,1, u1,2, u1,3, u2,1, u2,2, u2,3, u3,1, u3,2, u3,3, u4,1,
u4,2, u4,3 } 

U is partitioned into four subsets, and each 
subset has three elements. Therefore we have
our requests

 
f  and eight operating modes for 
each request
 
U1={u1,1, u1,2, u1,3 }  U1’={u1,1, u1,2 } 
U2={u2,1, u2,2, u2,3 }  U2’={ u2,2} 
U3={u3,1, u3,2, u3,3 }  U3’={} 
U4={u4,1, u4,2, u4,3 }  U4’={u4,1, u4,2, u4,3 } 
 
U’ = {u , u  u  u  u , u  }  

Figure 3. The reduction of a kanpsack problem into a request scheduling with  
an energy consumption constraint problem 

. 

1,1 1,2, 2,2, 4,1, 4,2 4,3

 
 

The knapsack problem can be reduced to the request scheduling with an energy consumption 
constraint problem in a polynomial time as follows:  
 
First we transform the items of an instance of the knapsack problem to a set of pending requests 
of a scheduling problem as follows: Let CU = , i be an integer ( pi1 ≤≤ ), and q be an arbitrary 

integer which can divide the size of U and   1qUlog ≥≥ . We randomly and exclusively 

partition U into p subsets U1 ,U2 ,U3 …Up , where qU i =  for each i. Note when 1=
u,..., q,i

U , q=1 
and the problem can be solved easily. After the partitioning, we have U }u,u{ 2,i1,ii =  for 
each i and U . Now let n = p and request Ri correspond to Ui for each i, 
and we have a set of pending requests {R1 ,R2 , … , Rp}. The transformation is illustrated in 
Figure 3. 

p21 U......UU UUU=

 
We now create Γi of each request Ri as follows: We first have two sets of numbers 

 and  for each request Ri as follows:  }b,...,b,b{b q2,i2,i1,ii = }k,...,k,k{k q2,i2,i1,ii =

 
Because each U  has q items, there are 2q combinations in selecting the q 
items. Let a tuple Di,j = (Ii,j,1, …, Ii,j,q) denote the selection of the q items in Ui, where Ii,j,k = 1 
means that ui,k is selected, and Ii,j,k = 0 means that ui,k is not selected. R and V are two functions 
of Di,j such that R  and 
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 and  are equal to { and  

, respectively. Note that each ki,j and bi,j corresponds to the same Di,j. The 

creation of each bi and ki can be done in a O  time. Because the number of requests is 
bounded by C (

}b,..., q2,i k{k 1,ii =

)}D( q2,i
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U=C ), the time complexity for the creation of all bi and ki is O . 

Furthermore, since 

)2q**( qC

  1qUlog ≥≥ , the time complexity for the creation of all bi and ki is 
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  K

K is the "speed-up" required to satisfy the deadlines
when R1, R2, R3, and R4 are serviced at the maximum computation time.
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Figure 4. Reducing Inequation (4) into the deadline satisfaction constraint. 

)log( 2 CCO , i.e., a polynomial-time complexity. Note that the mapping of each bi,j to the 
selection combination can be saved without consuming a lot of space (i.e., being bounded by 
O(C2)). 
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The next step is to construct a request scheduling with an energy consumption constraint 
problem based on bi and ki: Let m  be the number of supported operating modes, and q2=

ik  for all i. Let Y  be the set of minimal energy consumption 
needed to service each request Ri , where yi, which corresponds to Ri, could be any positive 
integer constant. We define the energy consumption needed to service request Ri at the j-th 
operating mode be ei,j = yi+bi,j . As reader may notice, we create Y because bi,j=0 when all 
elements in Di,j are zero (that is, not selected).   

}y,...,y{ p3= ,y,y 21

 
The computation time of each Ri at each operating mode is created as follows: Let 

 be the set of the maximum computation time to service each request Ri , 
where zi > max(ki,j) for all j, and zi is any positive integer constant. Now we define the 
computation time ci,j to service the request Ri at the j-th operating mode. Let ci,j = zi - ki,j, where 
ki,j can be considered as the speed-up obtained from servicing Ri at the j-th operating mode.  

}z,..., p

 

Let . Suppose that U’ is a solution to the knapsack problem, Inequation (3) can be 

re-written as follows:  
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Let all requests be associated with the same deadline Td , that is, Td TdTd......Td p21 ==== , 
and K in Inequation (4) be the “speed-up” required to satisfy to the deadline Td  when every 
request is serviced at the maximum computation time , as illustrated in Figure 4. Obviously, 
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Since U is partitioned into , U’ can also be partitioned into p321 U,...,U,U,U
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Let  be the operating mode assignment for each request. When we 

substitute  with the corresponding elements in bi, Inequation (7) can be further 

re-written as follows: 

}p

E)by(
p

1i
a,ii i

≤+∑
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       (8) 

Obviously the E is the desired energy consumption bound, and the left-hand-side of Inequation 
(8) is the energy consuimption of all requests with a set of operating mode assignments A.  

 

We then substitute  with the corresponding elements in ki,. Repeat the substution as 

shown above, Inequation (6) becomes:  
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Inequation (9) denotes that all requests serviced under the operating mode assignment A should 
be completed no later than the deadline Td. This is the deadline satisfaction constraint. 
 
With the above reduction procedure, we successfully reduce a knapsack problem into a request 
scheduling with an energy consumption constraint problem. If there exists an algorithm that 
can find a voltage assignment A to solve the scheduling problem, then the corresponding 
knapsack problem can be solved. Since the scheduling problem is a NP problem, the 
scheduling problem is NP-Complete.  ٱ 
 
Corollary 1: The request scheduling with an energy consumption constraint problem remains 
NP-Complete even if the flash memory has only two operating modes available. 
 
Proof: The corollary directly follows from Theorem 1, given that 1U i =  for each i. Note that 

,   mU UU ≥≥=+ loglog1 222 , and the sizes of bi and ki are still bounded by U2 .   
 ٱ
 
 
4.3 An On-Line O(n) Approximate Algorithm 
 
Because the problem for request scheduling with an energy consumption constraint is 
NP-complete, an efficient approximate solution must be found. While the CPU workloads are 
more predictable in many systems [1,2,8,14], it is hard to know the I/O requesting patterns in 
advance for many applications. Therefore, it would be impractical to use an off-line scheduling 
algorithm in the system implementation. In this section, we proposed an efficient linear-time 
on-line algorithm based on the basic algorithm in the Section 3.1: Given a set of pending 
requests with given voltage level assignments and a newly arrived request, the on-line 
algorithm should try to meet requests’ deadlines and minimize the energy consumption. Flash 
memory with two voltage levels is considered in this paper. 



1 On-Line-Schedule(S,Ri) 
2 { 
3  (M, L, S) = insertByEDF(S,Ri); 
4 
5  While true Do { 
6    Let RL be the first request in L; 
7    Let RM be the first request in M; 
8  
9    If(RL or RM does not exist) 
10    Return S; /* Complete */ 
11  
12   If((the deadline of RM is satisfied) ||  
13    (RL is scheduled behind RM)) { 
14    Remove RM from M 
15    Continue; 
16   } 
17  
18   Switch the service of RL to the high-voltage; 
19   Remove RL from L; 
20  } /* End While; */  
21 } 
Notation definition: 
  
M = {RM1, RM2, …, RMx} is a collection of deadline-missing requests sorted in an EDF order. 
L = {RL1, RL2, …, RLy} is a collection of low-voltage requests sorted in an EDF order. 
 
* Requests in M, L preserve original order in S 
 

Figure 5. O(n) On-Line-Schedule algorithm 

 
 

During run-time, new requests may arrive at the system at any time. When a new request Ri 
arrives at the system, we first insert Ri into the original schedule S according to the order of 
their deadlines. The insertion of Ri has an O(n) time complexity, where n is the number of 
pending requests. The insertion may introduce some deadline violations, which may or may not 
exist already. After the insertion, the algorithm will try to satisfy the missed deadlines by 
servicing some requests at the high voltage level. Note that all requests in the queue are ready. 
If a request which was originally serviced at the low voltage level is now serviced at the high 
voltage level, and a speed-up of K time units is obtained, then all subsequent requests are also 
speeded up by K time units. The algorithm, as shown in Figure 5,  is illustrated as follows:  
 
When a new request Ri arrives, it is inserted into the original schedule S according to the order 
of their deadlines (Step 3). There might exist a collection of requests that miss their deadlines, 
i.e., M in Figure 5, with their tardy time known, where the tardy time of a request is the amount 
of time that the request misses its deadline. The insertion process has a time complexity O(n). 
After the insertion, the algorithm will then try to re-satisfy missed deadlines by voltage 
adjustment. From Steps 5 to 20, in order to re-satisfy a particular deadline violation, the 
algorithm adjusts all low-voltage-serviced requests that are precedent to the deadline violation 
to high voltage in turn, until the deadline is satisfied. If a deadline is still not satisfied after all 
precedent requests are serviced at the high voltage, then the algorithm turns to process next 



deadline violation. The proposed voltage adjustment algorithm is a greedy method, and it may 
not guarantee minimal energy consumption. (Note that internal requests mentioned in Section 
3.1 could participate in the voltage adjustment and scheduling process.) 
 
 
The time complexity of the on-line approximate algorithm is O(n), provided that queues L and 
M are maintained all the time. The on-line algorithm can be modified to support c different 
voltage levels, as follows: In Step 18, the voltage level of RL is raised by one level at a time. In 
Step 19, RL is removed from L only if RL is already serviced at the highest voltage level. The 
time complexity of the revised algorithm remains O(c*n) = O(n) for voltage assignment. 
 
Lemma 1 If there exists an optimal schedule that can satisfy all requests’ deadline, then the 
proposed on-line approximate algorithm can also satisfy all of the deadlines. 
 
Proof: Suppose that there exists an optimal solution that could not only minimize the energy 
consumption but also satisfy the deadlines of all requests. Let S be the order of requests in the 
optimal solution. Because EDF is optimal in meeting requests’ deadlines when all requests are 
ready at time 0 [12, 13], requests in S can be re-ordered into an EDF schedule, and the 
deadlines of all requests are still satisfied. As astute readers may notice, the only difference 
between the optimal schedule after reordering and the schedule under the proposed on-line 
algorithm is that the on-line approximate algorithm may unnecessarily raise the supplied 
voltages of many requests before Ri, compared to the optimal solution. ٱ 
 
5. Experimental Results 

 
4.1 Overview 
 
The capability of the proposed mechanism is evaluated over a typical flash memory which 
supports two voltage levels, and the characteristics of the flash memory can be found in Table 
1.(b). The workload traces were gathered by emulating web-surfing applications over a 
portable device, with a 50% capacity utilization initially. As mentioned in Section 3.1, a greedy 
reclaiming policy [4] was adopted in the experiments. The characteristics of the traces, the 
internal garbage collection activities, and the configuration of the flash memory were described 
in Table 2.  
 
There were two types of metrics used in the experiments: energy consumption and 
performance. The total energy consumption for each experiment was measured in Joule. In 
order to evaluate the energy efficiency of the proposed mechanism, the number of requests 
serviced at the high voltage level was measured. The performance of the proposed mechanism 
was measured in terms of the average response time, the accumulated tardy time, and the 
number of deadline violations, where each (external) request was associated with a deadline to 
reflect the expected response time. We are interested in the performance of the proposed 
mechanism under limited energy consumption. We evaluated the mechanism under three 
voltage adjustment policies: dynamic adjustment policy, high voltage policy (5v), and low 
voltage policy (3.3v).  



  
Traces’ Characteristics 

File system FAT32  Garbage Collection Activities 
Block Erases 2,798Applications Web Browser &

Email Client Live Pages Copied 6,798
Sector Size 512 bytes  
Duration 3.3 hours  
Read / Write Ratio 48 / 52 Flash Memory Characteristics 
Mean Read Size  8.2 sectors Capacity 16 Mbytes
Mean Write Size  5.7 sectors Block Size 16 Kbytes

Page Size 512 bytesInter-Arrival Time Mean: 32 ms
Std. Dev. : 229 ms Initial utilization 50%

Bytes Written 18.284MB

 

 
Bytes Read 23.651MB  

 
Table 2: The Characteristics of Traces and Flash Memory  

 

 
 

 
 
5.2 Performance Evaluation over Realistic Traces 
 
In this part of experiments, we evaluated the proposed mechanism over realistic traces. Two 
parameters were used to manage the workload and performance requirements of the traces: 
inter-arrival time and deadlines of requests. The smaller the inter-arrival time of requests, the 
heavier the system workload was. On the other hand, when a request was given a more urgent 
deadline, the system had a higher pressure to service the request in a shorter time frame. The 
experiments under different inter-arrival times were to evaluate the performance and behavior 
of the proposed mechanism under different system workloads. The experiments under different 
deadline/response-time requirements were to evaluate the proposed mechanism under different 
performance requirements. 
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 Figure 6(a). Energy Consumption  Figure 6(b). Average Response Time 



5.2.1 Performance Evaluation of Request Workloads 
 
In this part of experiments, the inter-arrival time of requests was controlled by a parameter 
called the scaling factor, which ranged from 0 ms to 2.5 ms. When the scaling factor was x ms, 
the inter-arrival time of two consecutive requests was enlarged by x ms. In other words, the 
larger the scaling factor, the lighter the workload is. The original inter-arrival time of the traces 
can be found in Table 2. Figures 6.(a) and 6.(b) show the energy consumption and the average 
response time of the traces under different voltage adjustment methods. Here the X-axis 
denotes the scaling factor of the inter-arrival time in ms, and the Y-axis of Figure 6.(a)/(b) 
denotes the total energy consumption (in Joule) and the average response time (in ms) of each 
(external) request. “D”, “H”, and “L” denote the voltage adjustment policies: dynamic 
adjustment policy, high voltage policy (5v), and low voltage policy (3.3v). The response time 
requirements of requests were set as 40ms (i.e., deadlines). 
 
It was shown in Figure 6.(a) that the dynamic adjustment policy could substantially decrease 
the energy consumption when the system workload was not heavily loaded. More requests 
were serviced at the low voltage level since more flexibility in scheduling was allowed. When 
the system workload was heavy, the dynamic adjustment policy tended to service more 
requests at the high voltage level because of performance requirements. It was clear that the 
dynamic adjustment policy was effective in energy saving. Figure 6.(b) shows the average 
response time of (external) read/write requests under the same configuration. Note that the 
response time of the requests due to garbage collection was not included in the performance 
indices because users of flash memory would not be able to observe the response time of such 
requests. However, the energy consumption of traces should and did include that for garbage 
collection because the energy consumption of traces should include everything, such as those 
caused by garbage collection. In Figure 6(b), it was surprised to see that the average response 
time of requests under the dynamic adjustment policy was very close to that under the high 
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Figure 7(c)
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Figure 7(a). Number of Deadline Violations 
Figure 7(b). Percentage of High Voltage Page

Operations 
Figure 7(c). Total Tardy Time 

 



voltage method. The performance of the dynamic adjustment policy was almost as the same as 
that of the high voltage, except that the dynamic adjustment policy consumed much less energy. 
The dynamic adjustment policy greatly outperformed the low voltage method. As the system 
workload dropped, the energy consumption of traces under the dynamic adjustment policy was 
quickly approaching that under the low voltage method. 
 
Figure 7.(a) shows the number of deadline violations over different system workloads. As we 
expected, the dynamic adjustment policy eliminated nearly the same number of deadline 
violations serviced by high voltage policy. In the Figure 7.(a) we also observed the deadline 
violations decreased rapidly when system was not heavily loaded. The performance 
requirements were efficiently satisfied by the dynamic adjustment policy but much less energy 
was consumed. Figure 7.(b) showed the percentage of high voltage page operations. Note that a 
request may consist of a series of page operations, where the page size is 512 bytes. For 
example, a 40KB write request is identical to 80 page writes. Figure 7.(b) shows that the 
percentage of high voltage operations significantly dropped from 70% to 20% when the system 
workload was relaxed. Clearly, the dynamic adjustment policy had a significant portion of 
requests being serviced at low voltage. Figure 7.(c) shows the total tardy time. Note that the 
total tardy time was the sum of all deadline-missing requests’ tardy time. 
 
5.2.2 Performance Evaluation of Various Performance Requirements 
 
In this part of experiments, we varied the deadline of read / write requests to observe the 
efficiency of the dynamic adjustment policy in the satisfaction of the performance 
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Figure 8. Average Response Time 
 
(a) Dynamic-Voltage-Adjustment  
(b) Services at a High Voltage  
(c) Services at a Low Voltage 

X-axis denotes inter-arrival time scaling factor (ms). 
Y-axis denotes different deadlines. 
Z-axis denotes average response time (ms). 

 



requirements. Requests were given different deadlines to reflect different performance 
requirements (and different scheduling windows, i.e., deadlines), where a smaller scheduling 
window imposed more stringent requirements for system in servicing requests. The deadline 
was increased from 2.5ms to 1280ms, and stepped by doubling. In this part of experiment, we 
assigned the same deadline for both read and write requests. We present experimental results 
with different deadlines and inter-arrival times to show the overall behavior of the dynamic 
adjustment policy. 
 
Figure 8. shows that the average response time increased when deadlines became less urgent. 
When requests had less urgent deadlines, the dynamic adjustment policy would tend to 
increased the average response time accordingly, and the energy consumption was reduced. A 
similar phenomenon could also be observed in Figures 9.(b) and 9.(c). Note that the variations 
of deadlines had no impacts on the energy consumption under the high voltage policy and low 
voltage policy since no voltage adjustments were allowed. Figure 9 showed that the dynamic 
adjustment policy could significantly reduce the energy consumption when the performance 
requirements were less stringent. Figure 9.(a) shows that the impacts of deadline variation were 
very similar to the variation of the system workload. The energy consumption of the high 
voltage policy and low voltage policy didn’t change when the system workload changed, as 
shown in Figures 9.(b) and 9.(c). 
 
The number of deadline violations, the number of high voltage page operations, and the total 
tardy time are shown in Figure 10.(a), 10.(b), and 10.(c), respectively. The results are very 
encouraging. As shown in Figure 10.(a), the dynamic adjustment policy could meet the 
deadlines of requests as those serviced by the high voltage level. In other words, the system 
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Figure 9. Energy Consumption 

a) Dynamic-Voltage-Adjustment  
(b) Services at a High Voltage  
(c) Services at a Low Voltage 

X-axis denotes inter-arrival time scaling factor (ms). 
Y-axis denotes different deadlines. 
Z-axis denotes total energy consumption (Joule). 

 

 



performance was fulfilled with a much less energy consumption! The same phenomenon could 
also be observed for the total tardy time, as shown in Figure 10.(b). The percentage of page 
operations serviced at the high voltage level quickly decreased whenever possible, as shown in 
Figure 10.(c). 
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Figure 10(a). Number of Deadline Violations. 
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6. Conclusion 
 
In this paper, we propose a methodology for dynamic voltage adjustment of flash memory 
storage systems to manage the energy consumption and, at the same time, to meet performance 
requirements. A scheduling framework with a voltage adjustment mechanism is proposed. 
When the system is heavily loaded, a reasonable portion of operations will be performed at a 
high voltage level to deliver a reasonable performance. When the system workload is low, the 
proposed mechanism will service requests at a low voltage level without sacrificing the system 
performance. We show that the scheduling with an energy consumption constraint problem is 
NP-Complete. We also propose an efficient on-line scheduling algorithm with an objective to 
satisfy the response time of requests and, at the same time, to minimize the energy consumption 
of flash memory. The strength of the proposed mechanism is evaluated by a series of 
experiments over realistic traces and a typical multi-voltage-capable NAND flash memory, for 
which we have very encouraging results. 
 
For future research, we shall further investigate joint scheduling of microprocessors and flash 
memory under dynamic voltage adjustment. We shall also investigate cache-related behavior 
and multiple resources management for energy consumption over portable devices. We believe 
that more research in this direction may prove being very rewarded. 
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