

A Dynamic-Voltage-Adjustment Mechanism in
Reducing the Energy Consumption of
Flash Memory for Portable Devices1

Li-Pin Chang, Tei-Wei Kuo, and Shi-Wu Lo
{d6526009,ktw,d89015}@csie.ntu.edu.tw

Department of Computer Science and Information Engineering
National Taiwan University
Taipei, Taiwan 106, ROC

Fax:+886-2 23628167

ABSTRACT

With the increasing popularity of portable devices, there is a strong demand of
power management mechanisms for microprocessors and other subsystems.
Advanced microprocessor and flash memory chips design now supports several
voltage levels and allows more intelligence in managing energy consumption to
lengthen the operating time of portable devices. In this paper, we propose a
dynamic-voltage-adjustment method to reduce the energy consumption of a flash
memory storage system, depending on the system workload. The usefulness of the
proposed method is demonstrated by a series of experiments over a realistic setup,
for which we have very encouraging results.

Keywords: request scheduling, flash memory, energy consumption, storage
systems, portable devices, real-time performance.

1 This paper is an extended version of a conference paper appeared in the IEEE International Conference on
Consumer Electronics, 2001 [14].

1. Introduction

With the increasing popularity of portable devices, there is a strong demand of energy
management mechanisms for microprocessors and other subsystems. Advanced
microprocessor and flash memory chips design now supports several voltage levels and allows
more intelligence in managing energy consumption to lengthen the operating time of portable
devices. The goal is to let a portable device operate at a low-voltage level, whenever it is
possible, to save battery power. An intelligent energy management mechanism should be able
to deliver reasonable system performance at the lowest possible energy consumption.

Recently researchers have started investigating voltage-clock-scaling scheduling algorithms
for microprocessors, e.g., [1,2,7,8,9]. The main idea is to let a microprocessor operate at a low
energy consumption mode to fully utilize any possible microprocessor idle time, while the
system is not heavily loaded. A reasonable system performance is delivered. In a portable
device, flash memory also contributes a significant portion of energy consumption. For
example, a typical 16MB flash memory consumes 264mW for page writes, where an ARM10
processor consumes 275mW when running at 390MIPS. But, little work is done in the power
management of flash memory. In particular, Douglis, et al. [5] provided a series of energy
consumption measurement for flash memory under different percentages of capacity utilization.
While the size of flash memory in a system is increasing, the issue for proper management of
energy consumption becomes very critical.

In this paper, we propose a dynamic-voltage-adjustment method to manage the energy
consumption of flash memory storage systems. When the system is heavily loaded, a
reasonable portion of operations will be performed at a high voltage level to deliver a
reasonable performance. However, when the system workload is low, the proposed mechanism
will try to service requests at a low voltage level without sacrificing the system performance.
We show that the scheduling with an energy consumption constraint problem is NP-Complete.
We then propose an efficient on-line scheduling algorithm with an objective to satisfy the
response time of requests and, at the same time, to minimize the energy consumption of flash
memory. The strength of the proposed mechanism is evaluated by a series of experiments over
realistic traces and typical flash memory characteristics, for which we have very encouraging
results.

The rest of the paper is organized as follows: Section 2 summarized the related work. Section 3
presents the system model and the system architecture for flash-memory file systems. Section 4
proposes our dynamic-voltage-adjustment method in managing the energy consumption of
flash memory storage systems. We also show the NP-Completeness of the problem and
propose an O(n) on-line approximate algorithm. The optimality of the algorithm in meeting
request deadlines (in a restrictive sense for energy consumption) is also shown. Section 5
provides our experimental results over realistic workloads, for which we have very
encouraging results. Section 6 is the conclusion.

2. Related Work

The fundamental theory behind the recently proposed voltage-clock-scaling techniques is the
power consumption model of CMOS. The power dissipation of CMOS consists of switching
power, short-circuit power, and leakage power. Chandrakasan et al. [17] showed that the
switching power dominates the total power consumption, and it could be represented as:

fVCP 2
DDLα= (1)

where LCα is the effective switched capacitance, V is the supply voltage, and is the clock
frequency. In Equation (1), we observe that the energy consumption is proportional to the
frequency and also the square of the supplied voltage. The equation suggests the adjustment of
voltage is the most efficient way to reduce the energy consumption. Meanwhile, with the
demanding of a variable voltage control, Namgoong et al. [15] presented a highly-efficient
DC-DC bulk-converter switching regulator with a variable voltage output. The proposed
variable voltage control was efficient in voltage adjustment.

DD f

Mark, et al. [7] is among the pioneers who investigated the possibility of having the processor
operating at a low-power-consumption mode, while the system still guarantees the real-time
response of requests (in terms of deadline satisfaction). They also proposed a variable-voltage
scheduling method based on the fact that the energy consumption is proportional to the square
of the supplied voltage, as described in Equation (1). The energy consumption is effectively
reduced, while no deadline violation occurs. They [7] defined a new CPU performance metric,
named MIPJ, which denotes MIPS per Watt (note that the time factor is eliminated). They
indicated that although the energy consumption decreases linearly with the frequency, the
reducing of the frequency won’t reduce the total energy consumption (or MIPJ) because it
takes a longer time to complete the computation of jobs when the frequency is low. In other
words, MIPJ remains with the changing of the frequency. Although MIPJ remains, Nakamoto,
et al. [2] pointed out that the adjustment of the frequency is still useful for a battery-powered
device, because of the property of Lithium-Ion batteries. A Lithium-Ion battery does not have a
linear relationship between the discharging current and the battery life. They measured and
proposed the discharging property of a battery. It can be modeled approximately by the
following formula:

bCtI =⋅α (2)
where I is the discharging current, t is the usage time, 1>α is a constant, and C is the amount
of the battery capacity. Obviously, the relationship of I and t is not linear. Because and
Equation (1), the relationship of the frequency f and the discharging current I is linear.
Nakamoto concluded that the reducing of f effectively lengthens the endurance of the battery,
because the reducing of the frequency also reduces the discharaging current. With a smaller
discharging current and the property shown in Equation (2), more “energy” can be drained
from the batteries.

b

VIP ⋅=

Recently researchers started noticing that there are still many power-hungered devices in
portable devices. Hong, et al. [9] proposed an integrated variable-voltage control mechanism
for the micro-processor and the cache sub-system. Li [18] surveyed the energy consumption of
disk, and he used a spin-off technique to substantially reduce the energy consumption. Douglis
et al. [5] conducted a series of experiments on storage devices for mobile computer, such as a
linear flash memory card and a PCMCIA flash disk. The most important conclusion of their
work was that the energy consumption of a flash memory storage device depends on the
capacity utilization of the device. They reported that the energy consumption of a flash
memory with a 95% capacity utilization is increased by 70%~190%, compared to a flash
memory with 40% capacity utilization. The rationale behind the results comes from the needs
for garbage collection. In Section 3.1 we shall illustrate the garbage collection behavior of a
falsh memory, and how it has impacts on the system workload.

3. System Model

3.1 Flash Memory Characteristics

Flash memory is a non-volatile, write-once, and bulk-erase memory device. A flash memory
chip consists of many fixed-sized blocks, where a block is the smallest erase unit. The size of a
block varies from 8Kbytes to 64Kbytes, depends on the hardware design. Furthermore, a block
consists of many fixed-sized pages, where a page is the smallest unit of a read / write operation.
Typically, a page is 512 bytes large, which is identical to a disk sector. However, flash memory
is free from any seek penalty since it is a random-access memory device. It is extremely fast on
data retrieval. Because flash memory is write-once and bulk-erase, no in-place updating of data
in a block is allowed unless an (bulk) erase on the block is performed first. The erase operations
are relative slow, and each block on flash memory has an erase cycle limit, which ranges from
100,000 to 1,000,000. A worn-out block will suffer from frequent write errors. As a result,
flash-memory-based storage systems should try not to overwrite data on flash memory. Instead,
a new version of data is usually written at any available space, and the old copy of the data is
then invalidated. Flash memory Translation Layer (FTL) is introduced to emulate a block
device for flash memory [4,11,20,28] so that users/applications have transparent access of data
at dynamically allocated space. Note that available space is created by erasing and recycling
data that are no longer used. Such activities are called garbage collection in flash memory.

The garbage collection policy may choose to recycle unused space on a particular block while
there are still few valid data on it. Therefore, valid data must be copied to somewhere else
before the block erase takes place. The garbage collection consists of a series of reads, writes,
and erases. These internally generated requests are referred as “internal requests” in this paper,
and requests received from the file system are referred as “external requests”. Garbage
collection is one of the major issues for flash memory management, and prior researches had
studied this topic extensively [4,10,11,16]. A well-designed garbage collection policy should

Vcc = 5 v, Block Size = 64KB

Block Write Block Erase
Vpp Power Consumption Performance Power Consumption Performance
5v 375mW 0.5s 250mW 0.4s
12v 540mW 0.4s 480mW 0.3s

Table 1(a).
Performance and power consumption of a typical
NOR flash memory [20] that supports 12v and 5v.

Block Size = 16KB, Page Size = 512B

Page Read Page Write Block Erase
Vcc Power

Consumption Performance Power
Consumption Performance Power

Consumption Performance

3.3v 330mW 0.3ms 264mW 0.9ms 264mW 1.6ms
5v 700mW 0.182ms 600mW 0.546ms 600mW 0.975ms

Table 1(b).
Performance and power consumption of a typical

NAND flash memory [22,23] that supports 3.3v and 5v.

*Measured from a NAND flash memory evaluation board.

reduce the number of data copyings and, at the same time, reduce the number of erases. In the
experiment setup of this paper, we used the greedy reclaiming policy [4], which always selects
the block that has the largest number of invalidated data to reclaim.

Adjustable Voltage
Source

Multiple Voltage Levels
Supported Flash Memory

File
System

Buffer
Cache

Block Device
Emulation

Request
Scheduling

Voltage
Control API

System Software Hardware

Figure 1. System Architecture.

There are two major different architectures in flash memory design [27]: NOR and NAND.
NOR [20] flash memory is designed for EEPROM replacement. On the other hand, NAND
[16,17,19] / AND [18] flash memory is specifically designed for data storage. NAND flash
memory has a higher density and is block-oriented. In this paper, we consider NAND flash
memories in constructing the storage system. Advanced flash memory design now supports
multiple voltage levels. The characteristics of the flash memory are summarized in Table 1
(note that NOR flash memories can also support multiple voltage levels). As it shown in Table
1, flash memories have higher performance when higher voltage supplied. For example, as
pointed out in Equation (1), NAND flash memory consumes 600mW for page writes on 5v, and
consumes 264mW on 3.3v. The power consumption is indeed proportional to the square of the
supplied voltage. The usefulness of energy saving can be demonstrated by a simple calculation:
the energy consumption of a page write is 0.6*0.000546 = 0.3276mJ on 5v, and 0.264*0.0009
= 0.2376 mJ on 3.3v, which is 72% of that on 5v. The simple calculation illustrates the
usefulness of voltage adjustment on energy saving.

3.2 System Architecture

Workloads of a typical I/O subsystem are more unpredictable, compared with CPU workloads.
Even though applications may issue I/O requests periodically, the requests still arrive at the
corresponding block devices in a batch. The write burst could easily flood the request queue of
the system and deteriorate the response time of requests quickly. Fortunately, the phenomenon
may be resolved by the bandwidth reservation concept up to a certain degree [19]. The sources
of unpredictability also include those from the occasional delay by the hardware, such as
reading error, writing error, and calibration. Because it is not the focus of this paper, we refer
interested readers to [19] for details.

Many embedded systems are performance-sensitive. The performance of a storage system can
be measured by the response time of requests. For the purpose of our mechanism, we assign a
deadline to each request as a soft bound for its response time and to reflect the performance

requirements of the system. Note that request deadlines are soft deadlines, where a similar
concept could be found in the I2O specification [26]. In other words, the system shall try to
fulfill soft deadlines. The percentage of deadline violations somehow reflects the satisfaction
level of the system performance requirements.

The system architecture of the flash memory storage system is illustrated in Figure 1: The file
system issued requests, and the requests are queued in the request queue. A proper mechanism
should schedule requests and adjust requests’ voltage levels to satisfy the performance
requirements under a limited amount of energy consumption. The mechanism for block device
emulation translates requests into flash memory operations and execute them according to their
voltage assignment.

In this paper, we have the following assumptions:

A1: Requests can not be preempted by each another.
A2: Each entire request is serviced at the same voltage level.
A3: Voltage-switching introduces negligible overhead [1,2,7,8,9].

The assumption A1 and A2 are very reasonable because I/O requests can hardly be preemptible.
Since the adjustable voltage can be generated efficiently, the voltage-switching overhead is not
considered in this work.

4. Algorithm

In this section, we first define the scheduling problem and show a basic polynomial-time
algorithm. We then prove the NP-Completeness of the problem and propose an efficient
approximate on-line algorithm, which has a linear time complexity.

4.1 The Basic Algorithm

Each request Ri is associated with an arrival time Tai , a completion time Tci, and a deadline Tdi.
The time between Tai and Tci depends on the system workload and the supplied voltage. Let S

R1(L) R3(L)R2(L)
Td3*Td2Td1

(a) Requests are all serviced at the low
voltage level

(deadline of R2 is missed)

R1(H) R3(L)R2(L)

Td3Td2Td1

(b) R1 is serviced at the high voltage level
(all deadlines are satisfied)

 Figure 2. Concept of voltage-adjustment in scheduling.

= {R1,R2… Rn} be a collection of pending requests for flash memory. The goal of request
scheduling with voltage adjustment is to provide requests a good response time and, at the
same time, minimize the total energy consumption.

We propose to first schedule requests in S in an earliest deadline first (EDF) order, where EDF
is an optimal real-time non-preemptive scheduling algorithm if all requests are ready at time 0
[12,13,29]. Under EDF, a request with an earlier deadline is assigned a higher priority. We first
generate an EDF schedule in polynomial time. In the schedule, requests are initially serviced at
the low voltage level. If there is any request that can not meet its deadline, we will raise the
voltage level of the first k requests until all requests meet their deadlines, or all requests are
already serviced at the high voltage level. The number k must be minimized. The voltage
adjustment have a time complexity O(n2), where n is the number of pending requests.
Therefore, the basic algorithm has a polynomial time complexity.

We shall illustrate the idea by an example, shown in Figure 2. Suppose that there are three
pending requests R1, R2, and R3. with deadlines Td1, Td2, and Td3, where Td1 < Td2 < Td3.
Figure 2(a) shows that R2 will miss its deadline if all requests are serviced at the low voltage
level. As shown in Figure 2(b), when the first pending request, i.e., R1, is serviced at the high
voltage level, all requests will meet their deadlines.

4.2 The Complexity of Request Scheduling with Minimal Energy
Consumption

Definition: Request Scheduling with an Energy Consumption Constraint

Suppose a flash memory supports m operating modes in handling a request. Let S =
{R1 ,R2 , … , Rn} be a set of pending requests, where each request Ri is associated with a
pair (Γi, Tdi), where Tdi is the deadline, and Γi = {(ei,1, ci,1), …, (ei,m, ci,m)}. ei,j and ci,j are
the energy consumption and computation time under the corresponding operating mode.
Given an energy consumption bound +∈ZE , does there exist a schedule and a operating
mode assignment A for each request such that all deadlines are satisfied, and the total
energy consumption is no more than E.

Theorem 1: The Request Scheduling with an Energy Consumption Constraint problem is
NP-complete.

Proof: The Request Scheduling with an Energy Consumption Constraint problem is a NP
problem because there exists a non-deterministic polynomial-time algorithm that can guess and
verify a solution in a polynomial time. The NP-Hardness of the problem can be shown by a
reduction from a well-known NP-Complete problem, e.g., the knapsack problem [18], as
follows:

The knapsack problem is defined as follows: Given a finite set U of items, the size and the
weight of u are denoted as s(u) and v(u) for each item u U∈ , respectively, where s(u) and v(u)
are both positive integers. The knapsack problem is to determine whether there exits a subset

such that the following constraints are satisfied: U'U ∈
B)u(s

'Uu
≤∑

∈
 (3)

K)u(v
'Uu

≥∑
∈

 (4)

u1,1

u1,2

u1,3

u2,1

u2,2

u2,3

u3,1

u3,2

u3,3

u4,1

u4,2

u4,3

R1 R2 R3 R4

U = {u1,1, u1,2, u1,3, u2,1, u2,2, u2,3, u3,1, u3,2, u3,3, u4,1,
u4,2, u4,3 }

U is partitioned into four subsets, and each
subset has three elements. Therefore we have
our requests

f and eight operating modes for
each request

U1={u1,1, u1,2, u1,3 } U1’={u1,1, u1,2 }
U2={u2,1, u2,2, u2,3 } U2’={ u2,2}
U3={u3,1, u3,2, u3,3 } U3’={}
U4={u4,1, u4,2, u4,3 } U4’={u4,1, u4,2, u4,3 }

U’ = {u , u u u u , u }

Figure 3. The reduction of a kanpsack problem into a request scheduling with
an energy consumption constraint problem

.

1,1 1,2, 2,2, 4,1, 4,2 4,3

The knapsack problem can be reduced to the request scheduling with an energy consumption
constraint problem in a polynomial time as follows:

First we transform the items of an instance of the knapsack problem to a set of pending requests
of a scheduling problem as follows: Let CU = , i be an integer (pi1 ≤≤), and q be an arbitrary

integer which can divide the size of U and 1qUlog ≥≥ . We randomly and exclusively

partition U into p subsets U1 ,U2 ,U3 …Up , where qU i = for each i. Note when 1=
u,..., q,i

U , q=1
and the problem can be solved easily. After the partitioning, we have U }u,u{ 2,i1,ii = for
each i and U . Now let n = p and request Ri correspond to Ui for each i,
and we have a set of pending requests {R1 ,R2 , … , Rp}. The transformation is illustrated in
Figure 3.

p21 U......UU UUU=

We now create Γi of each request Ri as follows: We first have two sets of numbers

 and for each request Ri as follows: }b,...,b,b{b q2,i2,i1,ii = }k,...,k,k{k q2,i2,i1,ii =

Because each U has q items, there are 2q combinations in selecting the q
items. Let a tuple Di,j = (Ii,j,1, …, Ii,j,q) denote the selection of the q items in Ui, where Ii,j,k = 1
means that ui,k is selected, and Ii,j,k = 0 means that ui,k is not selected. R and V are two functions
of Di,j such that R and

}u,...,u,u{ q,i2,i1,ii =

∑=
kjiI

kjiji ID
,,

)(,,, kiuu)(* , ∑=
kjiI

kikjiji uvIDV
,,

)(*)(,,,,

),...,D(R 1,i

)

, respectively.

 and are equal to { and

, respectively. Note that each ki,j and bi,j corresponds to the same Di,j. The

creation of each bi and ki can be done in a O time. Because the number of requests is
bounded by C (

}b,..., q2,i k{k 1,ii =

)}D(q2,i

b,b{b 2,i1,ii =

V),...,D(V{ 1,i

}q2,

2*q q

k,...,k, i2,i

(

)}D(R q2,i

U=C), the time complexity for the creation of all bi and ki is O .

Furthermore, since

)2q**(qC

 1qUlog ≥≥ , the time complexity for the creation of all bi and ki is

R1 R3R2

Td = Td1 = Td2 = Td3 = Td4

R4

 K

K is the "speed-up" required to satisfy the deadlines
when R1, R2, R3, and R4 are serviced at the maximum computation time.

 .∑
=

p

1i
iz

Figure 4. Reducing Inequation (4) into the deadline satisfaction constraint.

)log(2 CCO , i.e., a polynomial-time complexity. Note that the mapping of each bi,j to the
selection combination can be saved without consuming a lot of space (i.e., being bounded by
O(C2)).

i
q b2m ===

z,z,z{Z 321=

yE
q

1i
i−∑

=

Td)z(
p

1i
i =−∑

=

The next step is to construct a request scheduling with an energy consumption constraint
problem based on bi and ki: Let m be the number of supported operating modes, and q2=

ik for all i. Let Y be the set of minimal energy consumption
needed to service each request Ri , where yi, which corresponds to Ri, could be any positive
integer constant. We define the energy consumption needed to service request Ri at the j-th
operating mode be ei,j = yi+bi,j . As reader may notice, we create Y because bi,j=0 when all
elements in Di,j are zero (that is, not selected).

}y,...,y{ p3= ,y,y 21

The computation time of each Ri at each operating mode is created as follows: Let

 be the set of the maximum computation time to service each request Ri ,
where zi > max(ki,j) for all j, and zi is any positive integer constant. Now we define the
computation time ci,j to service the request Ri at the j-th operating mode. Let ci,j = zi - ki,j, where
ki,j can be considered as the speed-up obtained from servicing Ri at the j-th operating mode.

}z,..., p

Let . Suppose that U’ is a solution to the knapsack problem, Inequation (3) can be

re-written as follows:

B=

∑∑
=∈

−≤
p

1i
i

'Uu
yE)u(s (5)

Let all requests be associated with the same deadline Td , that is, Td TdTd......Td p21 ==== ,
and K in Inequation (4) be the “speed-up” required to satisfy to the deadline Td when every
request is serviced at the maximum computation time , as illustrated in Figure 4. Obviously,

. Inequation (4) can be re-written as follows: K

∑∑ ∑
== ∈

−≥
p

1i
i

p

1i 'Uu
Td)z()u(v

i

 (6)

Since U is partitioned into , U’ can also be partitioned into p321 U,...,U,U,U

'U,...,'U,'U,'U p321

a,......,a,a{A 21=

∑
∈ 'Uu i

)u(s

u

, where Ui’ is a subset of Ui for each i. Therefore Inequation (5) becomes:

 1qUlog ≥≥

E))u(sy(
p

1i 'Uu
i

i

≤+∑ ∑
= ∈

 (7)

Let be the operating mode assignment for each request. When we

substitute with the corresponding elements in bi, Inequation (7) can be further

re-written as follows:

}p

E)by(
p

1i
a,ii i

≤+∑
=

 (8)

Obviously the E is the desired energy consumption bound, and the left-hand-side of Inequation
(8) is the energy consuimption of all requests with a set of operating mode assignments A.

We then substitute with the corresponding elements in ki,. Repeat the substution as

shown above, Inequation (6) becomes:

∑
∈ '

)(
iU

uv

Td)kz(
p

1i
a,ii i∑

=
≤− (9)

Inequation (9) denotes that all requests serviced under the operating mode assignment A should
be completed no later than the deadline Td. This is the deadline satisfaction constraint.

With the above reduction procedure, we successfully reduce a knapsack problem into a request
scheduling with an energy consumption constraint problem. If there exists an algorithm that
can find a voltage assignment A to solve the scheduling problem, then the corresponding
knapsack problem can be solved. Since the scheduling problem is a NP problem, the
scheduling problem is NP-Complete. ٱ

Corollary 1: The request scheduling with an energy consumption constraint problem remains
NP-Complete even if the flash memory has only two operating modes available.

Proof: The corollary directly follows from Theorem 1, given that 1U i = for each i. Note that

, mU UU ≥≥=+ loglog1 222 , and the sizes of bi and ki are still bounded by U2 .
 ٱ

4.3 An On-Line O(n) Approximate Algorithm

Because the problem for request scheduling with an energy consumption constraint is
NP-complete, an efficient approximate solution must be found. While the CPU workloads are
more predictable in many systems [1,2,8,14], it is hard to know the I/O requesting patterns in
advance for many applications. Therefore, it would be impractical to use an off-line scheduling
algorithm in the system implementation. In this section, we proposed an efficient linear-time
on-line algorithm based on the basic algorithm in the Section 3.1: Given a set of pending
requests with given voltage level assignments and a newly arrived request, the on-line
algorithm should try to meet requests’ deadlines and minimize the energy consumption. Flash
memory with two voltage levels is considered in this paper.

1 On-Line-Schedule(S,Ri)
2 {
3 (M, L, S) = insertByEDF(S,Ri);
4
5 While true Do {
6 Let RL be the first request in L;
7 Let RM be the first request in M;
8
9 If(RL or RM does not exist)
10 Return S; /* Complete */
11
12 If((the deadline of RM is satisfied) ||
13 (RL is scheduled behind RM)) {
14 Remove RM from M
15 Continue;
16 }
17
18 Switch the service of RL to the high-voltage;
19 Remove RL from L;
20 } /* End While; */
21 }
Notation definition:

M = {RM1, RM2, …, RMx} is a collection of deadline-missing requests sorted in an EDF order.
L = {RL1, RL2, …, RLy} is a collection of low-voltage requests sorted in an EDF order.

* Requests in M, L preserve original order in S

Figure 5. O(n) On-Line-Schedule algorithm

During run-time, new requests may arrive at the system at any time. When a new request Ri
arrives at the system, we first insert Ri into the original schedule S according to the order of
their deadlines. The insertion of Ri has an O(n) time complexity, where n is the number of
pending requests. The insertion may introduce some deadline violations, which may or may not
exist already. After the insertion, the algorithm will try to satisfy the missed deadlines by
servicing some requests at the high voltage level. Note that all requests in the queue are ready.
If a request which was originally serviced at the low voltage level is now serviced at the high
voltage level, and a speed-up of K time units is obtained, then all subsequent requests are also
speeded up by K time units. The algorithm, as shown in Figure 5, is illustrated as follows:

When a new request Ri arrives, it is inserted into the original schedule S according to the order
of their deadlines (Step 3). There might exist a collection of requests that miss their deadlines,
i.e., M in Figure 5, with their tardy time known, where the tardy time of a request is the amount
of time that the request misses its deadline. The insertion process has a time complexity O(n).
After the insertion, the algorithm will then try to re-satisfy missed deadlines by voltage
adjustment. From Steps 5 to 20, in order to re-satisfy a particular deadline violation, the
algorithm adjusts all low-voltage-serviced requests that are precedent to the deadline violation
to high voltage in turn, until the deadline is satisfied. If a deadline is still not satisfied after all
precedent requests are serviced at the high voltage, then the algorithm turns to process next

deadline violation. The proposed voltage adjustment algorithm is a greedy method, and it may
not guarantee minimal energy consumption. (Note that internal requests mentioned in Section
3.1 could participate in the voltage adjustment and scheduling process.)

The time complexity of the on-line approximate algorithm is O(n), provided that queues L and
M are maintained all the time. The on-line algorithm can be modified to support c different
voltage levels, as follows: In Step 18, the voltage level of RL is raised by one level at a time. In
Step 19, RL is removed from L only if RL is already serviced at the highest voltage level. The
time complexity of the revised algorithm remains O(c*n) = O(n) for voltage assignment.

Lemma 1 If there exists an optimal schedule that can satisfy all requests’ deadline, then the
proposed on-line approximate algorithm can also satisfy all of the deadlines.

Proof: Suppose that there exists an optimal solution that could not only minimize the energy
consumption but also satisfy the deadlines of all requests. Let S be the order of requests in the
optimal solution. Because EDF is optimal in meeting requests’ deadlines when all requests are
ready at time 0 [12, 13], requests in S can be re-ordered into an EDF schedule, and the
deadlines of all requests are still satisfied. As astute readers may notice, the only difference
between the optimal schedule after reordering and the schedule under the proposed on-line
algorithm is that the on-line approximate algorithm may unnecessarily raise the supplied
voltages of many requests before Ri, compared to the optimal solution. ٱ

5. Experimental Results

4.1 Overview

The capability of the proposed mechanism is evaluated over a typical flash memory which
supports two voltage levels, and the characteristics of the flash memory can be found in Table
1.(b). The workload traces were gathered by emulating web-surfing applications over a
portable device, with a 50% capacity utilization initially. As mentioned in Section 3.1, a greedy
reclaiming policy [4] was adopted in the experiments. The characteristics of the traces, the
internal garbage collection activities, and the configuration of the flash memory were described
in Table 2.

There were two types of metrics used in the experiments: energy consumption and
performance. The total energy consumption for each experiment was measured in Joule. In
order to evaluate the energy efficiency of the proposed mechanism, the number of requests
serviced at the high voltage level was measured. The performance of the proposed mechanism
was measured in terms of the average response time, the accumulated tardy time, and the
number of deadline violations, where each (external) request was associated with a deadline to
reflect the expected response time. We are interested in the performance of the proposed
mechanism under limited energy consumption. We evaluated the mechanism under three
voltage adjustment policies: dynamic adjustment policy, high voltage policy (5v), and low
voltage policy (3.3v).

Traces’ Characteristics

File system FAT32 Garbage Collection Activities
Block Erases 2,798Applications Web Browser &

Email Client Live Pages Copied 6,798
Sector Size 512 bytes
Duration 3.3 hours
Read / Write Ratio 48 / 52 Flash Memory Characteristics
Mean Read Size 8.2 sectors Capacity 16 Mbytes
Mean Write Size 5.7 sectors Block Size 16 Kbytes

Page Size 512 bytesInter-Arrival Time Mean: 32 ms
Std. Dev. : 229 ms Initial utilization 50%

Bytes Written 18.284MB

Bytes Read 23.651MB

Table 2: The Characteristics of Traces and Flash Memory

5.2 Performance Evaluation over Realistic Traces

In this part of experiments, we evaluated the proposed mechanism over realistic traces. Two
parameters were used to manage the workload and performance requirements of the traces:
inter-arrival time and deadlines of requests. The smaller the inter-arrival time of requests, the
heavier the system workload was. On the other hand, when a request was given a more urgent
deadline, the system had a higher pressure to service the request in a shorter time frame. The
experiments under different inter-arrival times were to evaluate the performance and behavior
of the proposed mechanism under different system workloads. The experiments under different
deadline/response-time requirements were to evaluate the proposed mechanism under different
performance requirements.

20
21
22
23
24
25
26
27
28
29
30

0ms 0.25ms 0.5ms 0.75ms 1ms 1.25ms 1.5ms 1.75ms 2ms 2.25ms 2.5ms

Inter-Arrival Time Scaling Factor (ms)

En
er

gy
 C

on
su

m
pt

io
n

(J
)

D
H
L

0

100

200

300

400

500

600

700

0ms 0.25ms 0.5ms 0.75ms 1ms 1.25ms 1.5ms 1.75ms 2ms 2.25ms 2.5ms

Inter-Arrival Time Scaling Factor (ms)

R
es

po
ns

e
Ti

m
e

(m
s)

D
H
L

 Figure 6(a). Energy Consumption Figure 6(b). Average Response Time

5.2.1 Performance Evaluation of Request Workloads

In this part of experiments, the inter-arrival time of requests was controlled by a parameter
called the scaling factor, which ranged from 0 ms to 2.5 ms. When the scaling factor was x ms,
the inter-arrival time of two consecutive requests was enlarged by x ms. In other words, the
larger the scaling factor, the lighter the workload is. The original inter-arrival time of the traces
can be found in Table 2. Figures 6.(a) and 6.(b) show the energy consumption and the average
response time of the traces under different voltage adjustment methods. Here the X-axis
denotes the scaling factor of the inter-arrival time in ms, and the Y-axis of Figure 6.(a)/(b)
denotes the total energy consumption (in Joule) and the average response time (in ms) of each
(external) request. “D”, “H”, and “L” denote the voltage adjustment policies: dynamic
adjustment policy, high voltage policy (5v), and low voltage policy (3.3v). The response time
requirements of requests were set as 40ms (i.e., deadlines).

It was shown in Figure 6.(a) that the dynamic adjustment policy could substantially decrease
the energy consumption when the system workload was not heavily loaded. More requests
were serviced at the low voltage level since more flexibility in scheduling was allowed. When
the system workload was heavy, the dynamic adjustment policy tended to service more
requests at the high voltage level because of performance requirements. It was clear that the
dynamic adjustment policy was effective in energy saving. Figure 6.(b) shows the average
response time of (external) read/write requests under the same configuration. Note that the
response time of the requests due to garbage collection was not included in the performance
indices because users of flash memory would not be able to observe the response time of such
requests. However, the energy consumption of traces should and did include that for garbage
collection because the energy consumption of traces should include everything, such as those
caused by garbage collection. In Figure 6(b), it was surprised to see that the average response
time of requests under the dynamic adjustment policy was very close to that under the high

Figure 7(a)

0

2000

4000

6000

8000

10000

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

Inter-Arrival Time Scaling Factor (ms)

D
ea

dl
in

e
Vi

ol
at

io
ns D

H
L

Figure 7(b)

0

10

20

30

40

50

60

70

80

90

100

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

Inter-Arrival Time Scaling Factor (ms)

Pe
rc

en
ta

ge
 o

f H
ig

h-
Vo

lta
ge

Pa
ge

 O
pe

ra
tio

n

D
H
L

Figure 7(c)

0

100

200

300

400

500

600

700

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

Inter-Arrival Time Scaling Factor (ms)

Ta
rd

y
Ti

m
e

(m
s)

D
H

L

Figure 7(a). Number of Deadline Violations
Figure 7(b). Percentage of High Voltage Page

Operations
Figure 7(c). Total Tardy Time

voltage method. The performance of the dynamic adjustment policy was almost as the same as
that of the high voltage, except that the dynamic adjustment policy consumed much less energy.
The dynamic adjustment policy greatly outperformed the low voltage method. As the system
workload dropped, the energy consumption of traces under the dynamic adjustment policy was
quickly approaching that under the low voltage method.

Figure 7.(a) shows the number of deadline violations over different system workloads. As we
expected, the dynamic adjustment policy eliminated nearly the same number of deadline
violations serviced by high voltage policy. In the Figure 7.(a) we also observed the deadline
violations decreased rapidly when system was not heavily loaded. The performance
requirements were efficiently satisfied by the dynamic adjustment policy but much less energy
was consumed. Figure 7.(b) showed the percentage of high voltage page operations. Note that a
request may consist of a series of page operations, where the page size is 512 bytes. For
example, a 40KB write request is identical to 80 page writes. Figure 7.(b) shows that the
percentage of high voltage operations significantly dropped from 70% to 20% when the system
workload was relaxed. Clearly, the dynamic adjustment policy had a significant portion of
requests being serviced at low voltage. Figure 7.(c) shows the total tardy time. Note that the
total tardy time was the sum of all deadline-missing requests’ tardy time.

5.2.2 Performance Evaluation of Various Performance Requirements

In this part of experiments, we varied the deadline of read / write requests to observe the
efficiency of the dynamic adjustment policy in the satisfaction of the performance

0

0.
25

0.
5

0.
751

1.
25

1.
5

1.
752

2.
25

2.
5

2.
5

5
10

20
40

80
16

0
32

0

64
0

12
80

0

100

200

300

400

500

600

700

X-axisY-axis

Figure 8(a)

0
0.25

0.5
0.75

1
1.25

1.5
1.75

2
2.25

2.5

2.
5

5

10

20

40

80

16
0

32
0

64
0

12
80

0

100

200

300

400

500

600

700

X-axisY-axis

Figure 8(b)

0

0.
25

0.
5

0.
751

1.
25

1.
5

1.
752

2.
25

2.
5

2.
5

5
10

20
40

80
16

0
32

0
64

0

12
80

0

100

200

300

400

500

600

700

X-axisY-axis

Figure 8(c)

Figure 8. Average Response Time

(a) Dynamic-Voltage-Adjustment
(b) Services at a High Voltage
(c) Services at a Low Voltage

X-axis denotes inter-arrival time scaling factor (ms).
Y-axis denotes different deadlines.
Z-axis denotes average response time (ms).

requirements. Requests were given different deadlines to reflect different performance
requirements (and different scheduling windows, i.e., deadlines), where a smaller scheduling
window imposed more stringent requirements for system in servicing requests. The deadline
was increased from 2.5ms to 1280ms, and stepped by doubling. In this part of experiment, we
assigned the same deadline for both read and write requests. We present experimental results
with different deadlines and inter-arrival times to show the overall behavior of the dynamic
adjustment policy.

Figure 8. shows that the average response time increased when deadlines became less urgent.
When requests had less urgent deadlines, the dynamic adjustment policy would tend to
increased the average response time accordingly, and the energy consumption was reduced. A
similar phenomenon could also be observed in Figures 9.(b) and 9.(c). Note that the variations
of deadlines had no impacts on the energy consumption under the high voltage policy and low
voltage policy since no voltage adjustments were allowed. Figure 9 showed that the dynamic
adjustment policy could significantly reduce the energy consumption when the performance
requirements were less stringent. Figure 9.(a) shows that the impacts of deadline variation were
very similar to the variation of the system workload. The energy consumption of the high
voltage policy and low voltage policy didn’t change when the system workload changed, as
shown in Figures 9.(b) and 9.(c).

The number of deadline violations, the number of high voltage page operations, and the total
tardy time are shown in Figure 10.(a), 10.(b), and 10.(c), respectively. The results are very
encouraging. As shown in Figure 10.(a), the dynamic adjustment policy could meet the
deadlines of requests as those serviced by the high voltage level. In other words, the system

0

0.
25

0.
5

0.
751

1.
25

1.
5

1.
752

2.
25

2.
5

2.
5

5
10

20
40

80

16
0

32
0

64
0

12
80

20

21

22

23

24

25

26

27

28

29

30

X-axisY-axis

Figure 9(a)

0

0.
25

0.
5

0.
751

1.
25

1.
5

1.
752

2.
25

2.
5

2.
5

5
10

20
40

80

16
0

32
0

64
0

12
80

20

21

22

23

24

25

26

27

28

29

30

X-axisY-axis

Figure 9(b)

0

0.
25

0.
5

0.
751

1.
25

1.
5

1.
752

2.
25

2.
5

2.
5

5
10

20
40

80

16
0

32
0

64
0

12
80

20

21

22

23

24

25

26

27

28

29

30

X-axisY-axis

Figure 9(c)

(

Figure 9. Energy Consumption

a) Dynamic-Voltage-Adjustment
(b) Services at a High Voltage
(c) Services at a Low Voltage

X-axis denotes inter-arrival time scaling factor (ms).
Y-axis denotes different deadlines.
Z-axis denotes total energy consumption (Joule).

performance was fulfilled with a much less energy consumption! The same phenomenon could
also be observed for the total tardy time, as shown in Figure 10.(b). The percentage of page
operations serviced at the high voltage level quickly decreased whenever possible, as shown in
Figure 10.(c).

Figure 10(a)

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

2.5 5 10 20 40 80 160 320 640 1280
Deadline of Requests (ms)

D
ea

dl
in

e
V

io
la

tio
ns

D
H
L

Figure 10(b)

0
10
20
30
40
50
60
70
80
90

100

2.5 5 10 20 40 80 160 320 640 1280
Deadline of Requests (ms)

Pe
rc

en
ta

ge
 o

f H
ig

h-
Po

w
er

 P
ag

e
O

pe
ra

tio
ns

D
H
L

Figure 10(c)

0

100

200

300

400

500

600

700

2.5 5 10 20 40 80 160 320 640 1280
Deadline of Requests (ms)

To
ta

l T
ar

dy
 T

im
e

(m
s)

D
H
L

Figure 10(a). Number of Deadline Violations.

Figure 10(b). Percentage of High-Voltage.

Figure 10(c). Total Tardy Time.

6. Conclusion

In this paper, we propose a methodology for dynamic voltage adjustment of flash memory
storage systems to manage the energy consumption and, at the same time, to meet performance
requirements. A scheduling framework with a voltage adjustment mechanism is proposed.
When the system is heavily loaded, a reasonable portion of operations will be performed at a
high voltage level to deliver a reasonable performance. When the system workload is low, the
proposed mechanism will service requests at a low voltage level without sacrificing the system
performance. We show that the scheduling with an energy consumption constraint problem is
NP-Complete. We also propose an efficient on-line scheduling algorithm with an objective to
satisfy the response time of requests and, at the same time, to minimize the energy consumption
of flash memory. The strength of the proposed mechanism is evaluated by a series of
experiments over realistic traces and a typical multi-voltage-capable NAND flash memory, for
which we have very encouraging results.

For future research, we shall further investigate joint scheduling of microprocessors and flash
memory under dynamic voltage adjustment. We shall also investigate cache-related behavior
and multiple resources management for energy consumption over portable devices. We believe
that more research in this direction may prove being very rewarded.

REFRERENCES

[1] C.M. Krishna and Y.H. Lee, “Voltage-Clock-Scaling Adaptive Scheduling Techniques for
Low Power in Hard Real-Time Systems,” IEEE Real-Time Technology and Applications
Symposium, May 31-June 2, 2000.

[2] Y. Nakamoto, Y. Tsujino, and N. Tokura, “Real-Time Task Scheduling Algorithms for
Maxumum Utilization of Secondary Batteries in Portable Devices,” International
Conference on Real-Time Computing Systems and Applications, December 2000.

[3] A. Molano, K. Juvva, R. Rajkumar, “Real-Time Filesystems: Guaranteeing Timing
Constraints for Disk Accesses in RT-Mach,” Proceedings of the 18th IEEE Real-Time
Systems Symposium, June 1997.

[4] A. Kawaguchi, S. Nishioka, and H. Motoda, “A Flash Memory based File System,”
Proceedings of the USENIX Technical Conference, 1995.

[5] F. Douglis, R. Caceres, F. Kaashoek, K. Li, B. Marsh, and J.A. Tauber, “Storage
Alternatives for Mobile Computers,” Proceedings of the USENIX Operating System
Design and Implementation, 1994.

[6] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard
Real Time Environment,” Journal of the ACM , 1973.

[7] M. Weiser, B. Welch, A. Demers and S. Shenker, “Scheduling for Reduced CPU Energy,”
Proceedings of the USENIX Operating System Design and Implementation, 1994, pp.
12-23.

[8] F. Yao, A, Demers and S. Shenker, “A Scheduling Model for Reduced CPU Energy,”
Proceedings of the 36th IEEE Symposium Foundations of Computer Science, 1995, pp.
374-382.

[9] Inki Hong, Darko Kirovski, Gang Qu, Miodrag Potkonjak, and Mani B. Srivastava,
“Power Optimization of Variable-Voltage Core-Based Systems,” IEEE Transaction On
Computer-Aided Design of Integrated Circuits and Systems, Vol. 10, No. 12, December
1999.

[10] K. Han-Joon, and L. Sang-goo, “A New Flash Memory Management for Flash Storage
System,” Proceedings of the Computer Software and Applications Conference, 1999.

[11] M. L Chiang, C. H. Paul, and R. C. Chang, “Manage flash memory in personal
communicate devices,” Proceedings of IEEE International Symposium on Consumer
Electronics ’97, 1997.

[12] Stankovic, J.A.; Spuri, M.; Di Natale, M.; Buttazzo, G.C. , “Implications of Classical
Scheduling Results for Real-Time Systems,” IEEE Computer, vol 28, issue 6, 1995.

[13] Michael R. Garey, David S. Johnson, “Computers and intractability”, 1979.

[14] Li-Pin,Chang, Tei-We Kuo, Shi-Wu Lo, “A dynamic-Voltage-Adjustment Mechanism in
Reducing the Energy consumption of Flash Memory for Portable Devices,” IEEE
International Conference on Consumer Electronics, 2001.

[15] W. Namgoong, M. Yu, and T. Meng, ”A high-efficiency variable-voltage CMOS dynamic
DC-DC switching regulator,” Proceedings of IEEE International Solid-State Circuits
Conference, 1997

[16] Michael Wu, Willy Zwaenepoel, “eNVy: A Non-volatile, Main Memory Storage System”,
Proceedings of Architectural Support for Programming Language and Operating System,

1994.

[17] A. P. Chandrakasan, S. Sheng, and R. W. Broderson, “Low-power CMOS digital design,”
IEEE Journal on Solid-State Circuits, vol. 27, no. 4, pp.473–484, 1992.

[18] Kester Li, Roger Kumpf, Paul Horton, and Thomas Anderson, “A Quantitative Analysis
of Disk Drive Power Management in Portable Computer”, Proceedings of Winter 1994
USENIX Conference, 1994

[19] Anastasio Molano, Kanaka Juvva, and Ragunathan Rajkumar, “Real-Time Filesystems:
Guaranteeing Timing Constraints for Disk Accesses in RT-Mach,” Proceedings of
Real-Time System Symposium, 1997.

[20] SSFDC Forum, “SmartMediaTM Specification,”, 1999.

[21] Compact Flash Association, “Compact Flash™ 1.4 Specification,” 1998.

[22] Hitachi, “Hitachi HN29W12814A AND-type Flash Memory Datasheet,” 1999

[23] M-System, “DiskOnChip Millennium Datasheet,” 2000

[24] Intel, “28F016S5 5-Volt FlashFile Flash Memory Datasheet”, Intel Corporation, 1999

[25] Samsung Electronics Company, “SmartMediaTM White Paper,” 2000

[26] I2O Special Interest Group, “I2O specification 2.0”, http://www.intelligent-io.com

[27] B. Dipert, and M. Levy, “Designing with Flash Memory”, Annabooks, 1994

[28] NAND Flash memory Translation Layer (NFTL), Linux MTD project

[29] Kevin Jeffay, Donald F. Stanat, and Charles U. Martel, “On Non-Preemptive Scheduling
of Periodic and Sporadic Tasks”, Proceedings of Real-Time System Symposium, 1991

http://www.intelligent-io.com/

