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1. Introduction

Evolutionary stability, the central solution concept in evolutionary game theory,
is closely related to local asymptotic stability in a certain nonlinear dynamical system
operating on the state space, the so-called “replicator dynamics”. However, a purely dy-
namical characterization of evolutionary stability is not available in an elementary man-
ner. This characterization can be achieved by investigating so-called “derived games”
which consist of mixed strategies corresponding to successful states in the original game.
Within this context, several characterization results are obtained in this paper, which
also may shed some light on the extremality properties of evolutionary stability.

The prototypical examples in the seminal papers of Maynard Smith and Price
[5,6] dealt with stability of population states with the aim to explain polymorphism
of behaviour (a state where different individuals may behave differently; cf. also the
forerunning article [9]). Also, the concept of evolutionary stability seems — at least
from the point of view of frequency-dependent selection - to be more stringent in the
context of polymorphic states than in models under a monomorphistic interpretation,
featuring evolutionarily stable strategies (played by everyone in the population) instead
of evolutionarily stable population states. So we start in the present article with the
basic, polymorphic model, but the results obtained below may to some extent support
the monomorphistic approach, which plays a prominent role in recent literature. To be
more precise, the paper is organized as follows: section 1 deals with (possibly) polymor-
phic populations consisting of individuals that display pure strategies only, while the
subsequent sections treat derived games where the original states now play the role of
a single (mixed) strategy, and where the dynamical outcomes (i.e. the stable equilibria)
are monomorphisms centered at that strategies. In section 2, the concurring states are
dimorphisms throughout (only two types of behaviour present), while section 3 deals
with a k-morphism setup for the derived games. Section 4 is devoted to weak (Lya-
punov) stability, and section 5 characterizes evolutionary stability in terms of stable
sets, focusing on the convergence of the average strategy played within the k-morphic
population in the derived game.

To begin with, let us shortly recapitulate the simplest formal setting of an evolu-
tionary game I': assume that, in a certain contest-like situation, individuals are capable
to display n different types of behaviour which we for short call strategies in the se-
quel. With respect to this contest, the state of the population in question is then fully



described by the state space

S ={[z1,...,zn) €ER" :2; 20,1 <i < n,E::.- =1},
i=1
where z; represents the relative frequency of individuals displaying strategy i (for short
called i-individuals in the sequel) within the population (the symbol ' denotes transpo-
sition).

There are monomorphie populations (e.g. in state e = [1,0,...,0]' € S™) where all
individuals display one strategy (e.g. strategy 1), but more interesting are of course
polymorphic states (e.g. [L,...,1]' € S"), where more than one type of behaviour is
present (e.g., all with equal frequency). It should be noted that in this setting, every
individual can only display one strategy throughout its lifetime, irrespective whether
the population is monomorphic or polymorphic.

In this article, we assume that the mean payoff (incremental fitness) to an i-
individual contesting with individuals belonging to a population in state z € 5", de-
pends linearly upon the state z. As shown in [3, pp.61-64], this assumption essentially
means that the conflict is pairwise, i.e. there are always exactly two individuals partic-
ipating in a contest. Therefore, if we denote by a,; the payoff of an i-individual in a
confrontation with a j-individual, then

A= [aijlzgign.lSiS"

forms the n x n payoff matrix which fully characterizes the game I'. Indeed, the mean
payoff to an i-individual contesting with individuals belonging to a population in state
z = [z1,...,2,)' € S™, amounts to

(Az)i = Z ai;z;,

and hence the average mean payoff within a (sub-) population in state y = iy pn) €
S" against a population in state z is given by

y'Az = E vi(Az); = Z Zviaijx,‘ .
=]

i=] j=1

Now we are in a position to formulate the notion of evolutionary stability introduced in
[5] and [6]:



Definition 1:
A state p € S™ is said to be "evolutionarily stable” in a game T, if for all different
states g € S™, ¢ # p,

either ¢'Ap<p'Ap or ¢'Ap=p'Apand p'Aq > ¢'Ag
holds.
In other words, a state p is evolutionarily stable if

e the average mean payoff for a population in a different state g against p does
not exceed the average mean payoff within the population in state p (equilibrium
condition), and

e if, in case of equality in the equilibrium condition, the state ¢ has a lower average
mean payoff within itself than p has against ¢ (stability condition).

Following Taylor and Jonker [10], we introduce the replicator dynamics D(T") corre-

sponding to the game I, which operates on the state space S™ (a dot " denotes differen-

tiation with respect to time t):

ii = :c,-[(A.I).’ o .'Z'AZI, 1 ‘s 1 E n.

This dynamical system is one of the simplest models describing the evolution of
the population over time: indeed, the amount (Az); — z' Az by which the mean payoff
for i-individuals exceeds — or is exceeded by — the average mean payoff, is considered to
be equal to the relative growth — or shrinking — rate z;/z; of i-individuals. By means
of the replicator dynamics we now can introduce a second stability notion as follows:

Definition 2:
A state p € S" is said to be "dynamically stable” in a game I' if and only if p
constitutes a locally asymptotically stable fixed point for the replicator dynamics
D(I).
In other words, a state p is dynamically stable in I if every trajectory z(t) that describes
the evolution of the population according to D(I') tends to p (i.e., z(t) — pas t — +o0),
whenever it started in a state sufficiently close to p (i.e., if the distance from z(0) to p
is small enough).

Taylor and Jonker showed for general n x n-games that every evolutionarily stable
state p is dynamically stable [10]. The converse is true for 2x 2-games: here evolutionary
and dynamical stability coincide (see, e.g. 2, Thm. 30], or [14, p.226]). On the other
hand, some 3 x 3-games have dynamically stable equilibria that are not evolutionarily
stable, as the following example due to Zeeman [17] shows:



Example: For the game I' given by

0 11 1/3
A=|-1 0 3|, p=]|1/3
L 1 0] [UJ

is dynamically stable, but not evolutionarily stable, since for ¢ = [§,3,3]' we have
PAg= 12 < =d4

Remark: A notion stronger than dynamical stability is that of global (dynamical)
stability: a state p € S™ is called "globally stable”, if every trajectory z(t) starting in
a non-fixed point z(0) € S™ tends to p as t — +co. One readily sees that global and
evolutionary stability are incompatible with each other: indeed, since there are games I'
with more than one evolutionarily stable state, these cannot be globally stable for D(T").
On the other hand, the state p in the above example is even globally stable though not
evolutionarily stable.

2. Mixed strategies; derived 2 x 2-games

As the remarks at the end of the previous section show, a purely dynamical char-
acterization of evolutionary stability is not available in a straightforward manner. Nev-
ertheless such a characterization seems to be desirable, and this is the main objective of
the present paper. To achieve this, we shall pass from pure strategists’ models to mixed
strategists’ models (see, e.g. [4], [11, 12, 13|, [8], and [3, pp.7-15]). Now it is important
to distinguish between

» polymorphic (population) states describing the distribution of behaviour within a
population, and

o mixed (individual) strategies, which include probabilities #; for an individual to
display behaviour pattern 1,

Hence, (polymorphic or monomorphic) states describe a statistical aspect while (mixed
or pure) strategies refer to an individualistic aspect of behaviour. The term "probability
;" may have different interpretations, e.g., x; may correspond to relative frequencies in
sequential contests, or to a change in behaviour with relative duration x; over lifetime.

A first step towards our goal is done by the following theorem, in which we use the
notion of a derived 2 x 2-game which is a special case of an evolutionary mixed strategy



game investigated by Sigmund [8] (following his lines, we shall treat the general case of
derived k x k-games below). The rationale for this concept is the idea that individuals
belonging to a population in an evolutionarily stable state p, might adopt a mixed
strategy in displaying behaviour pattern i with a probability «; that equals the frequency
pi of i-individuals in state p.

Suppose there is a second state ¢ # p that is adopted as a mixed strategy by
some other individuals (putting 7; = ¢;) in the same way, perhaps because g is also
evolutionarily stable. Recall that there are games that have several evolutionarily stable
states (e.g. n in the game with payoff matrix A = I, the n x n-identity matrix); cf. [3,
pp.76-81]. Furthermore assume that in this new situation, every individual adopts either
p or ¢ as a mixed strategy. Hence all population states considered here are dimorphic:
there are only two types of individuals, confrontations between them would best be
described in a game I', ; which we call "derived game”, and which has the 2 x 2-payoff

matrix
r
ara= 040 28] = [B]awar

indeed, the first row of A, ¢ is constituted by the payoffs for p, while the second repre-
sents the payoffs for g. With respect to I'p 4, & state of the population is of course fully
described by a vector [l: . € S% (i.e. 0 < z < 1), where z is the relative frequency of
p-individuals and 1 — z is the relative frequency of g-individuals. If 0 < z < 1, then the
state is genuinely dimorphic, while a monomorphic population of p-individuals is given
by the state [}]. The next theorem now shows that a population state p (which may be a
polymorphism w.r.t. the original game) is evolutionarily stable, if and only if the corre-
sponding monomorphism, based on p played as a mixed strategy, beats any dimorphism
based on both p and another mixed strategy arising from a state ¢ # p in the origi-
nal game, provided enough individuals play p. This means that the p-monomorphism
[;] is dynamically stable w.r.t. the replicator dynamics I, , (see also the remark after
Theorem 4 below).

Theorem 1:
A state p € 5™ is evolutionarily stable for I' if and only if p corresponds to a
dynamically stable equilibrium state [3] in any derived 2 x 2-game I'p,q of dimorphic
populations playing p and ¢ as mixed strategies, where ¢ # p is a different state
ge S".

Proof: Assume that I is represented by the payoff matrix A. Then the payoff matrix



Ap,q of the 2 x 2-game I, ; equals
a bl _|p'dp p'Aq
c d| 7 |q'Ap q'Aq]”

The corresponding replicator dynamics D(Ty,q) on §? = {[;*_] : 0 < z < 1} is then

given by
i =2(1-2)l(a =)z + (b—d)1-2)],

Since q # p, evolutionary stability of p yields
a—c=p'Ap—-q'Ap>0

and

b—d=p'Ag—q'Ag>0 whenever a—c=0.

Thus, for z sufficiently close to 1,  has to be strictly positive. This implies that the
state [, T ] evolves towards [}] as time goes on, if the initial state is sufficiently close
to [3]. Therefore, the monomorphic state where every individual displays p will be
fixed. Assume, conversely, that p is dynamically stable in any game I, ; with g # p.
Since there are only two possible behavioural patterns, p and g, (local) fixation of p in
turn yields z > 0 if z is close to 1, which entails, by reversion of the above arguments,
evolutionary stability of the state p in the original game I'. O

Example: Let us investigate the example from section 1 in light of the above results:
the derived game I'p ; has payoff matrix

2/3 10/27
Apg= [2;3 32,«31] :

The corresponding replicator dynamics reads
z'=—£z{1—x)’<0 D<z<1
81 b 1
so that z(t) \, 0, i.e. [1f{=?:}] — [{] as t — co. Hence the state [}] corresponding to p

is not dynamically stable in the derived game, although p is dynamically stable in the
original game.



3. Characterization in terms of derived k x k-games

Since the original game can have more than two evolutionarily stable states, it is
tempting to consider derived games of k-morphic populations. Here individuals can
adopt k > 2 mixed strategies corresponding, say, to pi,...,pk, where p; € §™ describe
(possibly) polymorphic states of the "old” population. The state of the "new”, k-
morphic population comprising these p;-individuals is then fully described by a vector
z = [z1,...,24]' € S*, where z, is the relative frequency of individuals adopting a mixed
strategy adapted to the state p;. For instance, a monomorphic population consisting
exclusively of p;-individuals is described by the state e = [1,0,...,0]' € S*. The derived
game I'p, ., of k-morphisms has the k x k-payoff matrix

’

P1
Al’h---vh = A[pl" Ci ,Pk] = C'AC,
P
where C is an n x k-matrix consisting of the columns py,...,px.

Remark: To emphasize that = describes the population state with respect to R T
one could write (z,py,...,px) instead of z. Formally, = corresponds to a statistical
distribution (i.e. a probability measure) on S™ of the form

K
E""J&n )
it

where §, denotes Dirac measure (unit point mass) located at p. Models involving states
that correspond to more general distributions on S™ are treated in [3]. To avoid lengthy
notation, we however shall denote a state simply by z, if it is clear from the context
that this is the description of a population with respect to the game I'p,, ...

It is useful to introduce the notion of the "population strategy” m, which denotes
the average strategy adopted within a population in state z:

k
me = Zz,—pj =Cz.
i=1

In terms of the population strategy, the replicator dynamics D(I'y, .. »,) on the new
state space S* takes the simple form

z; = zi[pi' Am; —m;Am,], 1<i<k.



Indeed, we have (C'ACz); = pi' ACz = p;’ Am, and z'C'ACz = m,'Am,. Of course
the dynamics D(I') and D(I'p,,...,5,) are strongly interrelated. For instance, in [8] it is
shown that if D(T") is a certain type of gradient system, then so is D(T'p,,... 5. )-

The results presented in this and the subsequent section deal with dynamical sta-
bility properties of an evolutionarily stable state p in the original game, with respect to
the derived k-morphism game Ty, ... 5., Where p; = p while p;, 2 < j < k, are different
states of the original population. At first let us generalize Theorem 1 (note that the
converse of Theorem 2 below follows by Theorem 1):

Theorem 2:
Consider k different states py,...,pg in S™. If p; is evolutionarily stable for I, and
if p1 is no convex combination of p,,...,ps, then p; corresponds to a dynamically
stable state e in ) LT

Proof: (1) Let e = [1,0,...,0]' € S* denote the monomorphic state of the mixed
strategists’ population, where every individual displays strategy p;. We at first show
that, under the assumption of the theorem, the population strategy m, determines the
state e uniquely. Indeed, suppose that for some z € §*, z # e,
k

Ezipi SMe=Me =N

=1
holds. Putting Aj = z;/(1 —2,) 20, 2 < j <k, this implies

k
pr="_ Aip;,
j=12

which by assumption is absurd. Hence m; # m, = p; if z # e.

(2) Now we prove (p1 — m:)'Am, > 0 whenever = # e is close enough to e. Indeed,
since the map z — m; is continuous, m, is close to m, = p; provided that the distance
between z and e is sufficiently small. Evolutionary stability of p; in the original game
I' now yields

(p1 — q)'Ag >0 whenever ¢ # p; is close enough to p, (*)

([7]; this result essentially depends upon the fact that an evolutionarily stable state in
a pairwise conflict with finitely many pure strategies is uninvadable, cf. [3, p.95]). Thus
the claimed assertion follows, putting ¢ = m..

(3) Finally consider the first equation of the replicator dynamics D(Tp,, ... . ):

T = :1(}71 - m,)'Am, >0



whenever z # e is close enough to e. Hence z,(t) increases towards unity if ¢ — +oo0,
implying z(t) — e as t —+ +co. Thus e constitutes a dynamically stable state for the
dynamics D(Ty, ... p4 )- O

Remark: In (1) and (2) above, we in fact proved that
(e —z)'C'ACz = (py — m:)'Am; >0 whenever z # e is close to e,

which amounts to evolutionary stability of the state ¢ in the derived game Tp,, .. ..
Thus, invoking the result of [10] implying dynamical stability, we obtain an alterna-
tive proof of Thm. 2. However, the above proof has the advantage that it admits an
immediate generalization adapted to games with nonlinear payoff; see [3, pp. 104 and
109]. Remark further that the condition on p; in Theorem 2 above to be no convex
combination of the remaining states pa,...,px, is equivalent to extremality of p; in the
convex hull of all the states p;,...,ps.

4. Weak dynamical stability

This section deals with the case where the extremality assumption of Theorem 2
is violated. Putting p; = p; one immediately sees that one cannot hope for dynamical
stability of p; in the derived game under these circumstances; moreover we have the
following general negative result:

Theorem 3:
Consider k states py,...,px in S™, where p, is a convex combination of p3, ..., ps.
Then the state e in Iy, . ,, corresponding to p; cannot be dynamically stable,
even if p; were evolutionarily stable for the original game I'.

k

Proof: Assume that p; = E;':, Ajpj for some A\j 20,2 < j <k, with 3=,

Put § = {z € S*: z; > 0} and consider the function

A,‘:l.

k
z»—+V(z)=z—11-Hx;’, zZ€S,
j=12

which is continuous on § and vanishes at e = [1,0,...,0]' € S. If e were dynamically
stable, every trajectory z(t) starting in a neighbourhood of e would fulfill z(t) — e and



hence, by continuity, V(2(t)) — V(e) =0 as t — +oo. If 2(0) = [z4,...,7x])" € S* with
z; >0,all i, 1 <<k, then V(a:((]')) > 0. Therefore we would obtain the relation

V(z(t)) < V((0)), ¢ large enough,

which is absurd since V' is a constant of motion for the dynamics D(Ty, ... 5. ): indeed
taking logarithms and differentiating with respect to time t, we get

[log v (2(1))] = :'Eg + Z =

k
= (me) = p1) Amey + Y Aj(pj — magy) Amqq
i=2

k k
= (me = 1) Amaqy + Q0 Aips) Amegy — 3 A jme (o' Amege
=1 =2

= (M) = P1) Amo + pr" Amagy — my Amyy = 0.
Hence e cannot be dynamically stable, O

Remark: One could relate the above result to the proof of Theorem 2 in that the
population strategy m, now does not determine the state z uniquely: more precisely, in
any neighbourhood of e there are states z # e with m; = m, = p1 and therefore z; =
zi(pi—p1)'Apy = 0. Hence e cannot be dynamically stable. The proof above is a variant
of an argument of Sigmund [8] who showed that there is a one-dimensional foliation
of S* under the dynamics D(Ty,,....ps), provided {py,...,px} are linearly dependent.
However, as Theorem 2 shows, this foliation needs not be incompatible with dynamical
stability of e. On the other hand, the existence of such a foliation might suggest that e
is weakly dynamically stable in Lyapunov’s sense:

Definition 3:
A state p € S™ is said to be "weakly dynamically stable” in a game I if and only
if p constitutes a Lyapunov-stable fixed point for the replicator dynamics D(I").
This means that, given any (small) neighbourhood U of pin 8", every trajectory
starting in S", and closely enough to p, will not leave U,

In other words, a state p is weakly dynamically stable in T, if for any prescribed (small)
barrier € > 0, every state z(f) will remain within a distance from p smaller than g,
provided that ¢ > 0 and that the distance from z(0) € S™ to p is small enough. Again,
the trajectory z(t), ¢ > 0, describes the evolution of the population according to D(I').



Theorem 4:

Let p1,...,px be k states in S™. If p; is evolutionarily stable for I, then p, corre-
sponds to a weakly dynamically stable equilibrium in T'p, .. ,,-

Proof: Similarly to the proof of Thm. 2, we derive from evolutionary stability of p,
that 2;(¢) > 0 holds in the dynamics D(T,, .. 5,), Whenever z(t) is close to e, e.g. if
z(t) € U, where we put

U:={ze8*:2,>1-¢},

€ > 0 being sufficiently small. Since this means that z;(t) cannot decrease as time ¢ > 0
increases, provided that z(0) € U,, we conclude z(t) € U, for all ¢ > 0. Because U,
constitutes a neighbourhood of e in S§*, which shrinks to e as ¢ \, 0, weak dynamical
stability of e is thus established. O

Example: Consider the meanwhile classical hawk-dove game introduced in [5]. If we
rescale payoffs to reduce calculational effort, the payoff matrix for this 2 x 2-game reads

A=[2 (‘]]

The unique evolutionarily stable state in I' then is p = :;:] Indeed, we have

t’Ap=1/2=p'Ap and pAz=1/2>2z(1—z1)=z'Azforallz € 5%,z #p.

Tﬂ-k-ing Ph=pp= [;}l P3s = [?]t we get

_[w2z 1 0
C“[uz 0 1]

and hence
12 1/2 1/2
C'AC;=|1/2 0 1
12 1 0
yielding a dynamics D(I'p, 5, .,) on S* where e = [1,0,0]' is Lyapunov-stable, but not
locally asymptotically stable. By contrast, if we form C3 stacking p, [;], and [:;:],
together, then the resulting payoff matrix

1/2 12 1/2
c,bw,:[uz 0 1;4]
1/2 1/4 3/8

induces a dynamics where e is even globally asymptotically stable (see Figure 1).
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i7a)

[o] > (i/a]

Figure 1: Dynamics of two games derived from 4 = [g :]] .
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5. Characterization in terms of stable sets

This last section deals with a more general characterization result along lines similar
to that followed by Thomasin [12, 13]. If one is interested only in the time evolution of
observable characteristics like the population strategy m, () rather than in the evolution
of the states themselves, then the following question becomes important: suppose that
p € S" is an evolutionarily stable state with respect to a game I', and consider the
derived game I',, . 5,, where j is a convex combination of the states py, ..., ps; if z(t)
denotes a trajectory subject to the dynamics D(Ty,,...p,), Will the population strategy
My(ry converge to p or not? In other words, we ask whether or not the states z(t) will
approach the set

R,:{:Gst:m,=ﬁ}

as time goes on (observe that the map z — m, = Z;_l zjp; is uniformly continuous
on S* so that both formulations of the question are indeed equivalent). Using a notion
from the theory of dynamical systems, this question amounts to asking whether or not
the set Rj is stable in the following sense:

Deflnition 4:
Consider a dynamics D operating on S*; a set R C S* is said to be "(dynamically)
stable”, if there is a set U € S* which is open in S* and which contains R, such
that every trajectory starting in U approaches R.

In other words, Ry is dynamically stable if every trajectory z(t) subject to the dynamics
D(Tp,,....ps) with 2(0) € U fulfills d(z(t),Ry) — 0 as t — +o0, where U D Ry is a
suitably chosen open set in S* and

d(z, Rg) = inf{J}z — r|| : 7 € Ry)

is the minimum Euclidean distance from z to Ry (||z]| = v/2'z denotes the usual Eu-
clidean norm of a vector z € IR®).

The following result shows that the question formulated above can be answered
positively, and moreover provides a general dynamical characterization of evolutionary
stability that covers all cases discussed in sections 2 and 3.



14

Theorem 5:
Let p € S™ be a state in the game I'. Then the following assertions are equivalent:
(1) p is evolutionary stable (with respect to I');
(2) for all derived games Tp,,... ;,, such that p is a convex combination of the
states py,...,px, the set Ry is dynamically stable with respect to the dynamics
D(Tpy,.opa)-

Proof: (1) = (2): consider an arbitrary state Z € Ry, i.e. fulfilling ms = p; we
first construct an open neighbourhood Us of  in S* that is positively invariant under
D(Ty,,....px), i-e. fulfills

z(t) e Uz for all t > 0 whenever z(0) € Uz

(similarly to the proof of Theorem 4, where T = e and Uy = U,). To this end we employ
evolutionary stability of § which guarantees the existence of an £ > 0 such that

(F—q)'Ag >0 whenever 0< |lg—5| <e,

see (*) in the proof of Theorem 2. By continuity of the map z ++ m,, thereisa p > 0
fulfilling
llmz = p|| = |lm: — ms|| <e whenever |z—Z| <p.

Putting these two conditions together, we obtain
either z € Rgor (p—m:)Am. >0 if |z —2Z| <p.
Now consider the function
k
Vi(z) = Hz_,'" , z€8%;
=1

this function is continuous and strictly positive in a neighbourhood of # in S*. Since
z = ¥ is the only maximizer of Vz on S¥, there is an @ > 0 such that

llz—Z|| < p whenever Vip(z) > Va(Z) — «.

We claim that
Us = {z € S* : Va(z) > Va(2) — %}

is positively invariant (for simplicity of proof, we choose @ smaller than V;(Z) so that
Ve(z) 2 ‘;'Vg(i) > 0 for all z € Uy): indeed, the considerations above ensure the relation

(p—me)Am: 20 forall z € Us;



furthermore, the function V3 (z(t)) increases with time ¢ along any trajectory z(t) start-
ing in Us, because we obtain — similarly to the proof of Theorem 3 -

k

[log Va (s(0))] = 3 7,248

o =)

k
=) %i(pj —ma(y) Amygy

j-‘_-l
=(mz —my(y)) Am,(y

=(p— m,(t))'Am,(,) 20 ifz(t) e Us,

and hence z(0) € U, entails 2(t) € Us for all t > 0. Moreover, by continuity any
accumulation point = lim, o z(t, ) of the trajectory z(t) (where t, / +ooasv — o)
fulfills

Va(2) = lim Vs (=(t)) = %V,(i) >0

as well as
(p— m;)'Am; — vli'ngu(ﬁ-- m,(‘_))'Am,(g_) - ”I‘I*IE.n [log Ve (z[i,))]' =0.

By construction of Uy , this equality can prevail only if m; = p, i.e. if Z € Ry. Hence
we have shown d(z(t), Rs) — 0 as t — +00, whenever z(0) € Us. Now observe that the
set
p= | ] acs
teR,

is open in S* and contains Ry. The reasoning above proves d(z(t), Ry) — 0 as t — +co0
whenever z(0) € U.

(2) = (1) follows from Theorem 1, taking p; = p, ps = ¢ (an arbitrary state different
from p), and observing that in this case R; = {[3]} holds, so that stability of Ry is the
same as asymptotic stability of [;] O

The proof of (2) = (1) above indicates already why Theorem 5 is a generalization of
Theorems 1 and 2: just take p = p;, and observe that the extremality condition on p, is
exactly the relation R; = {e}. Theorem 4 is no direct consequence of Theorem 5, since
the latter cannot exclude the case that a trajectory approches Rj in an "almost cycling
manner”, coming eventually arbitrarily close to different states 7 € Rs. However, the
proof of Theorem 5 also proves Theorem 4, since a trajectory starting in U/ never leaves
it, and because the neighbourhoods Uy shrink towards Z as a decreases to zero.
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Remark: An alternative approach to Theorem 5 would consist in proceeding similarly
as Zeeman in [17], namely considering the dynamics for the population strategies:

[meg] = [C2(t)] = Ci(t) = Doy Amyqyy

where D; = Z;le z;p;jp;' —mgym;' is the n x n-dispersion matrix of the state z, i.e.
=1
section 3). The proof in [17, Lemma 7] however seems to work only under additional
regularity assumptions both on p in the original game and on the dispersion matrices
D, (1) elong trajectories z(t) near R;. These assumptions are not used in the proof
presented above. For instance, Zeeman’s method does not apply without modifications
to the setting of Theorem 3, if k < n; more generally, if the rank of C is less than n,

then the rank of D, is necessarily less than n — 1 (cf. [1]).

the variance/covariance-matrix of the distribution z;8p, (cf. the first remark in
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