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1. Introduction

Evolutionary stability, the central solution concept in evolutionary game theory,
is closely related to local eaymptotic etability in a certain nonlinear dynamical aystem
operating on the state space, the ao-called "replicator dynamics". However, a purely dy-
namical characterization of evolutionary atability is not available in an elementary man-
ner. This characterization can be achieved by inveatigating so-called "derived games"
which consiet of mixed strategies corresponding to successful states in the original game.
Within this context, several characterization results are obtained in this paper, which
also may shed some light on the extremality propertiea of evolutionary atability.

The prototypical examples in the seminal papers of Maynard Smith and Price
[5,6] dealt with etability of population statea with the aim to explain polymorphism
of behaviour (a state where different individuals may behave differently; cf. also the
forerunning article [9]). Also, the concept of evolutionary stability seema - at least
from tlie point of view of frequency-dependent selection - to be more stringent in the
context of polymorphic states than in modela under a inonomorphiatic interpretation,
featuring evolutionarily etable strategiea (played by everyone in the population) instead
of evolutionarily stable population states. So we etart in the present article with the
basic, polymorphic model, but the results obtained below may to some extent aupport
the monomorphistic approach, which plays a prominent mle in recent literature. To be
more precise, the paper is organized as followa: section 1 deals with (posaibly) polymor-
phic populations consisting of individusls that display pure atrategiea only, while the
subsequent sections treat derived gamea where the original atatea now play the role of
a single (mixed) strategy, and where the dynamical outcomes (i.e. the atable equilibria)
ase monomorphisma centered at that atrategies. In section 2, the concurring atates are
dimorphisms throughout (only two typea of behaviour present), while aection 3 deals
with a k-morphiam setup for the derived gamea. Section 4 is devoted to weak (Lya-
punov) atability, and section 5 characterizes evolutionary stability in terma of stable
sets, focuaing on the convergence of the average etrategy played within the k--morphic
population in the derived game.

To begin with, let us shortly recapitulate the aimpleat formal setting of an evolu-
tionary game I': assume that, in a certain conteat-like eituation, individuals are capable
to display n different types of behaviour which we for short call strategiea in the se-
quel. With respect to this conteat, the etate of the population in question is then fully
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described by the state apace

( n

s" - l[xl i..., 2n]~ E 1~." : x; i Q, 1~ i C n,~ x; - 1} ,

i-1

where x; represents the relative frequency of individuale diaplaying strategy i(for short
called i-individuals in the sequel) within the population (the symbol' denotea transpo-
sition).

There are monomorphíc populationa (e.g. in state e-[l, 0, ..., 0]' E S") where all
individuals display one strategy (e.g. atrategy 1), but more interesting are of course
polymorphic states (e.g. [ ~, ..., n]' E S" ), where more than one type of behaviour ia
present (e.g., all with equal frequency). It ahould be noted that in thia aetting, every
individual can only display one strategy throughout ite lifetime, irreapective whether
the population is monomorphic or polymorphic.

In this article, we asaume that the mean payoff (incremental fitnesa) to an i-
individual contesting with individuals belonging to e population in state x E S", de-
pends linearly upon the state x. Aa ehown in [3, pp.61-64], this assumption essentially
means that the conflict ia pairwise, i.e. there are always exactly two individuals partic-
ipating in a contest. Therefore, if we denote by a;j the payoff of an i-individual in a
confrontation with a j-individual, then

A - [aij]1C;G",lCjCn

forms the ri x n payoff matrix which fully characterizea the game I'. Indeed, the mean
payoff to an i-individual contesting with individuals belonging to a population in atate
x-[xl i... i xn]' E S", amounts t0

n

(Ax); - ~ a;jxj ,
j-1

and lience the average mean payoff within a(aub-) population in atate y
S" against a population in state x ia given by

n " n
y'Ax - ~ y;(Ax); - ~~ y;a;jxj .

i-1 ;vl j-1

- [UI ~ . . . ~ Un]~ E

Now we are in a position to formulate the notion of evolutionary stability introduced in
[5] and [6]:
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Deflnition 1:
A state p E S" is said to be "evolutionarily atable" in a game I', if for all different
states q E S", q~ p,

either q`Ap G p'Ap or q'Ap - p'Ap and p'Aq 1 q'Aq

holds.

In other worda, a atate p ia evolutionarily atable if

~ the average mean payoff for a population in a different atate q againat p doea
not exceed the average mean payoff within the population in state p(equilibrium
condition), and

~ if, in case of equality in the equilibrium condition, the etate q has a lower average
mean payoff within itaelf than p has against q(atability condition).

Following Taylor and Jonker [10], we introduce the replicator dynamica D(I') corre-
sponding to the game I', which operates on the etate space S" (a dot ' denotea differen-
tiation with respect to time t):

i; - x;[(Ax); - x'Ax], 1 C i G n.

This dynamical syatem ia one of the eimplest modela describing the evolution of
the population over time: indeed, the amount (Ax); - x'Ax by which the mean payoff
for i-individuals exceede - or ia exceeded by - the average mean payoff, is considered to
be equal to the relative growth - or ehrinking - rate i;~x; of i-individuals. By means
of the replicator dynamica we now can introduce a second stability notion ae follows:

Deflnition 2:
A statc p E S" is said to be "dynatnically etable" in a game I' if and only if p
constitutes a locally asymptotically stable fixed point for the replicator dynamics
D(I').

In other words, a state p ia dynamically atable in I' if every trajectory x(t) that describea
the evolution of the population according to D(I') tends to p(i.e., x(t) -~ p as t-~ ~-oo),
whenever it started in a atate sufficiently close to p(i.e., if the diatance from x(0) to p
ia small enough).

Taylor and Jonker ahowed for general n x n-gamea that every evolutionarily atable
state p is dynamically stable [10]. The converse is true for 2 x 2-games: here evolutionary
and dynamical stability coincide (see, e.g. [2, Thm. 30], or [14, p.226]). On the other
hand, some 3 x 3-games have dynamically atable equilibria that are not evolutionarily
stable, as the following example due to Zeeman [17] ahowa:
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Example: For the game I' given by

0 1 1 1~3
A- -1 0 3, p- 1~3

1 1 0 1~3

is dynamically stable, but not evolutionarily etable, aince for q-[g, y, y]' we have

p~Aq - 2i C éi - 9~Aq.

Remark: A notion stronger than dynamical atability is that of global (dynamical)
stability: a state p E S" ia called "globally etable", if every trajectory x(t) starting in
a non-fixed point x(0) E S" tenda to p as t-a d-oo. One readily sees that global and
evolutionary atability are incompatible with each other: indeed, aince there are gamea I'
with more than one evolutionarily stable state, these cannot be globally stable for D(I').
On the other hand, the state p in the above example ie even globally etable though not
evolutionarily atable.

2. Mixed strategies; derived 2 x 2-games

Aa the remarks at the end of the previous aection ehow, a purely dynamical char-

acterization of evolutionary etability ie not available in a straightforward manner. Nev-

ertheless auch a characterization aeema to be deairable, and thie is the main objective of

the preaent paper. To achieve this, we ehall pass from pure strategiats' models to mixed

strategists' models (see, e.g. [4], [11, 12, 13], [8], and [3, pp.7-15]). Now it is important

to distinguish between

~ polymorphic (population) atatea deacribing the dietribution of behaviour within a
population, and

~ mixed (individual) atrategies, which include probabilities ~r; for an individual to

display behaviour pattern i.

Hence, (polymorphic or monomorphic) etatea describe a etatist' aspect while (mixed
or pure) strategies refer to an individualistic aspect of behaviour. The term "probability
a;" may have different interpretationa, e.g., a; may correapond to relative frequenciea in

sequential conteats, or to a change in behaviour with relative duration x; over lifetime.

A first step towarde our goal ie done by the following theorem, in which we uae the
notion of a derived 2 x 2-game whích ie a epecial case of an evolutionary mixed strategy
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garne investigated by Sigtnund [8] (following his lines, we ehall treat the general caee of

derived k x k-games bclow). The rationale for thia concept ia the idea that individuals

belouging to a population in an evolutionarily stable state p, might adopt a mixed

strategy in displaying behaviour pattern i with a probability ~r; that equals the frequency

p; of i-individuals in state p.

Suppose there is a second atate q~ p that is adopted as a mixed atrategy by

some other individuals (putting tr; - q;) in the same way, perhapa becauae q is also

evolutionarily stable. R,ecall that there are games that have several evolutionarily stable

states (e.g. n in the game with payoff matrix A- I, the n x n-identity matrix); cf. [3,

pp.76-81]. Fhrthermore assume that in thie new aituation, every individual adopts either

p or q as a mixed strategy. Hence all population states considered here are dimorphic:

there are only two types of individuals, confrontationa between them would best be

described in a game I'P y which we call "derived game", and which has the 2 x 2-payoff

matrix

A L p,Ap plAql - Lp J Ar.a - q,Ap q,Aq q, [P, 4] ~

indeed, ttie first row of Ay~q is constituted by the payoffs for p, while the second repre-

sents the payoffs for q. With respect to I'y,y, a etate of the population is of course fully

described by a vector ~1 x ~~ E SZ (i.e. 0 C x G 1), where x is the relative frequency of

p-individuals and 1- x ia the relative frequency of q-individuals. If 0 G x G 1, then the

atate is genuinely dimorphic, while a monomorphic population of p-individuals is given

by the state ~ó~ . The next theorem now shows that a population atate p(which may be a

polymorphism w.r.t. the original game) ia evolutionarily stable, if and only if the corre-

sponding monomorphism, based on p played se a mixed atrategy, beats any dimorphism

based on both p and another cnixed strategy arising from a atate q~ p in the origi-

nal game, provided enough individuals play p. This meana that the p-monomorphism

~o~ is dynamically atable w.r.t. the replicator dynamics I'y,y (aee also the remark after

Theorem 4 below).

Theorem 1:

A state p E S" is evolutionarily atable for I' if and only if p corresponds to a

dynamically stable equilibrium state ~ó~ in any derived 2 x 2-game I'y,y of dimorphic

populations playing p and q as mixed atrategies, where q ~ p ia a different atate

q E S".

Proof: Assume that I' is represented by the payoff matrix A. Then the payoff matrix
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Ay,y of the 2 x 2-game iy,y equals

Lc dJ - L4~AP 4~A4J

The corresponding replicator dynamica D(I'y,y) on S~ -{~1 sZ~ : 0 C x G 1} is then
given by

i- x(1 - x)[(a - c)x f(b - d)(1 - x)~,

Since q~ p, evolutionary atability of p yields

a-c-p'Ap-q'Ap~O

and
6- d- p'Aq - q'Aq ~ 0 whenever a- c- 0.

Thus, for x aufficiently close to 1, i he.e to be strictly positive. Thia impliea that the
state ~~ ~Z~ evolves towards ~ó~ as time goea on, if the initial atate ia sufficiently cloae
to ~ó~. Therefore, the monomorphic state where every individual dieplays p will be
fixed. Assiune, conversely, that p ia dynamically atable in any game I'y,y with q~ p.
Since there are only two possible behavioural patterne, p and q, (local) fixation of p in
turn yields i 1 0 if x is close to 1, which entails, by reversion of the above arguments,
evolutioiiary stability of the state p in the original game I'. p

Example: Let us investigate the example from section 1 in light of the above resulta:
the derived game I'P,Q has payoff matrix

Ap q - 2~3 10~27
2~3 32~81J '

The corresponding replicator dynamica reads

i--81x(1-x)~GO, OGxGl,

so that z(t) ~, 0, i.e. ~~ s ~`~il~ -a ~i~ as t -. oo. Hence the atate ~ó~ correaponding to p
is not dyciainically stable in the derived game, although p ia dynamically etable in the
original game.
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3. Characterization in terms of derived k x k-games

Since the original game can have more than two evolutionarily stable states, it is
tempting to coneider derived games of k-morphic populations. Here individuals can
adopt k 1 2 mixed strategies correaponding, eay, to pl ,...,pk, where p; E S" describe
(possibly) polymorphic states of the "old" population. The state of the "new", k-
morphic population compriaing these p;-individuals is then fully described by a vector
x-[xl, ..., xk]' E Sk, where x; ie the relative frequency of individuals adopting a mixed
strategy adapted to the state p;. For instance, a monomorphic population consiating
exclusively ofpl-individuals ie described by the etate e-[l, 0, ..., 0]' E Sk. The derived
game I'o,,..,,y~ of k-morphisma has the k x k-payoff matrix

Pi'
Ar~~-...v. - , A[pi,...,Pk] - C~AC,

pk~

where C is an n x k-matrix consistíng of the columns pl, ..., pk.

Remark: To emphasize that x describes the population state with respect to I'y,,...,p~,
one could write (x, pl ,..., pk ) instead of x. Formally, x corresponds to a statietical
distribution (i.e. a probability measure) on S" of the form

k

~ x) áP) ~
j-1

where óp denotes Dirac measure (unit point mass) located at p. Models involving states
that correspond to more general distributione on S" are treated in [3]. To avoid lengthy
notation, we however ahall denote a atate eimply by x, if it is clear from the context
that this is the description of a population with respect to the game I'P,,,..,pi.

It is useful to introduce the notion of the "population strategy" mz which denotes
the average strategy adopted within a population in state x:

k

m: - ~ xiPi - Cx .
j-i

In terms of the population etrategy, the replicator dynamics D(I'y,,.,. y~ ) on the new

state space Sk takes the simple form

i; - x;[p;'Ams -mz'Am:], 1 G i G k.

s
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Indeed, we have (C'ACx); - p;'ACx - p;'Amz and x'C'ACx - ms'Amt. Of course
tlie dynamica D(I') and D(I'p,,...,y,) are atrongly interrelated. For inatance, in [8] it ia
shown that if D(I') is a certain type of gradient ayetem, then so is D(I'y,,...,y~).

The results presented in this and the subsequent aection deal with dynamical ata-
bility properties of an evolutionarily atable state p in the original game, with respect to
the derived k-morphism game I'pt,,,,,yw, where pl - p while pi, 2 C j G k, are different
states of the original population. At first let us generalize Theorem 1 (note that the
converse of Theorem 2 below followa by Theorem 1):

Theorem 2:
Consider k different atatea pl, ...,pk in S". ff pl is evolutionarily stable for I', and
if pl is no convex combination of pz, ..., pk, then pl corresponds to a dynamically
stable state e in I'y,,.,,,yw.

Proof: (1) Let e-( 1, 0, ... , 0]' E Sk denote the monomorphic atate of the mixed
strategists' population, where every individual displays atrategy pi. We at first ahow
that, under the assumption of the theorem, the population strategy m~ determinea the
state e uniquely. Indeed, suppose that for some x E Sk, x~ e,

k

~ xiPi - m: - m~ - Pi
i-1

holds. Putting ~i - xi~(1 - xi )~ 0, 2 G j G k, this impliea

k

Pi - ~ ~iPi ~
i-z

which by assumption is absurd. Hence mZ ~ m~ - pl if x~ e.
(2) Now we prove (pl - mZ)'AmZ 1 0 whenever x~ e is close enough to e. Indeed,
since the map x H mZ ia continuous, mZ is cloae to m~ - pi provided that the distance
between x and e is sufficiently small. Evolutionary atability of pi in the original game
I' now yields

(pi - q)'Aq ) 0 whenever q~E p~ is close enough to p~ (~`)

([7]; this result essentially dependa upon the fact that an evolutionarily atable etate in
a pairwise conflict with finitely many pure atrategies ia uninvadable, ef. [3, p.95]). Thua
the claimed assertion follows, putting q- ms.
(3) Finally consider the fust equation of the replicator dynamics D(I'yl,,,,,y~):

ii - xi(Pi - mz)'Amz ~ 0
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whenever x~ e is close enough to e. Hence xl(t) increasea towards unity if t -i foo,
implying x(f) -~ e as t--r foo. Thua e constitutea a dynamically atable atate for the
dynamics D(I'y,,... y~). ~

Remark: In (1) and (2) above, we in fact proved that

(e - x)'C'ACx -(pl - mx)'Amx ~ 0 whenever x~ e ia close to e,

which amounts to evolutionary stabilíty of the atate e in the derived game I'p,,..,,y,,.
Thus, invoking the result of [10] implying dynamical atability, we obtain an alterna-
tive proof of Thm. 2. However, the above proof has the advantage that it admits an
immediate generaliaation adapted to games with nonlinear payoff; see [3, pp. 104 and
109]. Remark further that the condition on pl in Theorem 2 above to be no convex
combination of the remaining etatea p~, ...,pk, ia equivalent to extremality of pl in the
convex hull of all the statea pl,...,pk.

4. Weak dynamical stability

Thia section deals with the case where the extremality assumption of Theorem 2
is violated. Putting pZ - pl one immediately aeea that one cannot hope for dynamical
stability of pl in the derived game under theae circumatancea; moreover we have the
following general negative result:

Theorem 3:
Consider k states pl ,..., pk in Sn, where pl is a convex combination of pa, ..., pk .
Then the atate e in I'p,,.,.,pw corresponding to pi cannot be dynamically atable,
even if pl were evolutionarily stable for the original game I'.

Proof: Assume that pl -~~-2 a~p~ for some a~ 1 0, 2 c j C k, with ~k- a. - 1.~-s ~
Put S- {x E Sk : xl ~ 0} and consider the function

k
xtiV(x)- 1 ~xa~, xES,x~ ~

i-~

which is continuous on S and vanishes at e-[l, 0, ..., 0]' E S. If e were dynamically
stable, every trajectory x(t) starting in a neighbourhood of e would fulfill x(t) --~ e and
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hence, by continuity, V(x(t)} -. V(e) - 0 as t -- ~ -}-oo. If x(0) - [xl,... , xk]' E Sk with
x; ~ 0, s)1 i, 1 G i C k, tlien V(x(0)) ~ 0. Therefore we would obtain the relation

V(x(t)~ G V~x(0)~ , t large enough,

which is absurd aince V ie a constant of motion for the dynamica D(I'y,,...,y~): indeed,
taking logarithms and differentiating with respect to time t, we get

~logV ~x(t))~ - -x'~t) f ~a.x;(t)
xi(t) i-z ~xi(t)

k
- (m:(q - Pi)'Amt(~) f L, ~i(Pi - m:(i))~Ams(i)

i-z
k k

- (mx(e) - pi )~Am:(i) f (~ ~iPi)~Ams(t) - L ~imz(t)~Amz(i)
i-z i-z

-(m:(i) - pi)~Ams(,) f Pi~Ams(i) - mz(~)'Amr(t) - 0.

Hence e cannot be dynamically stable. 0

Remark: One could relate the above reault to the proof of Theorem 2 in that the
populatioci strategy mz now does not determine the state x uniquely: more precisely, in
any neighbourhood of e there are statea x ~ e with m: - rn~ - pl and therefore i; -
x; (p; - pl )'Ap~ - 0. Hence e cannot be dynamically stable. The proofabove ia a variant
of an argument of Sigmund [8] who ahowed that there is a one-dimensional foliation
of Sk under the dynamica D(I'o,,...,y~), provided {pl,...,pk} are linearly dependent.
However, as Theorem 2 ahows, this foliation needa not be incompatible with dynamical
stability of e. On the other hand, the existence of such a foliation might suggeat that e
is weakly dynamically stable in Lyapunov's senae:

Deflnition 3:
A state p E S" is said to be "weakly dynamically atable" in a game I' if and only
if p constitutes a Lyapunov-stable fixed point for the replicator dynamics D(1').
This means that, given any (amall) neighbourhood U of p in S", every trajectory
atarting in S", and closely enough to p, will not leave U.

In other words, a state p ia weakly dynamically stable in I', if for any prescribed (amall)
barrier e~ 0, every state x(t) will remain within a diatance from p amaller than e,
provided that t 1 0 and that the distance from x(0) E S" to p is emall enough. Again,
thP trajectory x(t), t? 0, deacribes the evolution of the population according to D(I').



Theorem 4:
Let pl ,..., pk be k states in S". If pl is evolutionarily stable for I', then pl corre-
sponds to a weakly dynamically atable equilibrium in I'y,,,,,~y~.

f'roof: Similarly to the proof of Thm. 2, we derive from evolutionary atability of p~

that il(t) ~ 0 holds in the dynamics D(I'y,,,,,,yy), whenever x(t) is close to e, e.g. if
x(t) E U~, where we put

U~-{xESk:xl ~I-s},

e~ 0 being sufficiently small. Since thie meana that xi(t) cannot decrease as time t 1 0
increases, provided that x(0) E U~, we conclude x(t) E U~ for al1 t 1 0. Becauae U~
constitutes a neighbourhood of e in Sk, which ahrinks to e as e ~, 0, weak dynamical
stability of e is thus established. p

Example: Conaider the meanwhile classical hawk-dove game introduced in [5]. If we
rescale payoffs to reduce calculational effort, the payoff matrix for this 2 x 2-game reads

The unique evolutionarily stable state in I' then is p-~i~s~. Indeed, we have

x~Ap-1~2-p'Ap and p'Ax-1~212x~(1-xi)-x'AxforallxES~,x~p.

Taking Pi - P, P~ - ~ó~ , Pa - ~o~ , we get

Cl - 1~2 1 0
1~2 0 1,

and hence
1~2 1~2 1~2

Cl'ACl - 1~2 0 1
1~2 1 0

yielding a dynamics D(I'y,,y,,y,) on S3 where e-[1,0,0]' ie Lyapunov-stable, but not
locnlly ~~.tiy~upt~itically stnblc. By contrast, if we form Cz stacking p, ~o~, and ~~~~~I '
together, then the resulting payoff matrix

1~2 1~2 1~2
Cz'ACz - 1~2 0 1~4

1~2 1~4 3~8

induces a dynamics where e is even globally asymptotically stable ( see Fígure 1).
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L0~ ! 3 E " L1J

j3~9l
L1~4J

Figure 1: Dynamics of two gamee derived from A- f 0 11
ll OJ
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5. Characterization in terma of etable seta

This last section deals with a more general characterization result along linea aimilar
to that followed by Thomas in [12, 13]. If one ia intereated only in the time evolution of
observable characteristica like the population etrategy mzti~ rather than in the evolution
of the atates themaelves, then the following question becomes important: auppose that
p E S" is an evolutionarily stable atate with reapect to a game I', and consider the
derived game I'P,,,,, p,,, where p ia a convex combination of the atates pl, ... , pk; if x(t)
denotes a trajectory subject to the dynamica D(I'p,,,,,,ya), will the population atrategy
m~~i~ converge to p or not? In other worda, we ask whether or not the atates x(t) will
approach the set

Rp-{xESk:mz-p}

as time goes on (observe that the map x H mt -~j-1 x~p~ ia uniformly continuous
on Sk so that both formulationa of the queation are indeed equivalent). Uaing a notion
from the theory of dynamical syatema, thie queation amounts to asking whether or not
the set Rp is atable in the following sense:

Deflnition 4:
Consider a dynamica D operating on Sk; a set R C Sk is said to be "(dynamically)
stable", if there ia a set U C Sk which is open in Sk and which containa R, such
that every trajectory starting in U approaches R.

In other words, Rp ie dynamically stable if every trajectory x(t) eubject to the dynamics
D(I'y,,,,,,y~) with x(0) E U fulfills d(x(t),Rp) ~ 0 as t --. foo, where U ~ Rp is a
suitably chosen open set in Sk and

d(x,Rp) - inf{~~x -r~[ : r E Rp}

is the minimum Euclidean diatance from x to Rp (~~z~~ - z~z denotea the usual Eu-
clidean norm of a vector z E Il~.').

The following result shows that the question formulated above can be answered
positively, and moreover provides a general dynamical characterization of evolutionary
stability that covers all cases discussed in sections 2 and 3.
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'i'heorem 5:
Let p E S" be a state in the game I'. Then the following assertions are equivalent:
(1) p is evolutionary stable (with respect to I');

(2) for all derived games I'P,,.,,,y,,, such that p is a convex combination of the
states pl, ...,pk, the set Ry is dynamically atable with respect to the dynamics

D(rP, ....~P~ )~

Proof: (1) ~(2): consider an arbitrary state i E Rp, i.e. fulfilling m~ - p; we

first construct an open neighbourhood Ur of i in Sk that is positively invariant under

D(I'P,,.,,,PR), i.e. fulfills

x(t) E U~ for all t 1 0 whenever x(0) E U~

(similarly to the proof of Theorem 4, where i - e and U~ - U~). To this end we employ
evolutionary stability of p which guarantees the existence of an s~ 0 such that

(p - q)'Aq ~ 0 whenever 0 G II4 - PII G E,

see (~) in the proof of Theorem 2. By continuity of the map x H m~, there is a p~ 0
fulfilling

IIm~ - PII - IIm~ - msll G E whenever IIx - xII G P.

Putting these two conditions together, we obtain

either x E Ry or (p - m~)'Ams ~ 0 if IIx - áII G P.

Now consiilcr the fimction

k
V3(x) -~ xj;~ , x E Sk ;

j-1

this function is continuous and strictly positive in a neighbourhood of i in Sk. Since
x- i is the only maximizer of Vt on Sk, there is an a 1 0 such that

IIx - iII G p whenever Vs(x) 1 V:(i) - a.

We claim that

U~ - {x E Sk : Vt(x) ~ V~(i) - ~ }
2

is positively invariant ( for simplicity of proof, we choose a emaller than Vs(i) so that

V~(x) ~ Z Vz(i) 1 0 for all x E U~): indeed, the considerations above ensure the relation

(p - m~)'Amz 1 0 for all x E U~ ;
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furthermore, the function V; ~x(t)) increases with time t along any trajectory x(t) atart-
ing in U~, because we obtain - similarly to the proof of Theorem 3-

k

llog V; (x(t))~ - ~ x~ xi(t)~-i
k

- ~ ii(Pi - mt(i))~Am~(t)
~-i
- (ms - mz(i)YAm:(t)
-(p - mz(i))'Amz(~) ~ 0 if x(t) E Ut ,

and hence x(0) E U3 entails x(t) E Ut for all t~ 0. Moreover, by continuity any
accumulation point ï- lim„~o, x(t„) of the trajectory x(t) (where t„ J' -~oo as v--~ oo)
fulfills

Vs(i) - ~y~Vs(x(ty)~ ~ ZV:(x) ~ 0

as well as

(P - mÍ)'Am2 - li~(P- m:(i.))~Amz(e.) - limo~log V~~x(tv))~ - 0.

By construction of Ui , this equality can prevail only if my - p", i.e. if i E Rp. Hence
we have shown d(x(t), R~) ~ 0 as t-~ ~oo, whenever x(0) E Ut. Now observe that the
ae,t

U- U U:CSk
tER~

is open in Sk and contains R~. The reasoning above proves d(x(t), Rp) --~ 0 as t -~ foo
whenever x(0) E U.
(2) ~(1) follows from Theorem 1, taking pl - p, p2 - g (an arbitrary state different
from p), and observing that in this case R~ -{~p~ } holds, so that atability of Rp ia the
same as asymptotic stability of ~o~. p

The proofof (2) ~(1) above indicates already why Theorem 5 is a generalization of
Theorems 1 and 2: just take p- pl, and obaerve that the extremality condition on pl is
exactly the relation Rp -{e}. Theorem 4 is no direct consequence of Theorem 5, since
the latter cannot exclude the case that a trajectory approches Rp in an "almost cycling
manner", coming eventually arbitrarily close to different atates á E R~. However, the
nroofof Theorem 5 also proves Theorem 4, aince a trajectory starting in Ut never leaves
it, and because the neighbourhooda U: shrink towarda i as a decreases to zero.
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Renrark: An alternative approach to Theorem 5 would consist in proceeding similarly
as Zeernan in (17], namely conaidering the dynamics for the population etrategies:

[m.~(t)]' - ~Cx(t)]' - Ci(t) - Dz~~lAmZtrl ,

where Dt -~~-r zípípí' - mzms' is the n x n-dispersion matrix of the state x, i.e.
the variance~covariance-matrix of the distribution ~~-r ziby~ (cf. the first remark in
section 3). The proof in [17, Lemma 7] however seems to work only under additional
regularity assumptions both on p in the original game and on the dispersion matrices
Ds~tl along trajectories x(t) near Rp. These assumptions are not used in the proof
presented above. For instance, Zeeman's method doea not apply without modi8cationa
to the setting of Theorem 3, if k G n; more generally, if the rank of C is lese than n,
then the rank of Dr is necessarily less than n- 1 (cf. [1]).
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