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ABSTRACT
In this paper, we propose a new dynamical classification of the cosmic web. Each point
in space is classified in one of four possible web types: voids, sheets, filaments and knots.
The classification is based on the evaluation of the deformation tensor (i.e. the Hessian of
the gravitational potential) on a grid. The classification is based on counting the number of
eigenvalues above a certain threshold, λth, at each grid point, where the case of zero, one,
two or three such eigenvalues corresponds to void, sheet, filament or a knot grid point. The
collection of neighbouring grid points, friends of friends, of the same web type constitutes
voids, sheets, filaments and knots as extended web objects.

A simple dynamical consideration of the emergence of the web suggests that the threshold
should not be null, as in previous implementations of the algorithm. A detailed dynamical
analysis would have found different threshold values for the collapse of sheets, filaments and
knots. Short of such an analysis a phenomenological approach has been opted for, looking for
a single threshold to be determined by analysing numerical simulations.

Our cosmic web classification has been applied and tested against a suite of large (dark
matter only) cosmological N-body simulations. In particular, the dependence of the volume
and mass filling fractions on λth and on the resolution has been calculated for the four web
types. We also study the percolation properties of voids and filaments.

Our main findings are as follows. (i) Already at λth = 0.1 the resulting web classification
reproduces the visual impression of the cosmic web. (ii) Between 0.2 � λth � 0.4, a system
of percolated voids coexists with a net of interconnected filaments. This suggests a reasonable
choice for λth as the parameter that defines the cosmic web. (iii) The dynamical nature of
the suggested classification provides a robust framework for incorporating environmental
information into galaxy formation models, and in particular to semi-analytical models.

Key words: methods: numerical – cosmology: large-scale structure of Universe.

1 IN T RO D U C T I O N

The large-scale structure of the Universe, as depicted from galaxy
surveys, weak lensing maps and numerical simulations, shows a
web of three-dimensional structures. There are three features that
can be generally observed. First, most of the volume resides in
underdense regions, secondly most of the volume is permeated by
filaments, thirdly the densest clumps are located at the intersection
of filaments (Bond, Kofman & Pogosyan 1996). This motivates a
classification of the cosmic web into at least three categories: voids
(underdense regions), filaments and knots (densest clumps).

�E-mail: jforero@aip.de

There is clear evidence that certain observed properties of galax-
ies correlate with their environments. For example, the morphology
density relation stipulates that elliptical galaxies are found prefer-
entially in crowded environments and spiral galaxies are found in
the field (Dressler 1980). The same kind of correlation can be found
in terms of the colours of the galaxies (Blanton et al. 2005), star
formation history and ages.

According to the current paradigm of structure formation, galax-
ies form and evolve in dark matter (DM) haloes (White & Rees
1978). It follows that the study of such environmental dependence
should commence with the effort to understand the formation of
DM haloes in the context of the cosmic web (Avila-Reese et al.
2005; Gao, Springel & White 2005; Maulbetsch et al. 2007). This
motivates us to search for a robust and meaningful method to clas-
sify the different environments in numerical simulations. Such a
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classification should provide the framework for studying the envi-
ronmental dependence of galaxy formation.

Translating the visual impression into an algorithm that classifies
the local geometry into different environments is not a trivial task.
A somewhat less challenging, yet very closely related, task is that of
identifying just the voids out of the cosmic web. A thorough review
and comparison of different algorithms of void finders has been
recently presented in Colberg et al. (2008). The void finders can
be classified according to the method employed. Most are based
on the point distribution of galaxies or haloes while others are
based on the smoothed density or potential fields. Some of the
finders are based on spherical filters while others assume no inherent
symmetry (Arbabi-Bidgoli & Müller 2002; Plionis & Basilakos
2002; Gottlöber et al. 2003; Colberg et al. 2005; Shandarin et al.
2006; Brunino et al. 2007; Platen, van de Weygaert & Jones 2007;
Neyrinck 2008).

It should be emphasized that an environment finder should be
evaluated by its merits and it cannot be labelled as right or wrong.
A good algorithm should provide a quantitative classification which
agrees with the visual impression and it should be based on a ro-
bust and well-defined numerical scheme. Yet, it is desirable for an
algorithm to be based on simple physical considerations so that its
outcome can be estimated analytically. Also, simplicity is always
very highly desired.

A variety of approaches have been employed in the classification
of the cosmic environment into its basic elements. The simplest way
is based on the association of the environment with the local density,
evaluated with a top-hat filter of some width (Lemson & Kauffmann
1999). The density field can be analysed in a much more sophisti-
cated and elaborated way. This is the case of the web classification
based on the multiscale analysis of the Hessian matrix of the den-
sity field (Aragón-Calvo et al. 2007) or the skeleton analysis of the
density field (Novikov, Colombi & Doré 2006; Sousbie et al. 2008).
Both methods classify the cosmic web by pure geometrical tools
applied to the density field. A very different approach is done within
a dynamical framework in which the analysis of the gravitational
potential is used to classify the web. This has been inspired by the
seminal work of Zeldovich (1970) that led to the ‘Russian school
of structure formation’ (e.g. Arnold, Shandarin & Zeldovich 1982;
Klypin & Shandarin 1983). The quasi-linear theory of the Zeldovich
approximation predicts the existence of an infinitely connected web
of pancakes (i.e. sheets), filaments and knots. This morphological
classification is based on the study of the eigenvalues of the defor-
mation tensor, namely the Hessian matrix of the linear gravitational
field.

A recent application of the Zeldovich-based classification has
been provided by Lee & Lee (2008) who used a Wiener filter linear
reconstruction of the local density field and evaluated the linear
deformation, and hence also the shear, tensor on a grid. The cosmic
web has been classified according the structure of the shear tensor.

A different approach has been followed by Hahn et al. (2007) who
suggested that the full non-linear gravitational potential should be
used for the geometrical classification. Apart from the difference
between the linear and the non-linear potential, both Hahn et al.
(2007) and Lee & Lee (2008) use the same scheme. Namely, the
Hessian of the gravitational potential is evaluated on a grid and its
eigenvalues are examined locally.

The Hahn et al. (2007) algorithm provides a very attractive ap-
proach to the classification of the cosmic web. We find the dynamical
basis of the algorithm to be its main virtue. The cosmic web is essen-
tially imprinted by the gravitational field induced by the distribution
of the DM already in the linear regime, as it is clearly manifested by

the Zeldovich (1970) approximation. Now, it is true that the cosmic
web can be classified and analysed in a variety of ways and the
choice of the particular method should depend on the problem one
attempts to address. Yet, it is gravity that governs the emergence of
the large-scale structure and drives the formation of galaxies em-
bedded within the cosmic web. It seems therefore most appropriate
to define the web by its dynamical properties. This drives us to
follow the earlier Hahn et al. approach and extend it. These authors
classified the web characteristic by adopting a zero threshold for
the eigenvalues. Our approach is to consider a non-zero threshold
and examine what value best matches visual appearance and other
web characteristics as exhibited by N-body simulations.

The approach adopted by Hahn et al. (2007) and followed here is
that each point in space is assigned a property defined here as a web
type. Namely, a web type is classified as a void, sheet, filament or
knot according to the number of eigenvalues above a given thresh-
old. It is the collective classification of all points in space which
gives rise to the geometrical construction we call the cosmic web.

The collection of all neighbouring points, say in the sense of
friends of friends (FoF), of a given web type defines web objects of
that types. For example, the collection of neighbouring void points
constitutes a void.

This paper is organized as follows. The web classification scheme
is described in Section 2. The N-body simulation used in the paper
and the numerical implementation of the web classification are
presented in Section 3. Section 4 describes the main properties of
the cosmic web and in particular its dependence on the smoothing
scale and the free parameter of our classification scheme. Section 5
concentrates on the properties of the voids sector of the cosmic
web. Section 6 studies the fragmentation of filaments in order to
give a confidence interval to the free parameter that was introduced.
In Section 7, we revisit the Sections 4 and 5 to study the effect of
cosmic variance. The paper concludes with a general discussion and
a summary of the main results of the paper (Section 8).

2 W EB CLASSIFICATION

Hahn et al. (2007) have recently suggested a new dynamical classi-
fication of the cosmic web. The basic idea of their approach is that
the eigenvalues of the deformation tensor determine the geometrical
nature of each point in space.

The deformation tensor, Tαβ , is defined by the Hessian of the
gravitational potential φ:

Tαβ = ∂2φ

∂rα∂rβ

. (1)

The definition of the deformation tensor1 explicitly assumes that
the matter density field is known and that it is smoothed with a finite
kernel, which is introduced in order to control the high-frequency
behaviour of the calculated derivatives. For simplicity, the smoothed
density field is defined over a (Cartesian) grid.

Hahn et al. (2007) considered the three eigenvalues of the defor-
mation tensor, λ̃1 ≥ λ̃2 ≥ λ̃3, and classified a grid point according
the number of positive eigenvalues at that point. Namely, a void
point corresponds to no positive eigenvalues, a sheet to one, a fila-
ment to two and a knot point to three positive eigenvalues. The sign
of a given eigenvalue at a given grid node determines whether the

1 Hahn et al. (2007) call the Tαβ tensor the ‘tidal tensor’. Usually, the tidal
tensor is defined as the traceless part of Tαβ .
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gravitational force at the direction of the corresponding eigenvector
is contracting (positive eigenvalue) or expanding (negative).

Hahn et al. (2007) provided a very attractive approach to the web
classification problem. It is based on the dynamical nature of the
web, and so it easily lends itself to a theoretical analysis. The ease
of its application to cosmological simulations opens the door for a
new framework for associating the properties of galaxies and DM
with environment, as defined by the web classification.

Close inspection of the Hahn et al. (2007) classification scheme
and its results reveals some shortcomings. The volume filling factor
for voids in Hahn et al. (2007) is very small. For their minimal
smoothing scale, namely the highest resolution, the voids occupy
only 17 per cent of the simulated volume. This stands in contrast to
the visual impression of voids in the actual Universe and in simula-
tions, where voids seems to occupy most of the volume but contain
only a small fraction of the galaxies (in observations) or matter (in
simulations). Furthermore, the Hahn et al. (2007) classification does
not reproduce the visual perception of the cosmic web.

It is easy to understand the inability of the Hahn et al. (2007)
approach to reproduce the visual impression. The web classification
is based on the algebraic sign of the eigenvalues of the deformation
tensor, namely the number of eigenvalues larger than a threshold
value of zero. It follows that if an eigenvalue is only infinitesimally
positive, the scheme assumes that the local neighbourhood of the
given grid point collapses along the corresponding eigenvector. Yet,
the collapse proceeds over the dynamical time-scale and if the value
of the eigenvalue is small enough the collapse will occur, if at all,
only in the distant future. Visual inspection would not classify the
region as collapsing at the present time. This leads us to consider
an alternative approach, namely asking the eigenvalues to be larger
than a positive threshold.

Noting that the dimensionality of the deformation tensor is
[time]−2, its eigenvalues can be associated with the collapse time.
It follows that the threshold value should be roughly determined by
equating the collapse time with the age of the universe. This implies,
however, that a separate threshold value should be determined for
the one-, two- and three-dimensional collapse. Here, we will look
for one threshold that characterizes the whole cosmic web. When
casted in a dimensionless way (Appendix A), we expect the thresh-
old to be of the order of unity. For an isotropic collapse, λth can be
calculated explicitly (see equations A3–A7). However, this should
be taken only as a reference value and not be considered as an ap-
propriate approximation. Rather, a phenomenological approach is
adopted here and the threshold is to be determined by visual and
percolation analysis of numerical simulations.

3 N- B O DY SI M U L AT I O N , N U M E R I C A L
I M P L E M E N TAT I O N A N D O B J E C T D E T E C T I O N

We use two numerical simulation. The first assumes a Wilkinson Mi-
crowave Anisotropy Probe 3 (WMAP3) cosmology (Spergel et al.
2007) with a matter density �m = 0.24, a cosmological constant
�� = 0.76, a dimensionless Hubble parameter h = 0.73, a spectral
index of primordial density perturbations n = 0.96 and a normal-
ization of σ 8 = 0.76. A simulation of box size 160 h−1 Mpc and
10243 particles has been used, corresponding to a particle mass of
3.5 × 108 M�. Starting at redshift z = 30, the evolution is fol-
lowed using the MPI version of the Adaptive Refinement Tree (ART)
code described in Gottlöber & Klypin (2008). The simulation used
here is a constrained simulation of the local universe which is to
be described at length in the forthcoming paper (Yepes et al., in

preparation). This is an updated and higher resolution version of
the constrained simulation presented in Klypin et al. (2003). Here,
the simulation is treated as random and its constrained nature is
completely ignored.

In order to estimate cosmic variance effects, we have used a
numerical simulation of box size 1 h−1 Gpc. The assumed cosmol-
ogy for this simulation is WMAP3 with a matter density �m =
0.27, a cosmological constant �� = 0.73, a dimensionless Hubble
parameter h = 0.70, a spectral index n = 0.95, a normalization
σ 8 = 0.79 and 10243 particles corresponding to a particle mass of
9.8 × 1010 M�. The simulation was performed using the ART code
as well.

The analysis of the simulations proceeds as follows. The density
field of the 160 h−1 Mpc simulation is calculated from the particle
distribution on a 2563 grid using the cloud-in-cell (CIC) scheme,
it is then smoothed with a Gaussian kernel of width Rs and from
which the deformation tensor is calculated directly, using an FFT

solver taking advantage of the periodic boundary conditions of the
simulated volume. The deformation tensor is then diagonalized on
the grid. The web characteristic of each grid point is determined by
the number of eigenvalues, at that grid node, above the threshold.
It should be realized that the classification is local by its nature,
but the combined effect of all grid points results in the geometrical
construction defined as the cosmic web.

It is important to note that the actual smoothing scale depends
on both the Gaussian smoothing scale Rs and the grid size Rg. The

effective smoothing equals to Reff =
√

R2
s + R2

g . In the text, we

quote always the effective smoothing.
In the 1 h−1 Gpc simulation, we followed the same procedure,

interpolating first the density on a 5123 grid and performing the FFT

over the full volume using its periodic boundary conditions. Once
the environment detection procedure is done, we select 63 distinct
subboxes of 160 h−1 Mpc on a side to test the effect of cosmic
variance. Fig. 1 shows the CIC density field and the cosmic web
evaluated at the threshold values of λth = 0.00, 0.20, 0.40, 1.00 and
2.00. The web is presented by a grey scale corresponding to the
four web types, it is evaluated at a Gaussian effective smoothing of
Reff = 0.88 h−1 Mpc (Fig. 1). The density field and the cosmic web
are evaluated on a plane of the CIC grid. Visual inspection of the
density field reveals a network of voids, filaments and dense knots.
The density field is evaluated on a thin plane and therefore no clear
distinction can be made between the three-dimensional filaments
and sheets.

The web defined by λth = 0.0 consists of many small isolated
voids that occupy only a small fraction of the total area of the plane.
Only as λth increases the voids get bigger and connected and they
become the dominant geometrical component of the web.

The non-zero threshold classification provides a better visual
match to the density field than the null case. A qualitative analysis
and comparison is presented in Section 4. The analysis is based
on two quantities: the volume occupied by each web type [volume
filling fraction (VFF)] and the fraction of mass contained in such a
volume [mass filling fraction (MFF)].

A characterization of the cosmic web is obtained by grouping,
using a FoF algorithm, neighbouring grid points of a given web type
into individual objects. The FoF association proceeds in the follow-
ing way: the centres of the cells in the grid are used as the position
of four different kinds of cells according to its web type, then a stan-
dard FoF (Davis et al. 1985) is run over cells of the same kind with a
linking length b = 1.1 times the grid length. Thus, only the six clos-
est neighbours of a given cell are taken into account. The FoF void
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Figure 1. The density field and five different environmental classifications. Upper-left panel: slice of width 0.625 h−1 Mpc depicting the density field in the
simulation smoothed over a scale of Reff = 0.88 h−1 Mpc, the colour coding is logarithmic in the density – high-density peaks are dark. The other panels show
the environment classification using different values for the threshold, λth = 0.0, 0.20, 0.40, 1.0 and 2.0. White corresponds to voids, clear grey to sheets, dark
grey to filaments and black to knots. The general impression is that the non-zero values of λth below 1.0 capture better the environment seen by eye in the
density plot.

detection is done for different simulations: the 160 h−1 Mpc simu-
lation, the 1 h−1 Gpc simulation and 216 subboxes of 160 h−1 Mpc
on a side extracted from the largest simulation.

The full 160 h−1 Mpc and 1 h−1 Gpc computational boxes have
periodic boundary conditions, but the distinct subboxes of course
do not obey such boundary conditions. The FoF analysis is
performed by neglecting the periodic boundary conditions, so
as to keep a consistent analysis of all the case considered
here.

The FoF algorithm is used to detect voids for different thresh-
old values in the different simulations which are smoothed with
the same physical scale Rs = 1.95 h−1 Mpc, resulting in an effec-
tive resolution of Reff = 2.75 h−1 Mpc for the 1 h−1 Gpc box and
Reff = 2.05 h−1 Mpc for the 160 h−1 Mpc box. This difference is not
significant in terms of the VFF and allows for a fair comparison for
the detected voids and filaments. In Section 5, a detailed analysis
on these voids is presented, paying special attention to its percola-
tion properties as the threshold rises. The same kind of analysis is
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performed for the filaments in Section 6, but only on the 1 h−1 Gpc
simulation.

4 VOLUME AND MASS FILLING FRACTIO NS

The web classification depends on two parameters that determine
the environment. The first is the smoothing scale Reff and the second
is the threshold for the eigenvalues λth. The dependency of the VFF
and MFF on these two parameters is studied here. This is done for
the four web types.

The VFF and MFF are measured for the four web types. First,
by fixing λth = 0 and varying the smoothing scale Reff between
0.88 h−1 Mpc and 12.4 h−1 Mpc. This is also done by fixing the
smoothing scale to 2.05 h−1 Mpc and varying λth between 0 and

1 with steps of 0.1. The results of these two cuts are shown in
Fig. 2. The VFF and MFF of the case λth = 0.0 and 1.0, with
two different smoothing scales Reff = 0.88 and 2.05 h−1 Mpc, are
presented in Table 1. The evolution of the filling fraction with
λth = 0 reproduces the asymptotic results expected for large smooth-
ing scales, which is 0.42 for sheets and filaments and 0.08 for voids
and knots (Doroshkevich 1970).

The most striking feature that emerges from Fig. 2 is that of the
strong dependence of VFF and MFF of the voids on λth. This is to
be contrasted with the other web types which show quite a similar
behaviour with the change of the smoothing and the change of the
threshold. It follows that the voids can serve as a sensitive monitor
and indicator of the cosmic web. For the case of a null threshold, the
dependence on the smoothing length is weak. The increase of Reff
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Figure 2. Upper panels: the VFF of knots, filaments, sheets and voids as a function of the smoothing scale Reff for λth = 0.0 (left-hand panel) and as a function
of λth for Reff = 2.05 h−1 Mpc (right-hand panel). Continuous line: voids, dashed: sheets, dotted: filaments, dot–dashed: knots. Lower panels: same as the
upper panel but for the MFF.

Table 1. VFF and MFF for the four web types for two different smoothing scales, Reff =
0.88 and 2.05 h−1 Mpc.

Reff = 0.88 h−1 Mpc Reff = 2.05 h−1 Mpc
λth = 0.0 λth = 1.0 λth = 0.0 λth = 1.0

Web type Volume Mass Volume Mass Volume Mass Volume Mass

Void 0.16 0.02 0.76 0.28 0.13 0.03 0.82 0.47
Sheet 0.60 0.27 0.18 0.25 0.56 0.32 0.14 0.25

Filament 0.24 0.54 0.05 0.35 0.28 0.52 0.04 0.22
Knot 0.01 0.16 5.0e-3 0.12 0.01 0.11 2.8e-3 0.06

Note. For each smoothing, two extreme values of the threshold are used, λth = 0.0 and 1.0.
The VFFs are similar for the same values of the threshold λth regardless of which smoothing
scale is used.
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Figure 3. Upper row: isocontours for the VFFs for the different kinds of environment, in the plane Reff−λth. Lower row: isocontours for the MFFs for the
different kinds of environment, in the plane Reff−λth. In both rows, from left- to right-hand panels: filaments; sheets and voids. The label on each isocontour
is the percentage of the total volume filled by a given kind of environment.

corresponds to a transition to the linear regime where the density
field is closer to be Gaussian.

We then perform an exploration of the space λth−Reff by making
the environment classification with steps of 
λth = 0.1 for each
smoothed density field. We measure the filling fractions for each
couple Reff−λth. The results are shown in Fig. 3. The important
result here is that in the range of explored values the threshold on
the eigenvalues is more important than the smoothing scale to fix
the VFF.

Inspection of the behaviour of the VFF and MFF in the Reff−λth

plane reveals that voids on the one hand and the sheets and filaments
on the other are complementing each other. This means that the VFF
and MFF for voids increases with both Reff and λth at expenses of
the volume and mass in sheets and filaments.

This provides more evidence for the distinct nature of voids. The
VFF of the voids, sheets and filaments clearly show the significance
of the λth � 0.2 case. For that threshold, the contour lines are almost
vertical, implying that the VFF of these web elements are almost
independent of Reff . The MFF, on the other hand, distinguishes very
easily different values of the smoothing scale Reff .

5 PE R C O L AT I O N O F VO I D S

Here, we focus on the analysis of the statistical distribution of the
sizes of the voids and their percolation. The emphasis on voids does
not stem only from the extensive work done on their properties
(Colberg et al. 2008) but also because they constitute the most sen-
sitive gauge of the cosmic web and its dependence on the threshold
of the eigenvalues.

A simplified characterization was already performed in Section 4
by measuring the volume and mass occupied in the void environ-
ment. Here, the dependence of the number of voids and their perco-

lation properties on λth is examined. The percolation is quantified
by the fraction of volume of the largest (in volume) void (Vmax) to
the total volume occupied by all voids (V tot).

The void identification is performed here at a fixed smooth-
ing scale, Reff = 2.75 and 2.05 h−1 Mpc for the 1 h−1 Gpc and
160 h−1 Mpc, respectively, and by varying the eigenvalues thresh-
old in the range of 0 < λth < 0.3. Fig. 4 (left-hand panel) shows that
the number of voids in the simulation decays roughly exponentially
with λth, N void = N 0exp(−λth/λD), where N0 is the number of voids
for the null threshold and λD is a typical scale over λth to quantify
the decay in the number of voids.

Fig. 4 (right-hand panel) presents the fraction of the volume of
the largest (in volume) void to the total volume of all the voids
(V max/V tot). A transition occurs between 0.1 � λth � 0.2 where the
ratio jumps from ≤0.1 to ≥0.9. Note that the percolation starts at
the stage in which the VFF of voids is only ∼25 per cent. It follows
that in spite of the small VFF obtained for λth ∼ 0.1 the voids start
to coalesce and form one supervoid which encompasses 90 per cent
of the total volume of voids when the void VFF reaches 60 per cent.
As we will show in Section 7, this transitional scale is dependent
on the particular simulation under consideration.

The percolation analysis depends on the boundary conditions of
the studied volumes. Two distinct cases of boundary conditions
are presented in Fig. 4. One corresponds to the ensemble of sub-
boxes cut out from the 1 h−1 Gpc computational box, in which the
boundary conditions are left free. The other is the case of the full
computational boxes which obey periodic boundary conditions. In
both cases, the FoF analysis is performed by neglecting the possibil-
ity of periodic boundary conditions. Evidently, the first case better
corresponds to the actual astronomical case in which a percolation
analysis would be applied to finite volumes with boundary free con-
ditions. Fig. 4 clearly show that the percolation curves of the two
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Figure 4. Percolation results. Left-hand panel: number of voids as a function of the threshold in eigenvalues normalized to the number of voids at λth = 0.0. A
fixed smoothing of Rs = 1.95 h−1 Mpc is used here for all the simulations. It corresponds to Reff = 2.75 and 2.05 h−1 Mpc for the 1 h−1 Gpc and 160 h−1 Mpc
simulation, respectively. The thick line shows the results for the 1 h−1 Gpc simulation, the thin line shows the results for the 160 h−1 Mpc simulation. The
magenta lines show the results for the subvolumes extracted from the 1 h−1 Gpc simulation. Right-hand panel: fraction of the total void volume occupied
by the largest void. The line coding is the same as in the left-hand panel. Results from the large 1 h−1 Gpc differ greatly from the results in the simulation
160 h−1 Mpc, nevertheless the later is consistent within the scatter deduced from the subvolumes. Even when it is clear that the detailed shape of the curve
depends on the simulation size, it seems to be a robust feature that the largest change in the supervoid size is presented around 0.1 � λth � 0.2.

full boxes lie within the variance spanned by the subboxes, suggest-
ing the dynamical effect of the boundary conditions lies within the
cosmic variance.

The question of how the incorporation of the periodic boundary
conditions into the FoF analysis affects the percolation analysis is
interesting, even if it is somewhat ‘academic’. A simple reasoning
suggests that this causes the systems to percolate at smaller λth. Per-
colation is defined as the point where V max/V tot exceeds a certain
value. Now, the incorporation of the periodic boundary conditions
does not change V tot but it connect voids, that are otherwise not
connected and hence V max increases. It follows that this reduces the
percolation threshold. Furthermore, the smaller is the computational
box the larger is the effect. We have found that by including peri-
odic boundary conditions in the analysis the percolation threshold
drops by 0.10 and 0.05 for the 160 h−1 Mpc and 1 h−1 Gpc boxes,
respectively.

6 FR AG M E N TAT I O N O F FI L A M E N T S

Along with voids, filaments have received some attention in the lit-
erature as a natural way to probe large-scale structure (Novikov et al.
2006; Sousbie et al. 2008). A study of the filaments is performed
here, focusing on their percolation dynamics.

As opposed to voids, filaments start to fragment as the threshold
λth is raised. This is clear in Fig. 1, which shows that the filaments
disappear as λth increases, making room for the growing voids.

Consequently, one could expect that for some range of λth there
are two coexisting environments: a complex of percolating voids
and a network of interconnected filaments, something close to the
visual impression of the comic web. The percolation analysis of
the filament and void networks can help to define an interval of λth

values where the environment studies would be feasible.
The percolation analysis of filaments is applied here to the

1 h−1 Gpc simulation. Fig. 5 shows the ratio of the volume of largest
filament to the total volume occupied by filaments plotted together
with V max/V tot for the voids (presented also in the right-hand panel
of Fig. 4). The filament fraction evolves from a value close to ∼1
for λth = 0.0 down to values close to zero for λth ∼ 1.5. It confirms
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Figure 5. The continuous line shows the fraction of total volume in voids
occupied by the largest void. The dashed line shows the fraction of the total
volume in filaments occupied by the largest filament. Both curves refer to the
1 h−1 Gpc simulation. As the eigenvalue threshold rises, the voids percolate,
while the network of filaments fragments. The two fractions are the same at
λth = 0.25.

the visual intuition we had of a fully interconnected network of
filaments that fragments as the eigenvalue threshold increases.

The percolation/fragmentation curves intersect at λth = 0.25,
when the two fractional volumes are ∼97 per cent. Heuristically,
one can assume a given network to exist, namely percolate, when
its fractional volume exceeds 95 per cent. The web is then defined
at the threshold level at which the voids and filaments networks
coexist. This implies a threshold interval of 0.20 � λth � 0.40.
Such a heuristic approach is in a good agreement and matches the
visual impression of the LSS (Fig. 1). This approximate interval
should hold for lower smoothing scales, as the VFF (our gauge for
the percolation dynamics) is almost independent of the smoothing
scale for the range of thresholds considered, as seen in Fig. 3, and
suggested as well in the values of Table 1.
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Again, the incorporation of periodic boundary conditions in the
analysis changes the interval in λth where the interconnected voids
and filaments coexist. However, the effect decreases with the size
of the computational box. In the case of the 1 h−1 Gpc simulation,
the intersection of the percolation and fragmentation curves moves
by a mere 
λth = 0.01. In the 160 h−1 Mpc simulation, the intersec-
tion changes from λth = 0.30 in the absence of periodic boundary
conditions to λth = 0.25 when periodicity is included. In both cases,
the fractional volumes at intersection are larger than ∼95 per cent.

7 SIMULATION BOX SIZE AND COSMIC
VA R I A N C E

The dependence of the cosmic web classification on the cosmic
variance and the simulation box size is further studied here. This
is done by analysing the VFF and the MFF in the three following
cases.

(i) The 1 h−1 Gpc simulation with its density field evaluated on a
5123 grid and Gaussian smoothed with Rs = 1.95 h−1 Mpc, making
Reff = 2.75 h−1 Mpc.

(ii) The 160 h−1 Mpc simulation with a 2563 grid density field
smoothed with Rs = 1.95 h−1 Mpc, making Reff = 2.05 h−1 Mpc .

(iii) 63 distinct subboxes of the 1 h−1 Gpc simulation, with the
same smoothing and grid cell as the 1 h−1 Gpc simulation. The
ensemble of 216, 160 h−1 Mpc subboxes is used to study the effect
of cosmic variance.

Fig. 6 shows the result for the VFF and MFF. The results for
the 160 h−1 Mpc simulation are well within the variance calculated

from the subvolumes in the 1 h−1 Gpc simulation. In the case of the
MFF, the result for the 160 h−1 Mpc are located far from the mean
value in the 1 h−1 Gpc, nevertheless it is located within the disper-
sion defined by the subvolumes. In general, the VFF and MFF are
consistent in all the three kinds of simulations. The agreement is
less impressive than with the VFF, perhaps as well due to the dif-
ferent values of the effective smoothing scale Reff . From the results
in Fig. 3, we know that the smoothing plays a more important role
in the MFF than in the VFF, especially for high values of λth.

The growth of the largest void in the simulation, Fig. 4, is very
different between the three kinds of simulations. The fraction of
void volume occupied by the supervoid is very dependent on the
simulation size. For the large 1 h−1 Gpc simulation, the initial values
of V max/V tot for λth = 0.0 are the lowest possible, this can be readily
understood by the fact that V tot grows with the simulation box size,
while the volume of the largest void, Vmax, is of the same order of
magnitude regardless of the simulation size. For values larger than
λth = 0.2, the large simulation has almost percolated into a single
supervoid, while the subvolumes still show a large dispersion in
their percolation behaviour. The results for the small 160 h−1 Mpc
simulation are consistent with such dispersion. In spite of this, in
all the three cases there is a clear transitional behaviour starting at
λth = 0.1 and finishing around λth = 0.2, even when the detailed
behaviour with λth is far from being the same.

8 C O N C L U S I O N S

This paper presents an algorithm for classifying the cosmic web
and its application to pure DM simulations. The scheme is based on
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Figure 6. Cosmic variance effects on volume and MFFs for voids and filaments. Thick black line: simulation 1 h−1 Gpc, thin black line: simulation 160 h−1 Mpc,
magenta lines: subvolumes extracted from the 1 h−1 Gpc simulation. Upper panels: VFF of voids (left-hand panel) and filaments (right-hand panel) as a function
of the eigenvalue threshold λth. Lower panels: same as the upper panels for the MFFs.
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the analysis of the Hessian of the gravitational potential generated
by the DM distribution. The algorithm presented here constitutes
an improvement on the scheme of Hahn et al. (2007), involving a
pertinent reinterpretation of the dynamics in the problem. This is
achieved by relaxing the λth = 0 assumption of Hahn et al. and
recognizing the fact that λth is related to the collapse time-scale.
This improvement allows a more realistic treatment of the cosmic
web.

Inspection of the different plots of Fig. 2 reveals the striking
difference in the way the cosmic web, and in particular the voids,
responds to the changes in the Gaussian smoothing and the λth’s
threshold. Keeping a null λth and changing Reff , we see that the non-
linear evolution does not change the ranking of the VFF and MFF
found in the deep linear regime (i.e. Reff ≈ 12.5 h−1 Mpc). Namely,
for the null threshold the sheets have the highest VFF and the
filaments the highest MFF, independent of Reff . Considering the case
of a fixed Reff = 2.05 h−1 Mpc, the void VFF grows strongly with
λth and above λth ∼ 0.5 the voids have the highest VFF. The results
on the VFF are extremely robust with respect to the simulation size
and cosmic variance effects. In the case of the void MFF, it changes
from the lowest one at λth = 0 to the second highest at λth = 1.0.

The nature of the web changes dramatically with the threshold
as it becomes volume dominated by the voids as λth increases.
The MFF shows a larger cosmic variance, compared with the VFF.
Also, it is equally sensitive to changes in the smoothing scale and
the threshold value.

The web classification provides a set of flagged points on a grid,
and the collection of neighbouring grid points of a given environ-
mental type, connected by an FoF algorithm, forms objects we
associate with voids, sheets, filaments and knots. The statistical
properties of the system of voids and their dependence on λth have
been explored here. In particular, the number of isolated voids and
their sizes have been analysed, finding that the number of isolated
voids roughly decreases exponentially with λth. In the 1 h−1 Gpc
simulation, the system of voids percolates between 0.1 � λth � 0.2,
at which the largest void jumps from having less than 10 per cent to
90 per cent of the volume occupied by voids. The percolation dy-
namics is also seen on average in the different smaller simulations,
with a wide spread of observed percolation, but keeping the same
threshold interval for the transition.

The association of the eigenvectors of the deformation tensor
with the collapse time, and hence with the age of the universe,
enables in principle a theoretical determination of λth. A thorough
analysis would have yielded a threshold value that depends on the
dimensionality of the collapse. A fiducial or a reference value is
provided by the spherical collapse model in the WMAP3 cosmology
of λth = 3.21. However, at that high value the web (in particular the
network of filaments) looks very fragmented. The application of the
ellipsoidal collapse model (Sheth & Tormen 2002) might provide a
better theoretical estimate.

Short of a ‘first principle’ determination of λth we resort to a
heuristic approach. We look for the range of λth over which the
percolated networks of the voids and filaments coexist for a fixed
smoothing scale of Reff = 2.75 h−1 Mpc in the 1 h−1 Gpc simula-
tion. The voids and filaments behave in an opposite way in terms
of the dependence of the percolation on the threshold value. At
low λth, the voids are isolated and the filaments percolated and at
high λth the voids percolate and the filaments fragment. Adopting a
95 per cent in the fractional volume as defining the percolation tran-
sition, we find the web to be defined by a threshold in the range of
0.20 � λth � 0.40. This range stands in good agreement with the
visual impression obtained from the simulations.

The notion of the cosmic web is not new. The filamentary struc-
ture has been extensively studied, mostly within the context of the
Zeldovich pancakes (Zeldovich 1970). The role of voids has also
been heavily studied and many algorithms for voids finding have
been suggested (see Colberg et al. 2008). We have been motivated
by the computational simplicity and the elegance of the Hahn et al.
(2007) approach and have modified it in a way that reproduces the
web as it emerges from observations and simulations. Our main
drive is to provide a simple, fast and precise tool for classifying
the environmental properties of each point in space. Using the non-
zero thresholding of the eigenvalues of the Hessian of the potential
indeed provides a very efficient tool that can be easily applied to
simulations. The same analysis can be performed at different red-
shifts in the simulation, allowing the classification of environment
as a function of time.

A key problem in cosmology and structure formation is the role
of environment in the formation of galaxies. A related question is
to what extent the properties of galaxies forming within a DM halo
are determined only by the halo mass. It is important to examine
the possibility that direct environmental factors do affect galaxy
formation, and a mathematical language describing the environment
is a necessity in such an endeavour. Our main drive has been the need
for an algorithm that provides a clear and intuitive classification of
the cosmic web that can be easily incorporated into galaxy formation
models. We think that the web classification method presented here
indeed fulfills that need and that it can be readily incorporated into
semi-analytical schemes of galaxy formation.
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APPENDIX A : SETTING THE THRESHOLD
FOR W EB CLASSIFICATION

In this paper, we use the eigenvalues of the deformation tensor,
equation (1), normalized in a specific way. Here, we provide details
of the normalization and give motivation for selecting the threshold.

We write the Poisson equation in the following form:

∇2φ̃ = 4πGρ̄δ = λ̃1 + λ̃2 + λ̃3, (A1)

where ρ̄ is the mean matter density of the universe and δ is the matter
overdensity. One can rescale the gravitational potential and the
eigenvalues of the deformation tensor by dividing them by 4πGρ̄:

∇2φ = δ = λ1 + λ2 + λ3. (A2)

Note that 4πGρ̄ provides a natural scale to introduce dimension-
less parameters λi. We solve this equation numerically.

The spherical collapse model is invoked here so as to get a ref-
erence value for λth. The (spherical) free-fall time is related to the
local density by

τff =
√

3π

32Gρ
. (A3)

Recalling that

4πGρ̄ = 3

2
�mH 2

0 (A4)

(where �m is the value of the cosmological matter density and H0

is the Hubble constant), equation (A1) is rewritten as

∇2φ̃ = λ̃1 + λ̃2 + λ̃3 = 4πGρ − 4πGρ̄. (A5)

The threshold can be estimated by demanding that the free-fall
time equals the age of the universe (τ 0). Namely, the threshold
separates between the principal axes that have collapsed by τ 0 and
the ones that have not. Substituting the free-fall time by the age of
the universe, the threshold is given by

3β(λi)λ̃th = 3π2

8τ 2
0

− 3

2
�mH 2

0 , (A6)

where β is a fiducial factor introduced to account for the deviation
from local isotropy.

In terms of the dimensionless eigenvalues, the threshold is given
by

λth = 1

3β(λi)

[
π2

4

1

�m
(τ0H0)−2 − 1

]
. (A7)

For the WMAP3 parameters used in the 160 h−1 Mpc simulation,
we have �m = 0.24, h = 0.73 and τ 0H 0 = 0.983. It follows that
λth = 9.63/(3.0β). For the spherical case of β(λi) = 1, the threshold
is λth = 3.21.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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