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Abstract Quantum Information is a new area of research which has been
growing rapidly since last decade. This topic is very close to potential appli-
cations to the so called Quantum Computer. In our point of view it makes
sense to develop a more “dynamical point of view” of this theory. We want to
consider the concepts of entropy and pressure for “stationary systems” acting
on density matrices which generalize the usual ones in Ergodic Theory (in the
sense of the Thermodynamic Formalism of R. Bowen, Y. Sinai and D. Ru-
elle). We consider the operator L acting on density matrices ρ ∈MN over a
finite N -dimensional complex Hilbert space L(ρ) :=

∑k
i=1 tr(WiρW ∗

i )ViρV ∗
i ,

where Wi and Vi, i = 1, 2, . . . k are operators in this Hilbert space. L is not
a linear operator. In some sense this operator is a version of an Iterated
Function System (IFS). Namely, the Vi (.) V ∗

i =: Fi(.), i = 1, 2, . . . , k, play
the role of the inverse branches (acting on the configuration space of density
matrices ρ) and the Wi play the role of the weights one can consider on the
IFS. We suppose that for all ρ we have that

∑k
i=1 tr(WiρW ∗

i ) = 1. A family
W := {Wi}i=1,...,k determines a Quantum Iterated Function System (QIFS)
FW , FW = {MN , Fi, Wi}i=1,...,k.
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1 Introduction

We will present a survey, and also some new results, of certain topics in
Quantum Information from a strictly mathematical point of view. This area
is very close to potential applications to the so called Quantum Computer
[26]. In our point of view it makes sense to develop a more “dynamical point
of view” of this theory. For instance, Von Neumann entropy is a very nice
and useful concept, but, in our point of view, it is not a dynamical entropy.
A nice exposition about this theory from an Ergodic Theory point of view is
presented in [3] (see also [4]). Our setting is different. Part of our work is to
justify why the concepts we present here are natural generalizations of the
usual ones in Thermodynamic Formalism.

We have to analyze first the fundamental concepts in both theories. It
is well-known that the so called Quantum Stochastic Processes have some
special features which present a quite different nature than the usual classical
Stochastic Processes. A main issue on QSP is the possibility of interference
(see [1] [2] [8] [28] [31]). We will analyze carefully Quantum Iterated Function
Systems, which were described previously by [22] and [29].

We refer the reader to [1] for the proofs of the results presented in the first
part of this exposition.

Density matrices play the role of probabilities on Quantum Mechanics.
In this work we investigate a generalization of the classical Thermodynamic
Formalism (in the sense of Bowen, Sinai and Ruelle) for the setting of density
matrices. We consider the operator L acting on density matrices ρ ∈ MN

over a finite N -dimensional complex Hilbert space

L(ρ) :=
k∑

i=1

tr(WiρW ∗
i )ViρV ∗

i ,

where Wi and Vi, i = 1, 2, ..k are operators in this Hilbert space. Note that
L is not a linear operator.

In some sense this operator is a version of an Iterated Function System
(IFS). Namely, the Vi (.)V ∗

i =: Fi(.), i = 1, 2, . . . , k, play the role of the
inverse branches (acting on the configuration space of density matrices ρ)
and the Wi play the role of the weights one can consider on the IFS. We
suppose that for all ρ we have that

∑k
i=1 tr(WiρW ∗

i ) = 1. This means that
LFW

is a normalized operator.
A family W := {Wi}i=1,...,k determines a Quantum Iterated Function

System (QIFS) FW ,

FW = {MN , Fi,Wi}i=1,...,k
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We want to consider a new concept of entropy for stationary systems acting
on density matrices which generalizes the usual one in Ergodic Theory. In
our setting the Vi, i = 1, 2, . . . , k are fixed (i.e. the dynamics of the inverse
branches is fixed in the beginning) and we consider the different families Wi,
i = 1, 2, . . . , k, (also with the attached corresponding eigendensity matrix
ρW ) as possible Jacobians (of “stationary probabilities”).

It is appropriate to make here a remark about the meaning of “stationar-
ity” for us. In Ergodic Theory the action of the shift σ in the Bernoulli space
Ω = {1, 2, . . . , k}N with k symbols is well understood. The concept of station-
arity for a Stochastic Process (where the space of states is S = {1, 2, . . . , k})
is defined by the shift-invariance for the associated probability P in the
Bernoulli space (the space of paths). Shannon-Kolmogorov entropy is a con-
cept designed for stationary probabilities. When the probability P is associ-
ated to a Markov chain, this entropy is given by

H(P ) := −
N∑

i,j=1

pipij log pij ,

where P = (pij) describes the transition matrix, and pi the invariant probabil-
ity vector, i, j = 1, 2, .., k. This is the key idea for our definition of stationary
entropy.

Thermodynamic Formalism and the Ruelle operator for a potential A :
Ω → R are natural generalizations of the theory associated to the Perron
theorem for positive matrices (see [30]) (this occurs when the potential de-
pends on only the first two symbols of w = (w1, w2, w3, . . . ) ∈ Ω). We will
analyze the Pressure problem for density matrices under this last perspective.

The main point here (and also in [1] [2] [18] [20]) is that in order to define
Kolmogorov entropy one can avoid the use of partitions, etc. We just need
to look the problem at the level of Ruelle operators (which in some sense
captures the underlying dynamics).

Given a normalized family Wi, i = 1, 2, .., k, a natural definition of entropy,
denoted by hV (W ), is given by

−
k∑

i=1

tr(WiρW W ∗
i )

tr(ViρW V ∗
i )

k∑

j=1

tr
(
WjViρW V ∗

i W ∗
j

)
log

( tr(WjViρW V ∗
i W ∗

j )
tr(ViρW V ∗

i )

)
,

where, ρW denotes the barycenter of the unique invariant, attractive measure
for the Markov operator V associated to FW . We show that this generalizes
the entropy of a Markov System. This will be described later on this work.
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A different definition of entropy for density operators is presented in [2]
[7]. There are examples where the values one gets from these two concepts
are different (see [2]).

We also want to present here a concept of pressure for stationary systems
acting on density matrices which generalizes the usual one in Ergodic Theory.

In addition to the dynamics obtained by the Vi, which are fixed, a family
of potentials Hi, i = 1, 2, . . . k induces a kind of Ruelle operator given by

LH(ρ) :=
k∑

i=1

tr(HiρH∗
i )ViρV ∗

i (1)

We show that such operator admits an eigenvalue β and an associated
eigenstate ρβ , that is, one satisfying LH(ρβ) = βρβ .

The natural generalization of the concept of pressure for a family Hi,
i = 1, 2, . . . k is the problem of finding the maximization on the possible
normalized families Wi, i = 1, 2, . . . k, of the expression

hV (W ) +
k∑

j=1

log
(
tr(HjρHH∗

j )tr(VjρHV ∗
j )

)
tr(WjρW W ∗

j )

We show a relation between the eigendensity matrix ρH for the Ruelle oper-
ator and the set of Wi, i = 1, 2, . . . k, which maximizes pressure. In the case
each Vi, i = 1, 2, . . . k, is unitary, then the maximum value is log β.

Our work is inspired by the results presented in [22] and [29]. We would like
to thank these authors for supplying us with the corresponding references.

We point out that completely positive mappings (operators) acting on den-
sity matrices are of great importance in Quantum Computing. These opera-
tors can be written in the Stinespring-Kraus form. This motivates the study
of operators in the class we will assume here, which are a generalization of
such Stinespring-Kraus transformations.

The initial part of our work is dedicated to present all the definitions and
concepts that are not well-known (at least for the general audience of people
in Dynamical Systems), in a systematic and well organized way. We present
many examples and all the basic main definitions which are necessary to
understand the theory. However, we do not have the intention to exhaust
what is already known. We believe that the theoretical results presented
here can be useful as a general tool to understand problems in Quantum
Computing.

Several examples are presented with all details in the text. We believe that
this will help the reader to understand the main issues of the theory.
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In order to simplify the notation we will present most of our results for
the case of two by two matrices.

In sections 2 and 3 we present some basic definitions, examples and we
show some preliminary relations of our setting to the classical Thermody-
namic Formalism. In section 4 we present an eigenvalue problem for non-
normalized Ruelle operators which will be required later. Some properties
and concepts about density matrices and Ruelle operators are presented in
sections 6 and 7. In section 10 we introduce the concept of stationary entropy
for measures defined on the set of density matrices. In section 11 we compare
this definition with the usual one for Markov Chains. Section 12 aims to mo-
tivate the interest on pressure and the capacity-cost function. The sections
13, ??, 14 and 15 are dedicated to the presentation of our main results on
pressure, important inequalities, examples and its relation with the classical
theory of Thermodynamic Formalism.

This work is part of the thesis dissertation of C. F. Lardizabal in Prog.
Pos-Grad. Mat. UFRGS (Brazil) [16].

2 Basic definitions

Let MN (C) the set of complex matrices of order N . If ρ ∈ MN (C) then ρ∗

denotes the transpose conjugate of ρ. We consider in CN the L2 norm. A state
(or vector) in CN will be denoted by ψ or |ψ〉, and the associated projection
will be written |ψ〉〈ψ|. Define

HN := {ρ ∈ MN (C) : ρ∗ = ρ}

PHN := {ρ ∈ HN : 〈ρψ, ψ〉 ≥ 0, ∀ψ ∈ CN}
MN := {ρ ∈ PHN : tr(ρ) = 1}

PN := {ρ ∈ HN : ρ = |ψ〉〈ψ|, ψ ∈ CN , 〈ψ|ψ〉 = 1},
the space of hermitian, positive, density operators and pure states, respec-
tively. Density operators are also called mixed states. Any state ρ, by the
spectral theorem, can be written as

ρ =
k∑

i=1

pi|ψi〉〈ψi|, (2)

for some choice of pi, which are positive numbers with
∑

i pi = 1, and ψi,
which have norm one and are orthogonal.
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The set PN is the set of extremal points of MN , that is, the set of points
which can not be decomposed as a nontrivial convex combination of elements
in MN .

Definition 1 Let Gi : MN →MN , pi : MN → [0, 1], i = 1, . . . , k and such
that

∑
i pi(ρ) = 1. We call

FN = {MN , Gi, pi : i = 1, . . . , k} (3)

a Quantum Iterated Function System (QIFS).

Definition 2 A QIFS is homogeneous if pi and Gipi are affine mappings,
i = 1, . . . , k.

Suppose that the QIFS considered is such that there are Vi and Wi linear
maps, i = 1, . . . , k, with

∑k
i=1 W ∗

i Wi = I such that

Gi(ρ) =
ViρV ∗

i

tr(ViρV ∗
i )

(4)

and
pi(ρ) = tr(WiρW ∗

i ) (5)

Then we have that a QIFS is homogeneous if Vi=Wi, i = 1, . . . , k.
Now we can define a Markov operator V : M(MN ) →M(MN ),

(Vµ)(B) =
k∑

i=1

∫

G−1
i (B)

pi(ρ)dµ(ρ),

where M(MN ) denotes the space of probability measure over MN . We also
define Λ : MN →MN ,

Λ(ρ) :=
k∑

i=1

pi(ρ)Gi(ρ)

The operator defined above has no counterpart in the classical Thermo-
dynamic Formalism. We will also consider the operator acting on density
matrices ρ.

L(ρ) =
k∑

i=k

qi(ρ)ViρV ∗
i .

If for all ρ we have
∑k

i=k qi(ρ) = 1, we say the operator is normalized.
In the normalized case, the different possible choices of qi, i = 1, 2, . . . , k,

(which means different choices of Wi, i = 1, 2, . . . , k) play here the role of
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the different Jacobians of possible invariant probabilities (see [23] II. 1, and
[20]) in Thermodynamic Formalism. In some sense the probabilites can be
identified with the Jacobians (this is true at least for Gibbs probabilities of
Hölder potentials [25]). The set of Gibbs probabilities for Hölder potentials
is dense in the set of invariant probabilities [19].

We are also interested on the non-normalized case. If the QIFS is homo-
geneous, then

Λ(ρ) =
∑

i

ViρV ∗
i (6)

Theorem 1 [29] A mixed state ρ0 is Λ-invariant if and only if

ρ0 =
∫

MN

ρdµ(ρ), (7)

for some V-invariant measure µ.

In order to define hyperbolic QIFS, one has to define a distance on the
space of mixed states. For instance, we could choose one of the following:

D(ρ1, ρ2) =
√

tr[(ρ1 − ρ2)2]

D(ρ1, ρ2) = tr
√

(ρ1 − ρ2)2

D(ρ1, ρ2) =
√

2{1− tr[(ρ1/2
1 ρ2ρ

1/2
1 )1/2]}

Such metrics generate the same topology on M. Considering the space of
mixed states with one of those metrics we can make the following definition.
We say that a QIFS is hyperbolic if the quantum maps Gi are contractions
with respect to one of the distances on MN and if the maps pi are Hölder-
continuous and positive, see for instance, [22].

Proposition 1 If a QIFS (3) is homogeneous and hyperbolic the associated
Markov operator admits a unique invariant measure µ. Such invariant mea-
sure determines a unique Λ-invariant state ρ ∈MN , given by (7).

See [22], [29] for the proof.

3 Examples of QIFS

Example 1 Ω = MN , k = 2, p1 = p2 = 1/2, G1(ρ) = U1ρU∗
1 , G2(ρ) =

U2ρU∗
2 . The normalized identity matrix ρ∗ = I/N is Λ-invariant, for any

choice of unitary U1 and U2. Note that we can write



8 A. Baraviera, C. F. Lardizabal, A. O. Lopes, and M. Terra Cunha

ρ∗ =
∫

MN

ρdµ(ρ)

where the measure µ, uniformly distributed over PN , is V-invariant.

♦

In the example described below we use Dirac notation for the projections.

Example 2 We are interested in finding the fixed point ρ̂ for Λ in an example
for the case N = 2 and k = 3.

Consider the bits |0 >= (0, 1) and |1 >= (1, 0) (the canonical basis). The
states ρ are generated by |0 >< 0|, |0 >< 1|, |1 >< 0| and |1 >< 1|. Take
V1 = I and V2 such that |0 >→ |0 > and |1 >→ |0 >. Consider V3 such
that |0 >→ |1 > and |1 >→ |1 >. That is, V2 = |0 >< 0| + |0 >< 1|
and V3 = |1 >< 0| + |1 >< 1|. Therefore, V ∗

2 = |0 >< 0| + |1 >< 0|
and V ∗

3 = |0 >< 1| + |1 >< 1|. Suppose pi = p̂i, i = 1, 2, 3, are such that∑
i pi = 1 (in this case, each pi is independent of ρ). Therefore, we consider

the operator L and look for fixed points ρ. Suppose

ρ = ρ00 |0 >< 0| + ρ01 |0 >< 1| + ρ10 |1 >< 0| + ρ11 |1 >< 1|

Then

Λ(ρ) =
3∑

i=1

pi(ρ)
(Vi ρ V ∗

i )
tr (Vi ρ V ∗

i )
=

3∑

i=1

pi [
Vi ( (ρ00 |0 >< 0| + ρ01 |0 >< 1| + ρ10 |1 >< 0| + ρ11 |1 >< 1| ) ) V ∗

i

tr (Vi ρ V ∗
i )

]

Let us compute first the action of the operator V2|0 >< 0|V ∗
2 .

Note that (V2|0 >< 0|V ∗
2 ) |0 >= V2|0 >< 0| ( |0 > +|1 > ) = V2|0 >=

|0 > and ( V2|0 >< 0|V ∗
2 ) |1 >= V2(0) = 0. More generally

ρ V ∗
2 = ( ρ00 |0 >< 0|+

ρ01 |0 >< 1| + ρ10 |1 >< 0| + ρ11 |1 >< 1| ) (|0 >< 0| + |1 >< 0|) =

ρ00 |0 >< 0|+ ρ01 |0 >< 0| + ρ10 |1 >< 0|+ ρ11 |1 >< 0| .
Therefore,

V2 ρ V ∗
2 = (|0 >< 0| + |0 >< 1|) ( ρ00 |0 >< 0|+

ρ01 |0 >< 0| + ρ10 |1 >< 0|+ ρ11 |1 >< 0| ) =

( ρ00 + ρ01 + ρ10 + ρ11 ) |0 >< 0| = (1 + 2Re( ρ01)) |0 >< 0|,
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because ρ has trace 1 = ρ00 + ρ11. Note that tr(V2 ρ V ∗
2 ) = (1 + 2Re( ρ01)). A

similar result can be obtained for V3. Proceeding in the same way we get that

Λ(ρ) = p1 ( ρ00 |0 >< 0| + ρ01 |0 >< 1| + ρ10 |1 >< 0| + ρ11 |1 >< 1| ) +

p2 |0 >< 0|+ p3 |1 >< 1|.
The equation

Λ(ρ) = ρ = ρ00 |0 >< 0| + ρ01 |0 >< 1| + ρ10 |1 >< 0|+ ρ11 |1 >< 1|

means
p1 ρ00 + p2 = ρ00,

p1 ρ01 = ρ01,

p1 ρ10 = ρ10,

p1 ρ11 + p3 = ρ11.

If p1 6= 0, then ρ01 = ρ10 = 0. Finally, if p1 6= 1, then ρ00 = p2
1−p1

and
ρ11 = p3

1−p1
and the fixed point is

ρ̂ =
p2

1− p1
|0 >< 0|+ p3

1− p1
|1 >< 1|.

♦

We recall that a mapping Λ is completely positive (CP) if Λ ⊗ I is
positive for any extension of the Hilbert space considered HN → HN ⊗HE .
We know that every CP mapping which is trace-preserving can be represented
(in a nonunique way) in the Stinespring-Kraus form

ΛK(ρ) =
k∑

j=1

VjρV ∗
j ,

k∑

j=1

V ∗
j Vj = 1,

where the Vi are linear operators. Moreover if we have
∑k

j=1 VjV
∗
j = I, then

Λ(I/N) = I/N . This is the case if each of the Vi are normal.

We call a unitary trace-preserving CP map a bistochastic map. An ex-
ample of such a mapping is

ΛU (ρ) =
k∑

i=1

piUiρU∗
i ,

where the Ui are unitary operators and
∑

i pi = 1. Note that if we write
Gi(ρ) = UiρU∗

i , then example 1 is part of this class of operators. For such
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operators we have that ρ∗ is an invariant state for ΛU and also that δρ∗ is
invariant for the Markov operator PU induced by this QIFS.

We will present a simple example of the kind of problems we are interested
here, namely eigenvalues and eigendensity matrices. Let HN be a Hilbert
space of dimension N . As before, let MN be the space of density operators
on HN . A natural problem is to find fixed points for Λ : MN →MN ,

Λ(ρ) =
k∑

i=1

ViρV ∗
i .

In order to simplify our reasoning we fix N = 2 and k = 2. Let

V1 =
(

v1 v2

v3 v4

)
, V2 =

(
w1 w2

w3 w4

)
, ρ =

(
ρ1 ρ2

ρ2 ρ4

)
,

where V1 and V2 are invertible and ρ is a density operator. We would like to
find ρ such that

V1ρV ∗
1 + V2ρV ∗

2 = ρ. (8)

Below we have an example where the matrices Vi are not real.

Example 3 Let

V1 = ei k

(√
p 0

0 −√p

)
, V2 = ei l

(√
1− p 0
0 −√1− p

)
,

where k, l ∈ R, p ∈ (0, 1). Then V ∗
1 V1+V ∗

2 V2 = I. A simple calculation shows
that ρ2 = 0, and then

ρ =
(

q 0
0 1− q

)

is invariant to Λ(ρ) = V1ρV ∗
1 + V2ρV ∗

2 , for q ∈ (0, 1).

♦

Now we make a few considerations about the Ruelle operator L defined
before. In particular, we show that Perron’s classic eigenvalue problem is a
particular case of the problem for the operator L acting on matrices. Let

V1 =
(

p00 0
0 0

)
, V2 =

(
0 p01

0 0

)

V3 =
(

0 0
p10 0

)
, V4 =

(
0 0
0 p11

)
, ρ =

(
ρ1 ρ2

ρ3 ρ4

)

Define
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L(ρ) =
4∑

i=1

qi(ρ)ViρV ∗
i

We have that L(ρ) = ρ implies ρ2 = 0 and

aρ1 + bρ4 = ρ1 (9)

cρ1 + dρ4 = ρ4 (10)

where
a = q1p

2
00, b = q2p

2
01, c = q3p

2
10, d = q4p

2
11

Solving (9) and (10) in terms of ρ1 gives

ρ1 =
b

1− a
ρ4, ρ1 =

1− d

c
ρ4

that is,
b

1− a
=

1− d

c
(11)

which is a restriction over the qi. For simplicity we assume here that the qi

are constant. One can show that

ρ =




q2p2
01

q2p2
01−q1p2

00+1
0

0 1−q1p2
00

q2p2
01−q1p2

00+1


 =




1−q4p2
11

1−q4p2
11+q3p2

10
0

0 q3p2
10

1−q4p2
11+q3p2

10




(12)
Now let

P =
∑

i

Vi =
(

p00 p01

p10 p11

)
,

be a column-stochastic matrix. Let π = (π1, π2) such that Pπ = π. Then

π = (
p01

p01 − p00 + 1
,

1− p00

p01 − p00 + 1
) (13)

Comparing (13) and (12) suggests that we should fix

q1 =
1

p00
, q2 =

1
p01

, q3 =
1

p10
, q4 =

1
p11

(14)

Then the nonzero entries of ρ are equal to the entries of π and therefore we
associate the fixed point of P to the fixed point of some L in a natural way.
But note that such a choice of qi is not unique, because

q2 =
1− q1p

2
00

p01p10
, q4 =

1− q3p10p01

p2
11

, (15)
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for any q1, q3 also produces ρ with nonzero coordinates equal to the coordi-
nates of π.

Now we consider the following problem. Let

V1 =
(

h00 0
0 0

)
, V2 =

(
0 h01

0 0

)
, V3 =

(
0 0

h10 0

)

V4 =
(

0 0
0 h11

)
, H =

∑

i

Vi, ρ =
(

ρ1 ρ2

ρ3 ρ4

)

Define

L(ρ) =
4∑

i=1

qiViρV ∗
i ,

where qi ∈ R. Assume that hij ∈ R, so we want to obtain λ such that
L(ρ) = λρ, λ 6= 0, and λ is the largest eigenvalue. With a few calculations we
obtain ρ2 = ρ3 = 0,

q1h
2
00ρ1 + q2h

2
01ρ4 = λρ1

q3h
2
10ρ1 + q4h

2
11ρ4 = λρ4

that is,
aρ1 + bρ4 = λρ1 (16)

cρ1 + dρ4 = λρ4, (17)

with
a = q1h

2
00, b = q2h

2
01, c = q3h

2
10, d = q4h

2
11

Therefore

ρ =
(

λ−d
c ρ4 0
0 ρ4

)
=

(
b

λ−aρ4 0
0 ρ4

)

and
λ− d

c
=

b

λ− a

Solving for λ, we obtain the eigenvalues

λ =
a + d

2
± ζ

2
=

a + d

2
±

√
(d− a)2 + 4bc

2

=
1
2

(
q1h

2
00 + q4h

2
11 ±

√
(q4h2

11 − q1h2
00)2 + 4q2q3h2

01h
2
10

)
,

where

ζ =
√

(d− a)2 + 4bc =
√

(q4h2
11 − q1h2

00)2 + 4q2q3h2
01h

2
10



A dynamical point of view of Quantum Information 13

and the associated eigenfunctions

ρ =
( a−d±ζ

2c ρ4 0
0 ρ4

)
=

(
2b

d−a±ζ ρ4 0
0 ρ4

)

But ρ1 + ρ4 = 1 so we obtain

ρ =

(
a−d±ζ

a−d±ζ+2c 0
0 2c

a−d±ζ+2c

)

=




q1h2
00−q4h2

11±ζ

q1h2
00−q4h2

11±ζ+2q3h2
10

0

0 2q3h2
10

q1h2
00−q4h2

11±ζ+2q3h2
10


 (18)

that is,

ρ =

( −2b
a−2b−d∓ζ 0

0 a−d∓ζ
a−2b−d∓ζ

)

=




−2q2h2
01

q1h2
00−2q2h2

01−q4h2
11∓ζ

0

0 q1h2
00−q4h2

11∓ζ

q1h2
00−2q2h2

01−q4h2
11∓ζ


 (19)

Therefore we obtained that ρ1, ρ4, q1, . . . , q4, λ are implicit solutions for the
set of equations (16)-(17). Recall that in this case we obtained ρ2 = ρ3 = 0.

Now we consider the problem of finding the eigenvector associated to the
dominant eigenvalue of H. The eigenvalues are

λ =
1
2

(
h00 + h11 ±

√
(h00 − h11)2 + 4h01h10

)

Then we can find v such that Hv = λv from the set of equations

h00v1 + h01v2 = λv1 (20)

h10v1 + h11v2 = λv2 (21)

which determine v1, v2, λ implicitly. Note that if we set

q1 =
1

p00
, q2 =

1
p01

, q3 =
1

p10
, q4 =

1
p11

we have that the set of equations (16)-(17) and (20)-(21) are the same. Hence
we conclude that Perron’s classic eigenvalue problem is a particular case of
the problem for L acting on matrices.

♦
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4 A theorem on eigenvalues for the Ruelle operator

The following proposition is inspired in [25]. We say that a hermitian operator
P : V → V on a Hilbert space (V, 〈·〉) is positive if 〈Pv, v〉 ≥ 0, for all v ∈ V ,
denoted P ≥ 0. Consider the positive operator LW,V : PHN → PHN ,

LW,V (ρ) :=
k∑

i=1

tr(WiρW ∗
i )ViρV ∗

i (22)

We have the following result:

Proposition 2 [1] There is ρ ∈MN and β > 0 such that LW,V (ρ) = βρ.

5 Vector integrals and barycenters

We recall here a few basic definitions. For more details, see [22] and [29]. Let
X be a metric space. Let (V, +, ·) be a real vector space, and τ a topology
on V . We say that (V,+, ·; τ) is a topologic vector space if it is Hausdorff
and if the operations + and · are continuous. For instance, in the context of
density matrices, we will consider V as the Hilbert space HN and X will be
the space of density matrices MN .

Definition 3 Let (X, Σ) be a measurable space, let µ ∈ M(X), let (V, +, ·; τ)
be a locally convex space and let f : X → V . we say that x ∈ V is the integral
of f in X, denoted by

x :=
∫

X

fdµ

if

Ψ(x) =
∫

X

Ψ ◦ fdµ,

for all Ψ ∈ V ∗.

It is known that if we have a compact metric space X, V is a locally convex
space and f : X → V is a continuous function such that cof(X) is compact
then the integral of f in X exists and belongs to cof(X). We will also use
the following well-known result, the barycentric formula:

Proposition 3 [32] Let V be a locally convex space, let E ⊂ V be a complete,
convex and bounded set, and µ ∈ M1(E). Then there is a unique x ∈ E such
that

l(x) =
∫

E

ldµ,
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for all l ∈ V ∗.

6 Example: density matrices

In this section we briefly review how the constructions of the previous section
adjust to the case of density matrices.

Define V := HN , V + := PHN (note that such space is a convex cone),
and let the partial order ≤ on PHN be ρ ≤ ψ if and only if ψ − ρ ≥ 0, i.e.,
if ψ − ρ is positive. Then

(V, V +, e) = (HN ,PHN , tr),

is a regular state space [29]. Also, the set B of unity trace in V + is, of course,
the space of density matrices. Hence, B = MN .

Let Z ⊂ V ∗ be a nonempty vector subspace of V ∗. The smallest topology
in V such that every functional defined in Z is continuous on that topol-
ogy, denoted by σ(V, Z), turns V into a locally convex space. In particular,
σ(V, V ∗) is the weak topology in V . If (V, ‖ · ‖) is a normed space, then
σ(V ∗, V ) is called a weak∗ topology in V ∗ (we identify V with a subspace
of V ∗∗). We also have that (C, τ) = (PHN , τ), where τ is the weak∗ topol-
ogy (and which is equal to the Euclidean, see [29]) is a metrizable compact
structure. In this case we have that BC = B ∩ C = MN .

Definition 4 A Markov operator for probability measures is an operator
P : M1(X) → M1(X) such that

P (λµ1 + (1− λ)µ2) = λPµ1 + (1− λ)Pµ2,

for µ1, µ2 ∈ M1(X), λ ∈ (0, 1).

An example of such an operator is one which we have defined before and we
denote it V : M1(X) → M1(X),

(Vν)(B) =
k∑

i=1

∫

F−1
i (B)

pidν, (23)

and we call it the Markov operator induced by the IFS F . We will be inter-
ested in fixed points for V.

Define
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mb(X) := {f : X → R : f is bounded, measurable}

and also U : mb(X) → mb(X),

(Uf)(x) :=
k∑

i=1

pi(x)f(Fi(x))

Proposition 4 [29] Let f ∈ mb(X) and µ ∈ M1(X), then

〈f,Vµ〉 = 〈Uf, µ〉 =
k∑

i=1

∫
pi(f ◦ Fi)dµ,

where 〈f, µ〉 denotes the integral of f with respect to µ.

Definition 5 An operator Q : V + → V + is submarkovian if

1. Q(x + y) = Q(x) + Q(y)
2. Q(αx) = αQ(x)
3. ‖Q(x)‖ ≤ ‖x‖,
for all x, y ∈ V +, α > 0.

Every submarkovian operator Q : V + → V + can be extended in a unique
way to a positive linear contraction on V .

Definition 6 Let P : V + → V + a Markov operator and let Pi : V + → V +,
i = 1, . . . , k be submarkovian operators such that P =

∑
i Pi. We say that

(P, {Pi}k
i=1) is a Markov pair.

From [29], we know that there is a 1-1 correspondence between homogeneous
IFS and Markov pairs.

Example 4 In this example we want to obtain a probability η such that
V(η) = η.

Suppose a QIFS, such that

pi(ρ) = tr(WiρW ∗
i ),

∑

i

W ∗
i Wi = I, Fi(ρ) =

ViρV ∗
i

tr(ViρV ∗
i )

for i = 1, . . . , k. Denote mb(MN ) the space of bounded and measurable func-
tions in MN . Consider Λ : MN →MN ,

Λ(ρ) =
∑

i

pi(ρ)Fi(ρ) =
∑

i

tr(WiρW ∗
i )

ViρV ∗
i

tr(ViρV ∗
i )

Suppose there exists a density matrix ρ which Λ-invariant. As we know, such
state is the barycenter of µ which is V-invariant. Suppose Vµ = µ, then we
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can write

∫
fdµ =

∫
fdVµ =

k∑

i=1

∫
pi(ρ)f(Fi(ρ))dµ(ρ) =

∑

i

∫
pi(ρ)f

( ViρV ∗
i

tr(ViρV ∗
i )

)
dµ

=
∑

i

∫
tr(WiρW ∗

i )f
( ViρV ∗

i

tr(ViρV ∗
i )

)
dµ

Therefore, for any f ∈ mb(MN ), we got the condition
∫

fdµ =
∑

i

∫
tr(WiρW ∗

i )f
( ViρV ∗

i

tr(ViρV ∗
i )

)
dµ (24)

Let us consider a particular example where N = 2, k = 4, and

V1 =
(√

p11 0
0 0

)
, V2 =

(
0
√

p12

0 0

)
,

V3 =
(

0 0√
p21 0

)
, V4 =

(
0 0
0
√

p22

)
,

in such way that the pij are the entries of a column stochastic matrix P . Let
π = (π1, π2) be a vector such that Pπ = π. A simple calculation shows that
for ρ, the density matrix such that has entries ρij, we have

V1ρV ∗
1 =

(
p11ρ11 0

0 0

)
, V2ρV ∗

2 =
(

p12ρ22 0
0 0

)
(25)

V3ρV ∗
3 =

(
0 0
0 p21ρ11

)
, V4ρV ∗

4 =
(

0 0
0 p22ρ22

)
, (26)

and therefore

V1ρV ∗
1

tr(V1ρV ∗
1 )

=
(

1 0
0 0

)
,

V2ρV ∗
2

tr(V2ρV ∗
2 )

=
(

1 0
0 0

)
(27)

V3ρV ∗
3

tr(V3ρV ∗
3 )

=
(

0 0
0 1

)
,

V4ρV ∗
4

tr(V4ρV ∗
4 )

=
(

0 0
0 1

)
(28)

that is, the above values do not depend on ρ.
Define

ρx =
(

1 0
0 0

)
, ρy =

(
0 0
0 1

)
(29)

and
η = π1δρx + π2δρy (30)
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Note that the barycenter of η is

ρη = π1ρx + π2ρy = π1

(
1 0
0 0

)
+ π2

(
0 0
0 1

)
=

(
π1 0
0 π2

)

For any mensurable set B we have

Vη(B) =
4∑

i=1

∫
1B(Fi(ρ))pi(ρ)dη =

4∑

i=1

∫
1B

( ViρV ∗
i

tr(ViρV ∗
i )

)
tr(ViρV ∗

i )dη

(31)
We can now consider the following cases:

1. Suppose first that ρx, ρy ∈ B. The using (25) and (26), one can show that

Vη(B) =
4∑

i=1

ρ11tr(ViρxV ∗
i ) + ρ22tr(ViρyV ∗

i )

= (π1p11 + 0) + (0 + π2p12) + (π1p21 + 0) + (0 + π2p22) = (π1 + π2) = 1,

because Pπ = π.
2. Suppose now that ρx ∈ B, ρy /∈ B

Vη(B) =
4∑

i=1

π1tr(ViρxV ∗
i ) = π1(p11 + 0 + p21 + 0) = π1

3. Finally, suppose that ρx /∈ B, ρy ∈ B

Vη(B) =
4∑

i=1

π2tr(ViρyV ∗
i ) = π2(0 + p12 + 0 + p22) = π2

4. It is easy to see that if ρx, ρy /∈ B then Vη(B) = 0.

The conclusion is that, Vη(B) = η(B) for any measurable set B.
Therefore, V(η) = η.

♦

7 Some lemmas for IFS

We want to understand the structure of Λ : MN →MN ,

Λ(ρ) :=
k∑

i=1

piFi =
k∑

i=1

tr(WiρW ∗
i )

ViρV ∗
i

tr(ViρV ∗
i )

,
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where Vi, Wi are linear,
∑

i W ∗
i Wi = I. Such operator is associated in a

natural way to a IFS which is not homogeneous. In this section we state a few
useful properties which are relevant for our study. The following lemmas hold
for any IFS, except for lemma 3, for which a proof is known for homogeneous
IFS only.

Lemma 1 Let {X,Fi, pi}i=1,...,k be a IFS, Ψ a linear functional on X. Then
U ◦ Ψ = Ψ ◦ Λ.

Corollary 1 Let F = (X, Fi, pi)i=1,...,k be a IFS and let ρ0 ∈ X. Then
Λ(ρ0) = ρ0 if and only if U(Ψ(ρ0)) = Ψ(ρ0), for all Ψ linear functional.

Lemma 2 Let F = {X, Fi, pi}i=1,...,k be a IFS.

1. Let ρ0 ∈ X such that Fi(ρ0) = ρ0, i = 1, . . . , k. Then Vδρ0 = δρ0 .
2. Let ρ0 ∈ X such that Vδρ0 = δρ0 , then Λ(ρ0) = ρ0.

Lemma 3 Let {X, Fi, pi}i=1,...,k be a homogeneous IFS, Λ =
∑

i piFi.

1. Let ρν be the barycenter of a probability measure ν. Then Λ(ρν) is the
barycenter of Vν, where V is the associated Markov operator.

2. Let µ be an invariant probability measure for V. Then the barycenter of µ,
denoted by ρµ, is a fixed point of Λ.

Example 5 Let k = N = 2,

V1 =
(−1 0

0 1

)
, V2 =

(
0 − 3

√
2

4

− 3
√

2
2 0

)
,

W1 = (1/2)I, W2 = (
√

3/2)I. Then

Λ(ρ) =
∑

i

pi(ρ)Fi(ρ) =
∑

i

tr(WiρW ∗
i )

ViρV ∗
i

tr(ViρV ∗
i )

=
1
4
V1ρV ∗

1 +
3
4

V2ρV ∗
2

tr(V2ρV ∗
2 )

=
1
4
V1ρV ∗

1 +
3
4

V2ρV ∗
2

( 9
8 + 27

8 ρ1)

induces a IFS and it is such that ρ0 = 1
3 |0〉〈0| + 2

3 |1〉〈1| is a fixed point,
with F1(ρ0) = F2(ρ0) = ρ0. We can apply lemma 2 and conclude that δρ0

is an invariant measure for the Markov operator V associated to the IFS
determined by pi and Fi.

♦

The following lemma, a simple variation from results seen in [29], deter-
mines reasonable conditions that we will need in order to obtain a fixed point
for L from a certain measure which is invariant for the Markov operator V.
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Lemma 4 Let {MN , Fi, pi}i=1,...,k be an IFS which admits an attractive in-
variant measure µ for V. Then limn→∞ Λn(ρ0) = ρµ, for every ρ0 ∈ MN ,
where ρµ is the barycenter of µ.

8 Integral formulae for the entropy of IFS

Part of the results we present here in this section are variations of the re-
sults presented in [29]. Let (X, d) be a complete separable metric space.
Let (V, V +, e) be a complete state space, B = {x ∈ V + : e(x) = 1}
and F = (X,Fi, pi)i=1,...,k the homogeneous IFS induced by the Markov
pair (Λ, {Λi}k

i=1). Let Ik = {1, . . . , k} Let n ∈ N, ι ∈ In
k , i ∈ Ik. Define

Fιi := Fi ◦ Fι and

pιi(x) =
{

pi(Fιx)pι(x) if pι(x) 6= 0
0 otherwise

(32)

Proposition 5 Let n ∈ N, f ∈ mb(X), x ∈ X. Then

(Unf)(x) =
∑

ι∈In
k

pι(x)f(Fι(x))

Proposition 6 Let x ∈ B, n ∈ N. Then

Λn(x) =
∑

ι∈In
k

pι(x)Fι(x).

Proposition 7 Let F be a IFS and let g : B → R. Then for n ∈ N,

1. If g is concave (resp. convex, affine) then Ung ≤ g◦Λn (resp. Ung ≥ g◦Λn,
Ung = g ◦ Λn).

2. If x is a fixed point for Λ then the sequence (Ung)(x))n∈N is decreasing
(resp. increasing, constant) if g is concave (resp. convex, affine).

Also suppose that F is homogeneous. Then
3. If g is concave (resp. convex, affine), then Ug is concave (resp. convex,

affine).

Define η : R+ → R as

η(x) =
{−x log x if x 6= 0

0 if x = 0

Define the Shannon-Boltzmann entropy function as h : X → R+,
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h(x) :=
k∑

i=1

η(pi(x))

Let n ∈ N. Define the partial entropy Hn : X → R+ as

Hn(x) :=
∑

ι∈In
k

η(pι(x)),

for n ≥ 1 and H0(x) := 0, x ∈ X. Define, for x ∈ X,

H(x) := lim sup
n→∞

1
n

Hn(x),

the upper entropy on x, and

H(x) := lim inf
n→∞

1
n

Hn(x),

the lower entropy on x. If such limits are equal, we call its common value
the entropy on x, denoted by H(x).

Denote by MV(X) the set of V-invariant probability measures on X. Let
µ ∈ MV(X). The partial entropy of the measure µ is defined by

Hn(µ) :=
∑

ι∈In
k

η(〈pι, µ〉),

for n ≥ 1 and H0(µ) := 0.

Proposition 8 Let µ ∈ MV(X). Then the sequences ( 1
nHn(µ))n∈N and

(Hn+1(µ)−Hn(µ))n∈N are nonnegative, decreasing, and have the same limit.

We denote the common limit of the sequences mentioned in the proposition
above as H(µ) and we call it the entropy of the measure µ, i.e.,

H(µ) := lim
n→∞

1
n

Hn(µ) = lim
n→∞

(Hn+1(µ)−Hn(µ))

The following result gives us an integral formula for entropy, and also a
relation between the entropies defined before. We write S(µ) := MV(X) ∩
Lim(Vnµ)n∈N, where Lim(Vnµ)n∈N is the convex hull of the set of accumula-
tion points of (Vnµ)n∈N, and SF (µ) is the set S(µ) associated to the Markov
operator induced by the IFS F . For the definition of compact structure and
(C, τ)-continuity, see [29].
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Theorem 2 [29] (Integral formula for entropy of homogeneous IFS, com-
pact case). Let (C, τ) be a metrizable compact structure (V, V +, e) such that
(Λ, {Λi}k

i=1) is (C, τ)-continuous. Assume that ρ0 ∈ BC := B ∩ C is such
that Λ(ρ0) = ρ0. Then

H(ρ0) = H(ν) =
∫

X

hdν

for each ν ∈ SFC
(δρ0), where FC is the IFS F restricted to (BC , τ).

The analogous result for hyperbolic IFS is the following.

Theorem 3 [29] Let F = (X, Fi, pi)i=1,...,k be a hyperbolic IFS, x ∈ X,
µ ∈ M1(X) an invariant attractive measure for F . Then

H(x) = lim
n→∞

(Hn+1(x)−Hn(x))

and
H(x) = H(µ) =

∫

X

hdµ.

9 Some calculations on entropy

Let U be a unitary matrix of order mn acting on Hm ⊗ Hn. Its Schmidt
decomposition is

U =
K∑

i=1

√
qiV

A
i ⊗ V B

i , K = min{m2, n2}

The operators V A
i and V B

i act on certain Hilbert spaces Hm and Hn, respec-
tively. We also have that

∑K
i=1 qi = 1. Let σ = ρA ⊗ ρB

∗ = ρA ⊗ In/n and
define

Λ(ρA) := trB(UσU∗) =
K∑

i=1

qiV
A
i ρAV A∗

i

Recall that
trB(|a1〉〈a2| ⊗ |b1〉〈b2|) := |a1〉〈a2|tr(|b1〉〈b2|)

where |a1〉 and |a2〉 are vectors on the state space of A and |b1〉 and |b2〉 are
vectors on the state space of B. The trace on the right side is the usual trace
on B. A calculation shows that if ρA

∗ = Im/m, then Λ(ρA
∗ ) = ρA

∗ and so Λ is
such that Λ(Im/m) = Im/m and Λ is trace preserving.
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Let F be the homogeneous IFS associated to the V A
i , that is, pi(ρ) =

tr(qiV
A
i ρV A∗

i ), Fi(ρ) = (qiV
A
i ρV A∗

i )/tr(qiV
A
i ρV A∗

i ) and let ρ0 be a fixed
point of Λ =

∑
i piFi. Following [29], we have that ρ0 is the barycenter of

Vnδρ0 , n ∈ N. By theorem 2, we can calculate the entropy of such IFS. In
this case we have

H(ρ0) = H(ν) =
∫

MN

hdν, (33)

where ν ∈ MV(X) ∩ Lim(Vnδρ0)n∈N.

♦

Let F = (MN , Fi, pi)i=1,...,k be an IFS, Λ(ρ) =
∑

i piFi. Let U be the
conjugate of V. By proposition 5,

(Unh)(ρ) =
∑

ι∈In
k (ρ)

pι(ρ)h(Fι(ρ))

and since h(ρ) =
∑k

j=1 η(pj(ρ)), we have, for ι = (i1, . . . , in), and every
ρ0 ∈MN , ∫

MN

hdVnδρ0 =
∫

MN

Unhdδρ0 (34)

= −
∫

MN

∑

ι∈In
k (ρ)

pι(ρ)
k∑

j=1

pj(Fι(ρ)) log pj(Fι(ρ))dδρ0 (35)

= −
∑

ι∈In
k (ρ0)

pι(ρ0)
k∑

j=1

pj(Fι(ρ0)) log pj(Fι(ρ0)) (36)

= −
∑

ι∈In
k (ρ0)

pi1(ρ0)pi2(Fi1ρ0) · · · pin(Fin−1(Fin−2(· · · (Fi1ρ0))))× (37)

×
k∑

j=1

pj(Fin(Fin−1(· · · (Fi1ρ0)))) log pj(Fin(Fin−1(· · · (Fi1ρ0)))) = (Unh)(ρ0)

(38)
Suppose Λ(ρ0) = ρ0. We have by proposition 7, since h is concave, that

(Unh)n∈N is decreasing, Unh ≤ h ◦ Λn and so
∫

MN

hdVnδρ0 ≤ h(Λn(ρ0)) = h(ρ0), (39)

for every n.
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10 An expression for a stationary entropy

In this section we present a definition of entropy which captures a stationary
behavior.

Let H be a hermitian operator and Vi, i = 1, . . . , k linear operators. We
can define the dynamics Fi : MN →MN :

Fi(ρ) :=
ViρV ∗

i

tr(ViρV ∗
i )

(40)

Let Wi, i = 1, . . . , k be linear and such that
∑k

i=1 W ∗
i Wi = I. This determines

functions pi : MN → R,

pi(ρ) := tr(WiρW ∗
i ) (41)

Then we have
∑k

i=1 pi(ρ) = 1, for every ρ. Therefore a family W :=
{Wi}i=1,...,k determines a QIFS FW ,

FW = {MN , Fi, pi}i=1,...,k

with Fi, pi given by (40) and (41).
Different choices of Wi, i = 1, 2..., k, as above, determine different invariant

probabilities.
We introduce the following definition of entropy

Definition 7 Suppose that we have a QIFS such that there is a unique at-
tractive invariant measure for the Markov operator V associated to FW . Let
ρW be the barycenter of such measure. Define

hV (W ) := −
k∑

i=1

tr(WiρW W ∗
i )

k∑

j=1

tr
(WjViρW V ∗

i W ∗
j

tr(ViρW V ∗
i )

)
log tr

(WjViρW V ∗
i W ∗

j

tr(ViρW V ∗
i )

)

(42)

Remember that by lemma 4, we have that ρW is a fixed point for

L̂FW
(ρ) :=

k∑

i=1

pi(ρ)Fi(ρ) =
k∑

i=1

tr(WiρW ∗
i )

ViρV ∗
i

tr(ViρV ∗
i )

(43)

Lemma 5 We have that 0 ≤ hV (W ) ≤ log k, for every family Wi of linear
operators satisfying

∑k
i=1 W ∗

i Wi = I. Also, for any given dynamics V the
maximum can be reached.
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We also define

LFW
(ρ) :=

k∑

i=1

tr(WiρW ∗
i )ViρV ∗

i (44)

Note that by the construction made on section 10, we have hV (W ) =
Uh(ρW ), where Uh(ρ) =

∑
i pi(ρ)h(Fi(ρ)).

♦

Lemma 6 Let F = (MN , Fi, pi) be a QIFS, with Fi, pi in the form (40)
and (41). Suppose there is ρ0 ∈MN such that δρ0 is the unique V-invariant
measure. Then L̂F (ρ0) = ρ0 (eq. (43)) and

∫
Unhdδρ0 = Unh(ρ0) = h(ρ0),

for all n ∈ N. Besides, Unh(ρ0) = Uh(ρ0) and so

hV (W ) = Unh(ρ0),

for all n ∈ N.

Lemma 7 Let µ be a V-invariant attractive measure. Then if ρµ is the
barycenter of µ we have, for any ρ,

lim
n→∞

Unh(ρ) =
∫
Uhdµ =

∫
hdµ ≤ h(ρµ) (45)

Lemma 8 Let F = (MN , Fi, pi) be a QIFS, with Fi, pi in the form (40)
and (41). Suppose that ρ is the unique point such that L̂F (ρ) = ρ. Suppose
that Fi(ρ) = ρ, i = 1, . . . , k. Then

Unh(ρ) = h(ρ),

n = 1, 2, . . . , and therefore hV (W ) does not depend on n.

11 Entropy and Markov chains

Let Vi, Wi be linear operators, i = 1, . . . , k,
∑k

i=1 W ∗
i Wi = I. Suppose the Vi

are fixed and determine a dynamics given by Fi : MN →MN , i = 1, . . . , k.
Define

P := {(p1, . . . , pk) : pi : MN → R+, i = 1, . . . , k,

k∑

i=1

pi(ρ) = 1, ∀ρ ∈MN}
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P ′ := P ∩ {(p1, . . . , pk) : ∃Wi, i = 1, . . . , k : pi(ρ) = tr(WiρW ∗
i ),

Wi linear ,
∑

i

W ∗
i Wi = I}

MF := {µ ∈ M1(MN ) : ∃p ∈ P ′ such that Vpµ = µ},
where Vp : M1(MN ) → M1(MN ),

Vp(µ)(B) :=
k∑

i=1

∫

F−1
i (B)

pidµ

Note that a family W := {Wi}i=1,...,k determines a QIFS FW ,

FW = {MN , Fi, pi}i=1,...,k

As done in the previous section we introduce the following definition (which
is in some sense stationary)

hV (W ) := −
k∑

i=1

tr(WiρW W ∗
i )

tr(ViρW V ∗
i )

k∑

j=1

tr
(
WjViρW V ∗

i W ∗
j

)
log

( tr(WjViρW V ∗
i W ∗

j )
tr(ViρW V ∗

i )

)

(46)
where as before, ρW denotes the barycenter of the unique attractive invariant
measure for the Markov operator V associated to FW .

Let P = (pij)i,j=1,...,N be a stochastic, irreducible matrix. Let p be the
stationary vector of P . The entropy of P is defined as

H(P ) := −
N∑

i,j=1

pipij log pij (47)

We consider an example which shows that the usual Markov chain entropy
can be realized as the entropy associated to a certain QIFS.

Example 6 (Homogeneous case, 4 matrices). Let N = 2, k = 4 and

V1 =
(√

p00 0
0 0

)
, V2 =

(
0
√

p01

0 0

)
,

V3 =
(

0 0√
p10 0

)
, V4 =

(
0 0
0
√

p11

)

Note that ∑

i

V ∗
i Vi =

(
p00 + p10 0

0 p01 + p11

)

and so
∑

i V ∗
i Vi = I if we suppose that
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P :=
(

p00 p01

p10 p11

)

is column-stochastic. We have

V1ρV ∗
1 =

(
p00ρ1 0

0 0

)
, V2ρV ∗

2 =
(

p01ρ4 0
0 0

)

V3ρV ∗
3 =

(
0 0
0 p10ρ1

)
, V4ρV ∗

4 =
(

0 0
0 p11ρ4

)

so
tr(V1ρV ∗

1 ) = p00ρ1, tr(V2ρV ∗
2 ) = p01ρ4

tr(V3ρV ∗
3 ) = p10ρ1, tr(V4ρV ∗

4 ) = p11ρ4

The fixed point of Λ(ρ) =
∑

i ViρV ∗
i is

ρV =

(
p01

1−p00+p01
0

0 1−p00
1−p00+p01

)

Let π = (π1, π2) such that Pπ = π. We know that

π = (
p01

1− p00 + p01
,

1− p00

1− p00 + p01
) (48)

Then the nonzero entries of ρV are the entries of π and so we associate the
fixed point of P to the fixed point of a certain Λ in a natural way. Let us
calculate hV (W ). Note that Λ defined above is associated to a homogeneous
IFS. Then Wi = Vi, i = 1, . . . , k and

hV (W ) = hV (V )

= −
k∑

i=1

tr(WiρV W ∗
i )

tr(ViρV V ∗
i )

k∑

j=1

tr
(
WjViρV V ∗

i W ∗
j

)
log

( tr(WjViρV V ∗
i W ∗

j )
tr(ViρV V ∗

i )

)

= −
∑

i,j

tr
(
VjViρV V ∗

i V ∗
j

)
log

( tr(VjViρV V ∗
i V ∗

j )
tr(ViρV V ∗

i )

)
(49)

A simple calculation yields H(P ) = hV (V ), where H(P ) is the entropy of P ,
given by (47). This shows that the entropy of Markov chains is a particular
case of the entropy for QIFS defined before.

♦

In a similar way, we can reach the same conclusion for the nonhomogeneous
case, 4 matrices, and also for 2 matrices [1].
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♦

Lemma 9 Let Vij be matrices of order n,

Vij =
√

pij |i〉〈j|

for i, j = 1, . . . , n. Let
ΛP (ρ) :=

∑

i,j

VijρV ∗
ij

where P = (pij)i,j=1,...,n. Then for all n, Λn
P (ρ) = ΛP n(ρ).

Corollary 2 Under the lemma hypothesis, we have limn→∞ Λn
P (ρ) = Λπ(ρ),

where π = limn→∞ Pn is the stochastic matrix which has all columns equal
to the stationary vector for P .

12 Capacity-cost function and pressure

Recall that every trace preserving, completely positive (CP) mapping can be
written in the Stinespring-Kraus form,

Λ(ρ) =
k∑

i=1

ViρV ∗
i ,

k∑

i=1

V ∗
i Vi = I,

for Vi linear operators. These mappings are also called quantum channels.
This is one of the main motivations for considering the class of operators

(a generalization of the above ones) described in the present work. These are
natural objets in the study of Quantum Computing.

Definition 8 The Holevo capacity for sending classic information via a
quantum channel Λ is defined as

CΛ := max
pi∈[0,1]
ρi∈MN

S
( n∑

i=1

piΛ(ρi)
)
−

n∑

i=1

piS
(
Λ(ρi)

)
(50)

where S(ρ) = −tr(ρ log ρ) is the von Neumann entropy. The maximum is,
therefore, over all choices of pi, i = 1, . . . , n and density operators ρi, for
some n ∈ N. The Holevo capacity establishes an upper bound on the amount
of information that a quantum system contains [24].

Definition 9 Let Λ be a quantum channel. Define the minimum output
entropy as

Hmin(Λ) := min
|ψ〉

S(Λ(|ψ〉〈ψ|))
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Additivity conjecture We have that

CΛ1⊗Λ2 = CΛ1 + CΛ2

Minimum output entropy conjecture For any channels Λ1 and Λ2,

Hmin(Λ1 ⊗ Λ2) = Hmin(Λ1) + Hmin(Λ2)

In [27], is it shown that the additivity conjecture is equivalent to the
minimum output entropy conjecture, and in [12] we obtain a counterexample
for this last conjecture.

♦

We will be interested here in a different class of problem which concern
maximization (and not minimization) of entropy plus a given potential (a
cost) [9], [13], [14].

Definition 10 Let MF be the set of invariant measures defined in the section
11 and let H be a hermitian operator. For µ ∈ MF let ρµ be its barycenter.
Define the capacity-cost function C : R+ → R+ as

C(a) := max
µ∈MF

{hW,V (ρµ) : tr(Hρµ) ≤ a} (51)

The following analysis is inspired in [21]. There is a relation between the
cost-capacity function and the variational problem for pressure. In fact, let
F : R+ → R+ be the function given by

F (λ) := sup
µ∈MF

{hW,V (ρµ)− λtr(Hρµ)} (52)

We have the following fact. There is a unique probability measure ν0 ∈ MF

such that
F (λ) = hW,V (ρν0)− λtr(Hρν0)

Also, we have the following lemma:

Lemma 10 Let λ ≤ 0, and â = tr(Hρν0). Then

C(â) = hW,V (ρν0) (53)

13 Analysis of the pressure problem

Let Vi, Wi be linear operators, i = 1, . . . , k, with
∑

i W ∗
i Wi = I and let
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Hρ :=
k∑

i=1

HiρH∗
i (54)

a hermitian operator. We are interested in obtaining a version of the varia-
tional principle of pressure for our context. We will see that the pressure will
be maximum whenever we have a certain relation between the potential H

and the probability distribution considered (and represented here by the Wi).
Initially we consider that the Vi are fixed. From the reasoning described be-
low, it will be natural to consider as definition of pressure the maximization
among the possible stationary Wi of the expression

hV (W ) +
k∑

j=1

log
(
tr(HjρβH∗

j )tr(VjρβV ∗
j )

)
tr(WjρW W ∗

j )

Remember that different choices of Wi, i = 1, 2, ..., k, represent different
choices of invariant probabilities.

Our analysis uses the following important lemma.

Lemma 11 If r1, . . . , rk and q1, . . . , qk are two probability distributions over
1, . . . , k, such that rj > 0, j = 1, . . . , k, then

−
k∑

j=1

qj log qj +
k∑

j=1

qj log rj ≤ 0

and equality holds if and only if rj = qj, j = 1, . . . , k.

For the proof, see [25].

The potential given by (54) together with the Vi induces an operator, given
by

LH(ρ) :=
k∑

i=1

tr(HiρH∗
i )ViρV ∗

i (55)

We know that such operator admits an eigenvalue β with its associate eigen-
state ρβ . Then LH(ρβ) = βρβ implies

k∑

i=1

tr(HiρβH∗
i )ViρβV ∗

i = βρβ (56)

In coordinates, (56) can be written as

k∑

i=1

tr(HiρβH∗
i )(ViρβV ∗

i )jl = β(ρβ)jl (57)
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Remark Comparing the above calculation with the problem of finding an
eigenvalue λ of a matrix A = (aij), we have that equation (56) can be seen
as the analogous of the expression

lEA = λl (58)

Above, the matrix A plays the role of a potential, EA denotes the matrix
with entries eaij and lj denotes the j-th coordinate of the left eigenvector l

associated to the eigenvalue λ. In coordinates,
∑

i

lie
aij = λlj , i, j = 1, . . . , k (59)

♦

From this point we can perform two calculations. First, considering (56)
we will take the trace of such equation in order to obtain a scalar equation. In
spite of the fact that taking the trace makes us lose part of the information
given by the eigenvector equation, we are still able to obtain a version of
what we will call a basic inequality, which can be seen as a quantum IFS
version of the variational principle of pressure. However, there is an algebraic
drawback to this approach, namely, that we will not be able to have the classic
variational problem as a particular case of such inequality (such disadvantage
is a consequence of taking the trace, clearly). The second calculation will
consider (57), the coordinate equations associated to the matrix equation for
the eigenvectors. In this case we also obtain a basic inequality, but now we
will have the classic variational problem of pressure as a particular case.

An important question which is of our interest, regarding both calculations
mentioned above, is the question of whether it is possible for a given system to
attain its maximum pressure. It is not clear that given any dynamics, we can
obtain a measure reaching such a maximum. With respect to our context, we
will state sufficient conditions on the dynamics which allows us to determine
expressions for the measure which maximizes the pressure. We now perform
the calculations mentioned above.

Based on (56), define

rj =
1
β

tr(HjρβH∗
j )tr(VjρβV ∗

j ) (60)

So we have
∑

j rj = 1. Let

qi
j := tr

(WjViρW V ∗
i W ∗

j

tr(ViρW V ∗
i )

)
(61)
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where, as before, ρW is the fixed point associated to the renormalized operator
ΛFW

,

ΛFW
(ρ) :=

k∑

i=1

pi(ρ)Fi(ρ) (62)

induced by the QIFS (MN , Fi, pi)i=1,...,k,

Fi(ρ) =
ViρV ∗

i

tr(ViρV ∗
i )

and
pi(ρ) = tr(WiρW ∗

i )

Note that we have

k∑

j=1

qi
j =

1
tr(ViρW V ∗

i )

k∑

j=1

tr(W ∗
j WjViρW V ∗

i )

=
1

tr(ViρW V ∗
i )

tr(
k∑

j=1

W ∗
j WjViρW V ∗

i ) = 1

Then we can apply lemma 11 for rj , qi
j , j = 1, . . . k, with i fixed, to obtain

−
∑

j

tr
(WjViρW V ∗

i W ∗
j

tr(ViρW V ∗
i )

)
log tr

(WjViρW V ∗
i W ∗

j

tr(ViρW V ∗
i )

)

+
∑

j

tr
(WjViρW V ∗

i W ∗
j

tr(ViρW V ∗
i )

)
log

( 1
β

tr(HjρβH∗
j )tr(VjρβV ∗

j )
)
≤ 0 (63)

and equality holds if and only if for all i, j,

1
β

tr(HjρβH∗
j )tr(VjρβV ∗

j ) =
tr(WjViρW V ∗

i W ∗
j )

tr(ViρW V ∗
i )

(64)

Then

−
∑

j

tr
(WjViρW V ∗

i W ∗
j

tr(ViρW V ∗
i )

)
log tr

(WjViρW V ∗
i W ∗

j

tr(ViρW V ∗
i )

)

+
∑

j

tr
(WjViρW V ∗

i W ∗
j

tr(ViρW V ∗
i )

)
log

(
tr(HjρβH∗

j )tr(VjρβV ∗
j )

)

≤
∑

j

tr
(WjViρW V ∗

i W ∗
j

tr(ViρW V ∗
i )

)
log β

which is equivalent to
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−
∑

j

tr
(WjViρW V ∗

i W ∗
j

tr(ViρW V ∗
i )

)
log tr

(WjViρW V ∗
i W ∗

j

tr(ViρW V ∗
i )

)

+
∑

j

tr(WjViρW V ∗
i W ∗

j )
tr(ViρW V ∗

i )
log

(
tr(HjρβH∗

j )tr(VjρβV ∗
j )

)
≤ log β (65)

Multiplying by tr(WiρW W ∗
i ) and summing over the i index, we have

hV (W )+
∑

j

log
(
tr(HjρβH∗

j )tr(VjρβV ∗
j )

) ∑

i

tr(WiρW W ∗
i )

tr(ViρW V ∗
i )

tr(WjViρW V ∗
i W ∗

j )

≤
∑

i

tr(WiρW W ∗
i ) log β = log β (66)

and equality holds if and only if for all i, j,

1
β

tr(HjρβH∗
j )tr(VjρβV ∗

j ) =
tr(WjViρW V ∗

i W ∗
j )

tr(ViρW V ∗
i )

(67)

Let us rewrite inequality (66). First we use the fact that ρW is a fixed
point of ΛFW

,
k∑

i=1

tr(WiρW W ∗
i )

ViρW V ∗
i

tr(ViρW V ∗
i )

= ρW (68)

Now we compose both sides of the equality above with the operator

k∑

j=1

log
(
tr(HjρβH∗

j )tr(VjρβV ∗
j )

)
W ∗

j Wj (69)

and then we obtain

k∑

i=1

tr(WiρW W ∗
i )

ViρW V ∗
i

tr(ViρW V ∗
i )

k∑

j=1

log
(
tr(HjρβH∗

j )tr(VjρβV ∗
j )

)
W ∗

j Wj

= ρW

k∑

j=1

log
(
tr(HjρβH∗

j )tr(VjρβV ∗
j )

)
W ∗

j Wj (70)

Reordering terms we get

k∑

j=1

log
(
tr(HjρβH∗

j )tr(VjρβV ∗
j )

) k∑

i=1

tr(WiρW W ∗
i )

tr(ViρW V ∗
i )

ViρW V ∗
i W ∗

j Wj

= ρW

k∑

j=1

log
(
tr(HjρβH∗

j )tr(VjρβV ∗
j )

)
W ∗

j Wj (71)
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Taking the trace on both sides we get

k∑

j=1

log
(
tr(HjρβH∗

j )tr(VjρβV ∗
j )

) k∑

i=1

tr(WiρW W ∗
i )

tr(ViρW V ∗
i )

tr(WjViρW V ∗
i W ∗

j )

=
k∑

j=1

log
(
tr(HjρβH∗

j )tr(VjρβV ∗
j )

)
tr(ρW W ∗

j Wj) (72)

Note that the left hand side of (72) is one of the sums appearing in (66).
Therefore replacing (72) into (66) gives us the following inequality:

hV (W ) +
k∑

j=1

log
(
tr(HjρβH∗

j )tr(VjρβV ∗
j )

)
tr(WjρW W ∗

j ) ≤ log β (73)

and equality holds if and only if for all i, j,

1
β

tr(HjρβH∗
j )tr(VjρβV ∗

j ) =
tr(WjViρW V ∗

i W ∗
j )

tr(ViρW V ∗
i )

(74)

So we have the following result.

Theorem 4 Let FW be a QIFS such that there is a unique attractive invari-
ant measure for the associated Markov operator V. Let ρW be the barycenter
of such measure and let ρβ be an eigenstate of LH(ρ) with eigenvalue β. Then

hV (W ) +
k∑

j=1

log
(
tr(HjρβH∗

j )tr(VjρβV ∗
j )

)
tr(WjρW W ∗

j ) ≤ log β (75)

and equality holds if and only if for all i, j,

1
β

tr(HjρβH∗
j )tr(VjρβV ∗

j ) =
tr(WjViρW V ∗

i W ∗
j )

tr(ViρW V ∗
i )

(76)

In section 15 we make some considerations about certain cases in which we
can reach an equality in (75).

♦

For the calculations regarding expression (57), define

rjlm =
1
β

tr(HjρβH∗
j )

(VjρβV ∗
j )lm

(ρβ)lm
(77)

Then we have
∑

j rjlm = 1. Let
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qij := tr
(WjViρW V ∗

i W ∗
j

tr(ViρW V ∗
i )

)
(78)

A calculation similar to the one we have made for (75) gives us

hV (W ) +
k∑

j=1

tr(WjρW W ∗
j ) log tr(HjρβH∗

j )

+
k∑

j=1

tr(WjρW W ∗
j ) log

( (VjρβV ∗
j )lm

(ρβ)lm

)
≤ log β (79)

and equality holds if and only if for all i, j, l, m,

1
β

tr(HjρβH∗
j )

(VjρβV ∗
j )lm

(ρβ)lm
=

tr(WjViρW V ∗
i W ∗

j )
tr(ViρW V ∗

i )
(80)

♦

14 Some classic inequality calculations

A natural question is to ask whether the maximum among normalized Wi,
i = 1, ..., k, for the pressure problem associated to a given potential is realized
as the logarithm of the main eigenvalue of a certain Ruelle operator associated
to the potential Hi, i = 1, ..., k. This problem will be considered in this section
and also in the next one.

We begin by recalling a classic inequality. Consider

−
k∑

j=1

qj log qj +
k∑

j=1

qj log rj ≤ 0 (81)

given by lemma 11. Let A be a matrix. If v denotes the left eigenvector of
matrix EA (such that each entry is eaij ), then vEA = βv can be written as

∑

i

vie
aij = βvj , ∀j (82)

Define
rij :=

eaij vi

βvj
(83)

So
∑

i rij = 1. Let qij > 0 such that
∑

i qij = 1. By (81), we have
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−
k∑

i=1

qij log qij +
k∑

i=1

qij log
eaij vi

βvj
≤ 0 (84)

That is,

−
k∑

i=1

qij log qij +
k∑

i=1

qijaij +
k∑

i=1

qij(log vi − log vj) ≤ log β (85)

Let Q be a matrix with entries qij , let π = (π1, . . . , πk) be the stationary
vector associated to Q. Since

∑
i qij = 1, Q is column-stochastic so we write

Qπ = π. Multiplying the above inequality by πj and summing the j index,
we get

−
∑

j

πj

∑

i

qij log qij +
∑

j

πj

∑

i

qijaij +
∑

j

πj

∑

i

qij(log vi− log vj) ≤ log β

(86)
In coordinates, Qπ = π is

∑
j qijπj = πi, for all i. Then

−
∑

j

πj

∑

i

qij log qij +
∑

j

πj

∑

i

qijaij

+
∑

j

πj

∑

i

qij log vi −
∑

j

πj

∑

i

qij log vj ≤ log β (87)

These calculations are well-known and give the following inequality:

−
∑

j

πj

∑

i

qij log qij +
∑

j

πj

∑

i

qijaij ≤ log β (88)

Definition 11 We call inequality (88) the classic inequality associated to
the matrix A with positive entries, and stochastic matrix Q.

Definition 12 For fixed k, and l,m = 1, . . . , k we call the inequality

hV (W ) +
k∑

j=1

tr(WjρW W ∗
j ) log tr(HjρβH∗

j )

+
k∑

j=1

tr(WjρW W ∗
j ) log

( (VjρβV ∗
j )lm

(ρβ)lm

)
≤ log β, (89)

the basic inequality associated to the potential Hρ =
∑

i HiρH∗
i and to the

QIFS determined by Vi, Wi, i = 1, . . . , k. Equality holds if for all i, j, l, m,

1
β

tr(HjρβH∗
j )

(VjρβV ∗
j )lm

(ρβ)lm
=

tr(WjViρW V ∗
i W ∗

j )
tr(ViρW V ∗

i )
(90)
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♦

As before ρβ is an eigenstate of LH(ρ) and ρW is the barycenter of the
unique attractive, invariant measure for the Markov operator V associated
to the QIFS FW . Given the classic inequality (88) we want to compare it to
the basic inequality (89). More precisely, we would like to obtain operators
Vi that satisfy the following: given a matrix A with positive entries and a
stochastic matrix Q, there are Hi and Wi such that inequality (89) becomes
inequality (88). We have the following proposition.

Proposition 9 [1] Define

V1 =
(

1 0
0 0

)
, V2 =

(
0 1
0 0

)
(91)

V3 =
(

0 0
1 0

)
, V4 =

(
0 0
0 1

)
(92)

Let A = (aij) be a matrix with positive entries and Q = (qij) a two-
dimensional column-stochastic matrix. Define

H11 =
(√

ea11
√

ea11

0 0

)
, H12 =

(√
ea12

√
ea12

0 0

)
(93)

H21 =
(

0 0√
ea21

√
ea21

)
, H22 =

(
0 0√
ea22

√
ea22

)
(94)

and also

W1 =
(√

q11 0
0 0

)
, W2 =

(
0
√

q12

0 0

)
(95)

W3 =
(

0 0√
q21 0

)
, W4 =

(
0 0
0
√

q22

)
(96)

Then the basic inequality associated to Wi, Vi,Hi, i = 1, . . . , 4, l = m = 1 or
l = m = 2, is equivalent to the classic inequality associated to A and Q.

Example 7 Let

H1 =
(

2i 2i

0 0

)
, H2 = I, H3 =

(
i
√

2 i
√

2
0 0

)
, H4 = I

Then

H∗
1 =

(−2i 0
−2i 0

)
, H∗

2 = I, H∗
3 =

(−i
√

2 0
−i
√

2 0

)
, H∗

4 = I

If we suppose the Vi are the same as from proposition 9, we have that ρβ is
diagonal, so
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tr(H1ρβH∗
1 ) = 4, tr(H2ρβH∗

2 ) = 1, tr(H3ρβH∗
3 ) = 2, tr(H4ρβH∗

4 ) = 1

Then LH(ρ) = βρ leads us to

4ρ11 + ρ22 = βρ11

2ρ11 + ρ22 = βρ22

A simples calculation gives

β =
5 +

√
17

2

with eigenstate

ρβ =
4

7 +
√

17

(
3+
√

17
4 0
0 1

)

We want to calculate the Wi which maximize the basic inequality (89).
Recall that from proposition 9, the choice of Vi we made is such that

(VjρβV ∗
j )lm

(ρβ)lm
= 1,

So

hV (W ) +
k∑

j=1

tr(WjρW W ∗
j ) log tr(HjρβH∗

j ) ≤ log β (97)

and equality holds if and only if, for all i, j, l,m,

1
β

tr(HjρβH∗
j )

(VjρβV ∗
j )lm

(ρβ)lm
=

tr(WjViρW V ∗
i W ∗

j )
tr(ViρW V ∗

i )
(98)

Choose, for instance, l = m = 1. Then condition (98) becomes

1
β

tr(HjρβH∗
j ) =

tr(WjViρW V ∗
i W ∗

j )
tr(ViρW V ∗

i )
(99)

To simplify calculations, write Ŵi = W ∗
i Wi and Ŵi = (wi

ij). Then we get

tr(HiρβH∗
i )

β
= wi

11 = wi
22, i = 1, . . . , 4 (100)

So we conclude

Wi =
1√
β

(√
tr(HiρβH∗

i ) 0
0

√
tr(HiρβH∗

i )

)
, i = 1, . . . , 4 (101)

That is,
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W1 =
2√
β

I, W2 =
1√
β

I, W3 =
√

2√
β

I, W4 =
1√
β

I (102)

Note that ∑

i

W ∗
i Wi =

4 +
√

2√
β

I 6= I

To solve that, we renormalize the potential. Define

H̃i :=
√

αHi (103)

where

α :=
√

β

4 +
√

2
(104)

Then a calculation shows that LH̃(ρ) = β̃ρ gives us the same eigenstate as
before, that is ρβ̃ = ρβ . But note that the associated eigenvalue becomes
β̃ = αβ. Now, note that it is possible to renormalize the Wi in such a way
that we obtain W̃i with

∑
i W̃ ∗

i W̃i = I, and that these maximize the basic
inequality for the Hi initially fixed. In fact, given the renormalized H̃i, define

W̃i =
√

αWi, i = 1, . . . , 4 (105)

Note that
∑

i W̃ ∗
i W̃i = I. Also we obtain

hV (W̃ ) +
k∑

j=1

tr(W̃jρW̃ W̃ ∗
j ) log tr(

√
αHjρβ

√
αH∗

j ) ≤ log αβ (106)

which is equivalent to

hV (W̃ ) +
k∑

j=1

tr(W̃jρW̃ W̃ ∗
j ) log(αtr(HjρβH∗

j )) ≤ log α + log β (107)

That is

hV (W̃ ) +
k∑

j=1

tr(W̃jρW̃ W̃ ∗
j ) log α

+
k∑

j=1

tr(W̃jρW̃ W̃ ∗
j ) log tr(HjρβH∗

j ) ≤ log α + log β, (108)

and cancelling log α, we get the same inequality as for the nonrenormalized
Hi. As we have seen before, such W̃i gives us equality. Hence
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hV (W̃ ) +
k∑

j=1

tr(W̃jρW̃ W̃ ∗
j ) log tr(HjρβH∗

j ) = log β (109)

♦

15 Remarks on the problem of pressure and quantum

mechanics

One of the questions we are interested in is to understand how to formulate
a variational principle for pressure in the context of quantum information
theory. An appropriate combination of such theories could have as a starting
point a relation between the inequality for positive numbers

−
∑

i

qi log qi +
∑

i

qi log pi ≤ 0,

(seen in certain proofs of the variational principle of pressure), and the en-
tropy for QIFS we defined before. We have carried out such a plan and then
we have obtained the basic inequality, which can be written as

hV (W ) +
k∑

j=1

log
(
tr(HjρβH∗

j )tr(VjρβV ∗
j )

)
tr(WjρW W ∗

j ) ≤ log β (110)

where equality holds if and only if for all i, j,

1
β

tr(HjρβH∗
j )tr(VjρβV ∗

j ) =
tr(WjViρW V ∗

i W ∗
j )

tr(ViρW V ∗
i )

(111)

As we have discussed before, it is not clear that given any dynamics, we can
obtain a measure such that we can reach the maximum value log β. Consider-
ing particular cases, we can suppose, for instance, that the Vi are unitary. In
this way, we combine in a natural way a problem of classic thermodynamics,
with an evolution which has a quantum character. In this particular setting,
we have for each i that ViV

∗
i = V ∗

i Vi = I and then the basic inequality
becomes

hV (W ) +
k∑

j=1

tr(WjρW W ∗
j ) log tr(HjρβH∗

j ) ≤ log β (112)

and equality holds if and only if for all i, j,
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1
β

tr(HjρβH∗
j ) = tr(WjViρW V ∗

i W ∗
j ) (113)

We have the following:

Lemma 12 Given a QIFS with a unitary dynamics (i.e., Vi is unitary for
each i), there are Ŵi which maximize (110), i.e., such that

hV (Ŵ ) +
k∑

j=1

tr(ŴjρŴ Ŵ ∗
j ) log tr(HjρβH∗

j ) = log β (114)

The above lemma also holds for the basic inequality in coordinates, given
by (89). Also, it is immediate to obtain a similar version of the above lemma
for any QIFS such that the Vi are multiples of the identity, and also for QIFS
such that ρW fixes each branch of the QIFS, that is, satisfying

ViρW V ∗
i

tr(ViρW V ∗
i )

= ρW
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