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Abstract

Although sleep is a fundamental behavior observed in virtually all animal species, its functions remain unclear. One leading
proposal, known as the synaptic renormalization hypothesis, suggests that sleep is necessary to counteract a global
strengthening of synapses that occurs during wakefulness. Evidence for sleep-dependent synaptic downscaling (or synaptic
renormalization) has been observed experimentally, but the physiological mechanisms which generate this phenomenon
are unknown. In this study, we propose that changes in neuronal membrane excitability induced by acetylcholine may
provide a dynamical mechanism for both wake-dependent synaptic upscaling and sleep-dependent downscaling. We show
in silico that cholinergically-induced changes in network firing patterns alter overall network synaptic potentiation when
synaptic strengths evolve through spike-timing dependent plasticity mechanisms. Specifically, network synaptic
potentiation increases dramatically with high cholinergic concentration and decreases dramatically with low levels of
acetylcholine. We demonstrate that this phenomenon is robust across variation of many different network parameters.
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Introduction

Sleep is crucial for normal cognitive function as evidenced by

the many cognitive impairments associated with chronic sleep loss

[1,2]. A leading proposal for the function of sleep, called the

synaptic renormalization hypothesis, posits that sleep is required to

maintain synaptic balance in the brain [3,4]. According to this

hypothesis, waking experiences result in the net potentiation of

many brain circuits, leading to both increased energy consumption

and heightened demand for space by the potentiated synapses. In

order to conserve energy and space, sleep induces a period of

large-scale synaptic downscaling. Sleep is therefore ‘‘the price we

pay for plasticity’’ [5].

Multiple lines of empirical evidence supporting the synaptic

renormalization hypothesis have recently emerged [6–10], including

in vivo studies finding increased slope of evoked LFP/EEG responses

after wakefulness and decreased slope following sleep in rats [11] and

humans [12]. Furthermore, increasing evidence supports a link

between synaptic depotentiation during sleep and slow wave activity

(SWA) [13], which is the pattern of electroencephalograph (EEG)

activity observed during non-rapid eye movement (NREM) sleep in

mammals and birds which features increased power in the delta

band (0.5 to 4 Hz). Various studies have shown that SWA in NREM

sleep locally increases in brain areas that exhibit potentiation during

prior wakefulness [14–16], suggesting that SWA may function to

maintain synaptic homeostasis.

Exactly how synaptic downscaling is induced during sleep is an

open question. One suggestion is that the repeated alternation of

depolarized ‘‘up’’ states, reflecting the simultaneous activity of

many neurons, and hyperpolarized ‘‘down’’ states, reflecting fewer

active neurons, observed to occur at approximately 1 Hz during

SWA may induce long-term depression (LTD) of synapses [17,18].

Another possibility is that the reduction of brain-derived

neurotrophic factor (BDNF) during sleep [5,6] might enable

synaptic depression. Similarly, it is not clear exactly why synapses

might exhibit net potentiation during wakefulness, though it has

been suggested that the processing of sensory signals or the

formation of new memories may inevitably lead to synaptic

upscaling [4].

A further hypothesis is that differences in the neuromodulators

available during waking and NREM sleep states may contribute to

the opposing effects of wakefulness and NREM sleep on neuronal

potentiation levels [5]. Waking is characterized by high levels of

noradrenaline, serotonin, histamine and acetylcholine in cortex,

while all these neurotransmitters are at low levels during NREM

sleep [19,20]. The low levels of these neuromodulators during

sleep has led to the idea that this alters molecular mechanisms

underlying spike-timing dependent plasticity (STDP) so that sleep

favors synaptic depotentiation [21]. Although some investigation

has been done into the effects of various neuromodulators on

STDP [22], these mechanisms remain poorly understood. The
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effects of neuromodulators upon other forms of plasticity may also

contribute to synaptic renormalization [23,24].

In the present study, we build upon previous work to develop a

new theory for synaptic downregulation during NREM sleep that

highlights a role for differing cortical network dynamics during

wake and NREM sleep states. This theory relies upon previous

findings showing that acetylcholine (ACh) modulates the phase-

dependence of neural responses in cortex [25,26]. When ACh is

more available, as in the awake state, most cortical neurons display

phase-independent firing in response to synaptic input: they fire

soon after receiving excitatory input regardless of their activity

when the input arrives (Type I). In contrast, when ACh is less

available, as during NREM sleep, cortical neurons display phase-

dependent firing in response to synaptic input: whether they fire

sooner or later after receiving an excitatory input depends on how

long it has been since they last fired (Type II). As we and others

have shown previously, the increased flexibility of exact firing

times in response to input that occurs with low ACh concentration

better enables pre- and post-synaptic cells to synchronize their

activity, thereby increasing synchronized activity in cortical

networks [27–29]. While ACh has many diverse effects in the

brain [30,31], here we focus on these dynamical effects of

cholinergic modulation.

Our new theory concerns the effect of increased synchronized

network activity during NREM sleep on the strength of synaptic

connections. In particular, we posit that although this increase in

synchronized network activity strengthens some individual synap-

tic connections, it weakens others. Further, and critically, this

weakening is more pronounced when an animal is experiencing

NREM sleep (more synchronized activity) than when an animal is

awake (less synchronized activity). Supporting this novel hypoth-

esis, we show that a computational model employing these

dynamic, physiologically-plausible mechanisms is fully able to

account for synaptic renormalization during NREM sleep.

Results

We simulated the effects of ACh on synaptic potentiation in

cortical networks consisting of 1000 neurons (20% of which were

inhibitory). Each neuron was described by a recently-developed

cortical pyramidal cell model [26] that was motivated by

experimentally measured effects of ACh [25]. In this model,

simulated cholinergic modulation blocks a slow, low-threshold

M-type potassium current that induces spike frequency adapta-

tion. Blockade of this current modulates the response properties of

modeled neurons as measured by the phase response curve (PRC).

With low ACh levels, the neuronal PRC displays phase regions

where spike timing is delayed and where it is advanced,

categorized as Type II PRC [28,29]. High ACh levels produce

only advances in spike timing regardless of the phase of

perturbation, resulting in Type I PRC (see Fig. 1).

Switching PRCs of synaptically coupled neurons from Type II

to Type I has been shown to dramatically affect the synchroni-

zation of neuronal networks. Specifically, simulated large-scale

neuronal networks whose cells have Type II PRCs have been

shown to synchronize much better than neuronal networks

composed of cells with Type I PRCs [32]. This effect can be

explained heuristically by the fact that neurons with Type II PRC

are in some sense ‘‘more flexible’’ than those with Type I PRC,

since neurons with Type II PRC can advance and delay their spike

firing in response to synaptic input [28,29]. More rigorous

mathematical analysis has shown that in the weak coupling limit,

the emergence of stable synchronous dynamics depends upon a

stability criterion known as the H-function, which is constructed

from the odd part of the neuronal PRC [33]. Such analysis has

shown that while the emergence of a phase delay region in the

PRC is sufficient to promote stable synchrony, it is not necessary–a

PRC which is entirely positive but skewed toward late phase

can also elicit highly synchronous dynamics [34]. The designations

‘‘Type I’’ and ‘‘Type II’’ therefore constitute two poles of a

spectrum of neuronal response properties. The PRC framework

has been used to explain why cholinergic modulation has a

dramatic effect upon the synchronization of simulated cortical

networks, with low ACh concentration (which induces more

Type II-like PRC) leading to much higher network synchrony than

high ACh concentration (which induces more Type I-like PRC)

[25–27].

We investigated how the differential effects of ACh on network

synchrony influenced overall network synaptic potentiation when

synaptic strengths evolved according to a spike-timing dependent

plasticity (STDP) rule. In our network simulations, synaptic

strength values were initialized to an intermediate value and then

allowed to evolve, according to the STDP rule, over the interval

½0,wmax� (see Materials and Methods for simulation details). We

quantified the steady state distribution of synaptic strength values

with a measure of ‘‘network potentiation,’’ calculated as a scaling

of the mean equilibrium synaptic weight. The values of this

network potentiation measure range from 21 for maximally

weakened networks (all synaptic strength values go to 0) to +1 for

maximally strengthened networks (all synaptic strength values go

to wmax). We investigated the effects of network connectivity by

varying synaptic connection architecture using the Watts-Strogatz

small-world paradigm [35]. With this method, each neuron was

initially connected to a fixed number of its nearest neighbors, and

then a certain proportion of these connections were re-wired to

synapse onto randomly-selected cells in the network. The

proportion of connections which were re-wired was specified by

the re-wiring probability. Since both maximum synaptic strength and

network connectivity structure are known to dramatically influ-

ence neuronal network dynamics, we explored a wide range of

values for wmax and the re-wiring probability to ensure the

robustness of our results.

Dynamical effects of acetylcholine on network
synchronization and potentiation
High simulated cholinergic modulation switched neuronal

PRCs from Type II to Type I (Fig. 1 a,b), inducing a decrease

Author Summary

The function of sleep is one of the greatest mysteries in
contemporary neuroscience. Nearly every species of
animal requires it, yet we do not know why. One idea,
known as the synaptic renormalization hypothesis, suggests
that waking results in a global increase in the strengths of
connections in the brain, a phenomenon which is
unsustainable because stronger connections consume
more energy and take up more space. The function of
sleep, according to this hypothesis, is to downscale or
‘‘renormalize’’ connection strengths. While mounting
experimental evidence confirms that sleep-dependent
synaptic downscaling does occur, we still do not know
what biophysical mechanism causes it. In this paper, we
show computational results which indicate that the
neuromodulator acetylcholine may have a key role to play
in sleep-dependent synaptic downscaling. If confirmed
experimentally, these findings will help to unravel the
mystery of sleep.

Acetylcholine and Synaptic Renormalization
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in network synchronization (Fig. 1 c,d) that affected the steady

state distributions of synaptic strengths (Fig. 1 e,f). The synaptic

strength distribution of the high-ACh network was heavily skewed

toward maximal synaptic weight, reflecting higher network

potentiation. On the other hand, the distribution of the low-

ACh network was more symmetric, with about half the synapses at

the maximal value and the majority of remaining synapses at zero

strength. These results were robust to variations in maximal

synaptic strength and network connectivity architecture (Fig. 2

a,b). Network potentiation values for high-ACh networks exceeded

those for low-ACh networks for almost all combinations of re-

wiring probability and wmax.

Differences in network potentiation were especially pronounced

for wmax *
> 0:05mS=cm2, at which values the network potentiation

dropped to approximately zero in low-ACh networks for all values

of the re-wiring probability (Fig. 2b). Interestingly, this drop in

network potentiation coincided with the transition from asynchro-

nous to synchronous activity in low-ACh networks (Fig. 2d). On

the other hand, the robustly high levels of potentiation observed in

high-ACh networks (Fig. 2a) corresponded to completely asyn-

chronous activity for all network parameters (Fig. 2c). Our

simulations therefore counterintuitively showed that synchronous

network dynamics led to relatively lower network potentiation

than asynchronous network dynamics.

Since STDP requires correlated firing to potentiate the connec-

tion between two neurons, one might expect that asynchronous

network activity should induce no net change in network

potentiation, rather than the overall increased potentiation we

observed. Further analysis of pre- and post-synaptic cell pairs

uncovered an important statistical structure of the neuronal firing

patterns in the cholinergically-modulated networks: post-synaptic

neurons throughout the network were more likely to fire shortly

after their pre-synaptic neurons rather than shortly before (Fig. 3a).

Thus, pre-post spike time differences landed in the positive portion

of the STDP curve more frequently than in the negative portion of

the STDP curve, resulting in increased potentiation of the network

as a whole.

On the other hand, the relatively lower network potentiation

observed in networks with low cholinergic modulation was due to

post-synaptic neurons firing right before their pre-synaptic

partners much more frequently (Fig. 3b). This effect occurred

because the bursts of activity in low-ACh networks constrained all

neurons to fire within very short time windows, forcing pre-

synaptic neurons to directly compete with one another to induce

common post-synaptic partners to fire. As a result, roughly half the

pre-post spike time differences fell in the positive portion of the

STDP curve, and the other half fell in the negative portion,

leading to nearly symmetric and highly polarized final distribu-

tions of synaptic strengths (as in Fig. 1f).

It should be noted that we tested this result for robustness against

noise by adding Gaussian-distributed noise with a temporal

correlation of 100 ms (the approximate inter-spike interval of the

Figure 1. Effects of acetylcholine on phase response curves, network synchrony, and overall network synaptic potentiation in
1000-cell cortical neuronal network models. (a,b) Phase response curves of individual neurons with (a) high simulated ACh concentration and
(b) low simulated ACh concentration. (c, d) Raster plots of the activity of a model cortical network with (c) high and (d) low ACh concentration. Blue
(Red) dots represent spikes of excitatory (inhibitory) neurons. Note the higher synchronization in the network with low cholinergic modulation
compared to the network with high cholinergic modulation. (e) Average final distributions of synaptic strengths for a typical high-ACh network, with
a network potentiation value of&0:35. (f) Average final distribution of synaptic strengths for a typical low-ACh network. This distribution constitutes
a much lower network potentiation value (&0) due to a greater proportion of synapses with zero synaptic strength values. In panels (c)–(f), the re-
wiring probability was 0.60 and wmax~0:08mS=cm2 . Panels (e) and (f) represent histograms averaged over ten different network initializations.
doi:10.1371/journal.pcbi.1002939.g001

Acetylcholine and Synaptic Renormalization
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slowest-firing neurons) to the external constant current driving

individual neurons. We found that even for a noise amplitude as

high as 0:10mA=cm2, we still observed much greater potentiation in

high-ACh networks than in low-ACh networks for a large range of

network parameters (Fig. 4a,b). This noise amplitude was large

relative to the driving currents for both high-ACh networks

(0:08mA=cm2) and low-ACh networks (1:30mA=cm2). Further-

more, we found that if we chose one set of network parameters and

progressively increased the noise amplitude, the difference between

network potentiation in high- and low-ACh networks did not

disappear until the noise amplitude reached 0:20mA=cm2 (Fig. 4c).

Since acetylcholine levels vary dramatically in cortex, we

investigated how sensitively our results depended upon acetylcho-

line levels, which dramatically influence PRC shape. Cholinergic

modulation was modeled by varying the slow potassium conduc-

tance gKs which decreases with increasing levels of acetylcholine.

Fig. 5 depicts the dependence of network potentiation upon gKs (in

all other plots, gKs is set to 0mS=cm2 to simulate high ACh

concentration and 1:5mS=cm2 to simulate low ACh concentra-

tion). Figs. 5a,b show examples of the network potentiation plotted

as a function of network parameters for two different gKs values.

Note how gKs~0:25mS=cm2 results in much greater network

potentiation than gKs~0:50mS=cm2 for most network parame-

ters. Fig. 5c shows that for representative network parameters,

network potentiation and network synchrony undergo sharp phase

transitions as gKs increases. The phase transition in synchrony

(which induces the phase transition in network potentiation) is well

explained by the transition in PRC shape depicted in Fig. 5d. As

gKs increases, the neuronal PRC is shifted to the right and,

crucially, the positive slope at phase zero is attenuated while the

negative slope at later phase is not. This is consistent with the idea

that network synchrony stabilizes when the odd part of the PRC,

known as the H-function, switches the sign of its slope at phase

zero [29,36].

We also tested our results for robustness to connectivity density

by increasing the radius of connectivity in our network simulations

Figure 2. Effects of acetylcholine on network potentiation and synchronization for varied network parameters with an additive
STDP rule. (a,b) Network potentiation as a function of re-wiring probability (controlling randomness of network connections, x-axis) and maximum
synaptic strength (wmax, y-axis) for model cortical networks both with (a) high and (b) low simulated cholinergic modulation. Note the much greater
potentiation of high-ACh networks for virtually all network parameters, and especially for wmax *> 0:05mS=cm2 . (c,d) Network synchrony, as measured
by mean phase coherence, as a function of re-wiring probability and wmax for networks with (c) high and (d) low simulated cholinergic modulation. All
results represent averages over ten randomly-initialized network simulations. Arrows indicate network parameters which gave rise to panels c, d, e,
and f in Fig. 1.
doi:10.1371/journal.pcbi.1002939.g002

Acetylcholine and Synaptic Renormalization
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(see the description of the Watts-Strogatz small world network

paradigm detailed in Materials and Methods). High-ACh networks

showed greater overall potentiation than low-ACh networks for a

wide range of connectivity densities (0.8% to 4.0% connectivity),

though sparser connectivity led to greater differences in network

potentiation (Fig. 6).

We tested the results for robustness to frequency modulation by

varying the duration of the STDP window, tstdp. We used this

approach rather than directly modulating neuronal frequency

because network effects made it difficult to elicit a wide range of

average firing frequencies. In Fig. 7, tstdp was varied from 1 ms to

100 ms (the default value throughout this study was 10 ms).

Figure 3. Structure of neuronal firing of pre- and post-synaptic cell pairs in high-ACh and low-ACh cortical networks. (a,b) Spike-
timing histogram of phases of post-synaptic cell firing relative to pre-synaptic cell firing in the model cortical network both with (a) high and (b) low
simulated cholinergic modulation. These plots were constructed by averaging the spike-timing histograms of all pre-post pairs throughout the entire
network. (a) In high-ACh networks, post-synaptic cells were much more likely to fire shortly after (as opposed to shortly before) pre-synaptic spikes, as
evidenced by the fact that the cumulative probability of firing within the interval ½0,p=2� (0.30) was substantially larger than the cumulative
probability of firing within the interval ½3p=2,2p� (0.22). (b) In low-ACh networks, post-synaptic spike timings were more balanced between shortly
preceding and shortly succeeding pre-synaptic spikes, leading to much lower network potentiation via the STDP rule. Both histograms were
computed from simulations in which the re-wiring probability was 0.60 and wmax~0:08mS=cm2. Note the different scales on the y-axes.
doi:10.1371/journal.pcbi.1002939.g003

Figure 4. Effects of noise amplitude on the difference in network potentiation between networks with high and low cholinergic
modulation. (a,b) Network potentiation as a function of re-wiring probability (x-axis) and maximum synaptic strength wmax (y-axis) for networks
with (a) high and (b) low cholinergic modulation, with noise amplitude fixed at 0:10mA=cm2 . Note that high-ACh networks exhibited much greater
potentiation than low-ACh networks for wmax *

> 0:05 mA=cm2 . (c) Difference in network potentiation between high- and low-ACh networks as a
function of noise amplitude for the network parameters indicated by arrows in panels (a) and (b).
doi:10.1371/journal.pcbi.1002939.g004

Acetylcholine and Synaptic Renormalization
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High-ACh networks exhibited much higher network potentiation

than low-ACh networks for all values of tstdp.

Finally, several studies have shown that the equilibrium

distribution of synaptic weights in a network subject to STDP

strongly depends upon the mathematical form of the STDP rule.

For example, some have suggested that the integral of the LTD

portion of the STDP curve should be greater than the LTP portion

of the curve in order to maintain network potentiation at

reasonable levels [37,38]. We explored this STDP formulation

by using an asymmetric STDP rule in which the integral of the

LTD curve was ten percent greater than the integral of the LTP

curve. The results of these simulations, shown in Fig. 8, are

qualitatively similar to our main results in Fig. 2. Others have

pointed out that ‘‘multiplicative’’ (weight-dependent) STDP rules

tend to produce qualitatively different synaptic weight distributions

than ‘‘additive’’ STDP rules [39]. Indeed, the polarized synaptic

weight distributions shown in Fig. 1 are the typical result of an

additive STDP rule [40,41], and when we switched to a

multiplicative rule we obtained more unimodal distributions

(Fig. 9). For both STDP rules, we observed that high ACh led

to significantly greater network potentiation than low ACh (Figs. 2

and 9), though the effect was more pronounced for the additive

rule (Fig. 2a,b) than for the multiplicative rule (Fig. 9a,b).

Switching acetylcholine levels in a heterogeneous
network
The above results pertained to networks with homogeneous

connectivity distributions in the sense that all synapses could

achieve the same maximal strength, and long-range network

connections did not preferentially target any particular neurons.

Such homogeneity certainly does not exist in the brain [42,43].

Therefore, we explored effects of cholinergic modulation on

synaptic potentiation in the presence of network connectivity

heterogeneities. A question of particular interest was whether

ACh-induced changes in synaptic plasticity affect all connec-

tions in the network to the same extent. To address this

question, we considered a network of 1000 neurons with an

embedded cluster of 50 neurons. The maximal synaptic strength

values (wmax) of connections originating from cells within the

cluster were two times greater than for the surrounding network.

Additionally, while the number of outgoing connections per

neuron was the same for both the cluster and the rest of the

network, a fixed fraction of out-going synaptic connections from

surrounding cells preferentially targeted the cluster and vice

versa. Thus, in the network, a small number of connections

originated within the cluster and projected outside the cluster,

while a larger number of connections originated outside the

Figure 5. Effects of varying the slow potassium conductance, gKs, upon network potentiation and PRC. (a,b) Examples of network
potentiation as a function of wmax and re-wiring probability for gKs~0:25mS=cm2 and gKs~0:50mS=cm2 . (c) Network potentiation and
synchronization (as measured by mean phase coherence) as a function of gKs for the network parameters indicated in (a) and (b). (d) Phase response
curves corresponding to gKs~0:25mS=cm2 and gKs~0:50mS=cm2 .
doi:10.1371/journal.pcbi.1002939.g005

Acetylcholine and Synaptic Renormalization
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cluster and projected to the cluster (see Materials and Methods

for more details).

In this heterogeneous network, we alternately switched

between the high and low acetylcholine concentration (simulating

waking and NREM sleep, respectively), and found that such

switching induced immediate and dramatic changes in network

synchrony and potentiation (Fig. 10a). As in the homogeneous

networks, we found that the asynchronous dynamics induced by

high cholinergic modulation resulted in relatively high network

potentiation (Fig. 10b,c), but we found that the depotentiating

effects of low acetylcholine levels were even more pronounced

than in homogeneous networks. Fig. 10a shows that the network

potentiation measure actually dipped below zero for two low-

ACh intervals, implying that the number of connections whose

synaptic strength went to 0 exceeded the number that reached

wmax (Fig. 10d).

This enhanced depotentiating effect resulted from the dynam-

ical interplay between the cluster and the rest of the network. As

shown in Fig. 10e, under low levels of acetylcholine the cluster

tended to fire in synchronized bursts, which drove the rest of the

network to respond by firing noisy bursts. The relative firing times

of the surrounding network relative to the cluster resulted in

potentiation of connections originating in the cluster and

projecting outside the cluster, and depotentiation of connections

originating outside the cluster and projecting to the cluster (see the

‘‘low Ach’’ intervals in Fig. 10f). Since there were more

connections originating outside the cluster and projecting into

the cluster than vice versa, strong overall network de-potentiation

occurred.

Fig. 10f demonstrates another striking feature of this network:

the small subset of connections projecting from the cluster to the

surrounding network remains at very high potentiation levels

throughout cholinergic switching. Furthermore, this set of

connections collectively increases in strength during epochs when

ACh is low, in contrast to the collective weakening exhibited by

connections in the rest of the network.

Discussion

We have proposed a novel physiologically-plausible mechanism,

based on cholinergic modulation of neural membrane excitability,

that can account for synaptic renormalization during NREM

sleep. We have shown that the dramatic changes in membrane

excitability induced by cholinergic modulation, and the resulting

changes in network firing patterns, lead to upscaling and

downscaling of mean synaptic efficacy. Thus, our results pro-

pose a dynamical mechanism for synaptic renormalization that

provides a bottom-up framework linking changes in the neuro-

modulator environment during waking and NREM sleep to

changes in neuronal excitability, network activity patterns, and

overall renormalization of network connectivity. Simulations of

networks with heterogeneous synaptic connection distributions

also provided evidence for selective rescaling of particular network

connections.

Our simulations showed that high levels of acetylcholine in

cortical networks led to asynchronous dynamics, which in turn led

to relatively high network potentiation. On the other hand, low

levels of acetylcholine resulted in more synchronous network

activity and relatively lower overall potentiation. These results are

consistent with the prediction of the synaptic renormalization

hypothesis that wakefulness (during which ACh is present at high

levels in cortex) is associated with global synaptic upscaling, while

NREM sleep (during which ACh is present at much lower levels in

cortex) is associated with global synaptic downscaling. These

results were also robust to noise, changes in network frequency,

different network topologies, and various STDP parameters, and

they were strengthened by network heterogeneities. Additionally,

Fig. 5 shows that extreme concentrations of ACh (either high or

low) do not appear necessary to induce the transition from low to

high network potentiation–large intervals of gKs accommodated

both states.

The desynchronization of neuronal activity that resulted from

high concentration of ACh in our model is expected from PRC

theory, since higher ACh induces more Type I-like PRC [25].

Figure 6. Effects of connectivity density upon network potentiation. (a,b) Network potentiation of high-ACh and low-ACh networks with
4.0% connectivity density. Network potentiation is displayed as a function of wmax and re-wiring probability, as in Fig. 2. Note the difference in scale
between these plots and Fig. 2. (c) Difference between high-ACh and low-ACh network potentiation values as a function of connectivity density for
networks with parameters analogous to those indicated by arrows in panels (a) and (b). In order to investigate similar regimes of network excitability,
we decreased wmax in proportion to the increase in connectivity density.
doi:10.1371/journal.pcbi.1002939.g006

Acetylcholine and Synaptic Renormalization
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Figure 7. Effects of the modulation of the STDP window, tstdp, upon network potentiation. (a,b) Network potentiation of high-ACh and
low-ACh networks as a function of wmax and re-wiring probability for tstdp~1:0ms. (c,d) Network potentiation of high-ACh and low-ACh networks as
a function of wmax and re-wiring probability for tstdp~100:0ms. (e) Network potentiation of both high-ACh and low-ACh networks as a function of

tstdp, with wmax~0:08mS=cm2 and a re-wiring probability of 0.60.
doi:10.1371/journal.pcbi.1002939.g007
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Some studies, however, have associated increased ACh with

elevated neuronal synchrony. For example, Rodriguez et. al.

showed that ACh promoted gamma synchronization in response

to light stimuli in cat visual cortex [44]. There have been other

studies, however, which have shown the opposite effect. Kalmbach

et. al. showed that optogenetically-induced release of ACh by

nucleus basalis axons led to an immediate desynchronization of

afferent cortical neurons [45], and Metherate et. al. demonstrated

that electrical stimulation of the nucleus basalis desynchronized

cortical EEG [46]. Thus it seems unclear from the literature

exactly how ACh affects neuronal synchronization. One possibility

is that ACh enhances synchrony in response to attended stimuli,

but has a desynchronizing effect in regions of cortex which are not

actively processing attended stimuli. In that case, our model would

emphasize endogenous network dynamics over stimulus-evoked

activity.

On the other hand, ACh is known to be down-regulated during

NREM sleep, when slow wave activity dominates EEG recordings.

Such activity is associated with the slow oscillation of thalamo-

cortical neuron membrane potential that results from thalamo-

cortical bistability [47–49]. In addition, multiple lines of evidence

suggest that slow waves involve the persistent synchronous bursting

of cortical neuron populations [5,50–52]. Similar activity patterns

were produced in our simulations of low-ACh networks (see

Fig. 1d), suggesting that low cholinergic concentration may work

in tandem with underlying slow oscillations to facilitate bursting

activity. As shown in Fig. 10, this highly synchronous activity

resulted in synaptic downscaling relative to the asynchronous

activity induced in high-ACh networks.

Fig. 10f also shows how a subset of connections that were highly

potentiated following waking (high ACh) remained strong–and

were actually even further strengthened–during simulated NREM

sleep (low ACh). This effect was obtained through the introduction

of a small subset of connections which had larger maximum

synaptic strength values than in the rest of the network, providing

a possible mechanism for sleep-dependent memory consolidation

within the framework of spike-timing dependent plasticity.

While our theory focuses on possible dynamical underpinnings

of the renormalization hypothesis, there are many other factors

which may contribute to synaptic renormalization. Incoming

sensory signals may promote upscaling during wakefulness [4],

while downscaling during sleep might be facilitated by the

endogenous low-frequency rhythms of slow-wave sleep, which

share similar frequency content with the low-frequency stimulation

known to induce long-term depression [17,18]. One recent study

suggested that elevated levels of neuromodulators such as

noradrenaline and acetylcholine during waking may promote

overall synaptic potentiation, while the absence of these same

Figure 8. Effects of acetylcholine on network potentiation (a,b) and synchronization (c,d) for varied network parameters with an
asymmetric STDP rule that favors LTD over LTP. STDP parameters were t{~40ms, tz~20ms, Az~wmax=10, and A{~1:1|(tz=t{)|Az.
doi:10.1371/journal.pcbi.1002939.g008
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neuromodulators during sleep may modify spike-timing dependent

plasticity to favor synaptic depression [21,22]. Our simplified

model focuses upon spike-timing dependent plasticity because we

are interested in how network potentiation is affected by

alterations in network synchrony, and STDP is the form of

plasticity which is most relevant for changes in synchrony. There

are, however, many plasticity mechanisms in the brain other than

STDP which may also contribute to synaptic renormalization,

including the many varieties of homeostatic plasticity [53,54].

Investigating the interaction between STDP and these other forms

of homeostatic plasticity is beyond the scope of this paper.

Our theory hinges on the result that synchronous network

activity leads to synaptic downscaling, while asynchronous

network activity generates synaptic upscaling. Our analysis of

Figure 9. Effects of acetylcholine on network potentiation (a,b) and synchronization (e,f) for varied network parameters with a
multiplicate (weight-dependent) STDP rule. As found in previous studies, the distribution of synaptic weights is not bimodal (c,d). Note the
difference in scale between network potentation plots for the multiplicative STDP rule (a,b) versus the additive STDP rule (Fig. 2a,b). In both cases,
high ACh concentration results in significantly greater network potentiation than low ACh concentration.
doi:10.1371/journal.pcbi.1002939.g009
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the structure of spike times in pre- and post-synaptic cell pairs

indicates that downscaling was due to timing competition between

arriving excitatory post-synaptic potentials (EPSPs) within the brief

period of synchronous spiking activity. This competition within

such a short time window resulted in about half the pre-post

pairings falling in the negative portion of the STDP curve and

therefore leading to lower network potentiation relative to

asynchronous network activity. It has previously been shown that

asynchronous neuronal activity leads to increased network

potentiation while synchronous activity leads to decreased network

potentiation in simulated networks incorporating STDP with

propagation delays [55]. Our results show that similar effects can

Figure 10. Effects of alternately switching between high and low levels of acetylcholine in a cortical network with an embedded
cluster. (a) Network potentiation and synchronization (as measured by mean phase coherence) of the cortical network as a function of time as the
level of ACh was alternated between high and low levels (different intervals are demarcated by dashed lines). (b) Distribution of synaptic strength
values at the end of the last high-ACh interval. (c) Representative raster plot of network activity during the last high-ACh interval. The first 50 neurons
comprise the cluster. (d) Distribution of synaptic strength values at the end of the last low-ACh interval. Note how the number of connections whose
synaptic strength went to 0 is greater than the number that went to wmax. (e) Representative raster plot of network activity during the last low-ACh
interval. Note how the tight bursting of the cluster drove activity in the rest of the network. (f) Network potentiation computed from distributions of
synaptic weights for all synaptic connections (heavy blue curve, as shown in (a)), for synapses originating in the cluster and projecting outside the
cluster (green curve), and for synaptic connections originating outside the cluster and projecting to the cluster (light blue curve). During the low-ACh
intervals, the connections originating outside the cluster and projecting to the cluster showed extreme relative depotentiation due to the driving of
the rest of the network by the cluster.
doi:10.1371/journal.pcbi.1002939.g010
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be obtained in networks where synaptic delays are negligible.

Additionally, these effects are obtained for completely different

and counterintuitive reasons, namely through altered statistics of

spike arrival times at post-synaptic cells.

In summary, we have shown that cholinergic modulation can

lead to changes in overall network potentiation, and that these

changes may be understood in terms of the altered cellular and

network dynamics induced by ACh. Further experimental

investigation into the possible role of cholinergic modulation in

the dynamical underpinnings of synaptic renormalization is clearly

required.

Materials and Methods

Cortical neuron model
The cortical pyramidal model neuron we employed was

motivated by a recent experimental study which showed that in

slices of mouse visual cortex, the presence of acetylcholine (ACh)

modulated the response properties of cortical neurons as measured

by the phase response curve (PRC) [25]. The neuronal PRC tracks

the changes in spike timing in response to perturbations of the

membrane potential as a function of the phase of the spike cycle at

which the perturbation occurs. The presence of ACh and its effects

upon neuronal PRCs were shown to be well modeled by varying

the maximum conductance gKs of a slow, low-threshold Kz-

mediated adaptation current from 1:5mS=cm2 to 0mS=cm2 in a

Hodgkin-Huxley based neuronal model [26,56]. We used this

model in the current study, and modulated only gKs to model the

presence or absence of ACh. The model also featured a fast,

inward Naz current. The model also includes an inward Naz

current, a delayed rectifier Kz current, and a leakage current.

The current balance equation for the ith cell was

C
dVi

dt
~{gNam

3
?
(Vi)h(Vi{VNa){gKdrn

4(Vi{VK ){

gKsz(Vi{VK ){gL(Vi{VL)zIdrivei zInoisei {I
syn
i ,

ð1Þ

with C~1:0mF=cm2, Vi in millivolts, and t in milliseconds. Idrivei

was an externally applied current that was constant for each

neuron but Gaussian-distributed across neurons in the network,

with a variance set to induce a spread of 1 Hz in the instrinsic

neuronal frequencies in the neurons for both high and low levels

of cholinergic modulation. The mean of the distribution of

Idrivei values was 0:08mA=cm2 for high-ACh networks and

1:30 mA=cm2 for low-ACh networks (different values were

necessary to account for different firing thresholds and frequen-

cy-current curves). Inoisei was a Gaussian noise term supplied to

each neuron in our study of noise robustness (Fig. 4). This noise

was independent from neuron to neuron, but for each individual

neuron the noise was correlated over a time scale of 100 ms (the

typical inter-spike interval of the slowest-firing neurons). I
syn
i was

the synaptic current received by neuron i.

Activation of the Naz current was instantaneous and

governed by the steady-state activation function m?(V )~

f1zexp½({V{30:0)=9:5�g{1
. Dynamics of the Naz current

inactivation gating variable h were given by

dh=dt~(h?(V ){h)=th(V ), ð2Þ

with h?(V )~f1zexp½(Vz53:0)=7:0�g{1
and th(V )~0:37z

2:78f1zexp½(Vz40:5)=6:0�g{1
. The delayed rectifier Kz cur-

rent was gated by n, whose dynamics were governed by

dn=dt~(n?(V ){n)=tn(V), ð3Þ

with n?(V )~f1zexp½({V{30:0)=10:0�g{1
and tn(V )~

0:37z1:85f1zexp½(Vz27:0)=15:0�g{1
. The slow, low-thresh-

old Kz current targeted by cholinergic modulation was gated by

z, which varied in time according to

dz=dt~(z?(V ){z)=75:0, ð4Þ

where z?(V )~f1zexp½({V{39:0)=5:0�g{1
.

The slow, low-threshold Kz current loosely modeled the

muscarine-sensitive M-current observed in cortical neurons.

Setting gKs~0 modeled high levels of ACh in cortical networks,

and setting gKs~1:5mS=cm2 modeled low ACh levels. All

other parameter values were the same for both high-ACh and

low-ACh networks: gNa~24:0mS=cm2, gKdr~3:0mS=cm2, gL~

0:02mS=cm2, VNa~55:0mV, VK~{90:0mV, and VL~

{60:0mV.

PRC calculation
To obtain the phase response curves displayed in Fig. 1, Idrive

was set to a fixed value to elicit repetitive firing in a single,

synaptically isolated neuron, and the model equations were time

evolved using a fourth-order Runge-Kutta numerical scheme until

the oscillatory period stabilized. Then, using initial conditions

associated with the spike peak, brief current pulses were

administered at different phases of the oscillation, and the

perturbed periods were used to calculate the corresponding phase

shifts. The current pulses were administered at 100 equally-spaced

time points throughout the period of the neuronal oscillation. The

current pulses had a duration of 0.06 ms and an amplitude of

3:0mA=cm2 for the high-ACh cortical pyramidal neuron, and a

duration of 0.06 ms and an amplitude of 10:0 mA=cm2 for the low-

ACh cortical pyramidal neuron.

Network simulations
We simulated networks with 800 excitatory neurons and 200

inhibitory neurons. The network connectivity pattern was

constructed using the Watts-Strogatz architecture for ‘‘small world

networks’’ [35]. Starting with a 1-D ring network with periodic

boundary conditions, each neuron was at first directionally

coupled to its 2r nearest neighbors, and then every connection

in the network was rewired with probability p to another neuron

selected at random. In this way, p~0 resulted in a locally-

connected network and p~1 in a randomly connected network.

The radius of connectivity r therefore determined the density of

connections in the network, while the re-wiring parameter p

determined the network connectivity structure. Network connec-

tivity r was set to 4 in all simulations except those in Fig. 10 and

Fig. 6.

Synaptic current was transmitted from neuron j following times

tjk when its membrane voltage breached 220 mV. The synaptic

current delivered from neuron j to a synaptically connected

neuron i at times tw~tjk was given by

I
syn
ij ~wij exp {

t{tjk
t

� �

(Vi{Esyn), where we used t~0:5ms

and Esyn~0mV for excitatory synapses and Esyn~{75mV for

inhibitory synapses. The total synaptic current to a neuron i was

given by I
syn
i ~

P

j[Ci
I
syn
ij , where Ci was the set of all neurons

presynaptic to neuron i. Excitatory synaptic strengths wij evolved

according to an additive STDP rule in which the change in
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synaptic strength between postsynaptic neuron i and presynaptic

neuron j was given by

Dwij~
Aze{DDtD=tz , if Dtw0

{A{e{DDtD=t{ if Dtv0

(

, ð5Þ

where Dt represents the spike time of postsynaptic neuron i

minus the spike time of presynaptic neuron j. We set

tz~t{~10:0ms in all our simulations, except in Figs. 7 and

8. We also confined synaptic strength values to the interval

½0,wmax�, where wmax was a parameter that we varied in our

simulations. The maximum amount the strength of a synapse

could change due to one spike pairing was set by the parameters

Az and A{, which we set to wmax=10 (except for the simulations

in Fig. 8). We intentionally chose this value to be rather large so

that synaptic strength distributions would equilibrate in a

reasonable amount of time.

Simulations were initialized with all synaptic strengths set to

wmax=2, after which the strengths of excitatory synapses evolved

freely according to the dynamics of the network (strengths of

inhibitory synapses were fixed). After the distribution of

synaptic weights had equilibrated (which required longer for

low-ACh networks because they fired at lower rates than high-

ACh networks; high-ACh network simulations were run for

5,000 ms and low-ACh network simulations were run for

20,000 ms), the overall network potentiation was quantified

using the measure

Network potentiation~2
vww

wmax

{1, ð6Þ

where vww designates the mean of all equilibrium excitatory

synaptic strengths. This measure, which is just a scaling of

mean synaptic strength, attributed a network potentiation value

of +1 to maximally potentiated final synaptic distributions, and

a network potentiation value of 21 to maximally depotentiated

final synaptic distributions. All simulations were numerically

integrated in Matlab using a fourth-order Runge-Kutta method

with a time step of 0.05 ms.

We quantified phase-synchronization of neuronal firing in our

simulations using the mean phase coherence (MPC) measure

[57]. This measure quantified the degree of phase locking

between neurons, assuming a value of 0 for completely

asynchronous spiking and 1 for complete phase locking. Note

that high MPC could be attained for locking of phases at any value,

not just zero. The MPC between a pair of neurons, s1,2, was
defined by:

s1,2~D 1
N

X

N

k~1

eiwkD ð7Þ

wk~2p
t2,k{t1,k

t1,kz1{t1,k

� �

, ð8Þ

where t2,k was the time of the kth spike of neuron 2, t1,k was the

time of the spike of neuron 1 that was largest while being less than

t2,k, t1,kz1 was the time of the spike of neuron 1 that was smallest

while being greater than or equal to t2,k, and N was the number

of spikes of neuron 2. The MPC of the entire network was

calculated by averaging the mean phase coherence of all neuron

pairs, discounting the first half of network activity, in order to

capture steady-state network synchronization.

In our simulations exploring network heterogeneity, the

network was composed of 1000 neurons (800 excitatory, 200

inhibitory), of which 50 comprised a cluster in which wmax was two

times greater than in the rest of the network (wmax~0:08mS=cm2

for connections originating from neurons within the cluster, and

wmax~0:04mS=cm2 for connections originating from neurons

outside the cluster). Connectivity was constructed by initially

segregating the cluster from the rest of the network, so that the

cluster and the rest of the network formed two disjoint Watts-

Strogatz networks, each with a radius of connectivity of 4 and a re-

wiring probability of 0.60. The two networks were then coupled by

sending three outgoing connections from each cluster neuron to

randomly-selected neurons in the rest of the network. Similarly,

three outgoing connections were also sent from each neuron in the

rest of the network to randomly-selected neurons within the

cluster. Simulations were then run in which the network was

repeatedly switched between high-ACh and low-ACh states, and

the effects on network potentiation were explored. We quantified

the network potentiation for all excitatory connections, as before,

but also for just the connections which linked the cluster and the

rest of the network.
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